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Shtukas and the Taylor expansion of
L-functions (II)

By Zhiwei Yun and Wei Zhang

Abstract

For arithmetic applications, we extend and refine our previously pub-

lished results to allow ramifications in a minimal way. Starting with a

possibly ramified quadratic extension F ′/F of function fields over a finite

field in odd characteristic, and a finite set of places Σ of F that are unram-

ified in F ′, we define a collection of Heegner–Drinfeld cycles on the moduli

stack of PGL2-Shtukas with r-modifications and Iwahori level structures at

places of Σ. For a cuspidal automorphic representation π of PGL2(AF ) with

square-free level Σ, and r ∈ Z≥0 whose parity matches the root number of

πF ′ , we prove a series of identities between

(1) the product of the central derivatives of the normalized L-functions

L (a)
(
π,

1

2

)
L (r−a)

(
π ⊗ η, 1

2

)
,

where η is the quadratic idèle class character attached to F ′/F , and 0 ≤
a ≤ r;
(2) the self intersection number of a linear combination of Heegner–Drinfeld

cycles.

In particular, we can now obtain global L-functions with odd vanishing

orders. These identities are function-field analogues of the formulae of

Waldspurger and Gross–Zagier for higher derivatives of L-functions.
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1. Introduction

1.1. Main results. Let X be a smooth projective and geometrically con-

nected curve over a finite field k = Fq of characteristic p 6= 2. Let F = k(X)

be the function field of X and AF be the ring of adèles of F . Let G = PGL2.

Let π be a cuspidal automorphic representation of G(AF ). Let X ′ be another

smooth projective and geometrically connected curve over k together with a

double cover ν : X ′ → X.

In [10], under the assumption that both π and ν are everywhere unram-

ified, we proved an analogue of the formulae of Waldspurger [9] and Gross–

Zagier [4] for higher order central derivatives of the base change L-function

L(πF ′ , s). Our formula reads

(1.1)
|ωX |

2(log q)rL(π,Ad, 1)
L (r)(πF ′ ,

1

2
) =

(
[ShtµT ]π, [ShtµT ]π

)
Sht′rG

.

Here r ≥ 0 is an even integer. This formula relates the r-th central derivative

of a certain normalization1 L (πF ′ , s) of the L-function of the base change

πF ′ to the self-intersection number of a certain algebraic cycle [ShtµT ]π on the

moduli stack of G-Shtukas Sht′rG with r modifications. The cycles [ShtµT ]π are

analogous to the Heegner points on modular curves.

In this paper, we generalize the formula (1.1) to the case where the double

cover ν is allowed to be ramified and the automorphic representation π is

allowed to have square-free level. Moreover, we refine the formula (1.1) to give

a geometric expression of derivatives of the form L (a)
Ä
π, 1

2

ä
L (b)(π ⊗ η, 1

2).

Below we set up some notation for the statement of our main results.

1.1.1. Ramifications of the automorphic representation. Let Σ be a finite

set of closed points of X. Let π be a cuspidal automorphic representation of

G(A) that is unramified away from Σ and, locally at each x ∈ Σ, isomorphic

to an unramified twist of the Steinberg representation.

Let R be the ramification locus of the double cover ν, and let ρ = degR.

Then the genus g′ of X ′ and the genus g of X are related by g′ − 1 =

2(g − 1) + ρ/2. Let η = ηF ′/F : F×\A×F → {±1} be the idèle class character

corresponding to the extension F ′/F .

1In [10], the definition of L (πF ′ , s) included the denominator L(π,Ad, 1); in the current

paper, we separate L(π,Ad, 1) from L (πF ′ , s).
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We assume

The sets R and Σ are disjoint.

The normalized L-functions

L
Å
π, s+

1

2

ã
= q(2g−2+N/2)sL

Å
π, s+

1

2

ã
,

L
Å
π ⊗ η, s+

1

2

ã
= q(2g−2+ρ+N/2)sL

Å
π ⊗ η, s+

1

2

ã
are either even or odd functions in s depending on the root numbers of π and

π ⊗ η. We define a normalized L-function in two variables

LF ′/F (π, s1, s2) := L
Å
π, s1 + s2 +

1

2

ã
L
Å

(π ⊗ η, s1 − s2 +
1

2

ã
so that its specialization to s1 = s, s2 = 0 gives the normalized base change

L-function L (πF ′ , s+ 1
2). Then LF ′/F (π, s1, s2) satisfies a function equation

LF ′/F (π, s1, s2) = (−1)r(πF ′ )LF ′/F (π,−s1,−s2),

where (−1)r(πF ′ ) is the root number for the base change πF ′ , and

r(πF ′) = #
{
x ∈ Σ

∣∣∣ x is inert in X ′
}
.

For r+, r− ∈ Z≥0, we define

L
(r+,r−)
F ′/F (π) :=

Å
∂

∂s1

ãr+ Å ∂

∂s2

ãr−
LF ′/F (π, s1, s2)

∣∣∣∣
s1=s2=0

.

From the functional equation of LF ′/F (π, s1, s2), we see that L
(r+,r−)
F ′/F (π) = 0

unless

r+ + r− ≡ r(πF ′) mod 2.

1.1.2. The moduli of Shtukas with Iwahori level structure. On the geo-

metric side, we will consider the moduli stack of G-Shtukas with Iwahori level

structures. The points with Iwahori level structure come in two kinds: those

resembling the finite primes dividing the level N for a modular curve X0(N)

and those resembling the Archimedean place. In fact, starting with a finite

subset Σ ⊂ |X| together with a disjoint union decomposition Σ = Σf t Σ∞
and a non-negative integer r such that r ≡ #Σ∞ mod 2, we will define in

Sections 3.2.1 and 3.2.8 a moduli stack ShtrG(Σ; Σ∞) equipped with a map

Πr
G : ShtrG(Σ; Σ∞) −→ Xr ×S∞,

where S∞ =
∏
x∈Σ∞ Spec k(x). Then ShtrG(Σ; Σ∞) is a smooth 2r-dimensional

Deligne–Mumford (DM for short) stack locally of finite type over k (see Propo-

sition 3.9). We will also consider the base change

Sht′rG(Σ; Σ∞) := ShtrG(Σ; Σ∞)×(Xr×S∞) (X ′r ×S′∞),
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where S′∞ =
∏
x′∈Σ′∞

Spec k(x′) and Σ′∞ = ν−1(Σ∞). If we base change

Sht′rG(Σ; Σ∞) to k, it decomposes as

Sht′rG(Σ; Σ∞)⊗ k =
∐
ξ

Sht′rG(Σ; ξ),

where ξ = (ξx′)x′∈Σ′∞ runs over the choices of a k-point ξx′ over each x′ ∈ Σ′∞.

We fix such a ξ.

There is an action of the spherical Hecke algebra H Σ
G = ⊗x∈|X|−ΣHx

on the cohomology groups H∗c(Sht′rG(Σ; ξ),Q`), which is infinite-dimensional in

the middle degree. We have an Eisenstein ideal IEis ⊂ H Σ
G defined in the

same way as in [10, §4.1]. We prove a spectral decomposition similar to the

unramified case.

Theorem 1.1. There is a canonical decomposition of H Σ
G -modules

(1.2) H2r
c (Sht′rG(Σ; ξ),Q`) =

Ä⊕
m

V ′(ξ)m
ä
⊕ V ′(ξ)Eis,

where

• m runs over a finite set of maximal ideals of H Σ
G that do not contain the

Eisenstein ideal, and V ′(ξ)m is the generalized eigenspace of the H Σ
G -action

on H2r
c (Sht′rG(Σ; ξ),Q`) corresponding to m. Moreover, V ′(ξ)m is finite-

dimensional over Q`.
• V ′(ξ)Eis is a finitely generated H Σ

G -module on which the action of H Σ
G

factors through H Σ
G /ImEis for some m > 0.

Using the cup product, we have a perfect pairing

(1.3) (·, ·)Sht′rG(Σ;ξ) : V ′(ξ)m × V ′(ξ)m −→ Q`.

1.1.3. The Heegner–Drinfeld cycle. We make the following assumptions,

which are analogous to the Heegner hypothesis:

all places in Σf are split in X ′;(1.4)

all places in Σ∞ are inert in X ′.(1.5)

By considering rank one Shtukas on X ′, we obtain a moduli stack Sht
µ

T (µ∞ ·
Σ′∞) that depends on the data µ ∈ {±1}r and µ∞ ∈ {±1}Σ∞ . The stack

Sht
µ

T (µ∞ · Σ′∞) is a finite étale cover of X ′r ×S′∞.

To map Sht
µ

T (µ∞ ·Σ′∞) to Sht′rG(Σ; Σ∞) we need an extra choice µf , which

is a section to the two-to-one map Σ′f := ν−1(Σf ) → Σf . Altogether we have

chosen an element

(1.6) µ = (µ, µf , µ∞) ∈ Tr,Σ := {±1}r × Sect(Σ′f/Σf )× {±1}Σ∞ .

From this choice we have a map (cf. Section 4.2.2)

θ′µ : Sht
µ

T (µ∞ · Σ′∞) −→ Sht′rG(Σ; Σ∞).
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Base-changing to k and taking the ξ-component, we get a map

θ′µξ : Sht
µ

T (µ∞ · ξ) −→ Sht′rG(Σ; ξ).

We define the Heegner–Drinfeld cycle to be the algebraic cycle with proper

support

Zµ(ξ) := θ′µξ,∗[Sht
µ

T (µ∞ · ξ)] ∈ Chc,r(Sht′rG(Σ; ξ))Q.

Its cycle class in cohomology is denoted by

Zµ(ξ) := cl(Zµ(ξ)) ∈ H2r
c (Sht′rG(Σ; ξ),Q`).

1.1.4. Main result. Our main theorem is the following.

Theorem 1.2 (Main result, first formulation). Let π be a cuspidal auto-

morphic representation of G(AF ) ramified at a finite set of places Σ. Assume

• for each x ∈ Σ, πx is isomorphic to an unramified twist of the Steinberg

representation ;

• the ramification locus R of the double cover ν : X ′ → X is disjoint from Σ.

We decompose Σ as Σf tΣ∞ in a unique way so that the conditions (1.4) and

(1.5) hold. Let r be a non-negative integer such that

r ≡ #Σ∞ mod 2.

Let µ, µ′ ∈ Tr,Σ. Let

r+ = {1 ≤ i ≤ r | µi = µ′i}, r− = {1 ≤ i ≤ r | µi 6= µ′i}.
Then

(1.7)
|ωX |qρ/2−Nε−(π ⊗ η)

2(− log q)rL(π,Ad, 1)
L

(r+,r−)
F ′/F (π) =

Ä
Zµπ (ξ), Zµ

′
π (ξ)

ä
Sht′rG(Σ;ξ)

.

Here,

• |ωX | = q−(2g−2).

• ε−(π ⊗ η) ∈ {±1} is the product of the Atkin–Lehner eigenvalues of π ⊗ η
at x ∈ Σ−(µ, µ′), where Σ−(µ, µ′) ⊂ Σ is defined in (4.6).

• The automorphic representation π gives a character λπ of H Σ
G that does not

factor through the Eisenstein ideal ; we denote by V ′(ξ)π the direct summand

in (1.2) corresponding to the maximal ideal mπ = ker(λπ) and let Zµπ (ξ) be

the projection of Zµ(ξ) to V ′(ξ)π .

• The pairing (·, ·)Sht′rG(Σ;ξ) on the right side of (1.7) is (1.3).

The Galois involution for the double cover X ′/X induces an action of

(Z/2Z)r on X ′r, hence on Sht′rG(Σ; ξ) by acting only on the X ′r-factor. Let

σi ∈ (Z/2Z)r be the element with only the i-th coordinate non-trivial. For

0 ≤ r1 ≤ r, we define an idempotent in the group algebra Q[(Z/2Z)r] by

εr1 =
r1∏
i=1

1 + σi
2

r∏
j=r1+1

1− σi
2

.
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Theorem 1.3 (Main result, second formulation). Keep the same assump-

tions as Theorem 1.2. Let 0 ≤ r1 ≤ r be an integer, and let µ ∈ Tr,Σ. Then

|ωX |qρ/2−N

2(− log q)rL(π,Ad, 1)
L (r1)

Å
π,

1

2

ã
L (r−r1)

Å
π ⊗ η, 1

2

ã
=
Ä
εr1Z

µ
π (ξ), εr1Z

µ
π (ξ)

ä
Sht′rG(Σ;ξ)

.

In the special case r1 = r, we may further reformulate the theorem as

follows.

Corollary 1.4. Keep the same assumptions as Theorem 1.2. Let Y µ
π (ξ)

∈ H2r
c (ShtrG(Σ; ξ),Q`) be the class of the push-forward of Zµπ (ξ) to ShtrG(Σ; ξ) =

ShtrG(Σ; Σ∞)×S∞ ξ. Then Y µ
π (ξ) depends only on (r, µf , µ∞), and

2r−1|ωX |qρ/2−N

(− log q)rL(π,Ad, 1)
L (r)

Å
π,

1

2

ã
L
Å
π ⊗ η, 1

2

ã
=
Ä
Y µ
π (ξ), Y µ

π (ξ)
ä

ShtrG(Σ;ξ)
.

Remark 1.5. Consider the case where Σ∞ consists of a single place ∞,

r = 1, and µ = µ′. In this case the moduli stack Sht1
G(Σ; Σ∞) over X is closely

related to the moduli space of elliptic modules originally defined by Drinfeld

[2] (see the discussion in Section 3.2.3), the latter being a perfect analogue of

a semistable integral model for modular curves X0(N). In this special case,

Theorem 1.2 reads

(1.8) − |ωX |qρ/2−N

2 log q · L(π,Ad, 1)
L ′(πF ′ ,

1

2
) = (Zµπ (ξ), Zµπ (ξ))Sht′1G(Σ;ξ) .

This is a direct analogue of the Gross-Zagier formula for modular curves [4].

We understand that D. Ulmer has an unpublished proof of a formula similar

to (1.8). The method of our proof is quite different from that in [4] in that we

do not need to explicitly compute either side of the formula.

1.2. What is new. We highlight both the new results and new techniques

in this paper compared to the unramified case treated in [10].

1.2.1. First we compare our results with our previous ones in [10]. The-

orems 1.2 and 1.3 have much wider applicability than the ones in [10]. In

particular, for a non-isotrivial elliptic curve E over F with semistable reduc-

tions, its L-function L(E, s) is the automorphic L-function L(π, s + 1/2) for

some π satisfying the conditions of our theorems. Therefore, our results in this

paper give a geometric interpretation of Taylor coefficients of L-functions of

semistable elliptic curves over function fields. For potential applications to the

arithmetic of elliptic curves, see the discussion in Section 1.3.

In addition, in this paper we study the intersection of different Heegner–

Drinfeld cycles by varying the discrete datum µ. As a result we get products

of derivatives of L (π, s) and L (π ⊗ η, s), as opposed to just the derivatives
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of their product L (πF ′ , s). So Theorems 1.2 and 1.3 are new even in the

unramified case.

1.2.2. Next we comment on the proof. To prove Theorem 1.2, we follow

the general strategy of relative trace formulae comparison as in [10]. In this

paper, we have tried to avoid repeating similar arguments from [10] and only

write new arguments in detail. Here are some highlights of the new techniques

compared to the unramified case.

The key identity between relative traces takes the formÅ
∂

∂s1

ãr+ Å ∂

∂s2

ãr−
(qN+s1+N−s2J(f ′, s1, s2))

∣∣∣∣
s1=s2=0

=
Ä
Zµ(ξ), f ∗ Zµ′(ξ)

ä
Sht′rG(Σ;ξ)

,

where f ∈ H Σ∪R
G and f ′ ∈ Cc(G(A)) is a “matching function,” and where

N± = deg Σ±(µ, µ′) (see (4.5) and (4.6)). In the unramified case, we simply

took f ′ = f . At places x ∈ Σ, the corresponding factors of f ′ are not surprising:

they are essentially characteristic functions of the Iwahori. However, it is not

obvious what to put at places x ∈ R (where R is the ramification locus of

F ′/F ). This is one of the main difficulties of this work.

In Section 2.4.1 we give a somewhat surprising formula for the test func-

tion h�x to be put at x ∈ R in f ′. The discovery of the function h�x was guided

by the geometric interpretation of orbital integrals. We wanted a moduli space

Nd that looked like the counterpart of Md (see Definition 5.1) for a split qua-

dratic extension F × F but somehow remembered the ramification locus R.

Once we realized the correct candidate for Nd (see Definition 6.1), the formula

for h�x fell out quite naturally as counting points on Nd. From the spectral

calculation, we get another characterization of h�x (see Section 2.4.2), which

justifies its canonicity from a different perspective. The idea should be appli-

cable to other situations of relative trace formulae where one needs explicit

ramified test functions. We hope to return to this topic in the future.

The presence of Iwahori structures makes the geometry of the horocycles

in Sht′rG(Σ; Σ∞) much more complicated than in the unramified case, which

explains the length of Section 3.4. The study of the horocycles is needed in

order to establish a cohomological spectral decomposition. Also, the proof of

the key finiteness results leading to the cohomological spectral decomposition in

Section 3.5 uses a new strategy: we introduce “almost isomorphisms” between

ind-perverse sheaves (i.e., we work with a quotient category of ind-perverse

sheaves). Compared to our approach in [10], this strategy is more robust in

showing qualitative results for spaces of infinite type and should work for the

cohomological spectral decomposition for higher rank groups.

1.3. Potential arithmetic applications.
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1.3.1. Determinant of the Frobenius eigenspace. Let π be a cuspidal au-

tomorphic representation of G(A) as in Theorem 1.2. By the global Langlands

correspondence proved by Drinfeld [3], there is a rank two irreducible Q`-local

system ρπ attached to π over an open subset of X. Our convention is that

det(ρπ) ∼= Q`(−1); in particular, ρπ is pure of weight 1. Let j!∗ρπ be the mid-

dle extension of ρπ to the complete curve X. The base change πF ′ corresponds

to the local system ν∗ρπ on an open subset of X ′, and we denote by j′!∗ν
∗ρπ

its middle extension to X ′. Let

W ′π := H1(X ′ ⊗ k, j′!∗ν∗ρπ).

This is a Q`-vector space with the geometric Frobenius automorphism Fr of

weight 2. The L-function L(πF ′ , s) is related to ν∗ρπ by

L(πF ′ , s−
1

2
) = det

(
1− q−s Fr

∣∣∣W ′π) .
Let Πr

G : ShtrG(Σ)→ Xr ×S∞ be the projection map. It is expected that

under the H Σ
G -action, the λπ-isotypical component of the complex RΠr

G,!Q`
on Xr ×S∞ takes the form

(1.9) (RΠr
G,!Q`)π = πK ⊗

(
j!∗ρπ[−1]� · · ·� j!∗ρπ[−1]︸ ︷︷ ︸

r times

)
�
(
�x∈Σ∞ ρIxπ,x

)
,

where K =
∏
x/∈ΣG(Ox)×∏x∈Σ Iwx, and ρπ,x is the restriction of ρπ to SpecFx

and Ix < Gal(F sep
x /Fx) is the inertial group at x. Pulling back to X ′r ×S′∞,

(1.9) implies that the generalized eigenspace V ′(ξ)π := V ′(ξ)ker(λπ) in (1.2)

should take the form

V ′(ξ)π ∼= πK ⊗W ′⊗rπ ⊗ `π,ξ,

where `π,ξ is the geometric stalk of �x∈Σ∞ρ
Ix
π,x at ξ. Note that both πK and

`π,ξ are one-dimensional since π is an unramified twist of the Steinberg repre-

sentation at x ∈ Σ.

Then the cohomology class of the Heegner–Drinfeld cycle gives rise to

an element in Zµπ (ξ) ∈ πK ⊗ W ′⊗rπ ⊗ `π,ξ. It can be shown that Zµπ (ξ) is

an eigenvector for the operator id ⊗ Fr⊗r ⊗id, with eigenvalue qr. Our main

result (Theorem 1.2) together with the super-positivity proved in [10, Th. B.2]

shows that Zµπ (ξ) does not vanish when r ≥ ords=1/2 L(πF ′ , s), provided that

L(πF ′ , s) is not a constant (i.e., 2(4g − 4 +N + ρ) > 0).

Partly motivated by the standard conjecture about Frobenius semi-

simplicity, we propose

Conjecture 1.6. Let r = ords=1/2 L(πF ′ , s) (i.e., r is the dimension of

the generalized eigenspace of Fr on W ′π with eigenvalue q) and µ ∈ Tr,Σ. Then

the class Zµπ (ξ) belongs to πK ⊗ ∧r
Ä
W ′Fr=q
π

ä
⊗ `π,ξ .
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In particular, for the eigenvalue q, the generalized eigenspace of the Fr-

action on W ′π coincides with the eigenspace, and Zµπ (ξ) gives a basis of the line

πK ⊗ ∧r
Ä
W ′Fr=q
π

ä
⊗ `π,ξ .

In a forthcoming work, the authors plan to prove the following (assuming

that (1.9) holds):

(i) If r0 ≥ 0 is the smallest integer r such that Zµπ 6= 0 for some µ ∈ {±1}r,
then dimW ′Fr=q

π = r0 and the class Zµπ (ξ) gives a basis of the line πK ⊗
∧r0
Ä
W ′Fr=q
π

ä
⊗ `π,ξ.

(ii) ords=1/2 L(πF ′ , s) = 1 if and only if dimW ′Fr=q
π = 1. Moreover, if

ords=1/2 L(πF ′ , s) = 3, then dimW ′Fr=q
π = 3.

1.3.2. Elliptic curves. Let E be a non-isotrivial semistable elliptic curve

over F . Attached to E is a cuspidal automorphic representation π of G(AF )

such that ρπ ∼= V`(E)∗ ⊗Q` Q` as representations of Gal(F sep/F ). In partic-

ular, L(E, s) = L(π, s − 1
2), and L(EF ′ , s) = L(πF ′ , s − 1

2). Moreover, after

choosing a semistable model E ′ over X ′, we may identify W ′π with a subquo-

tient of H2(E ′ ⊗ k,Q`), and we think of it as the `-adic Selmer group of E.

The function-field analogue of the conjecture of Birch and Swinnerton-Dyer,

as formulated by Artin and Tate [7], predicts that the q-eigenspace of Fr on W ′π
is the same as the generalized eigenspace and is spanned by classes of sections

of E ′. The expected result (ii) above would imply that if ords=1 L(EF ′ , s) = 3,

then the q-eigenspace of Fr on W ′π is the same as the generalized eigenspace.

While it is difficult to construct algebraic cycles on E ′ spanning W ′Fr=q
π ,

it may be easier to construct a basis of the line ∧r(W ′Fr=q
π ). Conjecture 1.6

proposes a candidate generator for ∧r(W ′Fr=q
π ), namely, the cycle Zµπ (ξ). It is

not clear though how to relate the ambient space of Zµπ (ξ), namely Sht′rG(Σ; ξ),

to powers of E ′.

1.4. Notation.

1.4.1. Function field notation. Throughout this paper, we fix a finite field

k = Fq of characteristic p 6= 2. We fix a smooth, projective and geometrically

connected curve X over k. Let F = k(X) be the function field of X. Let |X|
denote the set of closed points of X.

For x ∈ |X|, let Ox (resp. Fx) denote the completed local ring of X at x

(resp. the fraction field of Ox). Let mx ⊂ Ox be the maximal ideal. We

typically denote a uniformizer of Ox by $x. Let AF denote the ring of adèles

of F , and let O =
∏
x∈|X|Ox. Let k(x) denote the residue field of Ox, and let

dx = [k(x) : k], qx = qdx = #k(x).

Let vx : F×x → Z be the valuation normalized by vx($x) = 1.
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We will also consider a double covering ν : X ′ → X where X ′ is also a

smooth, projective and geometrically connected curve X over k. The function

field of X ′ is denoted by F ′. Other notation for X extend to their counterparts

for X ′.

1.4.2. Group-theoretic notation. Except for in Sections 3.1 and 3.2, the

letter G always denotes the algebraic group PGL2 over k. Let A ⊂ G be the

diagonal torus. For x ∈ |X|, the standard Iwahori subgroup Iwx of G(Fx) is

the image of the following subgroup of GL2(Ox):

Ĩwx =

®ñ
a b

c d

ô
∈ GL2(Ox)

∣∣∣∣∣ c ∈ mx

´
.

For an algebraic group H over F , we denote

[H] := H(F )\H(A).

1.4.3. Algebro-geometric notation. Most of the algebraic stacks that ap-

pear in this paper are over the finite field k (with exceptions of affine Q`-
schemes appearing in Theorem 3.41), and the product S × S′ (without sub-

script) of such stacks S and S′ is always understood to be the fiber product of

S and S′ over Spec k.

For any stack S over k, FrS : S → S denotes the k-linear Frobenius that

raises functions to the q-th power.

For an S-point x : S → X, we denote by Γx ⊂ X × S the graph of x,

which is a Cartier divisor of X × S.

We fix a prime ` different from p, and we fix an algebraic closure Q` of Q`.
The étale cohomology groups in this paper are with Q` or Q` coefficients.

Acknowledgement. The authors would like to thank Benedict Gross for

useful discussions and encouragement. They also thank an anonymous referee

for useful suggestions on the presentation.

2. The analytic side: relative trace formula

We extend the results in [10, §§2, 4] on Jacquet’s relative trace formula

(RTF) [5] to our current setting. Since most arguments in [10] extend with-

out any difficulty, we will not repeat them, but simply indicate the necessary

changes.

A new phenomenon is that we need to choose a new test function at the

places where F ′/F is ramified. This is done in Section 2.4 and is the most

non-obvious point of the analytic part of this paper.

By convention, the automorphic representations we consider in this section

are on C-vector spaces.
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2.1. Jacquet ’s RTF. For f ∈ C∞c (G(A)), we consider the automorphic

kernel function

Kf (g1, g2) =
∑

γ∈G(F )

f(g−1
1 γg2), g1, g2 ∈ G(A).(2.1)

Let A ⊂ G be the diagonal torus. We define a distribution given by a regular-

ized integral, for (s1, s2) ∈ C2,

J(f, s1, s2) =

∫ reg

[A]×[A]
Kf (h1, h2)|h1|s1+s2 |h2|s1−s2η(h2) dh1 dh2.(2.2)

Here the measure on [A] = A(F )\A(A) is induced from the Haar measure on

A(A) such that vol(A(O)) = 1.

The regularization is the same as in [10, §§2.2–2.5], i.e., as the limit of

the integral over a certain sequence of increasing bounded subsets that cover

[A]× [A]. Moreover, we define a two-variable orbital integral

J(γ, f, s1, s2) =

∫
A(A)×A(A)

f(h−1
1 γh2)|h1h2|s1 |h1/h2|s2η(h2) dh1 dh2.

Recall the function inv : G(F ) → P1(F ) − {1} defined in [10, (2.1)]. When

u = inv(γ) ∈ P1(F ) \ {0, 1,∞}, the integral J(γ, f, s1, s2) is absolutely conver-

gent. When u = inv(γ) ∈ {0,∞}, the integral defining J(γ, f, s1, s2) requires

regularization as in [10, §2.5], and the proof in loc. cit. goes through in our

two-variable setting.

Now J(f, s1, s2) and J(γ, f, s1, s2) are in C[q±s1 , q±s2 ]; i.e., each of them is

a finite sum of the form∑
(n1,n2)∈Z2

an1,n2 q
n1s1+n2s2 , an1,n2 ∈ C.

We have an expansion of J(f, s1, s2) into a sum of orbital integrals

J(f, s1, s2) =
∑

γ∈A(F )\G(F )/A(F )

J(γ, f, s1, s2).(2.3)

We also define

J(u, f, s1, s2) =
∑

γ∈A(F )\G(F )/A(F ), inv(γ)=u

J(γ, f, s1, s2), u ∈ P1(F )− {1}.
(2.4)

2.2. The Eisenstein ideal. For x ∈ |X|, let

Hx = Cc(G(Ox)\G(Fx)/G(Ox))

be the spherical Hecke algebra of G(Fx). For a finite set S of closed points

of X , define H S
G = ⊗x∈|X|−SHx. In [10, §4.1] we defined the Eisenstein ideal
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IEis ⊂ HG for the full spherical Hecke algebra HG = ⊗x∈|X|Hx as the kernel

of the composition of ring homomorphisms

aEis : HG
Sat−−→ Q[Div(X)]� Q[PicX(k)].

Here the first map Sat is the tensor product of Satake transforms Hx →
Q[tx, t

−1
x ]. We restrict the homomorphism to the subalgebra H S

G

aSEis : H S
G

Sat−−→ Q[Div(X − S)] −→ Q[PicX(k)]

and define

ISEis : = Ker
Ä
aSEis : H S

G −→ Q[PicX(k)]
ä
.

Recall from [10, 4.1.2] that the image of aEis, hence that of aSEis, lies in

Q[PicX(k)]ιPic for an involution ιPic on Q[PicX(k)]. We have the following

analogue of [10, Lemma 4.2] with the same proof.

Lemma 2.1. The map aSEis : H S
G → Q[PicX(k)]ιPic is surjective.

We have a generalization of [10, Th. 4.3].

Theorem 2.2. Let fS ∈ ISEis, and let fS ∈ C∞c (G(AS)) be left invariant

under the Iwahori IwS =
∏
x∈S Iwx. Then for f = fS ⊗ fS ∈ C∞c (G(A)), we

have

Kf = Kf,cusp +Kf,sp.
Here Kf,cusp (resp. Kf,sp) is the projection of Kf to the cuspidal spectrum (resp.

residual spectrum, i.e., one-dimensional representations); see [10, §4.2].

Proof. We indicate how to the modify the proof of [10, Th. 4.3]. Let

KS =
∏
x/∈S G(Ox), and let K = KS · KS be a compact open subgroup of

G(A) such that KS ⊂ IwS and that f is bi-K-invariant. The analogue of

equation [10, (4.9)] now reads

Kf,Eis,χ(x, y) =
log q

2πi

∑
α,β

∫ 2πi
log q

0
(ρχ,u(f)φα, φβ)E(x, φα, u, χ)E(y, φβ, u, χ) du,

(2.5)

where {φα} is an orthonormal basis of V K
χ . Since f is left invariant under the

Iwahori IwS ×KS , (ρχ,u(f)φα, φβ) = 0 unless the IwS ×KS-average of φβ is

non-zero; i.e., (ρχ,u(f)φα, φβ) = 0 unless V IwS×KS

χ 6= 0, which happens if and

only if χ is everywhere unramified. When χ is everywhere unramified, we have

(ρχ,u(f)φα, φβ) = χu+1/2(aSEis(f
S))(ρχ,u(fS ⊗ 1KS )φα, φβ).

In particular, if fS lies in the Eisenstein ideal, then aSEis(f
S) = 0, and hence

the integrand in (2.5) vanishes. This completes the proof. �

2.3. The spherical character: global and local.
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2.3.1. Global spherical characters and period integral. We first recall from

[10, §4.3] the global spherical character. Let π be a cuspidal automorphic

representation of G(A), endowed with the natural Hermitian form given by

the Petersson inner product: 〈φ, φ′〉 for φ, φ′ ∈ π.

For a character χ : F×\A× → C×, the (A,χ)-period integral for φ ∈ π is

defined as

Pχ(φ, s) :=

∫
[A]
φ(h)χ(h)

∣∣∣h∣∣∣s dh.(2.6)

We simply write P(φ, s) if χ = 1 is trivial. The global spherical character

(relative to (A × A, 1 × η)) associated to π is a distribution on G(A) defined

by

Jπ(f, s1, s2) =
∑
{φ}

P(π(f)φ, s1 + s2)Pη(φ, s1 − s2)

〈φ, φ〉
, f ∈ C∞c (G(A)),(2.7)

where the sum runs over an orthogonal basis {φ} of π. This expression is

independent of the choice of the measure on G(A) as long as we use the same

measure to define the operator π(f) and the Petersson inner product. The

function Jπ(f, s1, s2) defines an element in C[q±s1 , q±s2 ].

Using Theorem 2.2, the same argument of [10, Lemma 4.4] proves the

following lemma.

Lemma 2.3. Let f be the same as in Theorem 2.2. Then

J(f, s1, s2) =
∑
π

Jπ(f, s1, s2),

where the sum runs over all cuspidal automorphic representations π of G(A)

and the summand Jπ(f, s) is zero for all but finitely many π.

2.3.2. Local spherical characters. We now recall the factorization of the

global spherical character (2.7) into a product of local spherical characters. For

unexplained notation and convention, we refer to the proof of [10, Prop. 4.5].

Let ψ : F\A→ C× be a non-trivial character, and let ψx be its restriction

to Fx. For the discussion of the local spherical characters, we will use Tam-

agawa measures on various groups, which differ from our earlier convention.

Strictly speaking, as in loc. cit., the measure on A(A) = A× is not the Tam-

agawa measure, but rather an unnormalized (decomposable) one
∏
x∈|X| d

×tx
where d×tx = ζx(1) dtx|tx| for the self-dual measure dtx (with respect to ψx). In

particular, we have vol(O×x ) = 1 when ψx is unramified (i.e., the conductor of

ψx is Ox). A similar remark applies to the measure G(A); cf. [10, p.804].

We consider the Whittaker model of πx with respect to the character ψx,

denoted by Wψx(πx). For φ = ⊗x∈|X|φx ∈ π = ⊗′x∈|X|πx, the ψ-Whittaker

coefficient Wφ decomposes as a product ⊗x∈|X|Wx, where Wx ∈ Wψx(πx). We
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define a normalized linear functional

λ\x(Wx, ηx, s) :=
1

L(πx ⊗ ηx, s+ 1/2)

∫
F×x

Wx

Çñ
a

1

ôå
ηx(a)|a|s d×a.

We define a local (invariant) inner product θ\x on the Whittaker modelWψx(πx)

θ\x(Wx,W
′
x) :=

1

L(πx × π̃x, 1)

∫
F×x

Wx

Çñ
a

1

ôå
W ′x

Çñ
a

1

ôå
d×a.

Now we define the local spherical character as

Jπx(fx, s1, s2)

:=
∑
{Wi}

λ\x(πx(fx)Wi,1x, s1 + s2)λ\x(Wi, ηx, s1 − s2)

θ\x(Wi,Wi)
,

(2.8)

where the sum runs over an orthogonal basis {Wi} ofWψx(πx). By the product

decomposition of the period integrals (2.6) and the Petersson inner product (cf.

the proof of [10, Prop. 4.5]), the global spherical character decomposes into a

product of local ones (cf. [10, (4.16)]):

Jπ(f, s1, s2)

= |ωX |−1 L(π, s1 + s2 + 1
2)L(π ⊗ η, s1 − s2 + 1

2)

2L(π,Ad, 1)

∏
x∈|X|

Jπx(fx, s1, s2).

(2.9)

We note that the factor |ωX |−1 is due to the fact that in our earlier defini-

tion (2.2) of J(f, s1, s2), the measure on A(A) gives vol(A(O)) = 1, while the

(unnormalized) Tamagawa measure gives vol(A(O)) = |ωX |1/2.

2.4. Local test functions. Our test function f ∈ C∞c (G(A)) will be a pure

tensor f = ⊗x∈|X|fx, where fx ∈ Hx is in the spherical Hecke algebra for x /∈
Σ ∪R. Below we define the local components fx for x ∈ R (in Sections 2.4.1–

2.4.2) and for x ∈ Σ (in Section 2.4.3).

For any place x ∈ |X|, let px : GL2(Fx) → G(Fx) be the projection. The

fibers of px are torsors under F×x and are equipped with F×x -invariant measures

such that any O×x -orbit has volume 1. Let px,∗ : C∞c (GL2(Fx))→ C∞c (G(Fx))

be the map defined by integration along the fibers of px with the above-defined

measure.

2.4.1. The function h�x . For a ∈ Ox, we denote by a its image in k(x).

For any n ∈ Z, let Mat2(Ox)vx(det)=n be the set of 2-by-2 matrices M with

entries in Ox such that vx(det(M)) = n.

At x ∈ R, the character ηx|O×x factors through the unique non-trivial

character ηx : k(x)× → {±1}. We also denote by ηx : k(x) → {0,±1} its

extension by zero to the whole k(x).
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When x ∈ R, let h̃�x ∈ C∞c (GL2(Fx)) be the function supported on

Mat2(Ox)vx(det)=1 given by

(2.10) h̃�x ((aij)) =

1
2

∏
i,j∈{1,2}(1 + ηx(aij)) if aij ∈ O×x ∀i, j ∈ {1, 2},∏

i,j∈{1,2}(1 + ηx(aij)) otherwise.

Define

h�x = px,∗h̃
�
x ∈ C∞c (G(Fx)).

We give an interpretation of the formula (2.10) as counting the num-

ber of certain “square-roots” of (aij). Let Ξx be the set of pairs of matricesÄî
a11 a12
a21 a22

ó
,
î
α11 α12
α21 α22

óä
∈ Mat2(Ox)×Mat2(k(x)) such that

(1) for 1 ≤ i, j ≤ 2, α2
ij = aij , the image of aij in k(x);

(2) det(αij) = 0;

(3) vx(det(aij)) = 1.

Lemma 2.4. Let µx : Ξx → Mat2(Ox) be the projection to the first factor

(aij). We have

(2.11) h̃�x = µx,∗1Ξx .

