Shtukas and the Taylor expansion of $L$-functions (II)

Abstract

For arithmetic applications, we extend and refine our previously published results to allow ramifications in a minimal way. Starting with a possibly ramified quadratic extension $F’/F$ of function fields over a finite field in odd characteristic, and a finite set of places $\Sigma $ of $F$ that are unramified in $F’$, we define a collection of Heegner–Drinfeld cycles on the moduli stack of $\mathrm {PGL}_{2}$-Shtukas with $r$-modifications and Iwahori level structures at places of $\Sigma $. For a cuspidal automorphic representation $\pi $ of $\mathrm {PGL}_{2}(\mathbb {A}_{F})$ with square-free level $\Sigma $, and $r\in \mathbb {Z}_{\ge 0}$ whose parity matches the root number of $\pi _{F’}$, we prove a series of identities between

(1) the product of the central derivatives of the normalized $L$-functions $$\mathscr {L}^{(a)}\left (\pi , \frac {1}{2}\right )\mathscr {L}^{(r-a)}\left (\pi \otimes \eta , \frac {1}{2}\right ),$$ where $\eta $ is the quadratic idèle class character attached to $F’/F$, and $0\le a\le r$;

(2) the self intersection number of a linear combination of Heegner–Drinfeld cycles.

In particular, we can now obtain global $L$-functions with odd vanishing orders. These identities are function-field analogues of the formulae of Waldspurger and Gross–Zagier for higher derivatives of $L$-functions.