Proof. Let (aij) ∈ Mat2(Ox)vx(det)=1 be such that all aij are squares. Then

its preimage in ΞD,x consists of (αij) ∈ Mat2(k(x)) where αij is a square root of

aij , such that det(αij) = 0. If all aij are units, among the
∏
i,j(1 + ηx(aij)) =

24 = 16 choices of (αij), only half of them satisfy det(αij) = 0. Hence the

preimage of such (aij) in Ξx consists of eight elements. If at least one of aij is

non-unit, then the condition vx(det(aij)) = 1 implies det(αij) = 0. Therefore,

the preimage of such (aij) ∈ Mat2(Ox)vx(det)=1 in Ξx has cardinality given by∏
i,j(1 + ηx(aij)), as desired by (2.10). �

2.4.2. The function f�x . We introduce another test function, closely re-

lated to h�x , which will be useful in the calculation of its action on representa-

tions.

For x ∈ R, let f̃�x be the function supported on Mat2(Ox)vx(det)=1 given

by the formula

f̃�x ((aij)) =


ηx(a11a12) if a11, a12 ∈ O×x ,
ηx(a21a22) if a21, a22 ∈ O×x ,
0 otherwise.

Note that the first two cases above are not mutually exclusive, but when

all aij ∈ O×x , we have ηx(a11a12) = ηx(a21a22) because the rank of (aij) ∈
Mat2(k(x)) is one.

We then define

f�x = px∗f̃
�
x ∈ C∞c (G(Fx)).
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Lemma 2.5. The function f̃�x is characterized up to a scalar by the fol-

lowing three properties :

(1) its support is contained in Mat2(Ox)vx(det)=1;

(2) it is left invariant under GL2(Ox);

(3) under the action of the diagonal torus ‹A(Ox) by right multiplication, it is

an eigenfunction with eigencharacter diag(a, d) 7→ ηx(a/d).

Furthermore, we have

f̃�x =
∑

u∈k(x)×

ηx(u) · 1
GL2(Ox)

î
1 u
$x

ó.(2.12)

Proof. Let F be the space C-valued functions satisfying the above condi-

tions. The coset space GL2(Ox)\Mat2(Ox)vx(det)=1 has representatives given

by ñ
$x 0

0 1

ô
,

ñ
1 u

0 $x

ô
, u ∈ k(x).

We have a bijection GL2(Ox)\Mat2(Ox)vx(det)=1
∼= P1(k(x)) = k(x) ∪ {∞} by

sending
î
$x 0
0 1

ó
to ∞ and

î
1 u
0 $x

ó
to u. The right multiplication of ‹A(Ox) on

GL2(Ox)\Mat2(Ox)vx(det)=1 factors through ‹A(Ox)→ ‹A(k(x)), and diag(a, d)

acts as u 7→ (d/a) · u (u ∈ P1(k(x))). Therefore, F is isomorphic to the

ηx-eigenspace of ‹A(k(x)) on C(P1(k(x))) under right translation. The latter

space is one-dimensional and is spanned by fη : u 7→ ηx(u) for u ∈ k(x)× and

zero for u = 0 or ∞. Hence dimCF = 1.

The right-hand side of the expression (2.12) is the function in F corre-

sponding to fη, therefore it is a constant multiple of f̃�x . But both sides take

value 1 at
î

1 1
0 $x

ó
, so they must be equal. This proves the lemma. �

We compare the test functions h�x and f�x .

Lemma 2.6. The difference h�x − f�x is a sum of two functions, one is

invariant under the right translation by A(Ox), and the other is η-eigen under

the left translation by A(Ox).

Proof. The function h̃�x can be written as

h̃�x = Φ0 −
1

2
Φ1,

where both Φ0 and Φ1 are supported on Mat2(Ox)vx(det)=1:

Φ0((aij)) =
∏

i,j∈{1,2}
(1 + ηx(aij))
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and

Φ1((aij)) =


∏
i,j∈{1,2}(1 + ηx(aij)) if aij ∈ O×x ∀i, j ∈ {1, 2},

0 otherwise.

For any subset S ⊂ {(1, 1), (1, 2), (2, 1), (2, 2)}, define the following func-

tions supported on Mat2(Ox)vx(det)=1:

δ̃0,S((aij)) : =
∏

(i,j)∈S
ηx(aij),

δ̃1,S((aij)) : =


∏

(i,j)∈S ηx(aij) if aij ∈ O×x ∀i, j ∈ {1, 2},
0 otherwise.

Then

Φ0 =
∑
S

δ̃0,S , Φ1 =
∑
S

δ̃1,S ,

and hence

(2.13) h̃�x =
∑
S

δ̃0,S −
1

2

∑
S

δ̃1,S .

On the other hand, let S1∗ = {(1, 1), (1, 2)} (entries in the first row) and

S2∗ = {(2, 1), (2, 2)} (entries in the second row). From the definition of f̃�x , we

have

(2.14) f̃�x = δ̃0,S1∗ + δ̃0,S2∗ −
1

2

Ä
δ̃1,S1∗ + δ̃1,S2∗

ä
.

In fact, the only non-obvious part of the equality is when all four entries are

units, in which cases all four functions δ̃0,S1∗ , δ̃0,S2∗ , δ̃1,S1∗ and δ̃1,S2∗ take the

same value. Comparing (2.13) and (2.14), we see that h̃�x − f̃�x is a linear

combination of δ̃0,S and δ̃1,S for S in one of the three cases

(1) |S| is odd;

(2) S is either a column, or contains every entry;

(3) S is one of the two diagonals.

Therefore, h�x − f�x is a linear combination of δ0,S = px∗δ̃0,S and δ1,S = px∗δ̃1,S

for S in one of the above three cases.

In case (1), δ̃0,S and δ̃1,S are eigenfunctions under the translation by scalar

matrices in O×x with non-trivial eigenvalue ηx, and therefore δ0,S = δ1,S = 0.

In case (2), δ̃0,S and δ̃1,S are right invariant under ‹A(Ox). Therefore, δ0,S

and δ1,S are right invariant under A(Ox).

In case (3), δ̃0,S and δ̃1,S are eigen under the left translation by ‹A(Ox)

with respect to the character diag(a, d) 7→ ηx(a/d), and hence δ0,S and δ1,S are

ηx-eigen under the left translation by A(Ox).

Combining these calculations, we have proved the lemma. �
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2.4.3. We fix a decomposition

(2.15) Σ = Σ+ t Σ−.

Let N± = deg Σ±. Later such a decomposition will come from a pair µ, µ′ ∈
Tr,Σ (see (4.5), (4.6)).

For each x ∈ Σ, we define a subset Jx ⊂ G(Ox) by

(2.16)

Jx =



g ∈ G(Ox)|g ≡

 ∗ ∗
0 ∗

 mod mx

 = Iwx if x ∈ Σ+,

g ∈ G(Ox)|g ≡

 ∗ ∗
∗ 0

 mod mx

 = Iwx · w if x ∈ Σ−.

Here w =
î

1
−1

ó
is the Weyl element. The local component fx of our test

function f at x ∈ Σ will be the characteristic function of Jx.

2.5. Calculations of local spherical characters. In this subsection we com-

pute the local distributions Jπx(fx, s1, s2) for certain pairs (πx, fx). We always

assume that the additive character ψx is unramified. It follows that our mea-

sure d×tx = ζx(1) dtx|tx| on A(Fx) = F×x gives vol(O×x ) = 1.

2.5.1. The case x ∈ R and πx unramified. We consider the test function

introduced in Section 2.4.2:

f̃x = f̃�x , fx = f�x .

We need an equivalent expression of the local spherical character (2.8):

Jπx(fx, s1, s2) =
∑
{Wi}

λ\x(Wi,1, s1 + s2)λ\x
Ä
πx(f∨x )Wi, ηx, s1 − s2

ä
θ\x(Wi,Wi)

,(2.17)

where

f∨x (g) : = fx(g−1).

A similar definition applies to the test function f̃x on GL2(Fx). By (2.12), we

have

f̃∨x =
∑

u∈k(x)×

ηx(u) · 1î
1 u
$x

ó−1

GL2(Ox)
.

Lemma 2.7. Let πx be unramified and Kx = G(Ox). Let W0 ∈ Wψx(πx)Kx

be the unique element such that W0(12) = 1. Then

π(f∨x )W0

Çñ
a

1

ôå
=

vol(Kx)ηx(−a) · q1/2
x ε(ηx, 1/2, ψx if vx(a) = −1,

0 otherwise.
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Here the local ε-factor for the quadratic character ηx is given by

ε(ηx, 1/2, ψx) = q−1/2
x

∑
u∈k(x)×

ηx(a′u)ψx(a′u),

where a′ ∈ F×x is any element with vx(a′) = −1.

Proof. Let
î
α
β

ó
∈ SL2(C) (i.e., αβ = 1) be the Satake parameter of π.

By Casselman–Shalika formula, we have

W0

Çñ
$n
x

1

ôå
=

q
−n/2
x

αn+1−βn+1

α−β , n ≥ 0,

0, n < 0.

On the other hand, we have

πx

(ñ
1 u

$x

ô−1)
W0

Çñ
a

1

ôå
= W0

(ñ
a

1

ô ñ
1 u

$x

ô−1)

= W0

Çñ
1 −au

1

ô ñ
a

$−1
x

ôå
= ψx(−ua)W0

Çñ
a$x

1

ôå
.

It follows that

πx(f∨x )W0

Çñ
a

1

ôå
= vol(Kx)

Ñ ∑
u∈k(x)×

ηx(u)ψx(−ua)

é
W0

Çñ
a$x

1

ôå
.

By the support of W0, the second factor in the right-hand side vanishes if

vx(a) ≤ −2. Since ψx is unramified, the first factor in the right-hand side

vanishes if vx(a) ≥ 0. When vx(a) = −1, we have

πx(f∨x )W0

Çñ
a

1

ôå
= vol(Kx)

Ñ ∑
u∈k(x)×

ηx(u)ψx(−au)

é
= vol(Kx)ηx(−a)

Ñ ∑
u∈k(x)×

ηx(−au)ψx(−au)

é
= vol(Kx)ηx(−a) · q1/2

x ε(ηx, 1/2, ψx).

This completes the proof. �

Proposition 2.8. Let πx be unramified, and let F ′x/Fx be ramified. Then

Jπx(h�x , s1, s2) = Jπx(f�x , s1, s2)

= vol(G(Ox))ζx(2) · ηx(−1)ε(ηx, 1/2, ψx) · qs1−s2+1/2
x .
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Proof. We use the formula (2.17) for the local spherical character evalu-

ated at fx = f�x . Now we note that f∨x is right invariant under Kx = G(Ox).

Therefore, we may simplify the sum into one term involving only the spherical

vector W0 ∈ Wψx(πx)Kx (normalized so that W0(12) = 1):

Jπx(fx, s1, s2) =
λ\x(W0,1, s1 + s2)λ\x

Ä
π(f∨)W0, ηx, s1 − s2

ä
θ\x(W0,W0)

.(2.18)

Since πx is unramified, we have

(2.19) λ\x(W0,1, s) = 1.

The quadratic character ηx is ramified and hence

L(πx ⊗ ηx, s) = 1.

Using this and Lemma 2.7, we get

(2.20) λ\x
Ä
πx(f∨x )W0, ηx, s

ä
= vol(Kx)ηx(−1)q1/2

x ε(ηx, 1/2, ψx) · qsx.

Again since πx is unramified (and ψx unramified), we have

(2.21) θ\x(W0,W0) = 1− q−2
x = ζx(2)−1.

Plugging (2.19), (2.20) and (2.21) into (2.18), we get the desired formula for

Jπx(f�x , s1, s2).

To show Jπx(h�x , s1, s2) = Jπx(f�x , s1, s2), by Lemma 2.6, it suffices to show

that Jπx(f, s1, s2) = 0 when f is either

(1) invariant under right translation by A(Ox), or

(2) ηx-eigen under left translation by A(Ox).

In the first case, f∨ is invariant under the left translation by A(Ox). The

desired vanishing follows from the formula (2.17), and the fact that the linear

functional λ\x(−, ηx, s) of πx is ηx-eigen under A(Ox). In the second case, the

desired vanishing follows from the formula (2.8), and the fact that the linear

functional λ\x(−,1, s) of πx is invariant under A(Ox). �

2.5.2. The case x ∈ Σ and πx a twisted Steinberg. Let St be the Steinberg

representation of G(Fx).

Proposition 2.9. Let πx = Stχ = St⊗χ be an unramified twist of Stein-

berg representation, where χ is an unramified quadratic character of F×x . Then

we have

Jπx(1Iwx , s1, s2) = vol(G(Ox))ζx(2) · q−1
x ,(2.22)

Jπx(1Iwx·w, s1, s2) = vol(G(Ox))ζx(2) · ε(πx ⊗ ηx, 1/2, ψx)qs1−s2−1
x .(2.23)
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Proof. We first prove (2.22). By (2.8), the local spherical character eval-

uated at f = 1Iwx simplifies into one term

Jπx(1Iwx , s1, s2) = vol(Iwx)
λ\x(W0,1, s1 + s2)λ\x (W0, ηx, s1 − s2)

θ\x(W0,W0)
,(2.24)

where W0 is any non-zero element in the lineWψx(Stχ)Iwx . We normalized W0

so that W0(12) = 1. Then explicitly we have

W0

Çñ
a

1

ôå
=

χ(a)|a|, vx(a) ≥ 0,

0, vx(a) < 0.

For any unramified character χ′ : F×x → C×, we have

λ\x(W0, χ
′, s) = 1.(2.25)

We compute the inner product θ\x(W0,W0). First we note∫
F×x

W0

Çñ
a

1

ôå
W 0

Çñ
a

1

ôå
d×a =

∞∑
i=0

q−2i
x = (1− q−2

x )−1.

For πx = Stχ, the local L-factor is

L(πx × π̃x, s) = (1− q−1−s
x )−1(1− q−sx )−1.

It follows that the normalized inner product is

θ\x(W0,W0) = 1− q−1
x .

Finally we note

vol(Iwx) = (1 + qx)−1 vol(G(Ox)).

Hence

(2.26) vol(Iwx)θ\x(W0,W0)−1 = vol(G(Ox))ζx(2)q−1
x .

Plugging (2.25), (2.26) into (2.24), we get (2.22).

Now we prove (2.23). By definition, we have

Jπx(1Iwx·w, s1, s2)

=
∑
{Wi}

λ\x(πx(1Iwx·w)Wi,1, s1 + s2)λ\x
Ä
W i, η, s1 − s2

ä
θ\x(Wi,Wi)

=
∑
{Wi}

λ\x(πx(1Iwx)πx(w)Wi,1, s1 + s2)λ\x
Ä
πx(w)πx(w)Wi, ηx, s1 − s2

ä
θ\x(πx(w)Wi, πx(w)Wi)

.

Note that {π(w)Wi} is another orthogonal basis for Wψx(Stχ); therefore, we

may rename it by {Wi} and rewrite the above as

Jπx(1Iwx·w, s1, s2) =
∑
{Wi}

λ\x(πx(1Iwx)Wi,1, s1 + s2)λ\x
Ä
πx(w)Wi, ηx, s1 − s2

ä
θ\x(Wi,Wi)

,
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which again simplifies into one single term corresponding to the unique W0 ∈
Wψx(Stχ)Iwx with W0(12) = 1:

Jπx(1Iwx·w, s1, s2) = vol(Iwx)
λ\x(W0,1, s1 + s2)λ\x

Ä
πx(w)W0, ηx, s1 − s2

ä
θ\x(W0,W0)

.

(2.27)

We have an explicit formula

(πx(w)W0)

Çñ
a

1

ôå
= W0

Çñ
a

−1

ôå
=

−q−1
x χ(a)|a|, vx(a) ≥ −1,

0, vx(a) ≤ −2.

Using this we can calculate

(2.28) λ\x(πx(w)W0, ηx, s) = −(χηx)($x)qsx.

Plugging (2.26), (2.25) and (2.28) into (2.27), we get

(2.29) Jπx(1Iwx·w, s1, s2) = − vol(G(Ox))ζx(2)(χηx)($x)qs1−s2−1
x .

Finally recall the ε-factor for the twisted Steinberg πx ⊗ ηx = St⊗χηx, and

recall that the unramified ψx is the Atkin–Lehner eigenvalue

ε(πx ⊗ ηx, 1/2, ψx) = ε(St⊗χηx, 1/2, ψx) = −(χηx)($x).

Using this we can rewrite (2.29) in the form of (2.23). �

2.6. The global spherical character for our test functions.

2.6.1. Assumptions on π. Let π = ⊗′x∈|X|πx be a cuspidal automorphic

representation of G(A) that is ramified exactly at the set Σ. Assume that πx
is isomorphic to an unramified twist of the Steinberg representation at each

x ∈ Σ.

Recall thatR⊂|X| is the ramification locus of the double cover ν : X ′→X.

Assume Σ ∩ R = ∅. Let Σ = Σf t Σ∞ be the decomposition determined by

the conditions (1.4) and (1.5).

The degrees of the L-functions L(π, s) and L(π⊗ η, s) as a polynomials of

q−s are

degL(π, s) = 4g − 4 +N, degL(π ⊗ η, s) = 4g − 4 + 2ρ+N.

We set

LF ′/F (π, s1, s2) := q(2g−2+N/2)(s1+s2)+(2g−2+ρ+N/2)(s1−s2)

×
L
Ä
π, s1 + s2 + 1

2

ä
L
Ä
(π ⊗ η, s1 − s2 + 1

2

ä
L(π,Ad, 1)

= |ωX |−2s1qρ(s1−s2)qNs1
L
Ä
π, s1 + s2 + 1

2

ä
L
Ä
(π ⊗ η, s1 − s2 + 1

2

ä
L(π,Ad, 1)

.
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Then we have

LF ′/F (π, s1, s2) = (−1)#Σ∞LF ′/F (π,−s1,−s2).

Indeed, the sign that appears above is the root number of the base change

L-function L(πF ′ , s), which is the parity of the number of places in F ′ at which

the base change of πx is the Steinberg representation. If x ∈ Σf , then x is split

in F ′, and its contribution to the root number is always +1; if x ∈ Σ∞, then

x is inert in F ′, the base change of πx is always the Steinberg representation,

and hence it contributes −1 to the root number.

Recall that in (2.15) we have a decomposition Σ = Σ+ t Σ− (right now

arbitrary). We set

ε−(π ⊗ η) : =
∏
x∈Σ−

ε(πx ⊗ ηx, 1/2).

Note that this is the Atkin–Lehner eigenvalue at the set of places Σ−.

For each f ∈H Σ∪R
G , we define

(2.30) fΣ± = f ⊗
(⊗
x∈R

h�x

)
⊗
(⊗
x∈Σ

1Jx

)
∈ C∞c (G(A)).

Proposition 2.10. Let π be a cuspidal automorphic representation of

G(A) satisfying the conditions in Section 2.6.1. Let λπ : H Σ∪R
G → C be the

homomorphism associated to π. Then for f ∈H Σ∪R
G , we have

qN+s1+N−s2Jπ(fΣ± , s1, s2) =
1

2
λπ(f) · ε−(π ⊗ η) · |ωX |qρ/2−NLF ′/F (π, s1, s2).

Proof. We choose a non-trivial ψ : F\A→ C×. Such a character ψ comes

from a non-zero rational differential form c on X, so that the conductor of ψx
is m

vx(c)
x , where vx(c) is the order of c at x. We choose such a c so that c has

no zeros or poles at Σ ∪R, so that ψx is unramified at x ∈ Σ ∪R.

When x /∈ Σ ∪R, fx is in the spherical Hecke algebra Hx, and therefore

Jπx(fx, s1, s2) = λπx(fx) vol(G(Ox))
λ\x(W0,1, s1 + s2)λ\x(W 0, ηx, s1 − s2)

θ\x(W0,W0)

for W0 ∈ Wψx(πx)G(Ox) normalized by W0(12) = 1. By the same proof as [10,

Lemma 4.6], we obtain

λ\x(W0,1, s1 + s2)λ\x(W 0, ηx, s1 − s2)

θ\x(W0,W0)
= ηx(c)|c|−2s1+1/2

x ζx(2).

Therefore

(2.31) Jπx(fx, s1, s2) = vol(G(Ox))ζx(2) · ηx(c)|c|−2s1+1/2
x λπx(fx).
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Now we use the calculation of local spherical characters at x ∈ Σ∪R given

in Propositions 2.8 and 2.9 together with (2.31), and we plug them into (2.9)

to obtain

Jπ(fΣ± , s1, s2) = |ωX |−1CvolC0CΣ+CΣ−CR

×
L
Ä
π, s1 + s2 + 1

2

ä
L
Ä
(π ⊗ η, s1 − s2 + 1

2

ä
2L(π,Ad, 1)

,
(2.32)

where

Cvol =
∏
x∈|X|

vol(G(Ox))ζx(2) = vol(G(O))ζF (2) = |ωX |3/2,

C0 = λπ(f)
∏

x/∈R∪Σ

ηx(c)|c|1/2−2s1
x(2.33)

= λπ(f)|ωX |1/2−2s1
∏

x/∈R∪Σ

ηx(c),

CΣ+ =
∏
x∈Σ+

q−1
x = q−N+ ,

CΣ− =
∏
x∈Σ−

ε(πx ⊗ ηx, 1/2, ψx)qs1−s2−1
x = ε−(π ⊗ η)qN−(s1−s2)−N− ,

CR =
∏
x∈R

ηx(−1)ε(ηx, 1/2, ψx)qs1−s2+1/2
x(2.34)

= qρ(s1−s2)+ρ/2
∏
x∈R

ε(ηx, 1/2, ψx).

Here, in (2.33) we used that c is a differential form with no zeros or poles along

Σ∪R; in (2.34) we have used
∏
x∈R ηx(−1) = η(−1) = 1 since ηx(−1) is trivial

for x /∈ R. Taking the product and using (2.32), we get

Jπ(fΣ± , s1, s2)

=
1

2
λπ(f)|ωX |ε−(π ⊗ η) · Cη · |ωX |−2s1qρ(s1−s2)+ρ/2q−NqN−(s1−s2)

×
L
Ä
π, s1 + s2 + 1

2

ä
L
Ä
(π ⊗ η, s1 − s2 + 1

2

ä
L(π,Ad, 1)

,

(2.35)

where

Cη =
∏
x∈R

ε(ηx, 1/2, ψx)
∏

x/∈R∪Σ

ηx(c).

We claim that Cη = 1. In fact, for x /∈ R we have

ε(ηx, 1/2, ψx) = ηx(c).

It follows that

Cη = ε(η, 1/2, ψ).
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Recall that ε(η, s) = ε(η, s, ψ) =
∏
x∈|X| ε(ηx, s, ψx) is the ε-factor in the func-

tional equation L(η, s) = ε(η, s)L(η, 1 − s). It follows from the expression

L(η, s) =
ζF ′ (s)
ζF (s) that ε(η, 1/2) = 1. This proves Cη = 1. Comparing the other

terms in (2.35) and in the definition of LF ′/F (π, s1, s2), we get

Jπ(fΣ± , s1, s2) =
1

2
λπ(f)ε−(π ⊗ η)|ωX |qρ/2−NqN−(s1−s2)−Ns1LF ′/F (π, s1, s2).

Multiplying both sides by qN+s1+N−s2 , the proposition follows. �

3. Shtukas with Iwahori level structures

In this section we will define various moduli stacks of Shtukas with Iwa-

hori level structure and “supersingular legs” at ∞. We study the geometric

properties of such moduli stacks and establish the spectral decomposition of

their cohomology under the action of the Hecke algebra.

3.1. Bundles with Iwahori level structures. Let n be a positive integer.

Let G = PGLn. Let Σ ⊂ |X| be finite set of closed points of X.

Definition 3.1. Let Bunn(Σ) be the moduli stack whose S-points is the

groupoid of

E† =

Å
E , {E

Å
− j
n
x

ã
}1≤j≤n−1,x∈Σ

ã
,

where

• E is a rank n vector bundle over X × S;

• for each x ∈ Σ, {E(− j
nx)}1≤j≤n−1, form a chain of coherent subsheaves of

E such that

E ⊃ E
Å
− 1

n
x

ã
⊃ E

Å
− 2

n
x

ã
⊃ · · · ⊃ E

Å
−n− 1

n
x

ã
⊃ E(−x) = E ⊗OX OX(−x)

and that the quotient E(− j−1
n x)/E(− j

nx) is scheme theoretically supported

at {x} × S = Spec k(x)× S and is locally free of rank one on {x} × S.

The Picard stack PicX acts on Bunn(Σ) by tensoring on both E and the

E(− j
nx)’s. We define

BunG(Σ) := Bunn(Σ)/PicX .

3.1.1. Fractional twists. Let E† = (E ; {E(− j
nx)}x∈Σ) ∈ Bunn(Σ)(S). For

any rational divisor

D =
∑
x∈|X|

cx · x

on X satisfying

(3.1) cx ∈
1

n
Z for x ∈ Σ, cx ∈ Z otherwise,
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we may define a vector bundle E(D) in the following way. There is a unique

way to write D = D0 − D1 where D0 ∈ Div(X) and D1 =
∑
x∈Σ

ix
n x for

integers 0 ≤ ix ≤ n− 1. We define E(−D1) ⊂ E to be the kernel of the sum of

projections

E −→
⊕
x∈Σ

E/E
Å
− ix
n
x

ã
.

Then we define E(D) = E(−D1)⊗XOX(D0). It is easy to check that E(D+D′)

= (E(D))(D′) whenever both D and D′ satisfy (3.1).

3.1.2. Variant of fractional twists. Now suppose Σ is decomposed into a

disjoint union of two subsets

(3.2) Σ = Σ∞
∐

Σf .

Let

S∞ =
∏

x∈Σ∞

Spec k(x) (product over k).

We now consider the base change

Bunn(Σ)×S∞.

An S-point of S∞ is a collection {x(1)}x∈Σ∞ where x(1) : S → Spec k(x)

↪→ X for each x ∈ Σ∞. It will be convenient to introduce x(i) for all integers i

inductively such that

(3.3) x(i) = x(i−1) ◦ FrS : S
FrS−−→ S

x(i−1)

−−−−→ Spec k(x) ↪→ X, i ∈ Z.

Clearly we have x(i) = x(i+dx), where dx = [k(x) : k].

For each x ∈ Σ∞, we have a canonical point

x(1) : S∞ −→ Spec k(x) −→ X

given by projection to the x-factor. We define x(i) as in (3.3) with S replaced

by S∞. Then the graph Γx(i) of x(i) is a divisor in X × S∞. We abuse the

notation to abbreviate Γx(i) by x(i). Then we have a decomposition

{x} ×S∞ = Spec k(x)×S∞ =
dx∐
i=1

x(i).

Now let {x(1)}x∈Σ∞ be an S-point of S∞. Then the graphs of x(i) (x ∈
Σ∞, 1 ≤ i ≤ dx) are divisors in X × S pulled back from the divisors x(i)

on X × S∞. For E† ∈ Bunn(Σ)(S), the quotient E/E(− i
nx) then splits as a

direct sum ⊕dxj=1Q
(j)
i where Q(j)

i is supported on Γx(j) (with rank i). We define

E(− i
nx

(j)) to be the kernel

E
Å
− i
n
x(j)
ã

:= ker

Å
E −→ E/E

Å
− i
n
x

ã
� Q(j)

i

ã
.
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In other words, {E(− i
nx

(j))}1≤i≤n−1 give an Iwahori level structure of E at x(j).

With these definitions, for E† ∈ Bunn(Σ)(S), the construction in Section 3.1.1

then allows us to make sense of E(D), where D is a divisor on X ×S∞ of the

form

(3.4) D =
∑

x∈Σ∞,1≤j≤dx
c(j)
x x(j) +

∑
x∈|X|−Σ∞

cx({x} ×S∞),

where

c(j)
x ∈

1

n
Z for x ∈ Σ∞, 1 ≤ j ≤ dx,

cx ∈
1

n
Z for x ∈ Σf ,

cx ∈ Z otherwise.

More precisely, we can uniquely write D = D0−D1, where D0 ∈ Div(X×S∞)

has Z-coefficients and D1 is of the form

D1 =
∑

x∈Σ∞,1≤j≤dx

i
(j)
x

n
x(j) +

∑
x∈Σf

ix
n

({x} ×S∞),

and the coefficients i
(j)
x
n (for x ∈ Σ∞) and ix

n (for x ∈ Σf ) are in { 1
n ,

2
n , . . . ,

n−1
n }.

We define E(−D1) to be the kernel of the sum of the projections

E −→

Ñ ⊕
x∈Σ∞,1≤j≤dx

E/E
(
− i

(j)
x

n
x(j)

)é⊕Ñ⊕
x∈Σf

E/E
Å
− ix
n
x

ãé
.

Finally let E(D) := E(−D1)⊗OX×S∞ OX×S∞(D0).

Definition 3.2. Let D be a Q-divisor of X ×S∞ satisfying the conditions

as in (3.4). The Atkin–Lehner automorphisms for Bunn(Σ) and BunG(Σ) are

maps

ÃL(D) : Bunn(Σ)×S∞ −→ Bunn(Σ),

AL(D) : BunG(Σ)×S∞ −→ BunG(Σ)

sending E† = (E ; {E(− j
nx)}x∈Σ; {x(1)}x∈Σ∞) to

E†(D) =

Å
E(D); {E(D − j

n
({x} ×S∞))}x∈Σ

ã
,

which makes sense by the discussion in Section 3.1.2.

The maps ÃL(D) and AL(D) are analogous to the Atkin–Lehner auto-

morphisms on the modular curves, hence their name. From the definition we

see that AL(D) depends only on D∞ mod Z.
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3.1.3. Let r ≥ 0 be an integer, and let µ = (µ1, . . . , µr) ∈ {±1}r. We

define the Hecke stack with Iwahori level structures.

Definition 3.3. Let Hk
µ
n(Σ) be the stack whose S-points is the groupoid

of the following data:

• a sequence of S-points E†i = (Ei; {Ei(− j
nx)}x∈Σ) ∈ Bunn(Σ)(S) for i =

0, 1, . . . , r;

• morphisms xi : S → X for i = 1, . . . , r, with graphs Γxi ⊂ X × S;

• isomorphisms of vector bundles

(3.5) fi : Ei−1|X×S−Γxi

∼−→ Ei|X×S−Γxi
, i = 1, 2, . . . , r.

These data are required to satisfy the following conditions:

(1) If µi = 1, then fi extends to an injective map Ei−1 → Ei whose cokernel

is an invertible sheaf on the graph Γxi . Moreover, fi sends Ei−1(− j
nx) to

Ei(− j
nx) for all x ∈ Σ and 1 ≤ j ≤ n− 1.

(2) If µi = −1, then f−1
i extends to an injective map Ei → Ei−1 whose cokernel

is an invertible sheaf on the graph Γxi . Moreover, f−1
i sends Ei(− j

nx) to

Ei−1(− j
nx) for all x ∈ Σ and 1 ≤ j ≤ n− 1.

We have a morphism π
µ

Hk : Hk
µ
n(Σ)→ Xr recording the points x1, . . . , xr

in the above definition. For 0 ≤ i ≤ r, let

p̃i : Hk
µ
n(Σ) −→ Bunn(Σ)

be the morphism recording the i-th point E†i ∈ Bunn(Σ).

There is an action of PicX on Hk
µ
n(Σ) by tensoring. We form the quotient

Hk
µ

G(Σ) = Hk
µ
n(Σ)/PicX

with maps recording E†i
pi : Hk

µ

G(Σ) −→ BunG(Σ), i = 0, . . . , r.

Proposition 3.4.

(1) For 0 ≤ i ≤ r, the morphism p̃i : Hk
µ
n(Σ)→ Bunn(Σ) is smooth of relative

dimension rn.

(2) For 0 ≤ i ≤ r, the morphism (p̃i, π
µ

Hk) : Hk
µ
n(Σ)→ Bunn(Σ)×Xr is smooth

of relative dimension r(n− 1) when restricted to Bunn(Σ)× (X − Σ)r.

(3) For 0 ≤ i ≤ r, the morphism (p̃i, π
µ

Hk) : Hk
µ
n(Σ) → Bunn(Σ) ×Xr is flat

of relative dimension r(n− 1).

(4) The statements of (1)–(3) hold when Hk
µ
n(Σ) is replaced with Hk

µ

G(Σ) and

Bunn(Σ) is replaced with BunG(Σ).

Proof. We first make some reductions. Once (1)–(3) are proved, (4) follows

by dividing out by PicX . By the iterative nature of Hk
µ
n(Σ), it is enough to
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treat the case r = 1. We consider the case µ = 1 and i = 1; the other cases can

be treated similarly. We also base change the situation to k without changing

notation (i.e., X now means Xk, Σ means Σ(k), and the products are over k,

etc). Moreover, if x ∈ Σ and Σx = Σ − {x}, we observe that over X − Σx

there is an isomorphism Hk1
n(Σ)|X−Σx

∼= (Hk
µ
n({x})|X−Σx)×Bunn({x}) Bunn(Σ)

such that the projection p1 is the projection to the second factor. Therefore,

to show the statements over X − Σx, it suffices to show the same statements

for Σ = {x}. Since the X−Σx cover X as x runs over Σ, we reduce to the case

where Σ is a singleton {x}. In other words, we are concerned with the map

(p̃1, π
1
Hk) : Hk1

n({x}) −→ Bunn({x})×X.

(2) Since Hk1
n({x})|X−{x} ∼= (Hk1

n|X−{x}) ×Bunn Bunn({x}), we have a

Cartesian diagram

Hk1
n({x})|X−{x}̃

p1|X−{x}
//

��

Bunn({x})× (X − {x})

��

Hk1
n

p̃1
// Bunn ×X.

Since the bottom horizontal map Hk1
n → Bunn ×X is the projectivization of

the universal bundle over Bunn ×X, it is smooth of relative dimension n− 1.

Therefore, the same is true for the top horizontal map.

(1) and (3). Let S = SpecR, where R is a local k-algebra. Let E† ∈
Bunn({x})(S). For an S-scheme S′, the S′-points of the fiber p̃−1

1 (E†) are

F† ∈ Bunn({x})(S′) such that for each 0 ≤ i ≤ n−1, F(− i
nx) ⊂ E(− i

nx) with

quotients an invertible sheaf supported on the graph of some map y : S′ → X.

Such F(− i
nx) are classified by the projectivization P(E(− i

nx)) over X × S.

The fiber p̃−1
1 (E†) is then a closed subscheme of

P(E)×X×S P
Å
E
Å
− 1

n
x

ãã
×X×S · · · × P

Å
E
Å
−n− 1

n
x

ãã
.

We will write down defining equations of this closed subscheme. Let Ux ⊂ X

be an open affine neighborhood of x, and let t ∈ O(Ux) be a coordinate at x.

Shrinking Ux we may assume t only vanishes at x. Since we know (2) already,

to show (1) and (3), it is enough to show the corresponding statements over Ux.

After étale localizing S, we may assume that E† is trivialized on Ux × S.

Thus we fix a trivialization ι : E|Ux×S
∼→ OnUx×S so that

(3.6) ι

Ç
E
Å
− i
n
x

ã ∣∣∣∣
Ux×S

å
= tOUx×S ⊕ · · · ⊕ tOUx×S ⊕OUx×S ⊕ · · · ⊕OUx×S ,

where the first i summands are tOUx×S and the last n − i are OUx×S . Us-

ing the decomposition (3.6), we may canonically identify P(E(− i
nx))|Ux×S ∼=

Pn−1 × Ux × S. Let S′ = SpecR′, where R′ is a local R-algebra. Then an
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R′ point in p̃−1(E†)|Ux×S may be expressed using homogeneous coordinates

a(i) = [a
(i)
0 , . . . , a

(i)
n−1] ∈ Pn−1(R′) for i = 0, . . . , n − 1 (which gives F(− i

nx))

and a point y ∈ Ux(R). The superscripts and subscripts of a
(i)
j are understood

as elements in Z/nZ, so a
(0)
j = a

(n)
j etc.

The condition F(− i
nx) ⊂ F(− i−1

n x) means that the following diagram

can be completed into a commutative diagram by a choice of λ ∈ R′:

E(− i
nx)

evy
//

� _

��

R′n

τi−1:=diag(1,...,t(y),...,1)

��

a(i)
// R′

λ

��

E(− i−1
n x)

evy
// R′n

a(i−1)
// R′,

where the middle vertical map τi−1 is the diagonal matrix with t(y) ∈ R′

on the (i, i)-entry and 1 elsewhere on the diagonal (so τi−1(a(i−1)) multiplies

a
(i−1)
i−1 by t(y) and leaves the other coordinates unchanged). This gives the

closed condition

(3.7) τi−1(a(i−1)) is in the line spanned by a(i).

We study the special fiber of p̃i over (E†, x). Fix a k-point of F† ∈ p̃−1
1 (E†)

over y = x with coordinates a(i) = [a
(i)
0 , . . . ,a

(i)
n−1], i ∈ Z/nZ. Let [ei] ∈ Pn−1

be the coordinate line where only the i-th coordinate can be non-zero. Define

I = {i ∈ Z/nZ|a(i) = [ei]}.

It is easy to see from condition (3.7) that I 6= ∅. The points in I cut the

cyclically ordered set Z/nZ into intervals. (Think about the n-th roots of

unity on the unit circle.) For neighboring i1, i2 ∈ I, we have an interval (i1, i2]

(excluding i1 and containing i2 and not containing any other elements in I).