  • [BS] Go to document A. Blum and U. Stuhler, "Drinfeld modules and elliptic sheaves," in Vector Bundles on Curves—New Directions, Springer-Verlag, Berlin, 1997, vol. 1649, pp. 110-193.
    @INCOLLECTION{BS,
      author = {Blum, A. and Stuhler, U.},
      title = {Drinfeld modules and elliptic sheaves},
      booktitle = {Vector Bundles on Curves---New Directions},
      venue = {{C}etraro, 1995},
      series = {Lecture Notes in Math.},
      volume = {1649},
      pages = {110--193},
      publisher = {Springer-Verlag, Berlin},
      year = {1997},
      mrclass = {11G09 (14G15 58F07)},
      mrnumber = {1605029},
      mrreviewer = {David Goss},
      doi = {10.1007/BFb0094426},
      url = {https://doi.org/10.1007/BFb0094426},
      zblnumber = {0958.11045},
      }
  • [Drell] Go to document V. G. Drinfelcprimed, "Elliptic modules," Mat. Sb. (N.S.), vol. 94(136), pp. 594-627, 656, 1974.
    @ARTICLE{Drell,
      author = {Drinfel\cprime{d},
      V. G.},
      title = {Elliptic modules},
      journal = {Mat. Sb. (N.S.)},
      volume = {94(136)},
      year = {1974},
      pages = {594--627, 656},
      mrclass = {10D99 (14K15)},
      mrnumber = {0384707},
      mrreviewer = {Pierre Deligne},
      zblnumber = {0321.14014},
      doi = {10.1070/SM1974v023n04ABEH001731},
      }
  • [DrICM] V. G. Drinfelcprimed, "Langlands’ conjecture for ${ GL}(2)$ over functional fields," in Proceedings of the International Congress of Mathematicians, 1980, pp. 565-574.
    @INPROCEEDINGS{DrICM,
      author = {Drinfel\cprime{d},
      V. G.},
      title = {Langlands' conjecture for {${\rm GL}(2)$} over functional fields},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians},
      venue = {{H}elsinki, 1978},
      pages = {565--574},
      publisher = {Acad. Sci. Fennica, Helsinki},
      year = {1980},
      mrclass = {12A67 (10D40 22E55)},
      mrnumber = {0562656},
      mrreviewer = {Joe Repka},
      zblnumber = {0444.12004},
      }
  • [GZ] Go to document B. H. Gross and D. B. Zagier, "Heegner points and derivatives of $L$-series," Invent. Math., vol. 84, iss. 2, pp. 225-320, 1986.
    @ARTICLE{GZ,
      author = {Gross, Benedict H. and Zagier, Don B.},
      title = {Heegner points and derivatives of {$L$}-series},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {84},
      year = {1986},
      number = {2},
      pages = {225--320},
      issn = {0020-9910},
      mrclass = {11G40 (11F11 11G05 14G10)},
      mrnumber = {0833192},
      mrreviewer = {Loren D. Olson},
      doi = {10.1007/BF01388809},
      url = {https://doi.org/10.1007/BF01388809},
      zblnumber = {0608.14019},
      }
  • [J86] Go to document H. Jacquet, "Sur un résultat de Waldspurger," Ann. Sci. École Norm. Sup. (4), vol. 19, iss. 2, pp. 185-229, 1986.
    @ARTICLE{J86,
      author = {Jacquet, Hervé},
      title = {Sur un résultat de {W}aldspurger},
      journal = {Ann. Sci. \'{E}cole Norm. Sup. (4)},
      fjournal = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Quatrième Série},
      volume = {19},
      year = {1986},
      number = {2},
      pages = {185--229},
      issn = {0012-9593},
      mrclass = {11F70 (22E55)},
      mrnumber = {0868299},
      mrreviewer = {Stephen Gelbart},
      zblnumber = {0605.10015},
      doi = {10.24033/asens.1506},
      }
  • [VL] V. Lafforgue, Chtoucas pour les groupes réductifs et paramètrisation de Langlands globale, 2012.
    @MISC{VL,
      author = {Lafforgue, V.},
      title = {Chtoucas pour les groupes réductifs et paramètrisation de {L}anglands globale},
      year = {2012},
      arxiv = {1209.5352},
      zblnumber = {},
      }
  • [T] J. Tate, "On the conjectures of Birch and Swinnerton-Dyer and a geometric analog [see \mr1610977]," in Dix exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, vol. 3, pp. 189-214.
    @INCOLLECTION{T,
      author = {Tate, John},
      title = {On the conjectures of {B}irch and {S}winnerton-{D}yer and a geometric analog [see \mr{1610977}]},
      booktitle = {Dix exposés sur la Cohomologie des Schémas},
      series = {Adv. Stud. Pure Math.},
      volume = {3},
      pages = {189--214},
      publisher = {North-Holland, Amsterdam},
      year = {1968},
      mrclass = {11G40 (14G10)},
      mrnumber = {3202555},
      zblnumber = {0199.55604},
      }
  • [Va] Go to document Y. Varshavsky, "Moduli spaces of principal $F$-bundles," Selecta Math. (N.S.), vol. 10, iss. 1, pp. 131-166, 2004.
    @ARTICLE{Va,
      author = {Varshavsky, Yakov},
      title = {Moduli spaces of principal {$F$}-bundles},
      journal = {Selecta Math. (N.S.)},
      fjournal = {Selecta Mathematica. New Series},
      volume = {10},
      year = {2004},
      number = {1},
      pages = {131--166},
      issn = {1022-1824},
      mrclass = {14G35 (11F70 11G45 11R39 14H60)},
      mrnumber = {2061225},
      mrreviewer = {Igor Yu. Potemine},
      doi = {10.1007/s00029-004-0343-0},
      url = {https://doi.org/10.1007/s00029-004-0343-0},
      zblnumber = {1070.14026},
      }
  • [W] Go to document J. -L. Waldspurger, "Sur les valeurs de certaines fonctions $L$ automorphes en leur centre de symétrie," Compositio Math., vol. 54, iss. 2, pp. 173-242, 1985.
    @ARTICLE{W,
      author = {Waldspurger, J.-L.},
      title = {Sur les valeurs de certaines fonctions {$L$} automorphes en leur centre de symétrie},
      journal = {Compositio Math.},
      fjournal = {Compositio Mathematica},
      volume = {54},
      year = {1985},
      number = {2},
      pages = {173--242},
      issn = {0010-437X},
      mrclass = {11F70 (11F67 22E55)},
      mrnumber = {0783511},
      mrreviewer = {Stephen Gelbart},
      url = {http://www.numdam.org/item?id=CM_1985__54_2_173_0},
      zblnumber = {0567.10021},
      }
  • [YZ] Go to document Z. Yun and W. Zhang, "Shtukas and the Taylor expansion of $L$-functions," Ann. of Math. (2), vol. 186, iss. 3, pp. 767-911, 2017.
    @ARTICLE{YZ,
      author = {Yun, Zhiwei and Zhang, Wei},
      title = {Shtukas and the {T}aylor expansion of {$L$}-functions},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {186},
      year = {2017},
      number = {3},
      pages = {767--911},
      issn = {0003-486X},
      mrclass = {11F67 (11F70 14G35 14H60)},
      mrnumber = {3702678},
      mrreviewer = {Shouwu Zhang},
      doi = {10.4007/annals.2017.186.3.2},
      url = {https://doi.org/10.4007/annals.2017.186.3.2},
      zblnumber = {1385.11032},
      }

Authors

Zhiwei Yun

Massachusetts Institute of Technology, Cambridge, MA

Wei Zhang

Massachusetts Institute of Technology, Cambridge, MA