When I is a singleton i1, we understand (i1, i1] to be the whole Z/nZ. These

intervals give a partition of Z/nZ. By (3.7), the homogeneous coordinates

[a
(i)
0 , . . . ,a

(i)
n−1] for F(− i

nx) satisfy

if i is in the interval (i1, i2], then a
(i)
j = 0 unless j ∈ [i, i2].

Moreover, by the definition of I, a
(i)
i is non-zero when i ∈ I. The relation (3.7)

implies that whenever i ∈ (i1, i2], where i1, i2 ∈ I are neighbors, a
(i)
i2

is non-

zero.

Now we give equations defining p̃−1
1 (E†) near the point F†. Let a(i) =

[a
(i)
0 , . . . , a

(i)
n−1], 0 ≤ i ≤ n − 1 be the coordinates of such an R′-valued point

that specializes to F†. For an interval (i1, i2] and i ∈ (i1, i2], since a
(i)
i2
6= 0, a

(i)
i2

is interval in R′, therefore we may assume a
(i)
i2

= 1 for i ∈ (i1, i2]. We now use
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the following affine coordinates: for any interval (i1, i2] formed by neighboring

elements i1, i2 ∈ I, we consider

(3.8) a
(i1+1)
i1+1 , . . . , a

(i1+1)
i2−1 , and a

(i1)
i2
.

There are n such variables. Condition (3.7) implies that

(3.9)
∏
i1∈I

a
(i1)
i2

= t(y),

where i1 runs over I and i2 is its immediate successor. It turns out that

the other coordinates can be uniquely determined by the ones in (3.8) using

condition (3.7) and that (3.9) is the only relation implied by (3.7). From this

description we conclude that étale locally near F†, p̃−1
1 (E†)|Ux is isomorphic

to AnS with the map p̃−1
1 (E†)|Ux

π1
Hk−−→ Ux × S

t−→ A1
S corresponding to AnS →

A1
S given by the product of a subset of coordinates. Therefore, (1) and (3)

follow. �

3.2. Shtukas with Iwahori level structures.

3.2.1. Moduli of rank n Shtukas with Iwahori level structures. Let µ ∈
{±1}r. Fix a Q-divisor D∞ on X ×S∞ supported at Σ∞ ×S∞ of the form

(3.10) D∞ =
∑

x∈Σ∞,1≤i≤dx
c(i)
x x(i), c(i)

x ∈
1

n
Z.

We assume that µ satisfies the following condition:

(3.11)
r∑
i=1

µi =
∑

x∈Σ∞,1≤i≤dx
nc(i)

x = n degD∞.

Definition 3.5. We define the stack Sht
µ
n(Σ;D∞) by the Cartesian diagram

Sht
µ
n(Σ;D∞) //

��

Hk
µ
n(Σ)×S∞

(p̃0,ÃL(−D∞)◦(p̃r×idS∞ ))
��

Bunn(Σ)
(id,Fr)

// Bunn(Σ)× Bunn(Σ).

(3.12)

Concretely, for a k-scheme S, an S-point of Sht
µ
n(Σ;D∞) consists of the

following data:

• for each 0 ≤ i ≤ r, a point E†i = (Ei; {Ei(− j
nx)}x∈Σ) ∈ Bunn(Σ)(S);

• for each x ∈ Σ∞, a morphism x(1) : S → Spec k(x);

• for each 1 ≤ i ≤ r, a morphism xi : S → X;

• maps f1, . . . , fr as in the definition of Hk
µ
n(Σ);

• an isomorphism ι : Er ∼= (τE0)(D∞) (first pullback by Frobenius, then

fractional twist by D∞) respecting the Iwahori level structures at all x ∈ Σ.
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By definition, we have a morphism recording xi and {x(1)}x∈Σ∞ in the

definition above:

(3.13) Π
µ

n,D∞
: Sht

µ
n(Σ;D∞) −→ Xr ×S∞.

Lemma 3.6. Let D∞ be a Q-divisor of the form (3.10). Then up to canon-

ical isomorphisms, Sht
µ
n(Σ;D∞) depends only on the sum

∑
1≤i≤dx c

(i)
x for each

x ∈ Σ∞.

Proof. Let D′∞ =
∑
x∈Σ∞(

∑
1≤i≤dx c

(i)
x )x(1). It suffices to give a canonical

isomorphism α : Shtµn(Σ;D∞)
∼→ Shtµn(Σ;D′∞). Let (E†i ;xi; {x(1)}; ι) be an

S-point of Shtµn(Σ;D∞). For 0 ≤ i ≤ r, let

F†i = E†i

Ñ
−

∑
2≤j≤j′≤dx

c(j′)
x x(j)

é
.

One checks that ι induces an isomorphism ι′ : F†r ∼= τF†0(D′∞). Define

α(E†i ;xi; {x(1)}; ι) = (F†i ;xi; {x(1)}; ι′),

which is easily seen to be an isomorphism. �

3.2.2. The case r = 0. When r = 0, Sht∅n (Σ; Σ∞) is zero dimensional. We

describe the groupoid of k-points of Sht∅n (Σ; Σ∞). For any ξ : S∞ → k (which

amounts to choosing a k-point x(1) over each x ∈ Σ∞), let Sht∅n (Σ; ξ) be the

fiber of Sht∅n (Σ; Σ∞) over ξ.

Let B be the central simple algebra over F of dimension n2, which is split

at points away from Σ∞ and has Hasse invariant invx(B) =
∑

1≤i≤dx c
(i)
x for

x ∈ Σ∞. Since
∑
x∈Σ∞

∑
1≤i≤dx c

(i)
x = 0 by (3.11), such a central simple algebra

B exists. Let B× denote the algebraic group over F of the multiplicative group

of units in B. For x ∈ Σ, let Kx ⊂ B×(Fx) be a minimal parahoric subgroup

(so for x ∈ Σf , Kx is an Iwahori subgroup of B×(Fx) ∼= GLn(Fx)). For

x ∈ |X − Σ|, let Kx be a maximal parahoric of B×(Fx) ∼= GLn(Fx) such that

almost all of them come from an integral model of B over X. Then we have

an isomorphism of groupoids

Sht∅n (Σ; ξ)(k) ∼= B×(F )\B×(AF )/
∏
x∈|X|

Kx.

3.2.3. The case r = 1 and Drinfeld modules. We consider the special case

where r = 1, µ = −1, Σ∞ consists of a single point ∞, and D∞ = − 1
nΓ∞(1) .

In this case the stack Shtµn(Σ;D∞) is closely related to the moduli stack

DrModn(Σf ) of Drinfeld A = Γ(X − {∞},OX)-modules with Iwahori level

structure at Σf . In fact, in [1, Th. 3.1.4] it is shown that DrModn(Σf ) can be

identified with the open and closed substack of Shtµn(Σ;D∞)|X−{∞} consisting
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of those (E†i ; . . . ) where E0 has degree n(g−1)+1. This implies an isomorphism

over X − {∞}:

DrModn(Σf )/Pic0
X(k) ∼= ShtµG(Σ;D∞)|X−{∞}.

3.2.4. Relation with the usual Shtukas. We explain how Sht
µ
n(Σ;D∞) is

related to the Shtukas in the sense of [8]. Let Σ∞ = {y1, . . . , ys} and di =

[k(yi) : k]. Let r′ = r +
∑s
i=1 di. For each c ∈ 1

nZ, we have a unique coweight

µ(c) = (a1, . . . , an) ∈ Zn of GLn such that
∑
i ai = nc and an ≤ an−1 ≤ . . . ≤

a1 ≤ an + 1. (In other words, µ(c) is a minuscule coweight.) Let D∞ take the

form (3.10). Let

µ′ =
Ä
µ1, . . . , µr, µ(c(1)

y1
), . . . , µ(c(d1)

y1
), µ(c(1)

y2
),

. . . , µ(c(d2)
y2

), . . . , µ(c(1)
ys ), . . . , µ(c(ds)

ys )
ä
.

This is an r′-tuple of minuscule dominant coweights of GLn. We consider

the stack Sht
µ′

n (Σ) of rank n Shtukas with modification types given by µ′ and

Iwahori level structure at Σ: it is given by the Cartesian diagram

Sht
µ′

n (Σ)

��

// Hk
µ′

n (Σ)

(p̃0,p̃r′ )

��

Bunn(Σ)
(id,Fr)

// Bunn(Σ)× Bunn(Σ),

where Hk
µ′

n (Σ) is defined similarly as Hk
µ
n(Σ). There is a natural map π

µ′

n :

Sht
µ′

n (Σ)→ Xr′ . We have a map

eΣ∞ : Xr ×S∞ 7−→ Xr′

given by sending

(x1, . . . , xr, y
(1)
1 , . . . , y(1)

s )

to

(x1, . . . , xr, y
(1)
1 , . . . , y

(d1)
1 , y

(1)
2 , . . . , y(ds)

s ).

Lemma 3.7. There is a canonical closed embedding ẽ : Sht
µ
n(Σ;D∞) ↪→

Sht
µ′

n (Σ) making the following diagram commutative:

Sht
µ
n(Σ;D∞)

ẽ
//

Π
µ

n,D∞
��

Sht
µ′

n (Σ)

π
µ′
n
��

Xr ×S∞
eΣ∞

// Xr′ .
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Proof. The map ẽ is defined by sending (E†i , fi, ι) ∈ Sht
µ
n(Σ;D∞) over

(x1, . . . , xr, y
(1)
1 , . . . , y

(1)
s ) ∈ Xr × S∞ to the following point (F†i , f ′i , ι′) over

eΣ∞(x1, . . . , xr, y
(1)
1 , . . . , y

(1)
s ). We define

F†i =



E†i , if 0 ≤ i ≤ r;
(τE†0)(D∞ −

∑j1
h=1 c

(h)
yh y

(h)
1 ),

if i = r + j1, 1 ≤ j1 ≤ d1;

(τE†0)(D∞ −
∑d1
h=1 c

(h)
y1 y

(h)
1 −∑j2

h=1 c
(h)
y2 y

(h)
2 ),

if i = r + d1 + j2, 1 ≤ j2 ≤ d2;

· · ·
(τE†0)(

∑ds
h=js+1 c

(h)
ys y

(h)
s ),

if i = r + d1 + · · ·+ ds−1 + js, 1 ≤ js ≤ ds.

The map f ′r is E†r
ι−→ (τE†0)(D∞) 99K (τE†0)(D∞ − c(1)

y1 y1), and the other maps

f ′i , ι
′ are the obvious ones. The above equation for F†i gives a closed condi-

tion on Sht
µ′

n (Σ) without changing automorphisms, realizing Sht
µ
n(Σ;D∞) as

a closed substack of Sht
µ′

n (Σ). �

3.2.5. Sht
µ

G(Σ;D∞) and its geometric properties. The groupoid PicX(k)

acts on Sht
µ
n(Σ;D∞) by tensoring. We define the quotient (see [10, 5.2.1] for

the explanation why the quotient makes sense as a stack)

Sht
µ

G(Σ;D∞) := Sht
µ
n(Σ;D∞)/PicX(k).

We have a Cartesian diagram

Sht
µ

G(Σ;D∞) //

ω0

��

Hk
µ

G(Σ)×S∞

(p0,AL(−D∞)◦(pr×idS∞ ))

��

BunG(Σ)
(id,Fr)

// BunG(Σ)× BunG(Σ).

(3.14)

The map Π
µ

n,D∞
in (3.13) induces a map

(3.15) Π
µ

G,D∞
= (π

µ

G, πG,∞) : Sht
µ

G(Σ;D∞) −→ Xr ×S∞.

Since the action AL(D∞) on BunG(Σ) depends only on D∞ mod Z, com-

bined with Lemma 3.6 we conclude that

Lemma 3.8. The moduli stack Sht
µ

G(Σ;D∞) depends only on the image

of D∞ in Div(Σ∞)⊗Z ( 1
nZ/Z).

Proposition 3.9.

(1) The stack Sht
µ

G(Σ;D∞) is a smooth DM stack of dimension rn.
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(2) The morphism Π
µ

G,D∞
is separated and is smooth of relative dimension

r(n− 1) over (X − Σ)r ×S∞.

Proof. To show the smoothness statements in (1) and (2), we adapt the

argument of [6, Prop. 2.11] and apply [6, Lemme 2.13] to the diagram (3.14).

Without giving all the details, the same argument of [6, Prop. 2.11] shows

that after an étale base change, the fibration pr : Hk
µ

G(Σ)→ BunG(Σ) can be

trivialized. Therefore, the same is true for qr := AL(−D∞) ◦ (pr × idS∞) :

Hk
µ

G(Σ)×S∞ → BunG(Σ) because AL(−D∞) is étale. Then [6, Lemme 2.13]

applied to the diagram (3.14) implies that Sht
µ

G(Σ;D∞) is étale locally isomor-

phic to a fiber of qr. More precisely, for a fixed choice of E† ∈ BunG(Σ)(k) (for

example the trivial bundle with any Iwahori level structure at Σ), there exists

an étale covering {Ui} of Sht
µ

G(Σ;D∞) together with étale maps Ui → q−1
r (E†)

over Xr ×S∞.

Since pr is smooth of relative dimension rn by Proposition 3.4(1), so is

qr and hence q−1
r (E†) is smooth over k of dimension rn. This implies that

Sht
µ

G(Σ;D∞) is smooth of dimension rn.

By Proposition 3.4(2), p−1
r (E†)|(X−Σ)r is smooth of relative of dimension

r(n−1) over (X−Σ)r. Therefore, the same is true for q−1
r (E†)|(X−Σ)r×S∞ . By

the discussion in the first paragraph, this implies that Sht
µ

G(Σ;D∞)|(X−Σ)r×S∞
is smooth over (X − Σ)r ×S∞ of relative dimension r(n− 1).

We now show that Sht
µ

G(Σ;D∞) is DM. By Lemma 3.7, Sht
µ

G(Σ;D∞) is a

closed substack of Sht
µ′

G (Σ) := Sht
µ′

n (Σ)/PicX(k). The map Sht
µ′

G (Σ)→ Sht
µ′

G

(forgetting the level structure) is clearly representable. By [8, Prop. 2.16(a)],

Sht
µ′

G is DM, hence so are Sht
µ′

G (Σ) and its closed substack Sht
µ

G(Σ;D∞).

Finally we show Π
µ

G,D∞
is separated. The map Sht

µ′

G→Xr′ is separated, as

can be seen from the same argument following [10, Th. 5.4]. This implies that

π
µ′

n : Sht
µ′

G (Σ)→Xr′×S∞ is also separated as Sht
µ′

G (Σ)→Sht
µ′

G is proper. Since

Sht
µ

G(Σ;D∞) is a closed substack of Sht
µ′

G (Σ), Π
µ

G,D∞
is also separated. �

3.2.6. The base-change situation. Now let X ′ be another smooth, projec-

tive curve over k with a map ν : X ′ → X satisfying

(3.16) The map ν is unramified over Σ.

Let
S′∞ =

∏
x′∈ν−1(Σ∞)

Spec k(x′).

Then we have a natural map induced by ν

(3.17) ν ′r : X ′r ×S′∞ −→ Xr ×S∞.

Define the base change of Sht
µ

G(Σ;D∞):

Sht
′µ
G (Σ;D∞) := Sht

µ

G(Σ;D∞)×(Xr×S∞) (X ′r ×S′∞).
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Proposition 3.10. Under the assumption (3.16), the stack Sht
′µ
G (Σ;D∞)

is a smooth DM stack of dimension rn.

Proof. Only the smoothness of Sht
′µ
G (Σ;D∞) requires an argument. Let

Hk
′µ
G (Σ) = Hk

µ

G(Σ)×Xr X ′r. As in the proof of Proposition 3.9(1), we reduce

to showing that p′r : Hk
′µ
G (Σ) → BunG(Σ) is smooth of relative dimension rn.

As in the proof of Proposition 3.4, it suffices to treat the case where r = 1 and

µ = 1.

Let R′ be the ramification locus of ν. Then Hk
′µ
G (Σ)|X′−R′ → Hk

µ

G(Σ)

is étale. Hence by Proposition 3.4(1), p′1 : Hk
′µ
G (Σ) → BunG(Σ) is smooth of

relative dimension n when restricted to Hk
′µ
G (Σ)|X′−R′ . On the other hand, let

Σ′ = ν−1(Σ). By Proposition 3.4(2),

(p1, π
µ

Hk) : Hk
µ

G(Σ)|X−Σ −→ BunG(Σ)× (X − Σ)

is smooth of relative dimension n−1 By base change along ν|X′−Σ′ : X ′−Σ′ →
X−Σ, we see that Hk

µ

G(Σ)|X′−Σ′ → BunG(Σ)× (X ′−Σ′) is smooth of relative

dimension n−1, hence p′1 is smooth of relative dimension n when restricted to

Hk
′µ
G (Σ)|X′−Σ′ . By assumption (3.16), R′ ∩Σ′ = ∅, hence X ′−Σ′ and X ′−R′

cover X ′, and we conclude that p′1 is smooth of relative dimension n, which

finishes the proof. �

3.2.7. Atkin–Lehner for Sht
µ

G(Σ;D∞). For x ∈ Σ, fractional twisting by
1
nx gives an automorphism of Bunn(Σ) and Hk

µ
n(Σ). By the diagram (3.12),

we have an induced automorphism on Sht
µ
n(Σ;D∞),

ÃLSht,x : Sht
µ
n(Σ;D∞) −→ Sht

µ
n(Σ;D∞),

sending (E†i , xi, . . . ) to (E†i (− 1
nx), xi, . . . ). This also induces an automorphism

on Sht
µ

G(Σ;D∞):

ALSht,x : Sht
µ

G(Σ;D∞) −→ Sht
µ

G(Σ;D∞).

3.2.8. The case n = 2 and a specific choice of D∞. We specialize to the

case n = 2 and hence G = PGL2. Let D∞ be the group of Z-valued divisors

on X ×S∞ supported on Σ∞ ×S∞, which is the union of the graphs of x(i)

for x ∈ Σ∞ and 1 ≤ i ≤ dx. Let 1
2D∞ = 1

2Z ⊗Z D∞. Then Sht
µ

G(Σ;D∞) is

defined for D∞ ∈ 1
2D∞ satisfying (3.11) for n = 2. As in [10, Lemma 5.5], one

can show that Hk
µ

G(Σ) is canonically independent of µ. In this case we denote

Hk
µ

G(Σ) by HkrG(Σ). This implies

Lemma 3.11. For fixed r and D∞ ∈ 1
2D∞, and for any two µ, µ′ ∈ {±1}r

satisfying the same condition (3.11), there is a canonical isomorphism of stacks

Sht
µ

G(Σ;D∞) ∼= Sht
µ′

G (Σ;D∞) over Xr.
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Lemma 3.8 implies that Sht
µ

G(Σ;D∞) depends only on the image of D∞
in Div(Σ∞)⊗ 1

2Z/Z. We consider the following specific choice of D∞:

D(1)
∞ =

∑
x∈Σ∞

1

2
x(1).

Definition 3.12. Assume r satisfies the parity condition

(3.18) r ≡ #Σ∞ mod 2.

Let µ = (µ1, . . . , µr) ∈ {±1}r. For any D∞ ∈ 1
2D∞ such that

(3.19) D∞ ≡ D(1)
∞ mod D∞, and

r∑
i=1

µi = 2 degD∞,

we define

ShtrG(Σ; Σ∞) := Sht
µ

G(Σ;D∞).

By Lemmas 3.11 and 3.8, this is independent of the choice of µ and D∞
satisfying condition (3.19), justifying the notation.

We remark that the parity condition (3.18) guarantees that for any µ ∈
{±1}r, the D∞ ∈ 1

2D∞ satisfying (3.19) exists.

We denote AL(−D(1)
∞ ) simply by

(3.20) ALG,∞ := AL(−D(1)
∞ ) : BunG(Σ)×S∞ −→ BunG(Σ).

Then the diagram (3.14) becomes

ShtrG(Σ; Σ∞) //

ω0

��

HkrG(Σ)×S∞

(p0,ALG,∞◦(pr×idS∞ ))

��

BunG(Σ)
(id,Fr)

// BunG(Σ)× BunG(Σ).

(3.21)

For D∞ satisfying (3.19), we denote the morphism Π
µ

G,D∞
in (3.15) by

Πr
G = (πrG, πG,∞) : ShtrG(Σ; Σ∞) −→ Xr ×S∞.

3.3. Hecke symmetry. For the rest of the paper, we will use G to denote

PGL2. We will focus on the the stack ShtrG(Σ; Σ∞) for r and Σ∞ satisfying

the parity condition (3.18).

3.3.1. Hecke correspondence. For x ∈ |X − Σ|, let Hx be the spherical

Hecke algebra

Hx = Cc(G(Ox)\G(Fx)/G(Ox),Q).

Let H Σ
G = ⊗x∈|X−Σ|Hx. Then H Σ

G has a Q-basis {hD} indexed by effective

divisors D ∈ Div+(X − Σ), where hD is defined in [10, §3.1].
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Let D be an effective divisor on X − Σ. For µ ∈ {±1}r and D∞ =∑
x∈Σ∞ cxx

(1) as in Definition 3.12, we define a stack Sht
µ

2 (Σ;D∞;hD) whose

S-points classify the following data:

• two objects (E†i , fi, ι, . . . ) and (E ′†i , f ′i , ι′, . . . ) of Sht
µ

2 (Σ;D∞)(S) that map

to the same S-point of (x1, . . . , xr, {x(1)}) ∈ (Xr ×S∞)(S);

• for each i = 0, 1, . . . , r, an embedding of coherent sheaves ϕi : Ei → E ′i
compatible with the Iwahori level structures, such that det(ϕi) : det(Ei)→
det(E ′i) has divisor D× S ⊂ X × S, and such that the following diagram is

commutative:

E0
f1
//

ϕ0

��

E1
f2
//

ϕ1

��

· · ·
fr
// Er

ϕr
��

ι
// (τE0)(D∞)

τϕ0

��

E ′0
f ′1
// E ′1

f ′2
// · · ·

f ′r
// E ′r

ι′
// (τE ′0)(D∞).

(3.22)

Let ShtrG(Σ; Σ∞;hD) = Sht
µ

2 (Σ;D∞;hD)/PicX(k), which is independent of

the choice of (µ,D∞) as it is for ShtrG(Σ; Σ∞). Then ShtrG(Σ; Σ∞;hD) can be

viewed as a self-correspondence of ShtrG(Σ; Σ∞) over Xr ×S∞,

(3.23) ShtrG(Σ; Σ∞) ShtrG(Σ; Σ∞;hD)
−→p

//

←−p
oo ShtrG(Σ; Σ∞),

where the maps ←−p and −→p record the first and the second row of (3.22).

Lemma 3.13. Let D be an effective divisor on X − Σ.

(1) The two maps ←−p ,−→p : ShtrG(Σ; Σ∞;hD) → ShtrG(Σ; Σ∞) are representable

and proper.

(2) The restrictions of ←−p and −→p over (X −D)r are finite étale.

(3) The fibers of Πr
G(hD) : ShtrG(Σ; Σ∞;hD)→ Xr×S∞ all have dimension r.

Proof. (1) For a rank two vector bundle E over X × S, let QuotDX×S/S(E)

be the S-scheme classifying quotients E � Q, flat over S and with divisor D.

(Namely, for every geometric point s ∈ S, Q|s is a torsion sheaf on X × s with

length nx at x× s for any x ∈ |X|, where nx is the coefficient of x in D.) Then

QuotDX×S/S(E) is a closed subscheme of the Quot-scheme of E , hence projective

over S. The fiber of −→p over any point (E ′†i , xi, f ′i , ι′) ∈ ShtrG(Σ; Σ∞)(S) is a

closed subscheme of QuotDX×S/S(E ′1)×SQuotDX×S/S(E ′2)×· · ·×SQuotDX×S/S(E ′r),
hence projective over S. This shows that −→p are representable and proper. The

argument for ←−p is similar.

(2) When (E†i , xi, fi, ι) ∈ ShtrG(Σ; Σ∞)(S) and xi are disjoint from D

(which is assumed to be disjoint from Σ), the restriction E|D×S carries a Frobe-

nius structure ι|D×S : E|D×S
∼→ τE|D×S and hence descends to a GD-torsor ED

over S, with GD = ResODk G the Weil restriction. Recording this GD-torsor
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defines a map

ωD : ShtrG(Σ; Σ∞)|(X−D)r −→ BGD.

Let L̃D be the moduli stack whose S-points are triples (FD,F ′D, ϕD), where

FD,F ′D are lisse sheaves over S that are locally free OD-modules of rank two,

and ϕD : FD → F ′D is an OD-linear map whose cokernel at each geometric

point of S has divisor D. (That is, if D =
∑
x nxx, then the cokernel as an

OD-module has length nx when localized at x.) Let LD = L̃D/BO×D where

BO×D acts by simultaneously tensoring. The stack LD itself is the quotient of

a finite discrete scheme over k by a finite group, hence is finite étale over k,

and it has two maps to BGD recording FD and F ′D,

BGD LD
←−
`
oo

−→
`
// BGD,

which are also finite étale.

There is a natural map

ω̃D : ShtrG(Σ; Σ∞;hD)|(X−D)r −→ LD.

In fact, each point (E†i , xi, . . . , E
′†
i , . . . , ϕi) ∈ ShtrG(Σ; Σ∞;hD)(S) gives a pair

of GD-torsors ED and E ′D over S. If we lift Ei and E ′i to rank two vector bundles

on X × S, then ED and E ′D have associated O⊕2
D -torsors FD and F ′D over S,

well defined up to simultaneous twisting by O×D-torsors on S. The ϕi then

induces an OD-linear map ϕD : ED → E ′D whose cokernel has divisor D.
When the points xi are disjoint from D, knowing the top row (or the bot-

tom row) of (3.22) and any of the vertical arrows recovers the whole diagram.
Any vertical arrow ϕi : Ei → E ′i is in turn determined by Ei (or E ′i) together
with its image in LD. Therefore, the whole diagram is uniquely determined
by the top row (or the bottom row) and its image in LD. Moreover, since D
is disjoint from Σ, the level structures of the top row determines that of the
bottom row, and vice versa. This shows the two squares below are Cartesian:

ShtrG(Σ; Σ∞)|(X−D)r

ωD

��

ShtrG(Σ; Σ∞;hD)|(X−D)r

←−p
oo

−→p
//

ω̃D

��

ShtrG(Σ; Σ∞)|(X−D)r

ωD

��

BGD LD

←−
`oo

−→
` // BGD.

This implies that both ←−p and −→p are finite étale, because the maps
←−
` and

−→
`

are.

(3) The argument is similar to that of [10, Lemma 5.9], so we only give a

sketch.

Fix a geometric point x = (x1, . . . , xr) ∈ Xr. We will show that the fiber

ShtrG(Σ; Σ∞;hD)x has dimension r. We introduce the moduli stack HD(Σ)
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classifying (E†, E ′†, ϕ) up to the action of PicX , where E†, E ′† ∈ Bun2(Σ) and

ϕ : E → E ′ is an injective map with divisor D. Let HkrH,D(Σ) classify diagrams

E0
f1
//

ϕ0

��

E1
f1
//

ϕ1

��

· · ·
fr
// Er

ϕr
��

E ′0
f ′1
// E ′1

f ′2
// · · ·

f ′r
// E ′r

(3.24)

satisfying the same conditions as the diagram (3.22) without the last column,

modulo simultaneous tensoring by PicX . We have a Cartesian diagram

ShtrG(Σ; Σ∞;hD)x //

��

HkrH,D(Σ)x

(p0,pr)

��

HD(Σ)×S∞
(id,ALH,∞◦Fr)

// HD(Σ)×HD(Σ).

Here ALH,∞ : HD(Σ) × S∞ → HD(Σ) is given by applying ALG,∞ to both

E† and E ′†. The stacks HD(Σ) and HkrH,D(Σ) will turn out to be fibers of the

stacks Hd(Σ) and HkrH,d(Σ) over D ∈ Xd, to be introduced in Section 5.2.1.

We introduce the analog H\
D(Σ) of the HD,D introduced in [10, 6.4.4],

which is an open substack of HD(Σ) where ϕ does not land in E ′(−x) for any

x ∈ D. We claim that the map H\
D(Σ) → BunG(Σ) sending (E†, E ′†, ϕ) to E ′†

is smooth. Indeed, its fiber over E ′† ∈ BunG(Σ)(S) is ResD×SS (PD×S(E ′D×S)),

the restriction of scalars of the projectivization of the rank two bundle E ′D×S
over D × S. (The Σ-level structure on E† is automatically inherited from E ′†,
since D is disjoint from Σ.) In particular, H\

D(Σ) is smooth over k.

Similarly we introduce the open substack Hkr,\H,D(Σ)x ⊂ HkrH,D(Σ)x by

requiring each column of (3.24) to be in H\
D(Σ). We define the open substack

Shtr,\G (Σ; Σ∞;hD)x ⊂ ShtrG(Σ; Σ∞;hD)x to fit into a Cartesian diagram

Shtr,\G (Σ; Σ∞;hD)x //

��

Hkr,\H,D(Σ)x

(p0,pr)
��

H\
D(Σ)×S∞

(id,ALH,∞◦Fr)
// H\

D(Σ)×H\
D(Σ).

As in [10, 6.4.4], it suffices to show that dim Shtr,\G (Σ; Σ∞;hD)x = r. As in

the case without level structures, pr : Hkr,\H,D(Σ)x → H\
D(Σ) is an étale locally

trivial fibration. Using a slight variant of [6, Lemme 2.13], Shtr,\G (Σ; Σ∞;hD)x is

étale locally isomorphic to a fiber of pr. It remains to show that the geometric

fibers of pr have dimension r. The iterative nature of Hkr,\H,D(Σ)x allows us to

reduce to the case r = 1.
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First consider the case x1 /∈ D. Then the diagram (3.24) is determined

by its top row and the last column, which means that the fibers of p1 are the

same as the fibers of p1 : Hk1
G(Σ)x1 → BunG(Σ), which are 1-dimensional by

Proposition 3.4(3).

Next consider the case x1 ∈ D. Since Σ is disjoint from D, the Iwahori

level structures along Σ of E1 and E ′1 uniquely determine the Iwahori level

structures along Σ of all bundles in the diagram (3.24). Thus the fibers of p1

are the same as the fibers of p1 : Hk1,\
H,D,x → H\

D (the version without level

structure); this latter map was denoted Hk1
D,D,x → HD,D in [10, 6.4.4], and in

the last paragraph of [10, 6.4.4] it was shown that its fibers are 1-dimensional.

We are done. �

3.3.2. Hecke symmetry on the Chow group. Using the dimension calcu-

lation in Lemma 3.13, the same argument as in [10, Prop 5.10] proves the

following result.

Proposition 3.14. The assignment

hD 7−→ (←−p ×−→p )∗[ShtrG(Σ; Σ∞;hD)]

extends linearly to a ring homomorphism

H Σ
G −→ cCh2r(ShtrG(Σ; Σ∞)× ShtrG(Σ; Σ∞))Q.

In particular, we get an action of H Σ
G on the Chow group of proper cycles

Chc,∗(ShtrG(Σ; Σ∞))Q.

3.3.3. Hecke symmetry on cohomology. We shall define an action of H Σ
G

on H∗c(ShtrG(Σ; Σ∞)⊗ k,Q`) following the strategy in [10, 7.1.4]. For this we

need a presentation of ShtrG(Σ; Σ∞) as an increasing union of open substacks of

finite type. Here we are satisfied with a minimal version of such a presentation,

and we postpone a more refined version to Section 3.4. For N ≥ 0, we define
≤NSht to be the open substack of ShtrG(Σ; Σ∞) consisting of those (E†i ; . . . )

where inst(E0) ≤ N . Since the forgetful map ShtrG(Σ; Σ∞)→ BunG recording

E0 is of finite type, ≤NSht is of finite type over k. As N increases, ShtrG(Σ; Σ∞)

is the union of the increasing sequence of open substacks ≤NSht.

With the finite-type open substacks ≤NSht, we can copy the construction

of [10, 7.1.4] by first defining the action of hD as a map Rπ≤N,!Q` → Rπ≤N ′,!Q`
(where π≤N : ≤NSht → Xr × S∞) for N ′ − N ≥ degD, and then pass to

cohomology and pass to inductive limits. Using the dimension calculation in

Lemma 3.13(3), the same argument as in [10, Prop. 7.1] shows

Proposition 3.15. The assignment hD 7→ C(hD), extended linearly, de-

fines an action of H Σ
G ⊗Q` on Hi

c(ShtrG(Σ; Σ∞)⊗ k,Q`) for each i ∈ Z.
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The following two results are analogues of [10, Lemmas 5.12, 7.2, and 7.3],

with the same proofs.

Lemma 3.16. Let f ∈ H Σ
G . Then the action of f on the Chow group

Chc,∗(ShtrG(Σ; Σ∞))Q (resp. on the cohomology H2r
c (ShtrG(Σ; Σ∞)⊗ k,Q`)(r))

is self-adjoint with respect to the intersection pairing (resp. cup product pair-

ing).

Lemma 3.17. The cycle class map

cl : Chc,i(ShtrG(Σ; Σ∞))Q −→ H4r−2i
c (ShtrG(Σ; Σ∞)⊗ k,Q`)(2r − i)

is equivariant under the H Σ
G -actions for all i.

3.3.4. The base-change situation. Consider another curve X ′ as in Sec-

tion 3.2.6. Let

Sht′rG(Σ; Σ∞) = ShtrG(Σ; Σ∞)×(Xr×S∞) (X ′r ×S′∞).

We may define the Hecke correspondence Sht′rG(Σ; Σ∞;hD) for Sht′rG(Σ; Σ∞) as

the base change of ShtrG(Σ; Σ∞) from Xr×S∞ to X ′r×S′∞. The smoothness

of Sht′rG(Σ; Σ∞) proved in Proposition 3.10 allows us to apply the formalism of

correspondences acting on Chow groups; see [10, A.1.6]. The same argument

as in [10, Prop. 5.10] gives an analogue of Proposition 3.14: there is an action

of H Σ
G on the Chow group of proper cycles Chc,∗(Sht′rG(Σ; Σ∞))Q, where hD

acts via the fundamental class of Sht′rG(Σ; Σ∞;hD).

Similarly, with the smoothness of Sht′rG(Σ; Σ∞) proved in Proposition 3.10,

analogues of Proposition 3.15 and Lemmas 3.16 and 3.17 make sense and con-

tinue to hold true for Sht′rG(Σ; Σ∞) in place of ShtrG(Σ; Σ∞).

Remark 3.18. Besides the action of H Σ
G , the Atkin–Lehner involutions

ALSht,x for x ∈ Σ (see Section 3.2.7) also act on ShtrG(Σ; Σ∞) and Sht′rG(Σ; Σ∞).

Therefore, they induce involutions on the Chow groups and cohomology groups

of ShtrG(Σ; Σ∞) and Sht′rG(Σ; Σ∞), which we still denote by ALSht,x. These

involutions commute with the action of H Σ
G .

3.4. Horocycles. This subsection studies the geometry of ShtrG(Σ; Σ∞)

“near infinity.” It serves as technical preparation for the proof of the spec-

tral decomposition in the next subsection.

To alleviate notation in this subsection we introduce the notation

Sht := ShtrG(Σ; Σ∞)⊗ k.

3.4.1. Index of instability. Let us first introduce the notion of instability

for points in Bun2(Σ). For a rank two bundle E on X, inst(E) ∈ Z is defined

as in [10, §7.1.1]: it is the maximum of 2 degL − deg E when L runs over line

subbundles of E . For a geometric point E† = (E , {E(−1
2x)}x∈Σ) ∈ Bun2(Σ)(K),
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we have a bundle E(1
2D) for any divisorD ⊂ XK supported in Σ(K). We call E†

purely unstable if inst(E(1
2D)) > 0 for all D ≤ Σ(K). Note that the condition

inst(E(1
2D)) > 0 depends only on the class of D modulo 2; i.e., we may think

of D as an element in Z/2Z[Σ(K)], the free Z/2Z-module with basis given by

Σ(K). Define

inst(E†) := min

ß
inst(E(

1

2
D));D ∈ Z/2Z[Σ(K)]

™
.

Both the notion of pure instability and the number inst(E†) depends only on

the image of E† in BunG(Σ).

Suppose F ∈ Bun2(K) is unstable, with maximal line bundle L and quo-

tientM := F/L. For any effective divisor D′, we denote by FyD′ the resulting

rank two bundle by pushing out the exact sequence 0 → L → F → M → 0

along L ↪→ L(D′). Similarly let pD′F be the pullback of the same exact se-

quence along M(−D′) ↪→ M. Note that we have a canonical isomorphism

FyD′ ∼= (pD′F)(D′), which means that FyD′ and pD′F have the same image

in BunG.

Lemma 3.19. Let K be an algebraically closed field containing k, and let

E† ∈ BunG(Σ)(K) be purely unstable.

(1) There is a unique D∈Z/2Z[Σ(K)] such that inst(E†)=inst(E(1
2D)). (Note

that E(1
2D) is a well-defined point of BunG(Σ) when D ∈ Z/2Z[Σ(K)].)

(2) The point E† is uniquely determined by E(1
2D) (D as in (1)) in the follow-

ing way : for any effective divisor D′ supported on Σ(K), E(1
2D + 1

2D
′) =

E(1
2D)yD′ . Moreover, we have

(3.25) inst(E(
1

2
D +

1

2
D′)) = inst(E†) + |D′|,

where |D′| = #{x ∈ Σ(K)|x has non-zero coefficient in D′}.

Proof. We prove all statements simultaneously. Let D ∈ Z/2Z[Σ(K)]

be some divisor such that inst(E†) = inst(E(1
2D)). (We do not assume D is

unique for now.) Write F = E(1
2D). For any x ∈ Σ(K), we have inst(F(1

2x)) =

inst(F) ± 1. Since F achieves the minimal index of instability, we must have

inst(F(1
2x)) = inst(F) + 1. This means that F(1

2x) = Fyx. For any effective

D′ supported on Σ(K) and multiplicity-free, F(1
2D
′) is the union of F(1

2x) for

x ∈ D′, and we get F(1
2D
′) = FyD′ . This implies that

(3.26) inst(F(
1

2
D′)) = inst(F) + degD′ = inst(F) + |D′ mod 2|.

Since the set of points {F(1
2D
′)}D′≤Σ(K), as points of BunG(Σ), is exactly

{E(1
2D
′)}D′≤Σ(K), we see that inst(E(1

2D
′)) achieves its minimum exactly when

D′ = D and nowhere else. The equality (3.25) follows from (3.26). �
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By the above lemma, for a purely unstable E† ∈ BunG(Σ)(K), we may

define an invariant

κ(E†) = (D, inst(E†)) ∈ Z/2Z[Σ(K)]× Z>0,

where D ∈ Z/2Z[Σ(K)] is the unique element such that inst(E†)=inst(E(1
2D)).

3.4.2. Strata in BunG(Σ). For N > 0, we also denote by NBunG the

locally closed substack of BunG whose geometric points are exactly those E
with inst(E) = N .

For any field K containing k, we have a canonical bijection Σ(k)
∼→ Σ(K).

For κ ∈ Z/2Z[Σ(k)] × Z>0, there is a locally closed substack κBunG(Σ) ⊂
BunG(Σ) ⊗ k whose geometric points are exactly those geometric points E†
with κ(E†) = κ (under the identification Σ(k)

∼→ Σ(K)).

We define a partial order on Z/2Z[Σ(k)]×Z by saying that κ = (D,N) ≤
κ′ = (D′, N ′) if and only if

N ′ −N ≥ |D −D′|.

For κ = (D,N) ∈ Z/2Z[Σ(k)]×Z>0, let ≤κBunG(Σ) ⊂ BunG(Σ)⊗k be the open

substack consisting of E† such that for any D′ ∈ Z/2Z[Σ(k)], inst(E(1
2D
′)) ≤

N + |D′ − D|. We see that κBunG(Σ) ⊂ ≤κ′BunG(Σ) if and only if κ ≤ κ′.

Moreover, κBunG(Σ) is closed in ≤κBunG(Σ), with open complement denoted

by <κBunG(Σ).

Corollary 3.20 (of Lemma 3.19). For κ = (D,N) ∈ Z/2Z[Σ(k)]×Z>0,

the map E† 7→ E(1
2D) gives an isomorphism of k-stacks

κBunG(Σ)
∼−→ NBunG ⊗ k.

3.4.3. Elementary modifications. In this section we study how the invari-

ant κ changes under an elementary modification of bundles. Recall the stack

Hk1
G(Σ) classifying (E†,F†, y, ϕ) modulo tensoring with line bundles, where

E†,F† ∈ Bun2(Σ) and ϕ : E ↪→ F is an injective map compatible with Iwahori

structures whose cokernel is an invertible sheaf on the graph of y : S → X.

Recording y gives a map π1
Hk : Hk1

G(Σ)→ X.

For two elements κ = (D,N), κ′ = (D′, N ′) ∈ Z/2Z[Σ(k)]×Z>0, we define

|κ− κ′| := |D −D′|+ |N −N ′| ∈ Z≥0

with |D −D′| defined in Lemma 3.19(3).

Lemma 3.21. Suppose (E†,F†, y, ϕ) ∈ Hk1
G(Σ)(K) (where K is an alge-

braically closed field, E†,F† are lifted to Bun2(Σ)(K), ϕ : E ↪→ F and y is the

support of coker(ϕ)), and suppose E† and F† are both purely unstable. Write

κ(E†) = (D,N), κ(F†) = (D′, N ′).

(1) |κ(E†)− κ(F†)| = 1.
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(2) If N = N ′, then D and D′ differ at a unique point x ∈ Σ(K), and we

have y = x. The points E† and F† are uniquely determined by the triple

(E(1
2D),F(1

2D
′), α), where α is an isomorphism of G-bundles

α : E(
1

2
D)yx ∼= F(

1

2
D′)yx.

(3) If N = N ′ − 1, then D = D′, and E† and F† are determined by the single

bundle E(1
2D) in the following way :

• E† is determined by E(1
2D) as in Lemma 3.19(2);

• F(1
2D) = E(1

2D)yy , and F† is determined by F(1
2D) again by

Lemma 3.19(2).

(4) If N = N ′ + 1, then D = D′, and E† and F† are determined by the single

bundle F(1
2D) in the following way :

• F† is determined by F(1
2D) as in Lemma 3.19(2);

• E(1
2D) = py(F(1

2D)), and E† is determined by E(1
2D) again by

Lemma 3.19(2).

Proof. For any D′′ ∈ Z/2Z[Σ(k)], we have inst(E(1
2D
′′)) = inst(F(1

2D
′′))

± 1, and therefore N −N ′ ∈ {0, 1,−1}.
When N − N ′ = −1, E(1

2D) achieves the minimal index of instability

among all the bundles {E(1
2D
′′),F(1

2D
′′)}D′′∈Z/2Z[Σ(K)]. Since inst(F(1

2D)) =

inst(E(1
2D)) ± 1, we must have inst(F(1

2D)) = N + 1, therefore inst(F(1
2D))

= N ′ and D′ = D. The same argument as Lemma 3.19(2) shows that F(1
2D)

is determined by E(1
2D). This proves (3).

The analysis of the case N −N ′ = 1 is similar, which takes care of (4).

Finally consider the case N = N ′. Since inst(F(1
2D)) = inst(E(1

2D)) ± 1

and inst(F(1
2D)) ≥ N ′ = N = inst(E(1

2D)), we must have inst(F(1
2D)) =

N + 1. On the other hand, we have inst(F(1
2D
′)) = N ′ = N by definition. By

Lemma 3.19(3), we have |D−D′| = (N + 1)−N = 1; that is, D′ and D differ

by one point x ∈ Σ(K). We show that y must be equal to x. Suppose not.

Consider the bundle G = F(1
2D) (represented by a rank two bundle on XK)

with subsheaves

G
Å
−1

2
y

ã
:= E

Å
1

2
D

ã
and G

Å
−1

2
x

ã
:= F

Å
1

2
D − 1

2
x

ã
.

Then G† := (G,G(−1
2y),G(−1

2x)) defines a point in Bun2({x, y})(K). Note

that inst(G(−1
2y)) = N by definition and

inst

Å
G
Å
−1

2
x

ãã
= inst

Å
F
Å

1

2
D − 1

2
x

ãã
= inst

Å
F
Å

1

2
D′
ãã

= N ;

also inst(G) = N + 1 and inst(G(−1
2x −

1
2y)) = inst(E(1

2D −
1
2x)) = N + 1.

It follows that G† is purely unstable. This contradicts Lemma 3.19(1) be-

cause both G(−1
2x) and G(−1

2y) achieve the minimal index of instability. This
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contradiction proves y = x. The isomorphism α comes from the fact that

G(−1
2y)yx = G = G(−1

2x)yx. The triple (E(1
2D),F(1

2D
′), α) first determines

E† and F† by Lemma 3.19(2). Now we represent D and D′ by multiplicity-free

effective divisors on Σ(K). When D′ = D+ x, the map α then determines the

injective map ψ : E(−1
2D) ↪→ F(−1

2D
′)yx, which then gives

ϕ : E = E
Å
−1

2
D

ã
yD

ψ−→ F
Å
−1

2
D′
ã
yx+D = F

Å
−1

2
D′
ã
yD′ = F .

When D′ = D − x, the map α gives the injective map ψ : E(−1
2D)yx ↪→

F(−1
2D
′), which then gives

ϕ : E = E
Å
−1

2
D

ã
yD =

Å
E
Å
−1

2
D

ã
yx

ã
yD′

ψ−→ F
Å
−1

2
D′
ã
yD′ = F .

Part (2) is proved.

All three cases above satisfy |κ(E†)− κ(F†)| = 1, which verifies (1). �

For κ = (D,N) and κ′ = (D′, N ′) in Z/2Z[Σ(k)]×Z>0, let κ,κ
′
Hk1

G(Σ) be

the locally closed substack of Hk1
G(Σ)⊗ k whose geometric points are exactly

those (E†,F†, y, ϕ) such that κ(E†) = κ and κ(F†) = κ′.

Corollary 3.22 (of Lemma 3.21).

(1) The stack κ,κ′Hk1
G(Σ) is empty unless |κ− κ′| = 1.

(2) When N = N ′ and D and D′ differ only at x ∈ Σ(k), the map π1
Hk maps

κ,κ′Hk1
G(Σ) to a single point x, and there is an isomorphism

κ,κ′Hk1
G(Σ)

∼−→ (NBunG ×N+1BunG
NBunG)⊗ k,

with both maps NBunG → N+1BunG given by (−)yx. The above isomor-

phism is given by

(E†,F†, x, ϕ) 7−→
Å
E
Å

1

2
D

ã
,F
Å

1

2
D′
ã
, α

ã
as in Lemma 3.21(2).

(3) When N = N ′ − 1 and D = D′, we have an isomorphism

κ,κ′Hk1
G(Σ)

∼−→ (NBunG ×X)⊗ k

given by (E†,F†, y, ϕ) 7→ (E(1
2D), y).

(4) When N = N ′ + 1 and D = D′, we have an isomorphism

κ,κ′Hk1
G(Σ)

∼−→ (N
′
BunG ×X)⊗ k

given by (E†,F†, y, ϕ) 7→ (F(1
2D
′), y).

Definition 3.23. Let κ = (κ0, κ1, . . . , κr) be a sequence of elements in

Z/2Z[Σ(k)]× Z>0.



SHTUKAS AND THE TAYLOR EXPANSION (II) 439

(1) The horocycle of type κ of Sht is the locally closed substack κSht ⊂ Sht

whose geometric points are exactly those (E†i ; . . . ) ∈ Sht such that each E†i
is purely unstable with κ(E†i ) = κi, for i = 0, 1, . . . , r.

(2) The truncation up to κ of Sht is the open substack of Sht consisting of

(E†i ; . . . ) such that E†i ∈ ≤κiBunG(Σ) for all 0 ≤ i ≤ r.

Then κSht is closed in ≤κSht, and we denote its open complement by
<κSht.

3.4.4. The index set for horocycles. Above we defined horocycles for any

r-tuple of elements κ in Z/2Z[Σ(k)] × Z>0. However, for many such κ, κSht

turns out to be empty.

Lemma 3.24. Let κ = (κ0, κ1, . . . , κr) be a sequence of elements in

Z/2Z[Σ(k)]× Z>0.

If κSht is non-empty, then

(1) for each i = 1, . . . , r, |κi−1 − κi| = 1;

(2) if we write κi = (Di, Ni), then N0 = Nr, and Fr(D0) (applying the arith-

metic Frobenius to each point appearing D0) and Dr differ at exactly one

k-point above each place of Σ∞ and nowhere else.

Proof. Suppose (E†i , . . . ) ∈ κSht is a geometric point over {x(1)}x∈Σ∞ ∈
S∞. Then |κi−1 − κi| = 1 by Corollary 3.22(1). The isomorphism Er ∼=
(τE0)(1

2

∑
x∈Σ∞ x

(1)) implies N0 = Nr and Fr(D0) +
∑
x∈Σ∞ x

(1) ≡ Dr mod 2,

which implies the second condition. �

Definition 3.25. Let Kr be the set of κ = (κ0, κ1, . . . , κr), where each

κi ∈ Z/2Z[Σ(k)] × Z, satisfying the two conditions in Lemma 3.24. (For

technical reasons we do not impose κi > 0 in the definition of Kr.)

From the definition and Lemma 3.24 we see that

Sht =
⋃
κ∈Kr

≤κSht.

The partial order on Z/2Z[Σ(k)] × Z>0 extends to one on Kr: we say that

(κ0, . . . , κr) ≤ (κ′0, . . . , κ
′
r) if and only if κi ≤ κ′i for all 0 ≤ i ≤ r. Then it is

easy to check that, for κ, κ′ ∈ Kr,
κSht ⊂ ≤κ′Sht if and only if κ ≤ κ′.

For κ ∈ Kr and N ∈ Z, we write κ > N if Ni(κ) > N for all 0 ≤ i ≤ r.

(Here Ni(κ) denotes the Z>0-part of the i-th component of κ.)

3.4.5. I(κ) and X(κ). For κ = (κ0, . . . , κr) ∈ Kr with κi = (Di, Ni), we

define the subset I(κ) ⊂ {1, 2, . . . , r} as

I(κ) = {1 ≤ i ≤ r|Ni−1 6= Ni}.
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For i ∈ {1, 2, . . . , r}−I(κ), there is a unique point x ∈ Σ(k) such that Di−1 and

Di differ at x. We denote this point x by xi(κ). Also, by the second condition

on κ above, the difference between Dr and Fr(D0) consists of a k-point x(1)(κ)

over each x ∈ Σ∞.

For i ∈ I(κ), we have Ni = Ni−1 ± 1. Since Nr = N0, we see that #I(κ)

is even.

We define X(κ) ⊂ (Xr ×S∞)⊗ k to be the coordinate subspace

X(κ) = {(x1, . . . , xr, {x(1)}x∈Σ∞)|xi = xi(κ) for all i /∈ I(κ);

x(1) = x(1)(κ) for all x ∈ Σ∞}.

The projection to the I(κ)-coordinates gives an isomorphism

X(κ)
∼−→ XI(κ) ⊗ k.

Viewing Z/2Z[Σ] as a subgroup of Z/2Z[Σ(k)] by Σ 3 x 7→∑
Σ(k)3x 7→x x,

there is an action of Z/2Z[Σ] on Z/2Z[Σ(k)] by translation. This induces

a diagonal action of Z/2Z[Σ] on Kr by acting only on the divisor parts of

each κi. For κ, κ′ ∈ Kr, we say κ ∼ κ′ if the divisor parts of κ and κ′ are in

the same Z/2Z[Σ]-orbit (no other condition on the Z-factors). This defines an

equivalence relation on Kr. Let [Kr] be the quotient

[Kr] := Kr/ ∼ .

The following lemma is a direct calculation.

Lemma 3.26. The map

X(·) : Kr −→{subschemes of (Xr ×S∞)⊗ k}
κ 7−→X(κ)

factors through [Kr] and induces an injective map

X(·) : [Kr] ↪→ {subschemes of (Xr ×S∞)⊗ k}.

By the above lemma, for σ ∈ [Kr], we may write

X(σ), I(σ)

for X(κ) and I(κ), where κ is any element in the orbit σ.

Corollary 3.27 (of Lemma 3.21 and Corollary 3.22). For κ ∈ Kr and

κ > 0, the restriction of the map Πr
G : Sht → Xr ×S∞ to κSht has image in

X(κ). We denote the resulting map by

πκ : κSht −→ X(κ).
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3.4.6. Geometry of horocycles. For any N > 0, we have a map

∆ : NBunG −→ PicNX

sending E to the line bundle ∆(E) = L⊗M−1 of degree N on X, where L ⊂ E
is the maximal line subbundle and M = E/L.

Now if κ ∈ Kr and κ > 0, for (E†i ; . . . ) ∈ κSht, we have a sequence of

line bundles ∆i := ∆(Ei(1
2Di)) by the above construction applied to Ei(1

2Di) ∈
NiBunG (recall κi = (Di, Ni), so Ei(1

2Di) has the smallest index of instability

among all fractional twists of Ei). By Lemma 3.21, these line bundles are

related by canonical isomorphisms:

∆i
∼=


∆i−1 if Ni = Ni−1,

∆i−1(xi) if Ni = Ni−1 + 1,

∆i−1(−xi) if Ni = Ni−1 − 1.

Finally ∆r
∼= τ∆0. Thus ∆ = (∆0, . . . ,∆r) together with the above isomor-

phisms give a point in Sht
N(κ)
1 , the moduli of rank one Shtukas (L0,L1, . . . ,Lr)

over X with deg(Li) = Ni. (When Ni−1 = Ni, we have an isomorphism Li−1
∼→ Li.) This gives a morphism

qκ : κSht −→ Sht
N(κ)
1 ⊗ k

through which the canonical map Πr
G : κShtrG(Σ; Σ∞) → X(κ) ∼= XI(κ) ⊗ k

factors.

Lemma 3.28. Suppose κ ∈ Kr and κ > max{2g− 2, 0}. Then the map qκ
is smooth of relative dimension r − #I(κ)/2. The geometric fibers of qκ are

isomorphic to [Gr−#I(κ)/2
a /Z] for some finite étale group scheme Z acting on

Gr−#I(κ)/2
a via a homomorphism Z → Gr−#I(κ)/2

a .

Proof. The argument is similar to [10, Lemma 7.5], so we only sketch the

difference with the situation without level structures. We define κHkrG(Σ) ⊂
HkrG(Σ)⊗ k to be the locally closed substack where κ(E†i ) = κi for 0 ≤ i ≤ r.

Then κHkrG(Σ) is the iterated fiber product of κi−1,κiHk1
G(Σ). By definition,

we have a Cartesian diagram

κShtrG(Σ; Σ∞) //

p0

��

κHkrG(Σ)

(p0,ALG,∞◦pr)
��

κ0BunG(Σ)
(id,Fr

/k
)
// κ0BunG(Σ)× Fr(κ0)BunG(Σ),

(3.27)

where the map Fr/k : κ0BunG(Σ) → Fr(κ0)BunG(Σ) is the restriction of the

k-linear Frobenius Fr×idk : BunG(Σ) ⊗ k → BunG(Σ) ⊗ k to the stratum
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κ0BunG(Σ). Using Corollary 3.20, we may replace the bottom row by

(id,Fr×idk) : N0BunG ⊗ k −→ (N0BunG ⊗ k)×k (N0BunG ⊗ k).

The diagram (3.27) now reads

κShtrG(Σ; Σ∞) //

h0

��

κHkrG(Σ)

(h0,hr)
��

N0BunG ⊗ k
(id,Fr×id

k
)
// (N0BunG ⊗ k)×k (N0BunG ⊗ k),

(3.28)

where hi : κHkrG(Σ) → NiBunG ⊗ k is the composition of pi with the isomor-

phism κiBunG(Σ)
∼→ NiBunG ⊗ k in Corollary 3.20.

Let S be a k-algebra. Fix an S-point y = (y1, . . . , yr) ∈ X(κ), and denote

by κHkrG(Σ)y the fiber over y. Let NBunG,S be the base change of NBunG
from Spec k to S.

For 1 ≤ i ≤ r, let

Mi = min{Ni−1, Ni}+ 1.

Then using the description of κi−1,κiHk1
G(Σ) in Corollary 3.22, we get an iso-

morphism

κHkrG(Σ)y ∼= N0BunG,S ×M1BunG,S
N1BunG,S ×M2BunG,S

N2BunG,S

× · · · ×MrBunG,S
NrBunG,S ,

(3.29)

where the maps Ni−1BunG,S → MiBunG,S and NiBunG,S → MiBunG,S are

either the identity map or the pushout yyi .
There is a map ∆Hk,y : κHkrG(Σ)y → PicN0

X,S ×PicNrX,S , which is induced

by the map ∆ : NiBunG → PicNiX on each factor in (3.29). Now we fix an

S-point ∆ = (∆0,∆1, . . . ,∆r) ∈ Sht
N(κ)
1 (S) over y, namely, deg ∆i = Ni and

∆i = ∆i−1((Ni −Ni−1)yi) for 1 ≤ i ≤ r. Let Ei ⊂ NiBunG,S be the preimage

of ∆i ∈ PicNiX (S) under ∆ (so Ei is an S-stack). Since Ni > max{2g−2, 0}, we

have that Ei ∼= BHi is the classifying space of the vector bundle Hi = pS∗∆i

over S (where pS : X × S → S). Similarly, we let Ci ⊂ MiBunG,S be the

preimage of the following line bundle under ∆:

∆′i :=


∆i(yi) if Ni = Ni+1,

∆i if Ni = Ni−1 + 1,

∆i−1 if Ni = Ni−1 − 1.

We have Ci ∼= BJi for the vector bundle Ji = pS∗∆
′
i over S. The canonical

embeddings ∆i−1,∆i ↪→ ∆′i induce embeddings Hi−1 ↪→ Ji and Hi ↪→ Ji,



SHTUKAS AND THE TAYLOR EXPANSION (II) 443

hence maps Ei−1 → Ci and Ei → Ci for 1 ≤ i ≤ r. By (3.29), the preimage of

∆ under ∆Hk,y is

E0 ×C1 E1 ×C2 · · · ×Cr Er,
which is isomorphic to the stack over S,

H0\J1

H1
× J2

H2
× · · ·

Hr−1

× Jr/Hr,

which is the quotient of J1 × · · · × Jr (product over S) by the action of H0 on

J1, the diagonal action of H1 on J1 and J2, . . . , the diagonal action of Hi on

Ji and Ji+1, . . . , and the action of Hr on Jr.

Using the Cartesian diagram (3.28), we get

q−1
κ (∆) ∼= (J1

H1
× J2

H2
× · · ·

Hr−1

× Jr)/H0,

where the action of H0 is by translation on J1 and on Jr, via composing with

the relative Frobenius FrH0/S : H0 → Hr and the Hr-translation on Jr. This

presentation shows that q−1
κ (∆) is smooth over S. Hence qκ is smooth.

To calculate the relative dimension of qκ, we take S = SpecK to be a

geometric point, and

dim q−1
κ (∆) =

r∑
i=1

dim Ji −
r−1∑
i=0

dimHi.

Since

dim Ji − dimHi−1 = dim H0(XK ,∆
′
i)− dim H0(XK ,∆i−1)

=

1 if Ni = Ni−1 or Ni = Ni−1 − 1,

0 if Ni = Ni−1 + 1,

we see that

dim q−1
κ (∆) = r −#{1 ≤ i ≤ r|Ni = Ni−1 − 1} = r −#I(κ)/2.

This proves the dimension part of the statement. The rest of the argument

is the same as the last part of the proof of [10, Lemma 7.5], using the fact

that the translation of H0 on J1 induces a free action on the vector space

J1

H1
× J2

H2
× · · ·

Hr−1

× Jr. �

Corollary 3.29 (of Lemma 3.28). Suppose κ∈Kr and κ>max{2g−2, 0}.
Let π

N(κ)
1 : Sht

N(κ)
1 ⊗ k → X(κ) be the projection. Then we have a canonical

isomorphism

Rπκ,!Q` ∼= Rπ
N(κ)
1,! Q`[−2r + #I(κ)](−r + #I(κ)/2).

In particular, Rπκ,!Q` is a local system shifted in degree 2r −#I(κ), and

(3.30) Pκ := Rπκ,!Q`[2r](r) ∈ Db(X(κ),Q`)

is a perverse sheaf on X(κ) with full support and pure of weight 0.
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3.4.7. When is ShtrG(Σ; Σ∞) of finite type? Let

K]r = {κ ∈ Kr|κ > max{2g − 2, 0}},
]Shtk =∪

κ∈K]r
κSht.

Then ]Sht consists of (E†i ; . . . ) where all inst(E†i ) > max{2g − 2, 0}, therefore

it is a closed substack of Sht. Let [Sht = Sht− ]Sht be its open complement.

Lemma 3.30. The substack [Sht is of finite type over k.

Proof. Let (E†i ; . . . ) be a geometric point of [Sht. Then for some i0,

inst(E†i0) ≤ max{2g − 2, 0}, hence inst(Ei0) ≤ max{2g − 2, 0} + deg Σ. Since

E0 is related to Ei0 by at most r steps of elementary modifications, we have

inst(E0) ≤ r+ max{2g− 2, 0}+ deg Σ =: c for any i. Then [Sht is contained in

the preimage of ≤cBunG under the map p
0

: Sht→ BunG (recording only E0).

Since p
0

is of finite type and ≤cBunG is of finite type over k, so is [Sht. �

Corollary 3.31 (of Lemmas 3.30 and 3.28). The stack ShtrG(Σ; Σ∞) is

of finite type over k if and only if r < #Σ∞.

Proof. If r<#Σ∞, then the set Kr is empty. In fact, if κ=(κ0, . . . , κr)∈Kr,
then the first condition defining Kr implies |Dr−D0| ≤ r (Di is the divisor part

of κi), while the second condition implies that for each x ∈ Σ∞, D0 and Dr

must differ at a geometric point above x, hence |Dr −D0| ≥ #Σ∞. Therefore,

Sht = [Sht, which is of finite type over k by Lemma 3.30. This implies that

Sht is of finite type over k.

Conversely, if r ≥ #Σ∞, then the set K]r is infinite as can be seen in the

following way. Write Σ∞ = {x1, . . . , xm}, and fix x
(1)
i ∈ X(k) above each xi.

Let D0 = 0, Di = x
(1)
1 + · · ·+x

(1)
i for 1 ≤ i ≤ m, and Dm = Dm+1 = · · · = Dr.

Then take N0 = · · · = Nm and Nj = Nj−1 ± 1 for m < j ≤ r such that

Nr = Nm and Ni > max{2g − 2, 0} for all 0 ≤ i ≤ r. (There are infinitely

many such sequences (Ni).) Let κi = (Di, Ni), then κ = (κ1, . . . , κr) ∈ K]r.

For each κ ∈ K]r , κSht is non-empty by Lemma 3.28. Therefore, Sht is not of

finite type over k in this case. �

3.5. Cohomological spectral decomposition. In this subsection, we continue

to use the abbreviations Sht, κSht as in Section 3.4. Let

V = H2r
c (Sht,Q`)(r).

Since Sht is the union of open substacks ≤κSht for κ ∈ Kr, we have by definition

V = lim−→
κ∈Kr,κ>0

H2r
c (≤κSht,Q`)(r).
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For κ ∈ Kr, κ > 0, let π≤κ : ≤κSht→ (Xr ×S∞)⊗ k be the restriction of

Πr
G. Let

K≤κ = Rπ≤κ,!Q`[2r](r) ∈ Db((Xr ×S∞)⊗ k,Q`).

For 0 < κ ≤ κ′ ∈ Kr, the open inclusion ≤κSht ↪→ ≤κ′Sht induces a map

ικ,κ′ : K≤κ −→ K≤κ′ .

3.5.1. Ind-perverse sheaves. The perverse sheaves {pHiK≤κ}κ∈Kr form an

inductive system indexed by the directed set Kr. Consider the inductive limit

pHiK := lim−→
κ

pHiK≤κ ∈ indPerv((Xr ×S∞)⊗ k,Q`).

Here the right side is the category of ind-objects in the abelian category

Perv((Xr ×S∞)⊗ k,Q`) of perverse constructible sheaves on (Xr ×S∞)⊗ k,

which is again an abelian category. Note that the notation pHiK comes as a

whole, as we are not defining K as the inductive limit of K≤κ, but only defining

the ind-perverse sheaves pHiK.

Definition 3.32. Let ϕ : P → P ′ be a morphism in indPerv((Xr ×S∞)⊗
k,Q`).
(1) We say ϕ is an mc-isomorphism (mc for modulo constructibles) if the kernel

and cokernel of ϕ are in the essential image of the natural embedding

Perv((Xr ×S∞)⊗ k,Q`) ↪→ indPerv((Xr ×S∞)⊗ k,Q`).
(2) We say ϕ is mc-zero if its image is in the essential image of the natural

embedding Perv((Xr ×S∞)⊗ k,Q`) ↪→ indPerv((Xr ×S∞)⊗ k,Q`).

Likewise we have the notion of an mc-commutative square of ind-perverse

sheaves; i.e., the appropriate difference of the compositions is mc-zero. Con-

catenation of mc-commutative squares is still mc-commutative.

Lemma 3.33. Let 0 < κ ≤ κ′ ∈ Kr. Then the map ικ,κ′ on the perverse

cohomology sheaves

pHiικ,κ′ : pHiK≤κ −→ pHiK≤κ′

is injective for i = 0, surjective for i = 1 and an isomorphism for i 6= 0, 1.

In particular, pHiK is eventually stable when i 6= 0. (That is, the natural

map pHiK≤κ → pHiK is an isomorphism for sufficiently large κ.)

Proof. Let (κ,κ′]Sht = ≤κ′Sht−≤κSht, which is a union of horocycles κ
′′
Sht

for κ′′ ≤ κ′ but κ′′ � κ. The horocycles form a stratification of ≤κ
′
Sht−≤κSht.

Let π(κ,κ′] : (κ,κ′]Sht → (Xr × S∞) ⊗ k be the projection. Then K(κ,κ′] :=

Rπ(κ,κ′],!Q`[2r](r) is the cone of ικ,κ′ , and it is a successive extension of Pκ′′

(see (3.30)), viewed as a complex on (Xr×S∞)⊗k. By Corollary 3.29, Pκ′′ is a

perverse sheaf; therefore, so is K(κ,κ′]. The long exact sequence for the perverse
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cohomology sheaves attached to the triangle K≤κ → K≤κ′ → K(κ,κ′] → K≤κ[1]

then gives the desired statements. �

3.5.2. Hecke symmetry on ind-perverse sheaves. A variant of the construc-

tion in Section 3.3.3 gives an H Σ
G -action on pHiK for any i ∈ Z. Namely,

for each effective divisor D on X − Σ, the fundamental cycle of the Hecke

correspondence ShtrG(Σ; Σ∞;hD) (as a cohomological correspondence between

constant sheaves on truncated ShtrG(Σ; Σ∞)) induces a map K≤κ → K≤κ′ for

κ′ − κ ≥ d. Passing to perverse cohomology sheaves and passing to inductive

limits, we get a map in indPerv((Xr ×S∞)⊗ k,Q`):
pHi(hD) : pHiK −→ pHiK.

The same argument as [10, Prop. 7.1], using the dimension calculation in

Lemma 3.13(3), shows that the assignment hD 7→ pHi(hD), extended linearly,

gives an action of H Σ
G on pHiK.

3.5.3. The constant term map. Recall the closed substack ]Sht of Sht and

its open complement [Sht from Section 3.4.7. Let π[ : [Sht→ (Xr ×S∞)⊗ k
and K[ = Rπ[,!Q`[2r](r) ∈ Db((Xr ×S∞)⊗ k,Q`).

We have a stratification of ]Sht by locally closed substacks κSht. There-

fore, we may similarly define pHiK] as the inductive limit of the perverse

sheaves pHiK],≤κ as κ runs over Kr, where K],≤κ is the direct image complex

of ]Sht ∩ ≤κSht→ (Xr ×S∞)⊗ k.

Lemma 3.34.

(1) The restriction map associated to the closed inclusion ]Sht ↪→ Sht induces

an mc-isomorphism of ind-perverse sheaves

pH0K −→ pH0K].

(2) We have pHiK] = 0 for all i 6= 0. Moreover, there is a canonical isomor-

phism of perverse sheaves on (Xr ×S∞)⊗ k:

pH0K]
∼= ⊕κ∈K]rPκ.

Proof. (1) By definition, we have [Sht ⊂ ≤κSht for κ large enough, with

the complement ∪
κ′∈K]r,κ′≤κ

κ′Sht. This gives a distinguished triangle K[ →
K≤κ → K],≤κ →. The long exact sequence of perverse cohomology sheaves

gives
pH0K[ −→ pH0K≤κ −→ pH0K],≤κ −→ pH1K[.

Taking inductive limit we get an exact sequence

pH0K[ −→ pH0K −→ pH0K] −→ pH1K[.

By Lemma 3.30, [Sht is a DM stack of finite type over k, hence K[ is con-

structible, and the middle map above is an mc-isomorphism.
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To show (2), it suffices to give a canonical isomorphism (again κ is large

enough so that [Sht ⊂ ≤κSht)

K],≤κ ∼= ⊕κ′∈K]r,κ′≤κPκ′ ,

compatible with the transition maps when κ grows. Since K],≤κ is a successive

extension of Pκ′ for κ′ ∈ K]r and κ′ ≤ κ, we have a canonical decomposition

according support

K],≤κ ∼= ⊕σ∈[Kr](K],≤κ)σ,

where we recall from Lemma 3.26 that the support of Pκ is determined by

the image of κ in [Kr], and different classes in [Kr] give different supports.

Each (K],≤κ)σ is then a successive extension of those Pκ′ where κ′ ∈ K]r ∩ σ
and κ′ ≤ κ. Hence (K],≤κ)σ is a local system on X(σ) shifted in degree

−dimX(σ) = −#I(σ). Let ησ be a geometric generic point of X(σ). It

suffices to give a canonical decomposition of the stalks at ησ:

(3.31) (K],≤κ)σ|ησ ∼= ⊕κ′∈K]r∩σ,κ′≤κPκ′ |ησ .

Now

K],≤κ|ησ ∼= H2r−#I(σ)
c (]Shtησ ∩ ≤κShtησ ,Q`)(r)

and

]Shtησ ∩ ≤κShtησ = ∪κ′≤κκ
′
Shtησ .

If κ′Shtησ 6= ∅, we must have X(κ′) ⊃ X(σ), hence dim κ′Shtησ = r −
#I(κ′)/2 ≤ r−#I(σ)/2 with equality if and only if κ′ ∈ σ. Hence dim ]Shtησ ∩
≤κShtησ ≤ r−#I(σ)/2, with top-dimensional components given by κ′Shtησ for

those κ′ ∈ K]r ∩ σ and κ′ ≤ κ. This implies a canonical isomorphism

H2r−#I(σ)
c (]Shtησ ∩ ≤κShtησ ,Q`)(r) ∼= ⊕κ′∈K]r∩σ,κ′≤κH2r−#I(σ)

c (κ
′
Shtησ ,Q`)(r),

which is exactly (3.31). �

Combining the two maps in the above lemma, we get a canonical map of

ind-perverse sheaves that is an mc-isomorphism

(3.32) γ : pH0K −→ ⊕
κ∈K]r

Pκ.

This can be called the cohomological constant term operator.

Remark 3.35. Compared to the treatment in [10, §7.3.1], we do not need

the generic fibers of the horocycles to be closed in Sht. In fact the horocycle
κSht is not necessarily closed when restricted to the generic point of X(κ); for

example, this fails when X(κ) is a point.
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3.5.4. Constant term intertwines with Satake. Recall from Corollary 3.29

that whenever κ ∈ K]r, we have an isomorphism

Pκ ∼= Rπ
N(κ)
1,! Q`[−#I(κ)](−#I(κ)/2).

The map π
N(κ)
1 : Sht

N(κ)
1 ⊗ k → X(κ) is a Pic0

X(k)-torsor.

Now for any κ ∈ Kr (without assuming κ > 0), the stack Sht
N(κ)
1 is always

defined, and π
N(κ)
1 : Sht

N(κ)
1 ⊗ k → X(κ) is a PicX(k)-torsor. Moreover, the

union ∐
κ′∈κ+Z

Sht
N(κ′)
1 ⊗ k −→ X(κ)

is a PicX(k)-torsor, extending the Pic0
X(k)-torsor structure on each component

of the left-hand side. Here we write κ + Z for Z-orbit of κ in Kr, and Z acts

by translating the degree parts of κ ∈ Kr simultaneously. (Note that X(κ) is

unchanged under the Z-action.) The PicX(k)-action then gives an action on

the ind-perverse sheaf

⊕κ′∈κ+ZRπ
N(κ)
1,! Q`[−#I(κ)](−#I(κ)/2).

Summing over all Z-orbits of Kr we get a canonical PicX(k)-action on

⊕κ∈KrRπ
N(κ)
1,! Q`[−#I(κ)](−#I(κ)/2).

For any u ∈ PicX(k), restricting the source to ⊕
κ∈K]r

Pκ and projecting the

target to ⊕
κ∈K]r

Pκ, the u-action gives a map

α(u) : ⊕
κ∈K]r

Pκ −→ ⊕κ∈K]rPκ.

However, this no longer gives an action of PicX(k). Instead, it is an mc-action:

for u, v ∈ PicX(k), the endomorphism a(uv)− a(u)a(v) of ⊕
κ∈K]r

Pκ is zero on

Pκ for κ large enough, hence a mc-zero map. This mc-action extends to an

mc-action of Q`[PicX(k)] on ⊕
κ∈K]r

Pκ, which we also denote by α.

Recall the ring homomorphism

aEis : H Σ
G

Sat−−→H Σ
A = Q[Div(X − Σ)] −→ Q[PicX(k)].

Lemma 3.36. For any f ∈H Σ
G , we have an mc-commutative diagram

pH0K
pH0(f)

//

γ

��

pH0K

γ

��

⊕
κ∈K]r

Pκ
α(aEis(f))

// ⊕
κ∈K]r

Pκ.

In particular, if f ∈ IEis, then the action pH0(f) : pH0K → pH0K is mc-zero.



SHTUKAS AND THE TAYLOR EXPANSION (II) 449

Proof. Since {hy}y∈|X−Σ| generate H Σ
G as an algebra, it suffices to check

the lemma for f = hy. (We are also using the fact that u 7→ α(u) is an

mc-action of Q`[PicX(k)] on ⊕
κ∈K]r

Pκ.) Let dy = [k(y) : k]. We will show

that γ ◦ pH0(f) and α(aEis(f)) ◦ γ : pH0K → ⊕
κ∈K]r

Pκ agree on the factors

Pκ whenever κ > max{2g − 2, 0} + dy. Since we are checking whether two

maps pH0K → Pκ agree, and since Pκ is a perverse sheaf all of whose simple

constituents have full support on X(κ), it suffices to check at a geometric

generic point η of X(κ).

Since aEis(hy) = 1O(y) + qdy1O(−y), we see that aEis(hy)Pκ′ has a Pκ-

component only when κ′ > max{2g − 2, 0} and κ′ ∈ κ+ Z. In particular, κ′ ∈
K]r. Thus we only need to check that the following diagram is commutative:

H
2r−#I(κ)
c (Shtη)

hy
//

γη
��

H
2r−#I(κ)
c (Shtη)

γη,κ

��

⊕
κ′∈K]r,κ′∈κ+ZH0

c(Sht
N(κ′)
1,η )

(aEis(hy))κ
// H0

c(Sht
N(κ)
1,η ).

(3.33)

Here the κ′ component of γη is the composition (where the first one is induced

by the closed embedding of the closure of κ
′
Shtη)

γη,κ′ : H2r−#I(κ)
c (Shtη) −→ H2r−#I(κ)

c (κ′Shtη)

∼= H2r−#I(κ)
c (κ

′
Shtη) ∼= H0

c(Sht
N(κ′)
1,η ).

The proof of (3.33) is similar to that of [10, Lemma 7.8]. The key point is that

if we restrict the Hecke correspondence Sht(hy)η,

Shtη Sht(hy)η
−→p η
//

←−p η
oo Shtη,

over the horocycle κShtη via ←−p η, then it decomposes into two pieces, one

mapping isomorphically to κ−dyShtη via −→p η, and the other one is a finite étale

cover of κ+dyShtη of degree qdy via −→p η. We omit details. �

3.5.5. Key finiteness results. For i ∈ Z, let

V≤i := lim−→
κ

H0((Xr ×S∞)⊗ k, pτ≤iK≤κ).

Then we have natural maps

· · · −→ V≤−1 −→ V≤0 −→ V≤1 −→ · · · −→ V,

which are not necessarily injective. Since the action of f comes from a co-

homological correspondence, the same cohomological correspondence also acts
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on each V≤i making the above maps equivariant under the action of H Σ
G . We

also have an H Σ
G -module map

V≤i −→ H−i((Xr ×S∞)⊗ k, pHiK).

Lemma 3.37.

(1) The kernel and the cokernel of V≤0 → V are finite-dimensional.

(2) The kernel and the cokernel of V≤0 → H0((Xr ×S∞)⊗ k, pH0K) are

finite-dimensional.

Proof. (1) Since pHiK = 0 for i large, V≤i
∼→ V for i sufficiently large.

Similarly, Vi = 0 for i sufficiently small. Therefore, it suffices to show that

V≤i/V≤i−1 (namely, modulo the image of V≤i−1) is finite-dimensional for i 6= 0.

The triangle pτ≤i−1K≤κ → pτ≤iK≤κ → pHiK≤κ[−i]→ 0 induces an injec-

tive map

H0(pτ≤iK≤κ)/H0(pτ≤i−1K≤κ) ↪→ H−i((Xr ×S∞)⊗ k, pHiK≤κ).

Taking inductive limit over κ, we have an injection

V≤i/V≤i−1 ↪→ lim−→
κ

H−i((Xr ×S∞)⊗ k, pHiK≤κ)

= H−i((Xr ×S∞)⊗ k, pHiK).

(3.34)

(We use that lim−→κ
commutes with taking cokernel.) By Lemma 3.33, the right

side stabilizes as {pHiK≤κ} stabilizes for i 6= 0 and hence is finite-dimensional.

Therefore, for i 6= 0, V≤i/V≤i−1 is finite-dimensional. In particular, V≤−1 is

finite-dimensional.

(2) The injection (3.34) is still valid for i = 0, and it can be extended to

an exact sequence

0 −→ V≤0/V≤−1 −→ H0((Xr ×S∞)⊗ k, pH0K)

−→ lim−→
κ

H1((Xr ×S∞)⊗ k, pτ≤−1Kκ).

By Lemma 3.33, pτ≤−1Kκ is eventually stable (in fact a constant inductive

system), hence the last term above is finite-dimensional. Since V≤−1 is also

finite-dimensional, V≤0 → H0((Xr ×S∞)⊗ k, pH0K) has finite-dimensional

kernel and the cokernel. �

Corollary 3.38 (of Lemmas 3.36 and 3.37). If f ∈IEis, then the image of

the Hecke action f :V →V (defined in Proposition 3.15) is finite-dimensional.

Proof. By Lemma 3.37(1), it suffices to show that the f -action on V≤0 has

finite rank. By Lemma 3.37(2), it suffices to show that pH0(f) : pH0K → pH0K

induces a finite-rank map after applying H0((Xr ×S∞)⊗ k,−). However, by
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Lemma 3.36, pH0(f) is mc-zero since aEis(f) = 0, and the conclusion fol-

lows. �

Proposition 3.39. For any place y ∈ |X| − Σ, V is a finitely generated

Hy ⊗Q`-module.

Proof. By Lemma 3.37, it suffices to show that H0((X ×S∞)⊗ k, pH0K)

is a finitely generated Hy ⊗Q`-module.

The ind-perverse sheaf pH0K has an increasing filtration given by pH0K≤κ
(by Lemma 3.33) with associated graded Pκ. Let F≤N (pH0K) ⊂ pH0K be the

sum of pH0K≤κ for κ ∈ K]r and κ ≤ Ndy. Then {F≤N (pH0K)} gives an

increasing filtration on pH0K. The map γ in (3.32) induces

GrFN (γ) : GrFN (pH0K) −→ ⊕
κ∈K]r,κ≤Ndy ,κ�(N−1)dy

Pκ,

which is an isomorphism for large N , by Lemma 3.34.

Now hy sends F≤N (pH0K) to F≤N+1(pH0K). By Lemma 3.36, for N large

enough, the induced map

GrFN (hy) : GrFN (pH0K) −→ GrFN+1(pH0K)

is the same as the action of 1O(y) ∈ PicX(k)

(3.35) 1O(y) : ⊕
κ∈K]r,κ≤Ndy ,κ�(N−1)dy

Pκ −→ ⊕κ∈K]r,κ≤(N+1)dy ,κ�NdyPκ.

Since 1O(y) maps Pκ isomorphically to Pκ+dy , (3.35) is an isomorphism. There-

fore, GrFN (hy) is an isomorphism for large N .

Next we apply H0((Xr ×S∞)⊗ k,−) to F≤N (pH0K) and pH0K, which

we abbreviate as H0(F≤N (pH0K)) and H0(pH0K). Note that each F≤N (pH0K)

has a Weil structure, H0(F≤N
pH0K) is a Frobenius module and we can talk

about its weight. We have an exact sequence

H0(GrFN (pH0K)) −→ H1(F≤N−1(pH0K))

−→ H1(F≤N (pH0K)) −→ H1(GrFN (pH0K)).
(3.36)

Since GrFN (pH0K) is a sum of Pκ, it is pure of weight 0 by Corollary 3.29.

Therefore, H0(GrFN (pH0K)) is pure of weight 0 and H1(GrFN (pH0K)) is pure of

weight 1. For weight reasons, (3.36) gives a long exact sequence

H0(F≤N−1(pH0K)) −→ H0(F≤N (pH0K)) −→ H0(GrFN (pH0K))(3.37)

−→W≤0H1(F≤N−1(pH0K)) −→W≤0H1(F≤N (pH0K)) −→ 0,(3.38)

where W≤0(−) means the sub Frobenius-module of weight ≤ 0. The surjec-

tivity of (3.38) implies W≤0H1(F≤N (pH0K)) is eventually stable for N large,

and hence the last arrow in (3.37) is surjective for N large. As GrFN (hy) is

an isomorphism for large N , it induces an isomorphism H0(GrFN (pH0K))
∼→
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H0(GrFN+1(pH0K)) for large N . This implies that for large N , the image of

H0(F≤N (pH0K)) in H0(pH0K) generates it as an Hy ⊗Q`-module. �

Let H
Σ
` be the image of the ring homomorphism

H Σ
G ⊗Q` −→ EndQ`(V )×Q`[PicX(k)]ιPic

given by the product of the action map on V and aΣ
Eis.

Corollary 3.40 (of Proposition 3.39).

(1) H
Σ
` is a finitely generated Q`-algebra of Krull dimension one.

(2) V is finitely generated as a H
Σ
` -module.

Proof. Part (2) is an obvious consequence of Proposition 3.39. The proof

of part (1) is the same as [10, Lemma 7.13(2)]. �

Theorem 3.41 (Cohomological spectral decomposition).

(1) There is a decomposition of the reduced scheme of Spec H
Σ
` into a disjoint

union

Spec(H
Σ
` )red = ZEis,Q`

∐
ZΣ

0,`,

where ZEis,Q` = SpecQ`[PicX(k)]ιPic and ZΣ
0,` consists of a finite set of

closed points.

(2) There is a unique decomposition

V = V0 ⊕ VEis

into H Σ
G ⊗Q`-submodules, such that Supp(VEis) ⊂ ZEis,Q` , and Supp(V0) =

ZΣ
0,`.

(3) The subspace V0 is finite dimensional over Q`.

Proof. (1) By Lemma 2.1, aΣ
Eis induces a closed embedding ZEis,Q` ↪→

Spec H
Σ
` . We are going to show that the complement of ZEis,Q` in Spec H

Σ
`

is a finite set of closed points.

Let IEis be the image of IEis in H
Σ
` . Then by Corollary 3.40, H

Σ
`

is noetherian and hence IEis is finitely generated, say by f1, . . . , fN . By

Corollary 3.38, each fi · V is finite-dimensional, therefore so is IEis · V =

f1 · V + · · ·+ fN · V . Now let Z ′0 ⊂ Spec(H Σ
` )red be the support of the finite-

dimensional H
Σ
` -module IEis · V . Hence Z ′0 is a finite set of closed points.

The same argument as that of [10, Th. 7.14] shows that Spec(H Σ
` )red is the

union of ZEis,Q` and Z ′0. Finally we let ZΣ
0,` be the complement of ZEis,Q` in

Spec(H
Σ
` )red.

The argument for (2) and (3) is the same as that of [10, Th. 7.14]. �
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3.5.6. The base-change situation. Consider the situation as in Section 3.2.6.

We argue that the analogue of Theorem 3.41 holds for Sht′rG(Σ; Σ∞) in place

of ShtrG(Σ; Σ∞). Let

V ′ = H2r
c (Sht′rG(Σ; Σ∞)⊗ k,Q`)(r).

Then V ′ is also a H Σ
G -module; see the discussion in Section 3.3.4. The re-

sults in this subsection for the H Σ
G -module V have obvious analogues for

V ′ because most of these results are consequences of finiteness results on
pHiK and similar results formally hold for its pullback to X ′r × S′∞. There

is one place in the proof of Proposition 3.39 where we used purity argu-

ment for the cohomology H∗((Xr ×S∞)⊗ k, Pκ), which continues to hold for

H∗((X ′r ×S′∞)⊗ k, ν ′r,∗Pκ). Therefore, all results in this subsection hold for

V ′ in place of V . In particular, Theorem 1.1 holds.

4. The Heegner–Drinfeld cycles

In this section we define Heegner–Drinfeld cycles in the ramified case. All

the notation appearing on the geometric side of our main Theorem 1.2 will be

explained in this section.

4.1. T -Shtukas.

4.1.1. The double cover. Let X ′ be another smooth, projective and geo-

metrically connected curve over k, and let ν : X ′ → X be a finite morphism

of degree 2. Let R′ ⊂ X ′ be the (reduced) ramification locus of ν, and let

R ⊂ X be its image under ν. Then ν induces an isomorphism R′
∼→ R. Let

σ : X ′ → X ′ be the non-trivial involution over X.

We always assume that conditions (1.4) and (1.5) hold. In particular, they

imply that

R ∩ Σ = ∅.

Let

Σ′∞ = ν−1(Σ∞) ⊂ |X ′|.

Then ν : Σ′∞ → Σ∞ is a bijection. For x ∈ Σ∞, we denote its preimage in Σ′∞
by x′. Set

S′∞ =
∏

x′∈Σ′∞

Spec k(x′).

An S-point of S′∞ is {x′(1)}x′∈Σ′∞ , where x′(1) : S → Spec k(x′) ↪→ X ′.

We introduce the notation x′(i) for all i ∈ Z as before.

4.1.2. Hecke stack for T -bundles. Let

BunT = PicX′ /PicX .
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As a special case of [10, Def. 5.1], for µ ∈ {±1}r, we have the Hecke stack

Hk
µ

1,X′ classifying a chain of r + 1 line bundles on X ′,

L0

f ′1
// L1

f ′2
// · · ·

f ′r
// Lr,

with modification type of f ′i given by µi. Then Hk
µ

1,X′
∼= PicX′ ×X ′r, where

the projection to PicX′ records L0, and the projection to X ′r records the locus

of modification of fi : Li−1 99K Li. We define

Hk
µ

T := Hk
µ

1,X′/PicX

together with maps recording Li
p
µ

T,i : Hk
µ

T −→ BunT , i = 0, . . . , r.

4.1.3. T -Shtukas. For x′ ∈ Σ′∞ and i ∈ Z, we have a map

x′(i) : S′∞ −→ Spec k(x′)
Fri−1

−−−→ Spec k(x′) ↪→ X ′, 1 ≤ i ≤ dx′ = 2dx,

where the first map is the projection to the x′-factor and the last one is the

natural embedding. Again we denote the graph of x′(i) (as a divisor on X ′ ×
S′∞) by the same notation x′(i).

Let D ′∞ be the group of Z-valued divisors on X ′ × S′∞ supported on

Σ′∞ ×S′∞, which is the union of the graphs of x′(i) for x′ ∈ Σ′∞, 1 ≤ i ≤ dx′ .

For any D′∞ ∈ D ′∞ as above, we have morphisms

ÃL(D′∞) : PicX′ ×S′∞−→PicX′ ,

AL(D′∞) : BunT ×S′∞−→BunT ,

(L, {x′(1)}x′∈Σ′∞) 7−→L(
∑

x′∈Σ′∞,1≤i≤dx′
c

(i)
x′ Γx′(i)).

Suppose µ ∈ {±1}r and D′∞ ∈ D ′∞ satisfy

(4.1)
r∑
i=1

µi = degD′∞ =
∑

x′∈Σ′∞,1≤i≤dx′
c

(i)
x′ .

We then apply the definition of Sht
µ
n(Σ;D∞) to the case n = 1, the curve

being X ′, and Σ and Σ∞ are both replaced by Σ′∞. Denote the resulting

moduli stack by Sht
µ

1,X′(D
′
∞).

The groupoid PicX(k) acts on Sht
µ

1,X′(D
′
∞) by tensoring all the line bun-

dles in the data with the pullback of K ∈ PicX(k) to X ′. We define

Sht
µ

T (D′∞) = Sht
µ

1,X′(D
′
∞)/PicX(k).

We have a morphism

Π
µ

T,D′∞
: Sht

µ

T (D′∞) −→ X ′r ×S′∞.
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From the definition we have a Cartesian diagram

Sht
µ

T (D′∞) //

ωT,0

��

Hk
µ

T ×S′∞

(p
µ

T,0,AL(−D′∞)◦(p
µ

T,r×idS′∞
))

��

BunT
(id,Fr)

// BunT × BunT .

(4.2)

From the diagram we get the following statement.

Lemma 4.1. The moduli stack Sht
µ

T (D′∞) depends only on the image of

D′∞ in D ′∞/ν
∗D∞.

The following alternative description of Sht
µ

T (D′∞) follows easily from the

definitions.

Lemma 4.2. We have a Cartesian diagram

Sht
µ

T (D′∞)
ωT,0
//

Π
µ

T,D′∞
��

BunT

λ

��

X ′r ×S′∞

α
µ

D′∞
// BunT ,

where λ : L 7→ L−1 ⊗ τL is the Lang map for BunT and α
µ

D′∞
sends

(x′1, . . . , x
′
r; {x′(1)}x′∈Σ′∞)

to the image of the line bundle

OX′

Ñ
r∑
i=1

µiΓx′i −
∑

x′∈Σ′∞,1≤i≤dx′
c

(i)
x′ Γx′(i)

é
in BunT .

Corollary 4.3 (of Lemma 4.2). The morphism Π
µ

T,D′∞
is a torsor under

the (finite discrete) groupoid BunT (k). In particular, Sht
µ

T (D′∞) is a smooth

and proper DM stack over k of dimension r.

4.1.4. Specific choice of D′∞. For each µ∞ = (µx)x∈Σ∞ ∈ {±1}Σ∞ , define

the following element in D ′∞

µ∞ · Σ′∞ :=
∑
x∈Σ∞

µxx
′(1) ∈ D ′∞.

Definition 4.4. Fix r satisfying the parity condition (3.18). Let µ ∈ {±1}r,
µ∞ ∈ {±1}Σ∞ . For any D′∞ ∈ D ′∞ satisfying D′∞ ≡ µ∞ ·Σ′∞ mod ν∗D∞ and

(4.1), define

Sht
µ

T (µ∞ · Σ′∞) := Sht
µ

T (D′∞).
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The notation is justified because the right side above depends only on µ∞ by

Lemma 4.1. We denote the projection Π
µ

T,D′∞
for such D′∞ by

Π
µ

T,µ∞
: Sht

µ

T (µ∞ · Σ′∞) −→ X ′r ×S′∞.

Remark 4.5. Whenever r satisfies the parity condition (3.18), for any

(µ, µ∞) ∈ {±1}r ×{±1}Σ∞ , the divisor D′∞ ∈ D ′∞ satisfying the conditions in

Definition 4.4 always exists. Therefore, Sht
µ

T (µ∞ · Σ′∞) is always defined (and

non-empty).

The following lemma is a direct consequence of the diagram (4.2).

Lemma 4.6. The following diagram is Cartesian :

Sht
µ

T (µ∞ · Σ′∞)

��

// Hk
µ

T ×S′∞

(p
µ

T,0×idS′∞
,AL]T,µ∞◦(p

µ

T,r×idS′∞
))

��

BunT ×S′∞
(id,Fr)

// (BunT ×S′∞)× (BunT ×S′∞),

(4.3)

where AL]T,µ∞ is the map

(4.4) AL]T,µ∞ = (AL(−µ∞ · Σ′∞),FrS′∞) : BunT ×S′∞ −→ BunT ×S′∞.

4.1.5. Relation to T -Shtukas in [10]. For (µ, µ∞) ∈ {±1}r × {±1}Σ∞ , let

µ̃ = (µ,−µ∞). Then Shtµ̃T is defined as in [10, §5.4] (the loc. cit. also applies to a

ramified cover X ′/X), with a map πµ̃T : Shtµ̃T → X ′r×X ′Σ∞ . Let S′∞ ↪→ X ′Σ∞

be the product of the natural embeddings Spec k(x′) ↪→ X ′ for each x ∈ Σ∞.

From the definitions, we see that Sht
µ

T (µ∞ ·Σ′∞) fits into a Cartesian diagram

Sht
µ

T (µ∞ · Σ′∞) �
�

//

Π
µ

T,µ∞
��

Shtµ̃T

πµ̃T
��

X ′r ×S′∞
� � // X ′r ×X ′Σ∞ .

4.2. The Heegner–Drinfeld cycles. In this subsection we will define a map

from Sht
µ

T (µ∞ · Σ′∞) to ShtrG(Σ; Σ∞) depending on an auxiliary choice.

Recall that condition (1.4) is assumed. Let Σ′f =ν−1(Σf ). Let Sect(Σ′f/Σf )

be the set of sections of the two-to-one map Σ′f → Σf . Then Sect(Σ′f/Σf ) is

a torsor under {±1}Σf . The auxiliary choice we need is an element µf ∈
Sect(Σ′f/Σf ).

4.2.1. The map θµΣ
Bun. Let µΣ = (µf , µ∞) ∈ Sect(Σ′f/Σf ) × {±1}Σ∞ . We

define a map

θ̃µΣ
Bun : PicX′ ×S′∞ −→ Bun2(Σ).
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To an S-point (L, {x′(1)}x′∈Σ′∞) of PicX′ ×S′∞, we assign the following S-point

of Bun2(Σ):

E† = (E , {E(−1

2
x)}x∈Σ),

where

• E = νS,∗L, where νS = ν × idS : X ′ × S → X × S;

• for x ∈ Σf , denote the value of µf at x by µx ∈ ν−1(x) — then E(−1
2x) =

νS,∗(L(−µx));

• for x ∈ Σ∞,

E(−1

2
x) =

νS,∗(L(−Γx′(1) − Γx′(2) − · · · − Γx′(dx))), µx = 1,

νS,∗(L(−Γx′(dx+1) − Γx′(dx+2) − · · · − Γx′(2dx))), µx = −1.

Note here that for x ∈ Σ∞, the divisors Γx′(1) + Γx′(2) + · · · + Γx′(dx) and

Γx′(dx+1) + Γx′(dx+2) + · · · + Γx′(2dx) in the above formulae are “half” of the

divisor {x′} × S ⊂ X ′ × S.

Dividing by PicX we get a morphism

θµΣ
Bun : BunT ×S′∞ −→ BunG(Σ).

The next lemma is a direct calculation.

Lemma 4.7. Let µΣ = (µf , µ∞). The following diagram is commutative:

BunT ×S′∞

(θ
µΣ
Bun,ν∞)

��

AL]T,µ∞
// BunT ×S′∞

θ
µΣ
Bun
��

BunG(Σ)×S∞
ALG,∞

// BunG(Σ),

where ν∞ : S′∞ → S∞ is the map induced from ν.

4.2.2. Heegner–Drinfeld cycle. We define

Tr,Σ := {±1}r × Sect(Σ′f/Σf )× {±1}Σ∞ .

For µ = (µ, µf , µ∞) ∈ Tr,Σ, we have a map

θµHk : Hk
µ

T ×S′∞ −→ HkrG(Σ)

by applying θµΣ
Bun (where µΣ = (µf , µ∞)) to each member of the chain {Li}0≤i≤r

classified by Hk
µ

T . By construction we have pi ◦ θµHk = θµΣ
Bun ◦ (p

µ

T,i × idS′∞) :

Hk
µ

T ×S′∞ → BunG(Σ) for 1 ≤ i ≤ r.
Now compare the Cartesian diagrams (4.3) and (3.21). Each corner of the

diagram (4.3) except the upper left corner maps to the corresponding corner

of (3.21) by θBun and θµHk; Lemma 4.7 says that the corresponding maps in
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the two diagrams are intertwined. Therefore, we get a morphism between the

upper left corners since both diagrams are Cartesian:

θµ : Sht
µ

T (µ∞ · Σ′∞) −→ ShtrG(Σ; Σ∞).

We have a commutative diagram

Sht
µ

T (µ∞ · Σ′∞)
θµ
//

Π
µ

T,µ∞
��

ShtrG(Σ; Σ∞)

ΠrG
��

X ′r ×S′∞
(νr,ν∞)

// Xr ×S∞,

which induces a morphism

θ′µ : Sht
µ

T (µ∞ · Σ′∞) −→ Sht′rG(Σ; Σ∞) := ShtrG(Σ; Σ∞)×Xr×S∞ (X ′r ×S′∞).

Since Sht
µ

T (µ∞ ·Σ′∞) is proper over k of dimension r by Corollary 4.3, its

image in Sht′rG(Σ; Σ∞) defines an element in the Chow group of proper cycles.

Definition 4.8. The Heegner–Drinfeld cycle of type µ = (µ, µf , µ∞) ∈ Tr,Σ
is the class

Zµ := θ′µ∗ [Sht
µ

T (µ∞ · Σ′∞)] ∈ Chc,r(Sht′rG(Σ; Σ∞))Q.

Definition 4.9. Let µ, µ′ ∈ Tr,Σ. Define a linear functional Iµ,µ′ on H Σ
G by

Iµ,µ
′
(f) =

Ñ ∏
x′∈Σ′∞

dx′

é−1

〈Zµ, f ∗ Zµ′〉Sht′rG(Σ;Σ∞) ∈ Q. f ∈H Σ
G .

Here we are using the H Σ
G -action on Chc,r(Sht′rG(Σ; Σ∞))Q defined in Sec-

tion 3.3.4.

4.3. Symmetry among Heegner–Drinfeld cycles. Let µ = (µ, µf , µ∞) ∈
Tr,Σ. We study how Zµ changes when we vary µ.

4.3.1. Changing µ. As in [10, §5.4.6], for two choices µ, µ′ ∈ {±1}r, there

is a canonical isomorphism ιµ,µ′ : Sht
µ

T (µ∞ ·Σ′∞) ∼= Sht
µ′

T (µ∞ ·Σ′∞) preserving

the T -bundle Li and the projection to S′∞. However, ιµ,µ′ does not preserve

the projections Π
µ

T,µ∞
and Π

µ′

T,µ∞
. Instead, we have a commutative diagram

Sht
µ

T (µ∞ · Σ′∞)
ι(µ,µ′)

//

Π
µ

T,µ∞
��

Sht
µ′

T (µ∞ · Σ′∞)

Π
µ′

T,µ∞
��

X ′r ×S′∞
σ(µ,µ′)×id

// X ′r ×S′∞,
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where the involution σ(µ, µ′) : X ′r → X ′r sends a point (x′1, . . . , x
′
r) to the

point (x′′1, . . . , x
′′
r) where, for 1 ≤ i ≤ r,

x′′i =

x′i if µi = µ′i,

σ(x′i) if µi 6= µ′i.

Letting µ′ = (µ′, µf , µ∞), it is easy to check that ι(µ, µ′) intertwines the map

θµ and θµ
′
.

4.3.2. Changing µf . Let µ′f = {µ′x}x∈Σf ∈ Sect(Σ′f/Σf ) be another ele-

ment. Consider the following divisor on X ′:

D(µf , µ
′
f ) =

∑
x∈Σf ,µx 6=µ′x

µx.

We have an automorphism

ι(µf , µ
′
f ) : Sht

µ

T (µ∞ · Σ′∞) −→ Sht
µ

T (µ∞ · Σ′∞)

sending (Li;xi; {x′(1)}) to (Li(−D(µf , µ
′
f ));xi; {x′(1)}). Letting

µ′ = (µ, µ′f , µ∞),

direct calculation shows that the following diagram is commutative:

Sht
µ

T (µ∞ · Σ′∞)
ι(µf ,µ

′
f )
//

θµ

��

Sht
µ

T (µ∞ · Σ′∞)

θµ
′

��

ShtrG(Σ; Σ∞)
ALSht(µf ,µ

′
f )
// ShtrG(Σ; Σ∞),

where ALSht(µf , µ
′
f ) is the composition of ALSht,x (see Section 3.2.7) for x ∈ Σf

such that µx 6= µ′x.

4.3.3. Changing µ∞. Let µ′∞ ∈ {±1}Σ∞ be another element. Consider

the following divisor on X ′ ×S′∞:

D(µ∞, µ
′
∞) =

∑
µx=1,µ′x=−1

(x′(1)+· · ·+x′(dx))+
∑

µx=−1,µ′x=1

(x′(dx+1)+· · ·+x′(2dx)),

where both sums are over x ∈ Σ∞. Define an isomorphism

ι(µ∞, µ
′
∞) : Sht

µ

T (µ∞ · Σ′∞) −→ Sht
µ

T (µ′∞ · Σ′∞)

sending (Li;xi; {x′(1)}) to (Li(−D(µ∞, µ
′
∞));xi; {x′(1)}). Letting

µ′ = (µ, µf , µ
′
∞),
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direct calculation shows that the following diagram is commutative:

Sht
µ

T (µ∞ · Σ′∞)
ι(µ∞,µ′∞)

//

θµ

��

Sht
µ

T (µ′∞ · Σ′∞)

θµ
′

��

ShtrG(Σ; Σ∞)
ALSht(µ∞,µ

′
∞)
// ShtrG(Σ; Σ∞),

where ALSht(µ∞, µ
′
∞) is the composition of ALSht,x for x ∈ Σ∞ such that

µx 6= µ′x.

4.3.4. The action of Ar,Σ. We observe that Tr,Σ is a torsor under the

group Ar,Σ := (Z/2Z){1,2,...,r}tΣ. We denote the action of a ∈ Ar,Σ on Tr,Σ by

a · (−).

We also have an action of Ar,Σ on Sht′rG(Σ; Σ∞) defined as follows. The

factor of Z/2Z indexed by 1 ≤ i ≤ r acts on the i-th factor of X ′ by Galois

involution over X. For x ∈ Σ, the non-trivial element in the factor of Z/2Z
indexed by x acts by the involution ALSht,x defined in Section 3.2.7 on the

ShtrG(Σ; Σ∞)-factor and identity on X ′r ×S′∞. We denote this action by

Ar,Σ 3 a 7−→ ALSht′,a.

The following lemma summarizes the calculations in Sections 4.3.1, 4.3.2

and 4.3.3.

Lemma 4.10. For any µ ∈ Tr,Σ and a ∈ Ar,Σ, the following diagram is

commutative:

Sht
µ

T (µ∞ · Σ′∞)

θ′µ

��

ι(µ,a·µ)
// Sht

a·µ
T ((a · µ∞) · Σ′∞)

θ′a·µ

��

Sht′rG(Σ; Σ∞)
ALSht′,a

// Sht′rG(Σ; Σ∞).

Here the upper horizontal arrow is the composition of ι(µ, µ′), ι(µf , µ
′
f ) and

ι(µ∞, µ
′
∞) defined in Sections 4.3.1, 4.3.2 and 4.3.3. In particular, we have

Zµ = AL∗Sht′,a(Z
a·µ), ∀µ ∈ Tr,Σ, a ∈ Ar,Σ.

Let µ = (µ, µf , µ∞), µ′ = (µ′, µ′f , µ
′
∞) ∈ Tr,Σ. Let

∆(µ, µ′) := {1 ≤ i ≤ r|µi 6= µ′i},
Σ−(µ, µ′) := {x ∈ Σ|µx 6= µ′x} ⊂ Σ,(4.5)

Σ+(µ, µ′) := {x ∈ Σ|µx = µ′x} = Σ− Σ−(µ, µ′).(4.6)

Corollary 4.11 (of Lemma 4.10). Let µ, µ′ ∈ Tr,Σ. Then Iµ,µ′ depends

only on the sets ∆(µ, µ′) and Σ−(µ, µ′).
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Proof. Let a(µ, µ′) ∈ Ar,Σ be the unique element such that a(µ, µ′)·µ = µ′.

Then ∆(µ, µ′) and Σ−(µ, µ′) determines a(µ, µ′) and vice versa. Therefore, we

only need to show that Iµ,µ′ depends only on a(µ, µ′).

Suppose µ, µ′ and µ̂, µ̂′ satisfy a(µ, µ′) = a(µ̂, µ̂′). We will show that

Iµ,µ′ = Iµ̂,µ̂′ . Since Tr,Σ is a torsor under Ar,Σ, there is a unique b ∈ Ar,Σ such

that µ̂ = b · µ, µ̂′ = b · µ′. Since ALSht′,b commutes with the action of any

f ∈H Σ
G , we have

〈Z µ̂, f ∗ Z µ̂′〉 = 〈AL∗Sht′,b(Z
µ̂),AL∗Sht′,b(f ∗ Z

µ̂′)〉

= 〈AL∗Sht′,b(Z
µ̂), f ∗AL∗Sht′,b(Z

µ̂′)〉.

By Lemma 4.10, we have

AL∗Sht′,b(Z
µ̂) = Zµ, AL∗Sht′,b(Z

µ̂′) = Zµ′ .

Therefore, we get

〈Z µ̂, f ∗ Z µ̂′〉 = 〈Zµ, f ∗ Zµ′〉;

i.e., Iµ,µ′(f) = Iµ̂,µ̂′(f) for all f ∈H Σ
G . �

We will see later (in Theorem 5.6) that in fact Iµ,µ′ only depends on

Σ−(µ, µ′) and the cardinality of ∆(µ, µ′).

4.3.5. Heegner–Drinfeld cycles over k. Fix a k-point ξ ∈ S′∞(k). Con-

cretely this means a collection of field embeddings

ξ = (ξx′)x′∈Σ′∞ , ξx′ : k(x′) ↪→ k.

Then ξ also determines a k-point of S∞ by the projection S′∞ → S∞, which

we still denote by ξ. We denote

ShtrG(Σ; ξ) := ShtrG(Σ; Σ∞)×S∞ ξ,

Sht′rG(Σ; ξ) := Sht′rG(Σ; Σ∞)×S′∞ ξ ∼= ShtrG(Σ; ξ)×Xr X ′r,

Sht
µ

T (µ∞ · ξ) := Sht
µ

T (µ∞ · Σ′∞)×S′∞ ξ.

Then we have maps

Sht
µ

T (µ∞ · ξ)
θ′µ
ξ

ww

θµ
ξ

''

Sht′rG(Σ; ξ) // ShtrG(Σ; ξ).

Definition 4.12. The Heegner–Drinfeld cycle of type µ = (µ, µf , µ∞) ∈
Tr,Σ over ξ is the class

Zµ(ξ) := θ′µξ,∗[Sht
µ

T (µ∞ · ξ)] ∈ Chc,r(Sht′rG(Σ; ξ))Q.
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By definition, the pullback of Zµ to Sht′rG(Σ; Σ∞)⊗k is the disjoint union

of Zµ(ξ) for various ξ ∈ S′∞(k).

Corollary 4.13 (of Lemma 4.10). For µ = (µ, µf , µ∞) ∈ Tr,Σ and a ∈
Ar,Σ, we have

Zµ(ξ) = AL∗Sht′,a(Z
a·µ(ξ)).

Lemma 4.14. For any ξ ∈ S′∞(k), any µ, µ′ ∈ Tr,Σ and any f ∈H Σ
G , we

have an identity

(4.7) Iµ,µ
′
(f) = 〈Zµ(ξ), f ∗ Zµ′(ξ)〉Sht′rG(Σ;ξ).

In particular, by Corollary 4.11, the right side depends only on the sets ∆(µ, µ′)

and Σ−(µ, µ′).

Proof. Since Sht′rG(Σ; Σ∞)⊗k is the disjoint union of Sht′rG(Σ; ξ) for a total

of
∏
x′∈Σ′∞

dx′ different choices of ξ, it suffices to show that the right side of

(4.7) is independent of the choice of ξ. To compare a general ξ′ to ξ, we may

reduce to the case where ξ′ ∈ S′∞(k) is obtained by changing ξx′ to Fr(ξx′) for

a unique x′ ∈ Σ′∞, and keeping the other coordinates.

Consider the isomorphism

x′ : Sht
µ

T (µ∞ · Σ′∞)
∼−→ Sht

µ

T (µ∞ · Σ′∞)

sending

(Li;x′i;x′(1), {y′(1)}y′∈Σ′∞,y
′ 6=x′)

to

(Li(−µxx′(1));x′i;x
′(2), {y′(1)}y′∈Σ′∞,y

′ 6=x′).

Direct calculation shows that the following diagram is commutative:

Sht
µ

T (µ∞ · Σ′∞)

θ′µ

��

x′
// Sht

µ

T (µ∞ · Σ′∞)

θ′µ

��

Sht′rG(Σ; Σ∞)
AL

(1)

x′
// Sht′rG(Σ; Σ∞),

(4.8)

where AL
(1)
x′ sends

(E†i ;x′i;x
′(1), {y′(1)}y′∈Σ′∞,y

′ 6=x′)

to

(E†i (−1

2
x(1));x′i;x

′(2), {y′(1)}y′∈Σ′∞,y
′ 6=x′).

(Here x(1) is the image of x′(1).) The diagram (4.8) implies that

(AL
(1)
x′ )∗Zµ(ξ′) = Zµ(ξ).
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Therefore, using that AL
(1)
x′ commutes with the H Σ

G -action, we have

〈Zµ(ξ), f ∗ Zµ′(ξ)〉Sht′rG(Σ;ξ) = 〈(AL
(1)
x′ )∗(Zµ(ξ′)), f ∗ (AL

(1)
x′ )∗Zµ′(ξ′)〉Sht′rG(Σ;ξ)

= 〈(AL
(1)
x′ )∗(Zµ(ξ′)), (AL

(1)
x′ )∗(f ∗ Zµ′(ξ′))〉Sht′rG(Σ;ξ)

= 〈Zµ(ξ′), f ∗ Zµ′(ξ′)〉Sht′rG(Σ;ξ′). �

5. The moduli stack Md and intersection numbers

The goal of this subsection is to give a Lefschetz-type formula for the

intersection number Iµ,µ′r (hD); see Theorem 5.6. This is parallel to [10, §6] in

the unramified case.

Recall that Σ′ and R′ are the preimages of Σ and R under ν. We introduce

the notation

U =X − Σ−R,
U ′=X ′ − Σ′ −R′.

Our construction below will rely on variants of the Picard stack with an extra

choice of a square root along the divisor R, which naturally appears in the

geometric class field theory of X with ramification along R. We refer to Ap-

pendix A for the definitions and properties of such variants of the Picard stack.

5.1. Definition of Md and statement of the formula. Let d be an integer.

We shall define an analog of the moduli stacksMd and Ad in [10, §6.1] for the

possibly ramified double cover ν : X ′ → X.

5.1.1. The stack Md. For any divisor D of X disjoint from R, OX(D)

has a canonical lift OX(D)\ = (OX(D),OR, 1) ∈ Pic
√
R

X (k) and a canonical lift

ȮX(D) = (OX(D),OR, 1, 1) ∈ Pic
√
R;
√
R

X (k).

Suppose we are given a decomposition

Σ = Σ+ t Σ−.

Let

ρ = degR = degR′; N = deg Σ; N± = deg Σ±.

Definition 5.1. Let Md = Md(Σ±) be the moduli stack whose S-points

consist of tuples (I,J , α, β, ), where

• I is a line bundle on X ′ × S with fiber-wise degree d+ ρ−N−, and α is a

section of I.

• J is a line bundle on X ′ × S with fiber-wise degree d+ ρ−N+, and β is a

section of J .
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•  is an isomorphism Nm
√
R

X′/X(I)⊗OX(Σ−)\
∼→ Nm

√
R

X′/X(J )⊗OX(Σ+)\, as

S-points of Pic
√
R,d+ρ

X . Concretely,  is a collection of isomorphisms

Nm : NmX′/X(I)⊗OX(Σ−)
∼−→ NmX′/X(J )⊗OX(Σ+),(5.1)

x : I|x′×S
∼−→ J |x′×S ∀x ∈ R

such that the following diagram is commutative for all x ∈ R:

I⊗2|x′×S

o
��

⊗2
x

∼
// J ⊗2|x′×S

o
��

NmX′/X(I)|x×S
Nm|x×S
∼

// NmX′/X(J )|x×S .

(5.2)

Here the vertical maps are the tautological isomorphisms.

These data are required to satisfy the following conditions:

(1) α|ν−1(Σ+)×S is nowhere vanishing.

(2) β|ν−1(Σ−)×S is nowhere vanishing.

(3) For each x ∈ R, we have

x(α|x′×S) = β|x′×S .

Moreover, Nm(α)−Nm(β) vanishes only to the first order along R× S.

(4) This condition is non-void only when Σ = ∅ and R = ∅; for each geometric

point s ∈ S, the restriction (Nm(α)−Nm(β))|X×s is not identically zero.

From the definition we have an open embedding

(5.3) ιd :Md ↪→ “X ′d+ρ−N− ×Pic
√
R;
√
R,d+ρ

X

“X ′d+ρ−N+
,

where the fiber product is taken over

να : “X ′d+ρ−N−
ν̂
√
R

−−−→ “X√Rd+ρ−N−

ÂJ

√
R;
√
R

d+ρ−N−−−−−−−−→ Pic
√
R;
√
R,d+ρ−N−

X

⊗ȮX(Σ−)−−−−−−→ Pic
√
R;
√
R,d+ρ

X

and

νβ : “X ′d+ρ−N+

ν̂
√
R

−−−→ “X√Rd+ρ−N+

ÂJ

√
R;
√
R

d+ρ−N+−−−−−−−→ Pic
√
R;
√
R,d+ρ−N+

X

⊗ȮX(Σ+)−−−−−−→ Pic
√
R;
√
R,d+ρ

X .

Here the Abel-Jacobi maps ”AJ

√
R;
√
R

d+ρ−N± are defined in Section A.1.5.

Remark 5.2. When Σ = ∅ and R = ∅, there is a slight difference between

the current definition of Md and the one in [10]. In [10], we only require that



SHTUKAS AND THE TAYLOR EXPANSION (II) 465

α|X′×s and β|X′×s are not both zero for any geometric point s ∈ S; here we im-

pose a stronger open condition that Nm(α)−Nm(β) is non-zero on X×s for any

geometric point s ∈ S. Therefore, the current version ofMd is the one denoted

by M♥d in [10]. A similar remark applies to the space Ad to be defined below.

5.1.2. The base Ad.

Definition 5.3. Let Ad = Ad(Σ±) be the moduli stack whose S-points

consist of tuples

(∆,ΘR, ι, a, b, ϑR),

where

• (∆,ΘR, ι) ∈ Pic
√
R,d+ρ

X (S) — namely, ∆ is a line bundle on X × S of fiber-

wise degree d + ρ, ΘR a line bundle over R × S and ι an isomorphism

Θ⊗2
R
∼= ∆|R×S ;

• a and b are sections of ∆;

• ϑR is a section of ΘR.

These data are required to satisfy the following conditions:

(1) a|Σ−×S = 0, and a|Σ+×S is nowhere vanishing.

(2) b|Σ+×S = 0, and b|Σ−×S is nowhere vanishing.

(3) a|R×S = ι(ϑ⊗2
R ) = b|R×S . Moreover, a − b vanishes only to the first order

along R× S.

(4) This condition is only non-void when Σ = ∅ and R = ∅; for every geo-

metric point s of S, (a− b)|X×s 6= 0.

The assignment (∆,ΘR, ι, a, b, ϑR) 7→ (∆(−Σ−),ΘR, ι, a, ϑR) gives a map

Ad −→ “X√Rd+ρ−N− .

Similarly, the assignment (∆,ΘR, ι, a, b, ϑR) 7→ (∆(−Σ+),ΘR, ι, b, ϑR) gives a

map

Ad −→ “X√Rd+ρ−N+
.

Combining these maps, we get an open embedding

(5.4) ωd : Ad ↪→ “X√Rd+ρ−N− ×Pic
√
R;
√
R,d+ρ

X

“X√Rd+ρ−N+
,

where the the fiber product is formed using the Abel-Jacobi maps

νa : “X√Rd+ρ−N−

ÂJ

√
R;
√
R

d+ρ−N−−−−−−−−→ Pic
√
R;
√
R,d+ρ−N−

X

⊗ȮX(Σ−)−−−−−−→ Pic
√
R;
√
R,d+ρ

X ,

νb : “X√Rd+ρ−N+

ÂJ

√
R;
√
R

d+ρ−N+−−−−−−−→ Pic
√
R;
√
R,d+ρ−N+

X

⊗ȮX(Σ+)−−−−−−→ Pic
√
R;
√
R,d+ρ

X .
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5.1.3. The base A[d. Later we will need to use another base space A[d.

Definition 5.4. Let A[d = A[d(Σ±) be the moduli stack whose S-points

consist of tuples (∆, a, b) where

• ∆ is a line bundle on X × S of fiber-wise degree d+ ρ,

• a and b are sections of ∆,

such that the same conditions (1)–(4) hold as in Definition 5.3.

Similar to the case of Ad, we have an open embedding

(5.5) ω[d : A[d ↪→ “Xd+ρ−N− ×Picd+ρX

“Xd+ρ−N+.

By [10, §3.2.3], A[d is a scheme over k. Later it will be technically more con-

venient to apply the Lefschetz trace formula to the base scheme A[d instead of

the stack Ad.
There is a forgetful map

Ω : Ad −→ A[d

that corresponds to the forgetful maps “X√Rd+ρ−N± →
“Xd+ρ−N± under the em-

beddings (5.4) and (5.5).

We have a morphism

δ : A[d −→ Ud

sending (∆, a, b) to the divisor of a − b as a non-zero section of ∆(−R), the

latter having degree d. The conditions (1), (2) and (3) in Definition 5.3 imply

that the divisor of a− b does not meet Σ or R.

For D to be an effective divisor on U of degree d, let

(5.6) A[D = δ−1(D) ⊂ A[d.

5.1.4. Geometric properties of Md. We have a morphism

fd :Md −→ Ad
defined by applying ν̂

√
R to both “X ′d+ρ−N− and “X ′d+ρ−N+

. In other words, we

have a commutative diagram

Md
� � //

fd

��

“X ′d+ρ−N− ×να,Pic
√
R;
√
R,d+ρ

X ,νβ

“X ′d+ρ−N+

ν̂
√
R

d+ρ−N−×ν̂
√
R

d+ρ−N+
��

Ad �
�

// “X√Rd+ρ−N− ×νa,Pic
√
R;
√
R,d+ρ

X ,νb

“X√Rd+ρ−N+
.

(5.7)

We denote by f [d the composition

f [d :Md
fd−→ Ad

Ω−→ A[d.
The following is a generalization of [10, Prop 6.1] to the ramified situation.
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Proposition 5.5.

(1) When d ≥ 2g′ − 1 + N = 4g − 3 + ρ + N , the stack Md is a smooth DM

stack pure of dimension m = 2d+ ρ−N − g + 1.

(2) The diagram (5.7) is Cartesian.

(3) The morphisms fd and f [d are proper.

(4) When d ≥ 3g − 2 + N , the morphism fd is small ; it is generically finite,

and for any n > 0, {a ∈ Ad|dim f−1
d (a) ≥ n} has codimension ≥ 2n + 1

in Ad.
(5) The stackMd admits a finite flat presentation in the sense of [10, Def. A.1].

Proof. (1) To show that Md is smooth DM, it suffices to show that both

of following stacks are smooth DM:“X ′d+ρ−N− ×να,Pic
√
R;
√
R,d+ρ

X ,νβ
X ′d+ρ−N+

,(5.8)

X ′d+ρ−N− ×να,Pic
√
R;
√
R,d+ρ

X ,νβ

“X ′d+ρ−N+.(5.9)

Let QR
′

X′ be the moduli stack of pairs (L′, ϑR′), where L′ ∈ PicX′ and ϑR′

is a section of L′|R′ . Then QR
′

X′
∼= PicX′ ×Pic

√
R

X

Pic
√
R;
√
R

X . In particular, the

norm map QR
′

X′ → Pic
√
R;
√
R

X is smooth and relative DM.

For any geometric point s and line bundle L on X ′ × s of degree n ≥
2g′+ρ−1, the restriction map H0(X ′ × s,L)→ H0(R′ × s,L|R′×s) is surjective

with kernel dimension n−g′+1−ρ. This implies “X ′n → QR
′

X′ is a vector bundle

of rank n− g′+ 1− ρ, whenever n ≥ 2g′− 1 + ρ, in which case “X ′n itself is also

smooth.

If d ≥ 2g′− 1 +N ≥ 2g′− 1 +N+, then d+ ρ−N+ ≥ 2g′− 1 + ρ, the map

νβ : “X ′d+ρ−N+
→ QR

′
X′ → Pic

√
R,
√
R

X is then smooth and relative DM by the

above discussion, and therefore the fiber product (5.9) is smooth over its first

factor X ′d+ρ−N− . Since X ′d+ρ−N− is a scheme smooth over k, the fiber product

(5.9) is smooth DM over k. The argument for (5.8) is the same.

For the dimension, we have

dimMd = dim “X ′d+ρ−N− + dim “X ′d+ρ−N+
− dim Pic

√
R,
√
R

X

= (d+ ρ−N−) + (d+ ρ−N+)− (g − 1 + ρ)

= 2d+ ρ−N − g + 1.

Condition (2) follows directly by comparing the four conditions in Definition 5.1

and in Definition 5.3.

(3) Since Ω is proper, it suffices to show that fd is proper. By (2), it

suffices to show that ν̂
√
R

n : “X ′n → “X√Rn is proper for any n ≥ 0. We consider
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the factorization of the usual norm map

ν̂n : “X ′n ν̂
√
R

n−−−→ “X√Rn ω̂
√
R

n−−−→ “Xn.

The same argument of [10, Prop. 6.1(4)] shows that ν̂n is proper. On the

other hand, ω̂
√
R

n is separated because it is obtained by base change from

the separated map [2] : [ResRk A1/ResRk Gm] → [ResRk A1/ResRk Gm]; see the

diagram (A.1). Therefore, ν̂
√
R

n is proper.

(4) Over A♦d := (X
√
R

d+ρ−N− ×Pic
√
R;
√
R,d+ρ

X

X
√
R

d+ρ−N+
) ∩Ad, fd is finite. The

complement Ad−A♦d is the disjoint union of Aa=0
d and Ab=0

d corresponding to

the locus a = 0 or b = 0. Note that Aa=0
d = ∅ unless Σ+ = ∅ and Ab=0

d = ∅
unless Σ− = ∅.

We first analyze the fibers over Ab=0
d when Σ− = ∅. The coarse mod-

uli space of Ab=0
d is Ud (by taking div(a) − R; note that Σ = Σ+). Hence

dimAb=0
d = d, and codimAd(Ab=0

d ) = d− g + 1 + ρ−N . The restriction of fd
to Ab=0

d is, up to passing to coarse moduli spaces, given by the norm map with

respect to the double cover U ′ → U ,

U ′d ×Pic
√
R,d+ρ

X

Pic
d+ρ−N+

X′ −→ Ud.

From this we see that the fiber dimension of fd over Ab=0
d is the same as that

of the norm map PicX′ → Pic
√
R

X , which is g′ − g.

Similar argument shows that when Σ+ = ∅, codimAd(Aa=0
d ) = d − g +

1 +ρ−N and the fiber dimension of fd over Aa=0
d is still g′− g. In either case,

since d ≥ 3g − 2 +N , we have

d− g + 1 + ρ−N ≥ 2g − 1 + ρ = 2(g′ − g) + 1,

which checks the smallness of fd.

(5) We need to show that there is a finite flat map Y → Md from an

algebraic space Y of finite type over k. As in [10, proof of Prop. 6.1(1)],

by introducing a rigidification at some closed point y ∈ U ′, we may define a

schematic map

Md −→ Jd+ρ
X′ × PrymX′/X ,

where Jd+ρ
X′ is the Picard scheme of X ′ of degree d + ρ, and PrymX′/X :=

ker(Nm
√
R

X′/X : Pic0
X′ → Pic

√
R,0

X ). Since Jd+ρ
X′ is a scheme and PrymX′/X is a

global finite quotient of an abelian variety, Jd+ρ
X′ × PrymX′/X admits a finite

flat presentation; therefore, the same is true for Md. �

5.1.5. The incidence correspondences. To state the formula for Iµ,µ′(hD),

we need to introduce two self-correspondences ofMd. We define H+ to be the
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substack ofMd ×X ′ consisting of those (I,J , α, β, , x′) such that β vanishes

on Γx′ . We have the natural projection

←−γ + : H+ −→Md

recording (I,J , α, β, ). We also have another projection

−→γ + : H+ −→Md

sending (I,J , α, β, , x′) to (I,J (Γσx′ − Γx′), α, β, ). This makes sense since

twisting by OX′(Γσx′ − Γx′) does not affect the image under Nm
√
R

X′/X and

the fact that β can be viewed as a section of J (Γσx′ − Γx′) since it vanishes

along Γx′ . Via (←−γ +,
−→γ +), we view H+ as a self-correspondence of Md. We

have a commutative diagram

H+
←−γ +

||

−→γ +

""

Md

fd ""

Md

fd||

Ad.

(5.10)

Similarly, we define H− to be the substack of Md × X ′ consisting of

those (I,J , α, β, , x′) such that α vanishes on Γx′ . We view H− as a self-

correspondence of Md over Ad,

H−
←−γ −

||

−→γ −

""

Md

fd ""

Md

fd||

Ad,

(5.11)

where
←−γ −(I,J , α, β, , x′) = (I,J , α, β, )

and
−→γ −(I,J , α, β, , x′) = (I(Γσx′ − Γx′),J , α, β, ).

LetA♦d = (X
√
R

d+ρ−N−×Pic
√
R;
√
R

X

X
√
R

d+ρ−N+
)∩Ad be the locus where a, b 6= 0.2

Let M♦d ⊂ Md be the preimage of A♦d . Let H♦+ and H♦− be the restriction of

H+ and H− to A♦d .

2The definition of A♦d is different from the one in [10].
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Consider the incidence correspondence

I ′d+ρ−N+
←−
i

yy

−→
i

%%

X ′d+ρ−N+
X ′d+ρ−N+

.

(5.12)

Here I ′d+ρ−N+
= {(D,x′) ∈ X ′d+ρ−N+

× X ′|x′ ∈ D}, ←−i (D,x′) = D and
−→
i (D,x′) = D + σ(x′)− x′.

By definition, overM♦d , H♦+ is obtained from the incidence correspondence

I ′d+ρ−N+
by applying X ′d+ρ−N−×Pic

√
R;
√
R

X

(−) and then restricting to A♦d . Sim-

ilarly, H♦− is obtained from the incidence correspondence I ′d+ρ−N− by applying

(−)×
Pic
√
R;
√
R

X

X ′d+ρ−N+
and then restricting to A♦d (cf. [10, Lemma 6.3]).

From this description, we see that dimH♦± = dimM♦d = 2d+ρ−N−g+1.

LetH♦± be the closure ofH♦±, and let [H♦±] denote its cycle class as an element in

HBM
2(2d+ρ−N−g+1)(H±). Then [H♦±] is a cohomological correspondence between

the constant sheaf on Md and itself, which then induces an endomorphism of

Rfd,!Q`:
fd,![H

♦
±] : Rfd,!Q` −→ Rfd,!Q`.

Taking direct image under Ω : Ad → A[d, we get an endomorphism

f [d,![H
♦
±] : Rf [d,!Q` −→ Rf [d,!Q`.

For a ∈ A[d(k), let (f [d,![H
♦
±])a be the action of f [d,![H

♦
±] on the geometric stalk

(Rfd,!Q`)a.

5.1.6. The formula. For the rest of the section, we fix a pair

µ = (µ, µf , µ∞), µ′ = (µ′, µ′f , µ
′
∞) ∈ Tr,Σ.

We let

Σ+ := Σ+(µ, µ′), Σ− := Σ−(µ, µ′)

be defined as in (4.5) and (4.6). Thus Md =Md(Σ±) is defined. We also let

(5.13) r+ = {1 ≤ i ≤ r|µi = µ′i}; r− = {1 ≤ i ≤ r|µi 6= µ′i}.

The following is the main theorem of this section, parallel to [10, Th. 6.5].

Theorem 5.6. Suppose D is an effective divisor on U of degree d ≥
max{2g′ − 1 +N, 2g}. Under the above notation, we have

(5.14) Iµ,µ
′
(hD) =

∑
a∈A[D(k)

Tr
(
(f [d,![H

♦
+])r+a ◦ (f [d,![H

♦
−])r−a ◦ Fra, (Rf

[
d,!Q`)a

)
,

where Fra is the geometric Frobenius at a.
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5.1.7. Outline of the proof. The rest of the section is devoted to the proof

of Theorem 5.6. The proof consists of three steps

I. Introduce a moduli stackMd(µΣ, µ
′
Σ) and a Hecke correspondence Hkµ,µ

′

M,d

for Md(µΣ, µ
′
Σ).

This step is done in Section 5.2. We also introduce certain auxiliary

spaces that form the “master diagram” (5.18). Later we will apply the

octahedron lemma [10, Th. A.10] to this diagram.

II. Relate Md(µΣ, µ
′
Σ) and Md; relate Hkµ,µ

′

M,d and a composition of H±.

This is done in Section 5.3. This step is significantly more complicated

than the unramified case treated in [10]. It amounts to showing thatMd

is a descent of Md(µΣ, µ
′
Σ) from S′∞ to Spec k.

III. Show that Iµ,µ′(hD) can be expressed as the intersection number of a cycle

class supported on Hkµ,µ
′

M,d and the graph of Frobenius of Md(µΣ, µ
′
Σ),

and rewrite this intersection number into a trace as in the right-hand

side of (5.14).

This step is done in Section 5.4. The argument is quite similar to the

proof of [10, Th. 6.6], together with a standard application of a version

of the Lefschetz trace formula reviewed in [10, Prop A.12].

5.2. Auxiliary moduli stacks.

5.2.1. The stack Hd(Σ).

Definition 5.7.

(1) Let ‹Hd(Σ) be the moduli stack whose S-points consist of triples (E†, E ′†, ϕ),

where

• E†=(E ; {E(−1
2x)}) and E ′† = (E ′; {E ′(−1

2x)}) are S-points of Bun2(Σ)

such that deg(E ′|X×s)−deg(E|X×s) = d for all geometric points s ∈ S;

• ϕ : E → E ′ is a map of coherent sheaves that is injective when re-

stricted to X × s for all geometric points s ∈ S and maps E(−1
2x) to

E ′(−1
2x) for all x ∈ Σ;

• the restriction ϕ|(ΣtR)×S is an isomorphism.

(2) We define

Hd(Σ) = ‹Hd(Σ)/PicX ,

where PicX acts by tensoring on E† and E ′† simultaneously.

We have a map

←→pH = (←−pH ,−→pH) : Hd(Σ) −→ BunG(Σ)2
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recording E† and E ′†. We also have a map

(5.15) s : Hd(Σ) −→ Ud

recording the vanishing divisor of det(ϕ) as a section of det(E)−1 ⊗ det(E ′).
We also have an Atkin–Lehner operator

(5.16) ALH,∞ : Hd(Σ)×S∞ −→ Hd(Σ)

defined by applying ALG,∞ (see (3.20)) to both E and E ′, and keeping ϕ.

5.2.2. The Hecke correspondence for Hd(Σ).

Definition 5.8. Let µ ∈ {±1}r.

(1) Let ›Hk
µ

H,d(Σ) 3 be the moduli stack of ({E†i }0≤i≤r, {E
′†
i }0≤i≤r, {xi}1≤i≤r)

together with a diagram

E0
f1
//

ϕ0

��

E1
f1
//

ϕ1

��

· · ·
fr
// Er

ϕr
��

E ′0
f ′1
// E ′1

f ′2
// · · ·

f ′r
// E ′r,

(5.17)

where

• each Ei and E ′i are underlying rank two vector bundles of points E†i , E
′†
i

of Bun2(Σ);

• the upper and lower rows form objects in Hk
µ

2 (Σ) with modifications

at {xi}1≤i≤r ∈ Xr;

• the vertical maps ϕi are such that (E†i , E
′†
i , ϕi) ∈ ‹Hd(Σ).

(2) Let

HkrH,d(Σ) := ›Hk
µ

H,d(Σ)/PicX ,

where PicX acts on ›Hk
µ

H,d(Σ) by simultaneously tensoring on all E†i and E ′†i .

The notation for HkrH,d(Σ) is justified because one can check, as in the

case of Hk
µ

G(Σ), that ›Hk
µ

H,d(Σ)/PicX is canonically independent of µ.

We have projections

pH,i : HkrH,d(Σ) −→ Hd(Σ), i = 0, . . . , r

recording the i-th column of the diagram (5.17). We also have projections

recording the upper and lower rows of the diagram (5.17):

←→q = (←−q ,−→q ) : HkrH,d(Σ) −→ HkrG(Σ)2.

3In [10], the analogue of H̃k
µ

H,d(Σ) was denoted by H̃k
µ

G,d.
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Let

Hk′rH,d(Σ) := HkrH,d(Σ)×Xr X ′r,

Hk′rG(Σ) := HkrG(Σ)×Xr X ′r.

The maps pH,i and ←→q induce maps

p′H,i : Hk′rH,d(Σ) −→ HkrH,d(Σ)
pH,i−−→ Hd(Σ), i = 0, . . . , r,

←→q ′ = (←−q ′,−→q ′) : Hk′rH,d(Σ) −→ Hk′rG(Σ)2.

5.2.3. The master diagram. Recall µ = (µ, µΣ), µ′ = (µ′, µ′Σ) ∈ Tr,Σ. We

consider the following diagram in which each square is commutative:

(5.18)

(Hk
µ

T ×Hk
µ′

T )S′∞

(p
µ

T,0×p
µ′

T,0×idS′∞
,αT )

��

θµ,µ
′

Hk
×idS′∞

// Hk′rG(Σ)2
S′∞

(p′2G,0,αG)

��

Hk′rH,d(Σ)S′∞

(p′H,0,αH)

��

←→q ′×idS′∞
oo

(Bun2
T )S′∞ × (Bun2

T )S′∞
θµ,µ

′
Bun

×θµ,µ
′

Bun

// BunG(Σ)2 × BunG(Σ)2 Hd(Σ)×Hd(Σ)
←→pH

×←→pH
oo

(Bun2
T )S′∞

(id,Fr)

OO

θµ,µ
′

Bun
// BunG(Σ)2

(id,Fr)

OO

Hd(Σ).
←→pH

oo

(id,Fr)

OO

Here we use subscript S′∞ to denote the product with S′∞ over k. The map

θµ,µ
′

Bun : Bun2
T ×S′∞ → BunG(Σ)2 is given by θµΣ

Bun× θ
µ′Σ
Bun, using a common copy

of S′∞; here θµ,µ
′

Hk : HkµT × Hkµ
′

T × S′∞ → Hk′rG(Σ)2 is similarly defined using

θµHk and θµ
′

Hk.

Let us explain the three maps αT , αG and αH that appear as the second

components of the vertical maps connecting the first and the second rows.

• The map αT is the composition

Hk
µ

T ×Hk
µ′

T ×S′∞
p
µ

T,r×p
µ′

T,r×idS′∞−−−−−−−−−−−→ Bun2
T ×S′∞

ALT,µ∞,µ′∞−−−−−−−→ Bun2
T ×S′∞,

where ALT,µ∞,µ′∞ is defined as

ALT,µ∞,µ′∞(L1,L2, {x′(1)})

=

Ñ
L1

Ñ
−
∑
x∈Σ∞

µxx
′(1)

é
,L2

Ñ
−
∑
x∈Σ∞

µ′xx
′(1)

é
, {x′(2)}

é
.

(5.19)

Hence on the S′∞-factor, αT is the Frobenius morphism.

• The map αG is the composition

Hk′rG(Σ)2 ×S′∞
p′2G,r×ν∞−−−−−−→ BunG(Σ)2 ×S∞

AL
(2)
G,∞−−−−→ BunG(Σ)2,
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where AL
(2)
G,∞ is ALG,∞ on both copies of BunG(Σ) using a common copy

of S∞.

• The map αH is the composition

Hk′rH,d(Σ)×S′∞
p′H,r×ν∞−−−−−−→ Hd(Σ)×S∞

ALH,∞−−−−→ Hd(Σ).

5.2.4. We define Sht′rH,d(Σ; Σ∞) to be the fiber product of the third col-

umn of (5.18); i.e., the following diagram is Cartesian:

Sht′rH,d(Σ; Σ∞) //

��

Hk′rH,d(Σ)×S′∞

(p′H,0,αH)

��

Hd(Σ)
(id,Fr)

// Hd(Σ)×Hd(Σ).

(5.20)

Then the fiber product of the three columns are

Sht
µ

T (µ∞ · Σ′∞)×S′∞ Sht
µ′

T (µ′∞ · Σ′∞)
θ′µ×θ′µ′−−−−−→ Sht′rG(Σ; Σ∞)×S′∞ Sht′rG(Σ; Σ∞)

←− Sht′rH,d(Σ; Σ∞).

(5.21)

Recall the map s : Hd(Σ) → Ud from (5.15). The Hecke correspondence

Hk′rH,d(Σ) preserves the map s while the Frobenius map on Hd(Σ) covers the

Frobenius map of Ud. Therefore, from the definition of Sht′rH,d(Σ; Σ∞), we

get canonical decomposition of it indexed by k-points of Ud, i.e., effective

divisors of degree d on U . As in [10, Lemma 6.12], one shows that the piece

indexed by D ∈ Ud(k) is exactly the Hecke correspondence Sht′rG(Σ; Σ∞;hD)

for Sht′rG(Σ; Σ∞). In other words, we have a decomposition

(5.22) Sht′rH,d(Σ; Σ∞) =
∐

D∈Ud(k)

Sht′rG(Σ; Σ∞;hD).

5.2.5. The stack Md(µΣ, µ
′
Σ) and its Hecke correspondence. Now we con-

sider the fiber product of the three rows of the master diagram (5.18).

Definition 5.9. Let Md(µΣ, µ
′
Σ) be the fiber product of the bottom row

of (5.18); i.e., we have the following Cartesian diagram:

Md(µΣ, µ
′
Σ) //

��

Hd(Σ)

←→pH
��

Bun2
T ×S′∞

θµ,µ
′

Bun
// BunG(Σ)2.

(5.23)

Our notation suggests thatMd(µΣ, µ
′
Σ) depends only on µΣ and µ′Σ. This

is indeed the case, because θµ,µ
′

Bun depends only on µΣ and µ′Σ.

From the definition of Md(µΣ, µ
′
Σ), the Atkin–Lehner automorphisms

ALG,∞ (see (3.20)), ALH,∞ (see (5.16)) and ALT,µ∞,µ′∞ (see (5.19)) together
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with Lemma 4.7 induce an Atkin–Lehner automorphism for Md(µΣ, µ
′
Σ):

ALM,∞ :Md(µΣ, µ
′
Σ) −→Md(µΣ, µ

′
Σ).

Definition 5.10. Let Hkµ,µ
′

M,d be the fiber product of the top row of (5.18).

Equivalently, we have the following Cartesian diagram:

Hkµ,µ
′

M,d
//

��

Hk′rH,d(Σ)

←→q
��

Hk
µ

T ×Hk
µ′

T ×S′∞
θµ,µ

′
Hk

// Hk′rG(Σ)2.

(5.24)

Comparing the diagrams (5.23) and (5.24), we get projections

pM,i : Hkµ,µ
′

M,d −→Md(µΣ, µ
′
Σ), i = 0, . . . , r

as the fiber product of pµT,i × p
µ′

T,i × idS′∞ and p′H,i over p′2G,i. We also let

αM = ALM,∞ ◦ pM,r : Hkµ,µ
′

M,d −→Md(µΣ, µ
′
Σ).

The fiber products of the three rows of (5.18) now read

Hkµ,µ
′

M,d

(pM,0,αM)

��

Md(µΣ, µ
′
Σ)×Md(µΣ, µ

′
Σ) .

Md(µΣ, µ
′
Σ)

(id,Fr)

OO

(5.25)

5.2.6. The stack Shtµ,µ
′

M,d.

Definition 5.11. Let Shtµ,µ
′

M,d be the fiber product of the maps in (5.25);

i.e., we have a Cartesian diagram

Shtµ,µ
′

M,d
//

��

Hkµ,µ
′

M,d

(pM,0,αM)

��

Md(µΣ, µ
′
Σ)

(id,Fr)
//Md(µΣ, µ

′
Σ)×Md(µΣ, µ

′
Σ).

(5.26)
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By the diagram (5.18), Shtµ,µ
′

M,d is also the fiber product of the maps in

(5.21); i.e., the following diagram is also Cartesian:

(5.27)

Shtµ,µ
′

M,d

��

// Sht′rH,d(Σ; Σ∞)

��

Sht
µ

T (µ∞ · Σ′∞)×S′∞ Sht
µ′

T (µ′∞ · Σ′∞)
θ′µ×θ′µ′

// Sht′rG(Σ; Σ∞)×S′∞ Sht′rG(Σ; Σ∞).

According to the decomposition (5.22), we get a corresponding decompo-

sition of Shtµ,µ
′

M,d,

(5.28) Shtµ,µ
′

M,d =
∐

D∈Ud(k)

Shtµ,µ
′

M,D,

where Shtµ,µ
′

M,D is the preimage of Sht′rG(Σ; Σ∞;hD) ⊂ Sht′rH,d(Σ; Σ∞) under the

upper horizontal map in (5.27). We have a Cartesian diagram

(5.29)

Shtµ,µ
′

M,D

��

// Sht′rG(Σ; Σ∞;hD)

(←−p ′,−→p ′)
��

Sht
µ

T (µ∞ · Σ′∞)×S′∞ Sht
µ′

T (µ′∞ · Σ′∞)
θ′µ×θ′µ′

// Sht′rG(Σ; Σ∞)×S′∞ Sht′rG(Σ; Σ∞).

Here the maps←−p ′,−→p ′ : Sht′rG(Σ; Σ∞;hD)→ Sht′rG(Σ; Σ∞) are the base changes

of the maps ←−p and −→p in (3.23).

5.3. Relation between Md and Md(µΣ, µ
′
Σ). In this subsection, we relate

Md(µΣ, µ
′
Σ) to the moduli stackMd that was defined earlier. For this, we first

give an alternative description of Md(µΣ, µ
′
Σ) in the style of the definition of

Md in [10, §6.1.1].

5.3.1. Some preparation. Let S be any scheme, and let L and L′ be two

line bundles over X ′ × S. We denote by HR′(L,L′) be the set of pairs (α, β),

where

α :L −→ L′(R′) := L′ ⊗OX′ OX′(R
′),(5.30)

β : σ∗L −→ L′(R′)(5.31)

such that their restrictions to R′ × S satisfy

(5.32) α|R′×S = β|R′×S .

Note that L and σ∗L are the same when restricted to R′×S, hence the above

equality makes sense.

Recall νS = ν × idS : X ′ × S → X × S.
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Lemma 5.12. There is a canonical bijection

HomX×S(νS,∗L, νS,∗L′)
∼−→ HR′(L,L′)

such that, if ϕ : νS,∗L → νS,∗L′ corresponds to (α, β) under this bijection, we

have

(5.33) det(ϕ) = Nm(α)−Nm(β)

as sections of det(νS,∗L)−1 ⊗ det(νS,∗L′) ∼= NmX′/X(L)−1 ⊗NmX′/X(L′).

Proof. By adjunction a map ϕ : νS,∗L → νS,∗L′ is equivalent to a map

ν∗SνS,∗L → L′. Note that ν∗SνS,∗L ∼= OX′ ⊗OX L ∼= (OX′ ⊗OX OX′) ⊗OX′ L,

whose OX′-module structure is given by the first factor of OX′ .
We have an injective map  : OX′ ⊗OX OX′ → OX′ ⊕OX′ sending a⊗ b 7→

ab+ aσ(b). By a local calculation at points in R′ we see that the image of  is

OX′ ⊕R′ OX′ := ker(OX′ ⊕OX′
(i∗,−i∗)−−−−−→ OR′) (the difference of two restriction

maps i∗ : OX′ → OR′). Therefore, ν∗SνS,∗L ∼= (OX′ ⊕R′ OX′) ⊗OX′ L =

L ⊕R′ σ∗L = ker(L ⊕ σ∗L (i∗,−i∗)−−−−−→ LR′×S). Hence the map ϕ is equivalent to

a map

ψ : L ⊕R′ σ∗L −→ L′.
Since L(−R′)⊕ σ∗L(−R′) ⊂ L⊕R′ σ∗L, the map ψ restricts to a map

L(−R′)⊕ σ∗L(−R′) −→ L′

or

L ⊕ σ∗L −→ L′(R′).
We then define the two components of above map to be α and −β. Condi-

tion (5.32) is equivalent to that the map α ⊕ (−β) : L ⊕ σ∗L → L′(R′), when

restricted to L ⊕R′ σ∗L, lands in L′.
If ϕ corresponds to (α, β), we may pullback ϕ to X ′ so it becomes the

map L ⊕R′ σ∗L → L′ ⊕R′ σ∗L′ given by the matrixñ
α −β
−σ∗β σ∗α

ô
.

Therefore, det(ϕ) = Nm(α)−Nm(β). �

5.3.2. Alternative description of Md(µΣ, µ
′
Σ). We define ›Md(µΣ, µ

′
Σ) by

the Cartesian diagram›Md(µΣ, µ
′
Σ) //

��

‹Hd(Σ)

←→
p̃H
��

PicX′ ×PicX′ ×S′∞
θ̃µ,µ

′
Bun
// Bun2(Σ)× Bun2(Σ).
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Here θ̃µ,µ
′

Bun is given by θ̃µΣ
Bun × θ̃

µ′Σ
Bun, using a common copy of S′∞, and

←→̃
pH

sends (E†, E ′†, ϕ) ∈ ‹Hd(Σ)(S) to (E†, E ′†) ∈ (Bun2(Σ)(S))2. Comparing with

Definition 5.9, we have

Md(µΣ, µ
′
Σ) ∼= ›Md(µΣ, µ

′
Σ)/PicX .

For x′ ∈ Σ′∞ and x′(1) : S → Spec k(x′)
x′−→ X ′, recall that we inductively

defined x′(j) using x′(j) = x′(j−1) ◦ FrS for j ≥ 2. We have a morphism

D+ : S′∞ −→ X ′N+

that sends {x′(1)}x′∈Σ′∞ ∈ S′∞(S) to the following divisor of X ′ × S of de-

gree N+:

D+({x′(1)}) :=
∑

x∈Σf∩Σ+

µ′x × S

+
∑

x∈Σ∞∩Σ+

(Γx′(1) + Γx′(2) + · · ·+ Γx′(dx)) if µ′x = 1,

(Γx′(dx+1) + Γx′(dx+2) + · · ·+ Γx′(2dx)) if µ′x = −1.

Similarly, we define

D− : S′∞ −→ X ′N−

by sending {x′(1)}x′∈Σ′∞ ∈ S′∞(S) to the following divisor of X ′ × S of de-

gree N−:

D−({x′(1)}) :=
∑

x∈Σf∩Σ−

µ′x × S

+
∑

x∈Σ∞∩Σ−

(Γx′(1) + Γx′(2) + · · ·+ Γx′(dx)) if µ′x = 1,

(Γx′(dx+1) + Γx′(dx+2) + · · ·+ Γx′(2dx)) if µ′x = −1.

Now we can state the alternative description of Md(µΣ, µ
′
Σ).

Lemma 5.13. For a scheme S, ›Md(µΣ, µ
′
Σ)(S) is canonically equivalent

to the groupoid of tuples (L,L′, α, β, {x′(1)}x′∈Σ′∞), where

• L and L′ are line bundles on X ′×S such that deg(L′|X′×s)−deg(L|X′×s) = d

for all geometric points s ∈ S;

• α : L → L′(R′), β : σ∗L → L′(R′).
These data are required to satisfy the following conditions :

(1) α|D−({x′(1)}) = 0, and α|ν−1(Σ+)×S is an isomorphism.

(2) β|D+({x′(1)}) = 0, and β|ν−1(Σ−)×S is an isomorphism.

(3) α|R′×S = β|R′×S . Moreover, Nm(α) − Nm(β), viewed as a section of

NmX′/X(L)−1 ⊗NmX′/X(L′), is nowhere vanishing along R× S.

(4) This is non-void only when Σ = ∅ and R = ∅: for every geometric point

s of S, Nm(α)−Nm(β) is not identically zero on X × s.
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Proof. By definition, S-points of ›Md(µΣ, µ
′
Σ) consist of tuples

(L,L′, ϕ, {x′(1)}x′∈Σ′∞),

where

• L and L′ are line bundles on X ′×S such that deg(L′|X×s)−deg(L|X×s) = d

for all geometric points s ∈ S;

• ϕ : νS,∗L → νS,∗L′ is an injective map when restricted to X × s for every

geometric point s ∈ S — moreover, ϕ is an isomorphism along (ΣtR)×S;

• for each x′ ∈ Σ′∞, x′(1) is a map S → Spec k(x′)
x′−→ X ′.

These data are required to satisfy the following condition. We have two

S-points of Bun2(Σ):

E† = θ̃µΣ
Bun(L, {x′(1)}x′∈Σ′∞),

E ′† = θ̃
µ′Σ
Bun(L′, {x′(1)}x′∈Σ′∞).

Then ϕ : E = νS,∗L → E ′ = νS,∗L′ should respect the level structures of E†
and E ′†.

By Lemma 5.12, the map ϕ : νS,∗L → νS,∗L′ becomes a pair α : L →
L′(R′) and β : σ∗L → L′(R′) satisfying α|R′×S = β|R′×S . Since ϕ|R×S is an

isomorphism, formula (5.33) implies that Nm(α)−Nm(β) is nowhere vanishing

along R × S, hence condition (3) in the statement of the lemma is verified.

Condition (4) also follows from (5.33) and the condition on ϕ above.

Since ϕ respects the Iwahori level structures of νS,∗L and νS,∗L′, it sends

νS,∗(L(−µx)) to νS,∗(L′(−µ′x)) for all x ∈ Σf . (Recall µx is the value of µf at

x.) A local calculation shows that α should vanish along µ′x×S for those x ∈ Σf

such that µx 6= µ′x, and β should vanish along µ′x×S for those x ∈ Σf such that

µx = µ′x. A similar local calculation at x ∈ Σ∞ implies the vanishing of α and

β along the corresponding parts of D− and D+. For example, if µx = µ′x = 1,

then ϕ should send νS,∗(L(−Γx′(1) − · · · − Γx′(dx))) to νS,∗(L′(−Γx′(1) − · · · −
Γx′(dx))), which implies that β vanishes along Γx′(1) +Γx′(2) + · · ·+Γx′(dx) . These

verify the vanishing parts of conditions (1) and (2).

Finally, since ϕ|Σ×S is an isomorphism, det(ϕ) = Nm(α) − Nm(β) is

nowhere vanishing on Σ× S. Since Nm(α)|Σ−×S = 0 and Nm(β)|Σ+×S = 0 by

the vanishing parts of (1) and (2), Nm(α)|Σ+×S and Nm(β)|Σ−×S are nowhere

vanishing. These verify the non-vanishing parts of conditions (1) and (2). We

have verified all the desired conditions for (L,L′, α, β, {x′(1)}x′∈Σ′∞). �

Using the description ofMd(µΣ, µ
′
Σ) given in Lemma 5.13, we can describe

its Atkin–Lehner automorphism ALM,∞ as follows.

Lemma 5.14. Let (L,L′, α, β, {x′(1)}x′∈Σ′∞) be an S-point of ›Md(µΣ, µ
′
Σ)

as described in Lemma 5.13. We use the same notation to denote its image in
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Md(µΣ, µ
′
Σ). Then

ALM,∞(L,L′, α, β, {x′(1)}x′∈Σ′∞) =

Ñ
L

Ñ
−
∑
x∈Σ∞

µxΓx′(1)

é
,

L′
Ñ
−

∑
x∈Σ∞∩Σ+

µxΓx′(1) −
∑

x∈Σ∞∩Σ−

µxΓx′(dx+1)

é
, α′, β′, {x′(2)}x′∈Σ′∞

é
.

Here, α′ is induced from α using the fact that α|D− = 0 and β′ is induced from

β using the fact that β|D+ = 0.

The proof is by tracking the definitions and we omit it.

The next result clarifies the relation between Md and Md(µΣ, µ
′
Σ).

Proposition 5.15. There is a canonical isomorphism over S′∞,

(5.34) ΞM :Md ×S′∞
∼−→Md(µΣ, µ

′
Σ),

such that

(1) the automorphism id× FrS′∞ on the left corresponds to the automorphism

ALM,∞ on the right ;

(2) the following diagram is commutative:

Md ×S′∞
Fr×id

//

o ΞM
��

Md ×S′∞

o ΞM
��

Md(µΣ, µ
′
Σ)

AL−1
M,∞◦Fr

//Md(µΣ, µ
′
Σ).

Proof. We first define a map

ıd :Md(µΣ, µ
′
Σ) −→Md ×S′∞ ⊂ (“X ′d+ρ−N− ×Pic

√
R;
√
R,d+ρ

X

“X ′d+ρ−N+
)×S′∞.

Using the description of points of ›Md(µΣ, µ
′
Σ) in Lemma 5.13, we have a

morphism

ıα :Md(µΣ, µ
′
Σ) −→ “X ′d+ρ−N−

sending (L,L′, α, β, {x′(1)}x′∈Σ′∞) to the line bundle L−1⊗L′(R′−D−({x′(1)}))
and its section given by α. Similarly we have a morphism

ıβ :Md(µΣ, µ
′
Σ) −→ “X ′d+ρ−N+

sending (L,L′, α, β, {x′(1)}x′∈Σ′∞) to the line bundle

σ∗L−1 ⊗ L′(R′ −D+({x′(1)}))

and its section given by β. We have a canonical isomorphism να ◦ ıα ∼= νβ ◦ ıβ
using α|R′ = β|R′ . The map ıd is given by (ıα, ıβ) and the natural projection to

S′∞. It is easy to see that the image of ıd lies in the open substackMd×S′∞.
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Next we construct the desired map ΞM as in (5.34). Start with a point

(I,J , α, β, ) ∈Md(S), and let {x′(1)}x′∈S′∞ ∈ S′∞(S). Let D± = D±({x′(1)})
(a divisor of degree N± on X ′ × S with image Σ± × S in X × S), and let I ′ =
I(D−) and J ′ := J (D+). The isomorphism  then gives an Nm

√
R

X′/X(I ′) ∼=

Nm
√
R

X′/X(J ′) ∈ Pic
√
R,d+ρ

X (S), or a trivialization of Nm
√
R

X′/X(I ′⊗−1 ⊗J ′) as an

S-point of Pic
√
R,d+ρ

X . The exact sequence (A.11) then implies, upon localizing

S in the étale topology, that there exists a line bundle L ∈ PicX′(S) together

with an isomorphism τ : L−1⊗σ∗L ∼= I ′⊗J ′−1, and such a pair (L, τ) is unique

up to tensoring with PicX(S) (upon further localizing S). Let L′ = L⊗I ′(−R′).
Then α can be viewed as a section of L−1⊗L′(R′), or a map L → L′(R′) that

vanishes along D−. Since J ′ ∼= I ′ ⊗ L ⊗ σ∗L−1 ∼= σ∗L−1 ⊗ L′(R′), β can be

viewed as a section of σ∗L−1 ⊗ L′(R′), or a map σ∗L → L′(R′) that vanishes

along D+. Moreover, the equality α|R′×S = β|R′×S is built into the definition

of Md. This way we get an S-point (L,L′, α, β, {x′(1)}) of Md(µΣ, µ
′
Σ) using

the description of ›Md(µΣ, µ
′
Σ) given in Lemma 5.13.

It is easy to see that ΞM is inverse to ıd. Therefore, ΞM is an isomorphism.

This finishes the construction of the isomorphism ΞM.

Now property (1) follows from Lemma 5.14 by a direct calculation.

To check property (2), observe that the total Frobenius morphisms Fr×Fr

on Md × S′∞ and Fr on Md(µΣ, µ
′
Σ) correspond to each other under ΞM.

On the other hand, by (1), id × Fr on Md × S′∞ corresponds to ALM,∞
on Md(µΣ, µ

′
Σ). Therefore, Fr×id = (id × Fr−1) ◦ (Fr×Fr) on Md × S′∞

corresponds to AL−1
M,∞ ◦ Fr on Md(µΣ, µ

′
Σ). �

5.3.3. Comparison of Hecke correspondences forMd(µΣ, µ
′
Σ) and forMd.

We have already defined two self-correspondences H+ and H− of Md in Sec-

tion 5.1.5. For λ = (λ1, . . . , λr) ∈ {±1}r, let

Hλi =

H+, λi = 1,

H−, λi = −1.

Let ←−γ i,−→γ i : Hλi → Md be the two projections. Then define Hλ to be the

composition of Hλi as follows:

Hλ := Hλ1 ×−→γ 1,Md,
←−γ 2
Hλ2 ×−→γ 2,Md,

←−γ 3
· · · ×−→γ r−1,Md,

←−γ r Hλr .

We apply this construction to λ = µµ′ = (µ1µ
′
1, . . . , µrµ

′
r). Then we have

(r + 1) projections

γi : Hµµ′ −→Md, i = 0, 1, . . . , r.

Proposition 5.16. There is a canonical isomorphism over S′∞,

(5.35) ΞH : Hµµ′ ×S′∞
∼−→ Hkµ,µ

′

M,d,
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such that the following diagram is commutative for i = 0, 1, . . . , r:

Hµµ′ ×S′∞
ΞH
∼

//

γi×idS′∞
��

Hkµ,µ
′

M,d

pM,i

��

Md ×S′∞
ΞM
∼
//Md(µΣ, µ

′
Σ).

Proof. By the iterative nature of Hkµ,µ
′

M,d, it suffices to prove the case r = 1.

(At this point we may drop the assumption r ≡ #Σ∞ mod 2 because every-

thing makes sense without this condition, before passing to Shtukas.) We

distinguish two cases.

Case 1: µ1 =µ′1. We treat only the case µ1 =µ′1 = 1; the other case is simi-

lar. In this case, Hkµ,µ
′

M,d(S) classifies the following data up to the action of PicX :

• A map x′1 : S → X ′ with graph Γx′1 .

• For each x′ ∈ Σ′∞, an S-point x′(1) : S → Spec k(x′)
x′−→ X ′.

• Line bundles L0 and L′0 on X ′×S such that deg(L′0|X×s)−deg(L0|X×s) = d

for all geometric points s ∈ S. Let

L1 = L0(Γx′1), L′1 = L′0(Γx′1).

• A map ϕ1 : νS,∗L1 → νS,∗L′1 that restricts to a map ϕ0 : νS,∗L0 → νS,∗L′0.

Moreover, for i = 0 and 1, we require the tuple (Li,L′i, ϕi, {x′(1)}) to give a

point of Md(µΣ, µ
′
Σ). In other words,

– ϕi preserves the level structures of νS,∗Li and νS,∗L′i given in Sec-

tion 4.2.1;

– ϕi is injective when restricted to X×s for every geometric point s ∈ S;

and

– ϕi|(Σ∪R)×S is an isomorphism.

Using Lemma 5.13, we may replace the data ϕi above by a pair of maps (αi, βi),

where αi : Li → L′i(R′), βi : σ∗Li → L′i(R′) satisfying certain conditions. Let

D± = D±({x′(1)}). Then αi|D− = 0 and βi|D+ = 0. Denote by

α\i : Li −→ L′i(R′ −D−),

β\i : σ∗Li −→ L′i(R′ −D+)

the maps induced by αi and βi.

The relation between ϕ0 and ϕ1 implies that the following two diagrams

are commutative:

L0

α\0
��

� � // L1

α\1
��

L0(Γx′1)

L′0(R′ −D−) �
�

// L′1(R′ −D−) L′0(R′ −D− + Γx′1),

(5.36)
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σ∗L0

β\0
��

� � // σ∗L1

β\1
��

(σ∗L0)(Γσ(x′1))

L′0(R′ −D+) �
�

// L′1(R′ −D+) L′0(R′ −D+ + Γx′1).

(5.37)

The diagram (5.36) simply says that α\1 is determined by α\0 (no condition

on α\0, hence no condition on α0). The diagram (5.37) imposes a non-trivial

condition on β\0, as claimed below.

Claim. β\0 vanishes along Γσ(x′1).

Proof of Claim. The argument for this claim is more complicated than the

argument in [10, Lemma 6.3] because of the ramification of ν. To prove the

claim, it suffices to argue for the similar statement for the restriction of β\0 to

(X ′ −R′)× S and to the formal completions SpecOx′“×S for each x′ ∈ R′.
Computing the divisors of the maps in the first square of (5.37), we get

(5.38) div(β\0) + Γx′1 = div(β\1) + Γσ(x′1).

Restricting both sides to (X ′−R′)×S, and observing that Γx′1 and Γσ(x′1) are

disjoint when restricted to (X ′ −R′)× S, we see that Γσ(x′1) ∩ ((X ′ −R′)× S)

is contained in div(β\0) ∩ ((X ′ −R′)× S).

Now we consider the restriction of the diagram (5.37) to the formal com-

pletion SpecOx′“×S at any x′ ∈ R′. Since D± is disjoint from R′, after restrict-

ing to SpecOx′“×S we may identify βi and β\i . We may assume S is affine,

and by extending k we may assume k(x′) = k. Choose a uniformizer $ at

x′ such that σ($) = −$, then SpecOx′“×S = SpecOS [[$]]. After trivializing

Li,L′i(R′) near x′ × S, we may assume f1 = f ′1 = $ − a for some a ∈ OS ,

α0 = α1 ∈ OS [[$]]. The diagram (5.37) implies the equation in OS [[$]],

f ′1 · β0 = σ∗f1 · β1,

where β0, β1 ∈ OS [[$]]. This equation is the same as

(5.39) ($ − a)β0($) = (−$ − a)β1($).

Recall that we also have the condition βi|R′×S = αi|R′×S for i = 0, 1, which

implies that β0(0) = α0(0) = α1(0) = β1(0), or β1($) = $γ($) + β0($) for

some γ ∈ OS [[$]]. Combining this with (5.39) we get

2$β0($) = (−$ − a)$γ($).

Since $ is not a zero divisor, we conclude that β0($) = −($+a)γ($)/2, hence

$ + a divides β0($). This implies that Γσ(x′1) ∩ (SpecOx′“×S) is contained in

div(β0) ∩ (SpecOx′“×S) = div(β\0) ∩ (SpecOx′“×S). The proof of the claim is

complete. �
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On the other hand, the condition that β\0 vanishes along Γσ(x′1) is sufficient

for the existence of β1 making (5.37) commutative. Therefore, in this case,

Hkµ,µ
′

M is the incidence correspondence for the divisor of β\ in Md(µΣ, µ
′
Σ)

under the description of Lemma 5.13. This gives the isomorphism ΞH :

Hµµ′ ×S′∞
∼= Hkµ,µ

′

M .

Case 2. µ1 6= µ′1. Let us consider only the case µ1 = 1, µ′1 = −1. We only

indicate the modifications from the previous case. In this case, L1 = L0(Γx′1)

but L′1 = L′0(−Γx′1). We may change L′1 to L′0(Γσ(x′1)) (which has the same

image as L′0(−Γx′1) in BunT ) so that degL′1 − degL1 = d still holds. The

diagrams (5.36) and (5.37) now become

L0

α\0
��

� � // L1

α\1
��

L0(Γx′1)

L′0(R′ −D−) �
�

// L′1(R′ −D−) L′0(R′ −D− + Γσ(x′1)),

(5.40)

σ∗L0

β\0
��

� � // σ∗L1

β\1
��

(σ∗L0)(Γσ(x′1))

L′0(R′ −D+) �
�

// L′1(R′ −D+) L′0(R′ −D+ + Γσ(x′1)).

(5.41)

Now (5.41) imposes no condition on β0, but (5.40) gives

div(α\0) + Γσ(x′1) = div(α\1) + Γx′1 .

An analog of the claim in Case 1 says that α\0 must vanish along Γx′1 . There-

fore, in this case, Hkµ,µ
′

M is the incidence correspondence for the divisor of α\

in Md(µΣ, µ
′
Σ) under the description of Lemma 5.13. This gives the isomor-

phism ΞH. �

5.4. Proof of Theorem 5.6.

5.4.1. Geometric facts. We first collect some geometric facts about the

stacks involved in the constructions in Section 5.2.

Proposition 5.17.

(1) The stack BunG(Σ) is smooth of pure dimension 3(g − 1) +N .

(2) The stack HkrG(Σ) is smooth of pure dimension 3(g − 1) +N + 2r.

(3) The stack BunT is smooth, DM and proper over k of pure dimension g′−g
= g − 1 + 1

2ρ.

(4) The stack Hk
µ

T is smooth, DM and proper over k of pure dimension g − 1

+ 1
2ρ+ r.
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(5) The morphisms ←−pH ,−→pH : Hd(Σ)→ BunG(Σ) are representable and smooth

of pure relative dimension 2d. In particular, Hd(Σ) is a smooth algebraic

stack over k of pure dimension 2d+ 3(g − 1) +N .

(6) The stack HkrH,d(Σ) has dimension 2d+ 2r + 3(g − 1) +N .

(7) For d ≥ 2g′ − 1 + N , Md(µΣ, µ
′
Σ) is a smooth and separated DM stack

pure of dimension m = 2d+ ρ−N − g + 1.

(8) Let D be an effective divisor on U . The stack Shtµ,µ
′

M,D is proper over k.

Proof. (1), (3) and (4) are standard facts. (2) follows from Proposi-

tion 3.4(4).

(5) Recall the stack Hd defined in [10, §6.3.2], with two maps ←−p ,−→p to

BunG. We have an open embedding Hd(Σ) ↪→ BunG(Σ) ×BunG,
←−p Hd because

once the Σ-level structure of E is chosen, it induces a unique Σ-level structure

on E ′ via ϕ (which is assumed to be an isomorphism near Σ). Since ←−p : Hd →
BunG is smooth of relative dimension 2d by [10, Lemma 6.8(1)], so is its base

change ←−pH . A similar argument works for −→pH .

(6) As in [10, §6.3.4], we have a map HkrH,d(Σ)→ BunG(Σ)×Ud×Xr. (The

first factor records E†0 , the second records the divisor of det(ϕ0) and the third

records xi.) The same argument as [10, Lemma 6.10] shows that all geometric

fibers of this map have dimension d + r. (Note that the horizontal maps are

allowed to vanish at points in Σ, but this does not complicate the argument

because the vertical maps do not vanish at Σ.) Therefore, dim HkrH,d(Σ) =

d+ r + d+ r + dim BunG(Σ) = 2d+ 2r + 3(g − 1) +N .

(7) By Proposition 5.15, Md(µΣ, µ
′
Σ) ∼= Md × S′∞. Therefore, the re-

quired geometric properties ofMd(µΣ, µ
′
Σ) follow from those ofMd proved in

Proposition 5.5(1).

(8) Consider the Cartesian diagram (5.29). Since Sht′rG(Σ; Σ∞) is sepa-

rated over S′∞ by Proposition 3.9 and ←−p ′ : Sht′rG(Σ; Σ∞;hD) → Sht′rG(Σ; Σ∞)

is proper by Lemma 3.13(1), the map

(←−p ′,−→p ′) : Sht′rG(Σ; Σ∞;hD) −→ Sht′rG(Σ; Σ∞)×S′∞ Sht′rG(Σ; Σ∞)

is proper. This implies that

Shtµ,µ
′

M,D −→ Sht
µ

T (µ∞ · Σ′∞)×S′∞ Sht
µ′

T (µ′∞ · Σ′∞)

is proper. Since Sht
µ

T (µ∞ · Σ′∞) and Sht
µ′

T (µ′∞ · Σ′∞) are proper over k by

Corollary 4.3, so is Shtµ,µ
′

M,D. �

Proposition 5.18. Suppose D is an effective divisor on U of degree d ≥
max{2g′ − 1 +N, 2g}. Then the diagram (5.18) satisfies all the conditions for

applying the Octahedron Lemma [10, Th. A.10].
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Proof. We refer to [10, Th. A.10] for the statement of the conditions.

Condition (1): We need to show the smoothness of all members in the

diagram (5.18) except for Hk′rH,d(Σ). This is done in Proposition 5.17.

Condition (2): We need to check that

Md(µΣ, µ
′
Σ),Md(µΣ, µ

′
Σ)2,Sht

µ

T (µ∞ · Σ′∞)×S′∞ Sht
µ′

T (µ′∞ · Σ′∞)

and

Sht′rG(Σ; Σ∞)×S′∞ Sht′rG(Σ; Σ∞)

are smooth of the expected dimensions. These facts follow from Proposi-

tion 5.17(7), Corollary 4.3 and Proposition 3.9.

Condition (3): We need to show that the diagrams (5.24) and (5.20) satisfy

either the conditions in [10, §A.2.8], or the conditions in [10, §A.2.10].

We first show that (5.24) satisfies the conditions in [10, §A.2.8]. We claim

that Hkµ,µ
′

M,d is a DM stack that admits a finite flat presentation. By Proposi-

tion 5.15, Md(µΣ, µ
′
Σ) ∼= Md × S′∞. By Proposition 5.5(5), Md is DM and

admits a finite flat presentation; therefore, the same is true for Md(µΣ, µ
′
Σ).

Since the map pM,0 : Hkµ,µ
′

M,d → Md(µΣ, µ
′
Σ) is schematic, the same is true

for Md(µΣ, µ
′
Σ). It remains to check that θµ,µ

′

Hk can be factored into a regu-

lar local immersion and a smooth relative DM map. It suffices to show the

same thing for θµHk : Hk
µ

T × S′∞ → Hk′rG(Σ) (and the same result applies to

µ′ as well). The argument is similar to that in [10, Lemma 6.11(1)], and we

only give a sketch here. We may enlarge the set Σ to ‹Σ ⊂ |X − R| such that

deg‹Σ > ρ/2. By enlarging the base field k, we may assume that all points

in ν−1(‹Σ) are defined over k. Choose a section of ν−1(‹Σ) → ‹Σ extending

the existing section µf , and call this section ‹Σ′. Using ‹Σ′ we have a map

θ̃µHk : Hk
µ

T → Hk′rG(‹Σ). Since the projection Hk′rG(‹Σ)→ Hk′rG(Σ) is smooth and

schematic, it suffices to show that θ̃µHk : Hk
µ

T = BunT × X ′r → Hk′rG(‹Σ) is a

regular local embedding. To check this, we calculate the tangent map of θ̃µHk

at a geometric point b = (L, x′1, . . . , x′r) ∈ BunT (K) × X ′r(K). Or rather we

calculate the relative tangent map with respect to the projections to X ′r. We

base change to K without changing notation. The relative tangent complex

of Hk
µ

T at b is H∗(X,OX′/OX)[1]. The relative tangent complex of Hk′rG(‹Σ) at

θ̃µHk(b) is H∗(X,Adx
′,Σ̃(ν∗L))[1], where Adx

′,Σ̃(ν∗L) = Endx
′,Σ̃(ν∗L)/OX , and

Endx
′,Σ̃(ν∗L) is the endomorphism sheaf of the chain ν∗L → ν∗(L(x′1)) → · · ·

preserving the level structures at ‹Σ. The tangent map of θ̃µHk is induced by

a natural embedding e : ν∗OX′/OX ↪→ Adx
′,Σ̃′(ν∗L). A calculation similar to

Lemma 5.12 gives

Endx
′,Σ̃(ν∗L) ⊂ ν∗(OX′(R′))⊕R′ ν∗(σ∗L−1 ⊗ L(R′ − ‹Σ′′)),
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where ‹Σ′′ = σ(‹Σ′). Therefore, we have

Adx
′,Σ̃(ν∗L) ⊂ (ν∗(OX′(R′))/OX)⊕R′ ν∗(σ∗L−1 ⊗ L(R′ − ‹Σ′′)),

under which e corresponds to the embedding of ν∗OX′/OX into the first factor.

One checks that the projection coker(e)→ ν∗(σ
∗L−1⊗L(R′−‹Σ′′)) is injective.

The latter having degree ρ/2− deg‹Σ < 0, we have H0(X, coker(e)) = 0, which

implies that the tangent map of θ̃µHk is injective.

Next we show that (5.20) satisfies the conditions in [10, §A.2.10]. The

argument is similar to that of [10, Lemma 6.14(1)], using the smoothness of

Hd(Σ) proved in Proposition 5.17(5).

Condition (4): We need to show that (5.26) and (5.27) both satisfy the

conditions in [10, §A.2.8]. Again the argument is completely similar to the

corresponding argument in the proof of [10, Th. 6.6]. We omit details here. �

5.4.2. The cycle ζ . Using the dimension calculations in Proposition 5.17(6),

(4) and (2), we have

dim Hk′rH,d(Σ)+dim(Hk
µ

T×Hk
µ′

T ×S
′
∞)−2 dim Hk′rG(Σ) = m = 2d+ρ−N−g+1.

Therefore, the Cartesian diagram (5.24) defines a cycle

(5.42) ζ = (θµ,µ
′

Hk )![Hk′rH,d(Σ)] ∈ Chm(Hkµ,µ
′

M,d).

Lemma 5.19. Assume d ≥ max{2g′ − 1 +N, 2g +N}. Let

ζ] ∈ Ch∗(Hµµ′ ×S′∞)

be the pullback of ζ under the isomorphism ΞH. Then when restricted over

A♦d , ζ] coincides with the fundamental class of Hµµ′ ×S′∞.

Proof. We have a map HkrH,d(Σ)→ Ud ×Xr similar to the one defined in

[10, §6.3.4]. Let (Ud×Xr)◦ be the open subset consisting of (D,x1, . . . , xr) such

that each xi is disjoint from the support of D. Let Hk′r,◦H,d(Σ) be the preimage

of (Ud×Xr)◦. Similarly, let Hkµ,µ
′,◦

M,d be the preimage of (Ud×Xr)◦ in Hkµ,µ
′

M,d,

which corresponds under ΞH to an open subset of the form H◦µµ′ ×S′∞.

We have a map HkrH,d(Σ) → HkrG(Σ) ×BunG(Σ) Hd(Σ) by considering the

top row and left column of the diagram (5.17). When restricted to (Ud ×Xr)◦,

this map is an isomorphism. Therefore, Hkr,◦H,d(Σ), and hence Hk′r,◦H,d(Σ) is

smooth of dimension 3(g− 1) +N + 2r+ 2d. Restricting the diagram (5.24) to

(Ud ×Xr)◦, Hkµ,µ
′,◦

M,d is the intersection of smooth stacks with the expected di-

mension dim Hk′r,◦H,d(Σ)+dim(Hk
µ

T×Hk
µ′

T ×S′∞)−dim Hk′rG(Σ) = m. Therefore,

ζ is the fundamental class when restricted to Hkµ,µ
′,◦

M,d = H◦µµ′ ×S′∞.

It remains to show that dim(H♦µµ′−H◦µµ′) < dimH♦µµ′ . The maps H♦µµ′ →
M♦d → A

♦
d are finite surjective. On the other hand, as in [10, §6.4.3], the
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image of H♦µµ′ −H◦µµ′ in A♦d lies in the closed substack Cd consisting of those

(∆,ΘR, ι, a, b, ϑR) where div(a) and div(b) (both are divisors of degree d + ρ

on X) have one point in common that lies in U . Therefore, it suffices to

show that dim Cd < dimAd = m. Now Cd is contained in the image of a map

U×(X
√
R

d+ρ−N−−1×Pic
√
R;
√
R

X

X
√
R

d+ρ−N+−1)→ X
√
R

d+ρ−N−×Pic
√
R;
√
R

X

X
√
R

d+ρ−N+
. Using

d ≥ 2g+N we may calculate the dimension ofX
√
R

d+ρ−N−−1×Pic
√
R;
√
R

X

X
√
R

d+ρ−N+−1

by Riemann-Roch, from which we conclude again that dim Cd ≤ m − 1. This

completes the proof. �

5.4.3. Consider the cycle

(id,FrMd(µΣ,µ
′
Σ))

!ζ ∈ Ch0(Shtµ,µ
′

M,d).

This is well defined becauseMd(µΣ, µ
′
Σ) is smooth DM by Proposition 5.17(7),

and hence (id,Fr) is a regular local immersion. Let

((id,FrMd(µΣ,µ
′
Σ))

!ζ)D ∈ Ch0(Shtµ,µ
′

M,D)

be its D-component. Since Shtµ,µ
′

M,D is proper by Proposition 5.17(8), it makes

sense to take degrees of 0-cycles on it. Hence we define

〈ζ,Γ(FrMd(µΣ,µ
′
Σ))〉D := deg((id,FrMd(µΣ,µ

′
Σ))

!ζ)D ∈ Q.

Theorem 5.20. Suppose D is an effective divisor on U of degree d ≥
max{2g′ − 1 +N, 2g}. We have

(5.43)

Ñ ∏
x′∈Σ′∞

dx′

é
· Iµ,µ′(hD) = 〈ζ,Γ(FrMd(µΣ,µ

′
Σ))〉D.

Proof. From the definition of Heegner–Drinfeld cycles, it is easy to see

using the diagram (5.29) that

(5.44)

Ñ ∏
x′∈Σ′∞

dx′

é
· Iµ,µ′(hD) = deg

Ä
(θ′µ × θ′µ′)![Sht′rG(Σ; Σ∞;hD)]

ä
.

On the other hand, applying the Octahedron Lemma [10, Th. A.10] to

(5.18), we get that

(θ′µ × θ′µ′)!(id,FrHd(Σ))
![Hk′rH,d(Σ)×S′∞]

= (id,FrMd(µΣ,µ
′
Σ))

!(θµ,µ
′

Hk × idS′∞)![Hk′rH,d(Σ)×S′∞]

= (id,FrMd(µΣ,µ
′
Σ))

!ζ ∈ Ch0(Shtµ,µ
′

M,d).

(5.45)

If we can show that

(5.46) (id,FrHd(Σ))
![Hk′rH,d(Σ)×S′∞] = [Sht′rH,d(Σ; Σ∞)],
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then extracting the D-components of (5.45) and (5.46) identifies

[(θ′µ × θ′µ′)![Sht′rG(Σ; Σ∞;hD)]

with the cycle ((id,FrMd(µΣ,µ
′
Σ))

!ζ)D. Taking degrees then identifies the right

side of (5.44) with the right side of (5.43), and we are done. Therefore, it

remains to show (5.46). The argument is similar to [10, Lemma 6.14(2)]. Let

Sht′r,◦H,d(Σ; Σ∞) ⊂ Sht′rH,d(Σ; Σ∞) be the preimage of (Ud × Xr)◦. By (5.22),

Sht′r,◦H,d(Σ; Σ∞) is the disjoint union over D ∈ Ud(k) of

(ShtrG(Σ; Σ∞;hD)|(X−D)r ×Xr X ′r.

By Lemma 3.13(2), ShtrG(Σ; Σ∞;hD)|(X−D)r is smooth of dimension 2r, which

is the expected dimension from the diagram (5.20). Therefore, the restriction

of (id,FrHd(Σ))
![Hk′rH,d(Σ) × S′∞] to Sht′r,◦H,d(Σ; Σ∞) is the fundamental class.

By Lemma 3.13(3), ShtrG(Σ; Σ∞;hD) has the same dimension as its restriction

over (X − D)r, hence dim Sht′r,◦H,d(Σ; Σ∞) = Sht′rH,d(Σ; Σ∞), therefore (5.46)

holds as cycles on the whole of Sht′rH,d(Σ; Σ∞). This finishes the proof. �

5.4.4. Proof of Theorem 5.6. Now we can deduce Theorem 5.6 from The-

orem 5.20.

Consider the diagram (5.26). Moving the Atkin–Lehner automorphism of

Md(µΣ, µ
′
Σ) from the vertical arrow to the horizontal arrow, we get another

Cartesian diagram:

Shtµ,µ
′

M,d

��

// Hkµ,µ
′

M

(pM,0,pM,r)

��

Md(µΣ, µ
′
Σ)

(id,AL−1
M,∞◦Fr)

//Md(µΣ, µ
′
Σ)×Md(µΣ, µ

′
Σ).

(5.47)

From this we get

(5.48) (id,FrMd(µΣ,µ
′
Σ))

!ζ = (id,AL−1
M,∞ ◦ Fr)!ζ ∈ Ch0(Shtµ,µ

′

M,d).

Define Sµµ′ by the Cartesian diagram

Sµµ′ //

��

Hµµ′

(pH,0,pH,r)

��

Md

(id,Fr)
//Md ×Md.

(5.49)
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Using the isomorphisms ΞM and ΞH established in Propositions 5.15 and

5.16, (5.47) is isomorphic to the Cartesian diagram

Sµµ′ ×S′∞ //

��

Hµµ′ ×S′∞

(pH,0×idS′∞
,pH,r×idS′∞

)

��

Md ×S′∞

(id,FrMd
×idS′∞

)
// (Md ×S′∞)× (Md ×S′∞).

(5.50)

Here we are using Proposition 5.15(2) to identify AL−1
M,∞ ◦ Fr on Md(µΣ, µ

′
Σ)

with FrMd
×idS′∞ on Md ×S′∞. In particular, we get an isomorphism

ΞS : Sµµ′ ×S′∞
∼−→ Shtµ,µ

′

M,d.

Recall that ζ] ∈ Chm(Hµµ′ ×S′∞) is the transport of ζ under the isomor-

phism ΞH. Then we have

(5.51) (id,AL−1
M,∞ ◦ Fr)!ζ = (id,FrMd

×idS′∞)!ζ] ∈ Ch0(Sµµ′ ×S′∞).

By Lemma 5.19, ζ] is the fundamental cycle of Hµµ′ × S′∞ when restricted

to A♦d . By Proposition 5.5(4), the complement ofM♦d ×A♦
d
M♦d inMd×AdMd

has dimension strictly smaller than dimMd. (The condition d ≥ 2g′−1+N =

4g − 3 + ρ + N implies d ≥ 3g − 2 + N .) Therefore, we may replace ζ] with

the fundamental cycle of the closure of Hµµ′ |A♦
d
× S′∞, and the intersection

number on the right-hand side of (5.51) does not change. We denote the latter

by H♦µµ′ ×S′∞. Combining (5.48) and (5.51), we get

(id,FrMd
×idS′∞)!ζ]

= (id,FrMd
×idS′∞)![H♦µµ′ ×S′∞]

= ((id,FrMd
)![H♦µµ′ ])× [S′∞] ∈ Ch0(Sµµ′ ×S′∞).

Taking the degree of the D-component, we get

〈ζ,Γ(FrMd(µΣ,µ
′
Σ))〉D = deg(S′∞) · 〈[H♦µµ′ ],Γ(FrMd

)〉D.

Using Theorem 5.20, we get

Iµ,µ
′
(hD) =

Ñ ∏
x′∈Σ′∞

dx′

é−1

〈ζ,Γ(FrMd(µΣ,µ
′
Σ))〉D

=

Ñ ∏
x′∈Σ′∞

dx′

é−1

deg(S′∞) · 〈[H♦µµ′ ],Γ(FrMd
)〉D

= 〈[H♦µµ′ ],Γ(FrMd
)〉D.
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It remains to calculate 〈[H♦µµ′ ],Γ(FrMd
)〉D. Note that Hµµ′ is a self-

correspondence of Md over Ad. By the discussion in [10, §A.4.5], the map

Sµµ′ →Md
f[d−→ A[d lands in the rational points A[d(k), hence we have a decom-

position

Sµµ′ =
∐

a∈A[
d
(k)

Sµµ′(a).

Under the isomorphism ΞM, this gives a refinement of the decomposition

(5.28), namely,

Shtµ,µ
′

M,D

∐
a∈A[D(k) Sµµ′(a)×S′∞.

ΞS
∼

oo

The fundamental cycle [H♦µµ′ ] gives a cohomological correspondence be-

tween the constant sheaf onMd and itself. It induces an endomorphism of the

complex Rfd,!Q`:

fd,![H
♦
µµ′ ] : Rfd,!Q` −→ Rfd,!Q`.

Taking direct image under Ω, we also get an endomorphism of Rf [d,!Q`

f [d,![H
♦
µµ′ ] : Rf [d,!Q` −→ Rf [d,!Q`.

Applying the Lefschetz trace formula [10, Prop. A.12] to the diagram (5.49)

(which is stated for S being a scheme, so we apply it to the map f [d rather than

fd), we get that

(5.52) 〈[H♦µµ′ ],Γ(FrMd
)〉D =

∑
a∈A[D(k)

Tr(f [d,![H
♦
µµ′ ] ◦ Fra, (Rf

[
d,!Q`)a).

Since Hµµ′ is the composition of r+ times H+ and r− times H−, the

cohomological correspondence [H♦µµ′ ] is equal to the composition of r+ times

[H♦+] and r− times [H♦−] over A♦d . By Proposition 5.5(4), the complement of

M♦d ×A♦
d
M♦d in Md ×Ad Md has dimension strictly smaller than dimMd;

therefore, [H♦µµ′ ] and the composition of r+ times [H♦+] and r− times [H♦−]

induce the same endomorphism on fd,!Q` . This implies

fd,![H
♦
µµ′ ] = (fd,![H

♦
+])r+ ◦ (fd,![H

♦
−])r− ∈ End(Rfd,!Q`).

Taking direct image under Ω, we get

f [d,![H
♦
µµ′ ] = (f [d,![H

♦
+])r+ ◦ (f [d,![H

♦
−])r− ∈ End(Rf [d,!Q`).

This combined with (5.52) gives (5.14). The proof of Theorem 5.6 is now

complete.
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6. The moduli stack Nd and orbital integrals

In this section we introduce another moduli stack Nd, similar to Md.

The point-counting on Nd is closely related to orbital integrals appearing in

Jacquet’s RTF we set up in Section 2 for our specific test functions.

6.1. Definition of Nd.

6.1.1. Our moduli space Nd depends on the ramification set R with de-

gree ρ, a fixed finite set Σ and a decomposition

Σ = Σ+ t Σ−, N± = deg Σ±.

In our application, such a decomposition comes from a pair µ, µ′ ∈ Tr,Σ, for

which we take Σ± = Σ±(µ, µ′) as in (4.5) and (4.6). We are also assuming that

Σ ∩R = ∅.

Let d ≥ 0 be an integer. Let Qd be the set of quadruples

d = (d11, d12, d21, d22) ∈ Z4
≥0

satisfying d11 + d22 = d12 + d21 = d+ ρ.

Definition 6.1. Let d ∈ Qd. Let Ñd = Ñd(Σ±) be the stack whose S-points

consist of

(L\1,L
\
2,L

′\
1 ,L

′\
2 , ϕ, ψR),

where

• For i = 1, 2, L\i = (Li,Ki,R, ιi) and L′\i = (L′i,K′i,R, ι′i) ∈ Pic
√
R

X (S), such

that for any geometric point s ∈ S, deg(L′i|X×s) − deg(Lj |X×s) = dij for

i, j ∈ {1, 2}.
• ϕ is an OX×S-linear map L1 ⊕ L2 → L′1 ⊕ L′2. We write it as a matrix

ϕ =

ñ
ϕ11 ϕ12

ϕ21 ϕ22

ô
,

where ϕij : Lj → L′i.
• ψR is an OR×S-linear map K1,R ⊕K2,R → K′1,R ⊕K′2,R. Again we write ψR

as a matrix

ψR =

ñ
ψ11,R ψ12,R

ψ21,R ψ22,R

ô
with ψij,R : Kj,R → K′i,R.

These data are required to satisfy the following conditions:
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(0) The following diagram is commutative for 1 ≤ i, j ≤ 2:

K⊗2
j,R

ψ⊗2
ij,R

//

ιj

��

K′⊗2
i,R

ι′i
��

Lj |R×S
ϕij |R×S

// L′i|R×S .

(6.1)

(1) ϕ22|Σ−×S = 0; ϕ11|Σ+×S and ϕ22|Σ+×S are nowhere vanishing.

(2) ϕ21|Σ+×S = 0; ϕ12|Σ−×S and ϕ21|Σ−×S are nowhere vanishing.

(3) det(ψR) = 0. Moreover, det(ϕ) vanishes only to the first order along R×S.

(By (6.1) and det(ψR) = 0, det(ϕ) does vanish along R× S.)

(4) This condition is only non-void when Σ = ∅ and R = ∅: det(ϕ) is not

identically zero on X × s for any geometric point s of S.

(5) For each geometric point s ∈ S, the following conditions hold. If d11 <

d22 − N−, then ϕ11|X×s 6= 0; if d11 ≥ d22 − N−, then ϕ22|X×s 6= 0. If

d12 < d21 −N+, then ϕ12|X×s 6= 0; if d12 ≥ d21 −N+, then ϕ21|X×s 6= 0.

There is an action of Pic
√
R

X on Ñd by twisting each L\i and L′\i simultane-

ously (i = 1, 2). Let Nd be the quotient

Nd := Ñd/Pic
√
R

X .

Let Nd be the disjoint union

Nd =
∐
d∈Qd

Nd.

6.1.2. Next we give an alternative description of Nd in the style of [10,

§3], which makes its similarity with Md more transparent.

Let (L\1,L
\
2,L

′\
1 ,L

′\
2 , ϕ, ψR) ∈ Nd(S). For i, j ∈ {1, 2}, define

L\ij = L\,⊗−1
j ⊗ L′\i = (L⊗−1

j ⊗ L′i,K⊗−1
j,R ⊗K

′
i,R, ι

−1
j ⊗ ι

′
i).

We have L\ij ∈ Pic
√
R

X (S). By the diagram (6.1), (L\ij , ϕij , ψij,R) defines a point

in “X√Rdij (S).

For (i, j) = (1, 1) or (1, 2), we thus have a morphism ij : Nd → “X√Rdij
sending the data (L\1,L

\
2,L

′\
1 ,L

′\
2 , ϕ, ψR) ∈ Nd(S) to (L\ij , ϕij , ψij,R) ∈ “X√Rdij (S).

The condition ϕ21|Σ+×S =0 allows us to view ϕ21 as a section of L21(−Σ+),

which has degree d21−N+ and extends to a point L\21(−Σ+) ∈ Pic
√
R

X (S) using

the original K21,R = K⊗−1
1 ⊗ K′2 and ι−1

1 ⊗ ι′2 (because Σ+ ∩ R = ∅). We

then define a morphism 21 : Nd → “X√Rd21−N+
sending (L\1,L

\
2,L

′\
1 ,L

′\
2 , ϕ, ψR) to

(L\21(−Σ+), ϕ21, ψ21,R). Similarly we can define 22 : Nd → “X√Rd22−N− . We have
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constructed a morphism

d = (ij)i,j∈{1,2} : Nd −→ “X√Rd11
× “X√Rd22−N− ×

“X√Rd12
× “X√Rd21−N+

.

In the above construction, we have canonical isomorphisms L11 ⊗ L22
∼=

L12 ⊗ L21 and K11,R ⊗K22,R
∼= K12,R ⊗K21,R, which give a canonical isomor-

phism

(6.2) L\11 ⊗ L
\
22
∼= L\12 ⊗ L

\
21 ∈ Pic

√
R,d+ρ

X (S).

Moreover, the condition that det(ψR)=0 implies that ψ11,Rψ22,R=ψ12,Rψ21,R.

Therefore, the isomorphism (6.2) extends to an isomorphism

(L\11 ⊗ L
\
22, ψ11,Rψ22,R) ∼= (L\12 ⊗ L

\
21, ψ12,Rψ21,R) ∈ Pic

√
R;
√
R,d+ρ

X (S).

Therefore, d lifts to a morphism

(6.3) d : Nd −→ (“X√Rd11
× “X√Rd22−N−)×

Pic
√
R;
√
R,d+ρ

X

(“X√Rd12
× “X√Rd21−N+

).

Here the fiber product is formed using the following maps:“X√Rd11
× “X√Rd22−N−

(ÂJ

√
R,
√
R

d11
,ÂJ

√
R,
√
R

d22−N− )
−−−−−−−−−−−−−−→ Pic

√
R;
√
R,d11

X ×Pic
√
R;
√
R,d22−N−

X

(id,⊗ȮX(Σ−))−−−−−−−−−→ Pic
√
R;
√
R,d11

X ×Pic
√
R;
√
R,d22

X
mult−−−→ Pic

√
R;
√
R,d+ρ

X

(where mult is the multiplication map for Pic
√
R;
√
R

X ) and“X√Rd12
× “X√Rd21−N+

(ÂJ

√
R;
√
R

d12
,ÂJ

√
R;
√
R

d21−N+
)

−−−−−−−−−−−−−−→ Pic
√
R;
√
R,d12

X ×Pic
√
R;
√
R,d21−N+

X

(id,⊗ȮX(Σ+))−−−−−−−−−→ Pic
√
R;
√
R,d12

X ×Pic
√
R;
√
R,d21

X
mult−−−→ Pic

√
R;
√
R,d+ρ

X .

6.1.3. We have a morphism to the base (cf. Section 5.1.2)

gd : Nd −→ Ad = Ad(Σ±)

sending (L\1,L
\
2,L

′\
1 ,L

′\
2 , ϕ, ψR) to (∆,ΘR, ι, a, b, ϑR), where

∆ = L⊗−1
1 ⊗ L⊗−1

2 ⊗ L′1 ⊗ L′2,

ΘR = K⊗−1
1,R ⊗K

⊗−1
2,R ⊗K

′
1,R ⊗K′2,R, ιR

is the obvious product of ι1ι2 and ι′1ι
′
2, a = ϕ11ϕ22, b = ϕ12ϕ21, ϑR =

ψ11,Rψ22,R = ψ12,Rψ21,R. We also have the composition

g[d = Ω ◦ gd : Nd
gd−→ Ad

Ω−→ A[d.

Proposition 6.2. Let d ∈ Σd. Then

(1) the morphism d in (6.3) is an open embedding, and Nd is geometrically

connected ;
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(2) if d ≥ 4g − 3 + ρ + N , then Nd is a smooth DM stack of dimension

2d+ ρ− g −N + 1 = m;

(3) the following diagram is commutative:

Nd �
� d

//

gd

��

(“X√Rd11
× “X√Rd22−N−)×

Pic
√
R;
√
R,d+ρ

X

(“X√Rd12
× “X√Rd21−N+

)”add

√
R
×”add

√
R

��

Ad �
� ωd

// “X√Rd+ρ−N− ×Pic
√
R;
√
R,d+ρ

X

“X√Rd+ρ−N+
;

(6.4)

(4) the morphisms gd and g[d are proper.

Proof. The proofs of (1) and (3) are similar to their counterparts in [10,

Prop 3.1].

(2) We first show that Nd is a DM stack. By conditions (4) and (5) of

Definition 6.1, at most one of ϕij can be identically zero, so Nd is covered by

four open substacks Uij , i, j ∈ {1, 2}, in which only ϕij is allowed to be zero.

(In fact, two of these will be empty by condition (5).) We will show that U11

is a DM stack, and the argument for other Uij is similar. Since U11 is open in

V11 =
(“X√Rd11

×X
√
R

d22−N−

)
×

Pic
√
R;
√
R

X

(
X
√
R

d12
×X

√
R

d21−N+

)
,

it suffices to show V11 is DM. The projection V11 → X
√
R

d22−N−×X
√
R

d12
×X

√
R

d21−N+

is schematic. By Lemma A.4(2), X
√
R

n is DM for any n, therefore V11, hence

U11 is also DM.

We now prove the smoothness of Nd in the case d11 < d22 − N− and

d12 < d21−N+; the other cases are similar. In this case the image of d lies in

the open substack

(
X
√
R

d11
× “X√Rd22−N−

)
×

Pic
√
R;
√
R

X

(
X
√
R

d12
× “X√Rd21−N+

)
.

Since d12 + (d21−N) = d+ρ−N ≥ 2(2g− 1 +ρ)− 1 by assumption on d, and

d12 < d21−N+, we have d21−N+ ≥ 2g−1 +ρ. Similarly, we have d22−N− ≥
2g − 1 + ρ. Therefore, the Abel-Jacobi maps “X√Rd22−N− → Pic

√
R;
√
R,d22−N−

X

and “X√Rd21−N+
→ Pic

√
R;
√
R,d21−N+

X are affine space bundles by Riemann-Roch,

hence smooth. It therefore suffices to show the smoothness of

(6.5) Q :=

Å
X
√
R

d11
× Pic

√
R;
√
R,d22−N−

X

ã
×

Pic
√
R;
√
R

X

Å
X
√
R

d12
× Pic

√
R;
√
R,d21−N+

X

ã
.
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We have the evaluation maps (by recording the square root line along R and

its section)

ev
√
R

dij
: X
√
R

dij
−→ [ResRk A1/ResRk Gm],

ev
√
R

Pic : Pic
√
R;
√
R

X −→ [ResRk A1/ResRk Gm],

which are both smooth, by Lemma A.4. To simplify notation, we write

[ResRk A1/ResRk Gm] = [A1/Gm]R.

Then the fiber product of these maps give a smooth map

ev
√
R
Q : Q −→ ([A1/Gm]R × [A1/Gm]R)×[A1/Gm]R ([A1/Gm]R × [A1/Gm]R).

Let CR := ResRk A2 ×ResRk A1 ResRk A2 with the two maps ResRk A2 → ResRk A1

both given by (u, v) 7→ uv. Then the target of ev
√
R
Q can be written as

[CR/ResRk G3
m], where the torusG3

m is the subtorus ofG4
m consisting of (u,v,s, t)

such that uv = st. After base change to k, we have CR,k
∼=
∏
x∈R(k)Cx, where

Cx ⊂ A4
k

is the cone defined by uv− st = 0. Note that C◦x = Cx−{(0, 0, 0, 0)}
is smooth over k. The product

∏
x∈R(k)C

◦
x defines a smooth open subset

C◦R ⊂ CR. We claim that the image of ev
√
R
Q lies in [C◦R/ResRk G3

m]. For

otherwise, there would be a point (Li, . . . , ϕ, ψR) ∈ Nd(k) and some x ∈ R(k)

such that ψij,R (hence ϕij) vanishes at x for all i, j ∈ {1, 2}, implying that

det(ϕ) vanished twice at x and contradicting condition (3). Therefore, the

image of ev
√
R
Q lies in the smooth locus of [CR/ResRk G3

m], showing that Q is

itself smooth over k. This implies that Nd is smooth over k. The dimension

calculation is similar to Proposition 5.5(1) for dimMd, and we omit it here.

(4) Since Ω is proper, it suffices to show that gd is proper. As in the proof

of [10, Prop. 3.1(3)], it suffices to show that the restriction of ‘add

√
R

d1,d2

(6.6) X
√
R

d1
× “X√Rd2

−→ “X√Rd1+d2

is proper for any d1, d2 ≥ 0. Since “X√Rn → “Xn is finite (hence proper), the

properness of (6.6) follows from the properness of ‘addd1,d2 : Xd1 × “Xd2 →“Xd1+d2 , which was shown in the proof of [10, Prop. 3.1(3)]. �

6.2. Relation with orbital integrals.

6.2.1. The rank one local system. Recall the double cover ν : X ′ → X

from Section 4.1.1. Let σ : X ′ → X ′ be the non-trivial involution over X.

The direct image sheaf ν∗Q` has a decomposition ν∗Q` = Q` ⊕ LX′/X into

σ eigenspaces of eigenvalue 1 and −1. Then LX′/X |X−R is a local system of

rank one with geometric monodromy of order 2 around each k-point of the

ramification locus R.
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Starting with L = LX′/X , in Section A.2.2 we construct a rank one local

system LPic on Pic
√
R

X whose corresponding trace function is the quadratic idèle

class character η = ηF ′/F (Proposition A.12). Via pullback along ”AJ

√
R

d : “X√Rd
→ Pic

√
R,d

X , it gives a rank one local system L̂d on “X√Rd for each d ∈ Z extending

the local system Ld on X
√
R

d defined in Lemma A.7.

For d ∈ Qd, we define a local system Ld on Nd by

Ld = ∗d(L̂d11 �Q` � L̂d12 �Q`).

6.2.2. Recall that, for each f ∈H Σ∪R
G , by (2.30) we have defined

fΣ± = f ·
(⊗
x∈R

h�x

)
⊗
(⊗
x∈Σ

1Jx

)
∈ C∞c (G(A)).

Let D be an effective divisor on U = X − Σ − R of degree d. In [10,

§3.1] we have defined a spherical Hecke function hD ∈ H Σ∪R
G . Therefore, the

element h
Σ±
D ∈ C∞c (G(A)) is defined.

For u ∈ P1(F )− {1} and h ∈ C∞c (G(A)), let

(6.7) J(u, h, s1, s2) =
∑

γ∈A(F )\G(F )/A(F ),inv(γ)=u

J(γ, h, s1, s2).

Note that when u /∈ {0, 1,∞}, the right-hand side of (6.7) has only one term;

when u = 0 or ∞, the right-hand side of (6.7) has three terms (cf. [10, 3.3.2]).

Recall the space A[D defined in (5.6). Then we have a map

invD : A[D(k) −→ P1(F )− {1}

sending (∆, a, b) to the rational function b/a ∈ P1(F ). As in [10, 3.3.2], the

map invD is injective.

Theorem 6.3. Let D be an effective divisor on U = X−Σ−R of degree d.

Let u ∈ P1(F )− {1}.
(1) If u is not in the image of invD : A[D(k) ↪→ P1(F )− {1}, then

J(u, hΣ±
D , s1, s2) = 0.

(2) If u /∈ {0, 1,∞} and u = invD(a) for a ∈ A[D(k) (which is then unique),

then

(6.8) J(u, hΣ±
D , s1, s2) =

∑
d∈Qd

q(2d12−d−ρ)s1+(2d11−d−ρ)s2 Tr(Fra, (Rg
[
d,!Ld)a).

(3) Assume d ≥ 4g−3+ρ+N . If u = 0 or∞, and u = invD(a) for a ∈ A[D(k)

(which is then unique), then (6.8) still holds.

The proof of this theorem will occupy the rest of this subsection. From

now on, we fix an effective divisor D on U of degree d.
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6.2.3. The set XD,̃γ . Recall from Section A.1.6 the definition of O×√
R

,

which maps to O× and hence acts on A× by translation. Define a groupoid

Div
√
R(X) = A×/O×√

R
.

There are natural maps

AJ
√
R(k) : Div

√
R(X) −→ F×\A×/O×√

R
= Pic

√
R

X (k),

ω : Div
√
R(X) −→ A×/O× = Div(X).

We denote an element in Div
√
R(X) by E\ and denote its image in Div(X) by

E. We denote the multiplication in Div
√
R(X) by +. For E\ ∈ Div

√
R(X), the

line bundle OX(−E), when restricted to R, carries a canonical square root,

which we denote by OX(−E\)√R (an invertible OR-module). The character

η = ηF ′/F on Pic
√
R

X (k) can also be viewed as a character on Div
√
R(X) by

pullback.

Let γ̃ ∈ GL2(F ). Let ‹XD,̃γ be the groupoid of (E\1, E
\
2, E

′\
1 , E

′\
2 , ψR), where

• E\i , E
′\
i ∈ Div

√
R(X) for i = 1, 2.

• ψR : OX(−E\1)√R ⊕ OX(−E\2)√R → OX(−E′\1 )√R ⊕ OX(−E′\2 )√R is an

OR-linear map. Write ψR as a matrix
î ψ11,R ψ12,R

ψ21,R ψ22,R

ó
.

These data are required to satisfy the following conditions:

(0) The rational map γ̃ : O2
X 99K O2

X given by the matrix γ̃ induces an every-

where defined map

ϕ : OX(−E1)⊕OX(−E2) −→ OX(−E′1)⊕OX(−E′2).

We write ϕ as a matrix
î
ϕ11 ϕ12
ϕ21 ϕ22

ó
. Moreover, ψ2

ij,R = ϕij |R for 1 ≤ i, j ≤ 2.

(1) ϕ22 vanishes along Σ−.

(2) ϕ21 vanishes along Σ+.

(3) det(ϕ) has divisor D +R.

Define the groupoid

XD,̃γ = ‹XD,γ̃/Div
√
R(X)

with the action of Div
√
R(X) given by simultaneous translation on E\i and E′\i .

We may identify XD,γ̃ with the sub groupoid of ‹XD,γ̃ where E′\2 is equal to the

identity element in Div
√
R(X).
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Lemma 6.4. We have

J(γ, hΣ±
D , s1, s2) =

∑
Λ=(E\1,...,E

′\
2 ,ψR)∈X

D,̃γ

× 1

# Aut(Λ)
q− deg(E1−E2+E′1−E

′
2)s1q− deg(−E1+E2+E′1−E

′
2)s2η(E\1 − E

\
2).

(6.9)

Proof. Let ‹A ⊂ GL2 be the diagonal torus, and let Z ⊂ GL2 be the center.

Let

h̃
Σ±
D = h̃D ·

(⊗
x∈R

h̃�x

)
⊗
(⊗
x∈Σ

1
J̃x

)
.

Here h̃D ∈ HGL2 is as defined in [10, proof of Prop 3.2], and J̃x ⊂ GL2(Ox)

is defined by the same formulae as Jx (see (2.16)), with G replaced by GL2.

Then we have h
Σ±
D = p∗h̃

Σ±
D , where p∗ : C∞c (GL2) → C∞c (G(A)) is the tensor

product of px,∗. This allows us to convert the integral J(γ, hΣ±
D , s1, s2) into an

integral on GL2, i.e.,

J(γ, hΣ±
D , s1, s2)

=

∫
∆(Z(A))\(Ã(A)×Ã(A))

h̃
Σ±
D (t′−1γ̃t)|α(t)α(t′)|s1 |α(t′)/α(t)|s2η(α(t))dtdt′.

Here α : ‹A → Gm is the positive root
î
t1 0
0 t2

ó
7→ t1/t2, and the measure on

A× is such that vol(O×) = 1. We may identify ∆(Z)\‹A × ‹A with G3
m such

that (
î
t1 0
0 t2

ó
,
î
t′1 0
0 1

ó
) corresponds to (t1, t2, t

′
1) ∈ G3

m, and we rewrite the above

integral as

J(γ, hΣ±
D , s1, s2)

=

∫
(A×)3

h̃
Σ±
D (
î
t′−1
1 0
0 1

ó
γ̃
î
t1 0
0 t2

ó
)|t1t−1

2 t′1|s1 |t2t−1
1 t′1|s2η(t1t

−1
2 )dt1dt2dt

′
1.

(6.10)

For x ∈ |X|, define a set ΞD,x as follows:

• for x ∈ R, let ΞD,x = Ξx defined in Section 2.4.1;

• for x ∈ Σ, ΞD,x = J̃x;

• for x ∈ |X|−R−Σ, ΞD,x = Mat2(Ox)vx(det)=nx , where nx is the coefficient

of x in D.

Let ΞD =
∏
x∈|X| ΞD,x. Then there is a projection map

µ : ΞD −→ Mat2(O)div(det)=D+R.

We have

(6.11) h̃
Σ±
D = µ∗1ΞD .
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In fact, this can be checked place by place. The assertion is trivial when x /∈ R,

and it follows from Lemma 2.4 when x ∈ R.

By (6.11), we may rewrite (6.10) as

J(γ, hΣ±
D , s1, s2)

=

∫
(A×)3

#µ−1
Äî

t′−1
1 0
0 1

ó
γ̃
î
t1 0
0 t2

óä
|t1t−1

2 t′1|s1 |t2t−1
1 t′1|s2η(t1t

−1
2 )dt1dt2dt

′
1.

(6.12)

Here µ−1(g) = ∅ if g /∈ Mat2(O)div(det)=D+R.

Note that the integrand in (6.12) is invariant under translating each of

the variables by O×√
R

, therefore we may turn J(γ, hΣ±
D , s1, s2) into an integra-

tion over Div
√
R(X)3. To do this, we first write the integrand as a function

on Div
√
R(X)3. Denote the images of t1, t2, t

′
1 and t′2 = 1 in Div

√
R(X) by

E\1, E
\
2, E

′\
1 and E′\2 = 0. One checks that the set µ−1(

î
t′−1
1 0
0 1

ó
γ̃
î
t1 0
0 t2

ó
) is in nat-

ural bijection with the fiber of λ̃ : ‹XD,γ̃ → Div
√
R(X)4 over (E\1, E

\
2, E

′\
1 , E

′\
2 ),

or equivalently the fiber of λ : XD,γ → Div
√
R(X)3. Moreover, we have

|ti| = q− degEi , |t′i| = q− degE′i , i, j ∈ {1, 2}.

Hence the integrand in (6.12) descends to the following function on Div
√
R(X)3

(with E\2 = 0):

(6.13) λ!1XD,γq
− deg(E1−E2+E′1−E

′
2)s1q− deg(−E1+E2+E′1−E

′
2)s2η(E\1 − E

\
2).

To finish the argument we need some general remarks about integrating

a function over a groupoid:

(i) If G is a groupoid with finite automorphisms, and if f is a function on G
with finite support, then define∫

G
f :=

∑
g∈G

1

# Aut(g)
f(g).

(ii) The integration above is compatible with push-forward of functions. If

ϕ : G → G′ is a map of groupoids with finite automorphisms, and if f is a

function with finite support on G′, then∫
G
f =

∫
G′
ϕ!f,

where (ϕ!f)(g′) =
∫
ϕ−1(g′) f |ϕ−1(g′), where ϕ−1(g′) is the fiber groupoid of

ϕ over g′.

(iii) Suppose we have a topological group H with Haar measure dh and a

homomorphism ϕ : H1 → H from a compact topological group H1 such

that the image of ϕ is open and ϕ has finite kernel. Then the groupoid

G = H/H1 has discrete topology with finite automorphism groups equal
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to ker(ϕ). For a function f on H invariant under right translation by

ϕ(H1), we have

(6.14)

∫
H
f(h)dh = vol(ϕ(H1), dh)# ker(ϕ) ·

∫
H/H1

f,

where f is the pullback of the descent of f from H/ϕ(H1) to H/H1.

Apply (iii) above to H = (A×)3 and H1 = (O×√
R

)3 with the natural map

H1 → (O×)3 ↪→ H. Note that the kernel and the cokernel of the map O×√
R
→

O× have the same finite cardinality 2#R. Since vol(O×) = 1 under the Haar

measure on A×, the constant factor on the right side of (6.14) is 1 in this case.

Therefore, by (6.14), (6.12) can be written as the integration over Div
√
R(X)3

of the function (6.13). Applying (ii) above to λ : XD,γ → Div
√
R(X)3, we

further turn the integration over Div
√
R(X)3 into an integration over XD,γ ,

J(γ, hΣ±
D , s1, s2)

=

∫
XD,γ

q− deg(E1−E2+E′1−E
′
2)s1q− deg(−E1+E2+E′1−E

′
2)s2η(E\1 − E

\
2),

(6.15)

where (E\1, E
\
2, E

′\
1 , E

′\
2 ) is the image of a variable point of XD,γ in

Div
√
R(X)4/Div

√
R(X).

Now the formula (6.9) follows from (6.15) by the definition in (i). �

6.2.4. Proof of Theorem 6.3 for u /∈ {0, 1,∞}. For u /∈ {0, 1,∞}, let

γ̃(u) =
î

1 u
1 1

ó
, which represents the unique ‹A(F ) double coset in GL2(F ) with

invariant u. We define a map

λ : XD,̃γ(u)−→Nd(k),

(E\1, E
\
2, E

′\
1 , E

′\
2 , ψR) 7−→ (L\1,L

\
2,L

′\
1 ,L

′\
2 , ϕ, ψR),

where L\i (resp. L′\i ) is the image of −E\i (resp. −E′\i ) under

AJ
√
R(k) : Div

√
R(X) −→ Pic

√
R

X (k);

the definition of ϕ is contained in the definition of ‹XD,γ̃ . If Λ is in the image of

λ, then a := g[d(Λ) ∈ A[D(k) and invD(a) = u. In particular, if u is not in the

image of invD, then XD,γ̃(u) = ∅ hence J(u, h
Σ±
D , s1, s2) = 0 by Lemma 6.4.

Now we assume u = invD(a) for some (unique) a ∈ A[D(k). Let Nd,a =

g[,−1
d (a) and Nd,a =

∐
d∈Qd Nd,a. Then we can write

λ : XD,̃γ(u) −→ Nd,a(k).

Let us define an inverse to λ. Let (L\1, . . . ,L
′\
2 , ϕ, ψR) ∈ Nd,a(k). Since the

(L\1, . . . ,L
′\
2 ) are up to simultaneous tensoring with Pic

√
R

X (k), we may fix L′\2



502 ZHIWEI YUN and WEI ZHANG

to be ȮX , the identity object in Pic
√
R

X (k). Since invD(a) = u 6= 0,∞, the

maps ϕij are all non-zero. Then ϕ21 : L1 → OX = L′2 allows us to write

L1 = OX(−E1) for an effective divisor E1. The lifting L\1 of L1 gives a canon-

ical lifting E\1 ∈ Div
√
R(X) of E1, so that AJ

√
R(k)(−E\1) ∼= L\1 canonically.

Similarly, using ϕ22 we get E\2 ∈ Div
√
R(X) whose inverse represents L\2. Using

ϕ11 and E\1, we further get E′\1 ∈ Div
√
R(X) whose inverse represents L′\1 . Then

(E\1, E
\
2, E

′\
1 , 0, ψR) (0 denotes the identity in Div

√
R(X)) gives an element in

XD,γ̃(u). It is easy to check that this assignment is inverse to λ, hence λ is an

isomorphism of groupoids.

Under λ, we have

−deg(E1 − E2 + E′1 − E′2) = d12 − d21 = 2d12 − d− ρ,(6.16)

−deg(−E1 + E2 + E′1 − E′2) = d11 − d22 = 2d11 − d− ρ,(6.17)

η(E\1 − E
\
2) = η(L\11)η(L\12) = η(L\21)η(L\22),(6.18)

where L\ij = L\,⊗−1
j ⊗ L′\i and degLij = dij . Therefore, we may rewrite (6.9)

as

J(γ(u), h
Σ±
D , s1, s2)

=
∑

Λ=(L\1,...,L
′\
2 ,ϕ,ψR)∈Nd,a(k)

1

# Aut(Λ)
q(2d12−d−ρ)s1+(2d11−d−ρ)s2η(L\11)η(L\12).

By Proposition A.12, the trace function given by LPic is the character η on

Pic
√
R

X (k). The formula (6.8) then follows from the Lefschetz trace formula for

Frobenius: ∑
Λ=(L\1,...,L

′\
2 ,ϕ,ψR)∈Nd,a(k)

1

# Aut(Λ)
η(L\11)η(L\12) = Tr(Fra, (Rg

[
d,!Ld)a).

6.2.5. Proof of Theorem 6.3 for u = 0. There are three A(F ) double cosets

with invariant 0:

1 =

ñ
1 0

0 1

ô
, n+ =

ñ
1 1

0 1

ô
, n− =

ñ
1 0

1 1

ô
.

We first consider the case when Σ− = ∅. Then a0 = (OX(D +R), 1, 0) ∈
A[D(k) is the unique point satisfying invD(a0) = 0 = u. Let “Qd ⊂ Z4 be the

set defined similarly as Qd except we drop the condition that dij ≥ 0. For any

d ∈ “Qd, we define N̂d in the same way as Nd except that we drop condition (5)

in Definition 6.1, but requiring at most one of ϕij is zero. We still have a

map ĝ[d : N̂d → Ad → A[d, and we denote the fiber over a0 by N̂d,a0 . Let

N̂d,a0 =
∐
d∈Q̂d

N̂d,a0 . We have a decomposition N̂d,a0 = N̂+
d,a0
t N̂−d,a0

, where
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N̂+
d,a0

consists of those (L\1, . . . ,L
′\
2 , ϕ, ψR) such that ϕ21 = 0, ϕ12 6= 0; N̂−d,a0

consists of those (L\1, . . . ,L
′\
2 , ϕ, ψR) such that ϕ12 = 0, ϕ21 6= 0.

The same argument as in Section 6.2.4 gives canonical isomorphisms of

groupoids λ± : XD,n±
∼→ N̂±d,a0

(k). Using the isomorphism λ±, (6.16), (6.17)

and (6.18), Lemma 6.4 implies

J(n+, h
Σ±
D , s1, s2)

=
∑

Λ=(L\1,...,L
′\
2 ,ϕ,ψR)∈“N+

d,a0
(k)

1

# Aut(Λ)
q(2d12−d−ρ)s1+(2d11−d−ρ)s2η(L\11)η(L\12)

=
∑
d∈Q̂d

q(2d12−d−ρ)s1+(2d11−d−ρ)s2

×
∑

Λ=(L\1,...,L
′\
2 ,ϕ,ψR)∈“N+

d,a0
(k)

1

# Aut(Λ)
η(L\11)η(L\12).

(6.19)

Similarly,

J(n−, h\D, s1, s2)

=
∑
d∈Q̂d

q(2d12−d−ρ)s1+(2d11−d−ρ)s2

×
∑

Λ=(L\1,...,L
′\
2 ,ϕ,ψR)∈“N−

d,a0
(k)

1

# Aut(Λ)
η(L\21)η(L\22).

(6.20)

On the other hand, by the Lefschetz trace formula for Frobenius, we have∑
d∈Qd

q(2d12−d−ρ)s1+(2d11−d−ρ)s2 Tr(Fra0 , (Rg
[
d,!Ld)a0)

=
∑
d∈Qd

q(2d12−d−ρ)s1+(2d11−d−ρ)s2
∑

Λ=(L\1,··· )∈Nd,a0
(k)

1

# Aut(Λ)
η(L\11)η(L\12)

=
∑
d∈Qd

q(2d12−d−ρ)s1+(2d11−d−ρ)s2

×

Ö ∑
Λ∈N+

d,a0
(k)

1

# Aut(Λ)
η(L\11)η(L\12)+

∑
Λ∈N−

d,a0
(k)

1

# Aut(Λ)
η(L\21)η(L\22)

è
.

Here N±d,a0
is defined as N̂±d,a0

∩ Nd,a0 . By condition (5) in Definition 6.1, we

have N−d,a0
= ∅ if d12 < d21 −N and N+

d,a0
= ∅ if d12 ≥ d21 −N . Therefore,
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the above formula equals

∑
d∈Qd,d12<d21−N

q(2d12−d−ρ)s1+(2d11−d−ρ)s2
∑

Λ∈N+
d,a0

(k)

1

# Aut(Λ)
η(L\11)η(L\12)

(6.21)

+
∑

d∈Qd,d12≥d21−N
q(2d12−d−ρ)s1+(2d11−d−ρ)s2

∑
Λ∈N−

d,a0
(k)

1

# Aut(Λ)
η(L\21)η(L\22).

Comparing the sum of the right-hand sides of (6.19) and (6.20) with the

expression(6.21), the only difference is the range of d in the summation; how-

ever, many d’s do not contribute as the following lemma shows.

Lemma 6.5. Let d ∈ “Qd.
(1) If d12 ≥ 2g − 1 + ρ, then

∑
Λ=(L\1,...,L

′\
2 ,ϕ,ψR)∈“N+

d,a0
(k)

1

# Aut(Λ)
η(L\11)η(L\12) = 0.

(2) If d21 −N+ ≥ 2g − 1 + ρ, then

∑
Λ=(L\1,...,L

′\
2 ,ϕ,ψR)∈“N−

d,a0
(k)

1

# Aut(Λ)
η(L\21)η(L\22) = 0.

(3) We have

J
Çñ

1 0

0 1

ô
, h

Σ±
D , s1, s2

å
= 0.

Proof. (1) Let (X
√
R

d11
×X

√
R

d22
)D+R be the fiber over D +R of the map

X
√
R

d11
×X

√
R

d22

add
√
R

−−−−→ X
√
R

d+ρ

ω
√
R

d+ρ−−−→ Xd+ρ.

We have an isomorphism

(6.22) N̂+
d,a0

∼−→ (X
√
R

d11
×X

√
R

d22−N−)D+R ×X
√
R

d12
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by recording (L\ij , ϕij , ψij,R) for (i, j) = (1, 1), (2, 2) and (1, 2). (Then L\21 is

determined uniquely and ϕ21 = 0.) Using this isomorphism we can write

∑
Λ=(L\1,...,L

′\
2 ,ϕ,ψR)∈“N+

d,a0
(k)

1

# Aut(Λ)
η(L\11)η(L\12)

=
∑

Λ′=(L\11,··· )∈(X
√
R

d11
×X
√
R

d22−N−
)D+R(k)

1

# Aut(Λ′)
η(L\11)

×
∑

Λ′′=(L\12,··· )∈X
√
R

d12
(k)

1

# Aut(Λ′′)
η(L\12).

(6.23)

Since d12 ≥ 2g−1+ρ, the fibers of the map AJ
√
R

d12
(k) : X

√
R

d12
(k)→ Pic

√
R,d12

X (k)

have the same cardinality. Since the character η is non-trivial on Pic
√
R,d12

X (k),

the last sum in (6.23) vanishes.

The proof of (2) is similar to (1), using the isomorphism

N̂−d,a0

∼−→ (X
√
R

d11
×X

√
R

d22−N−)D+R ×X
√
R

d21−N+

instead of (6.22).

(3) The restriction of the character (t, t′) 7→ |tt′|s1 |t′/t|s2η(t) on the stabi-

lizer of 1 under A(A)× A(A) (the diagonal A(A)) is non-trivial, therefore the

integral vanishes. �

By Lemma 6.5(3), we have

(6.24) J(0, hΣ±
D , s1, s2) = J(n+, h

Σ±
D , s1, s2) + J(n−, hΣ±

D , s1, s2),

which is calculated in (6.19) and (6.20). Using Lemma 6.5(1), we may restrict

the summation in the right-hand side of (6.19) to those d ∈ “Qd such that

0 ≤ d12 ≤ 2g−2+ρ (d12 ≥ 0 for otherwise N̂+
d,a0

= ∅). Since d ≥ 4g−3+N+ρ,

we have d12 + (d21−N+) ≥ 2(2g− 2 + ρ) + 1. Therefore, we may alternatively

restrict the summation in the right-hand side of (6.19) to those d ∈ Qd such

that d12 < d21−N+. Therefore, the right-hand side of (6.19) matches the first

term in the right-hand side of (6.21). Similarly, the right-hand side of (6.20)

matches the second term in the right-hand side of (6.21). We thus get (6.8)

by combining (6.24), (6.19), (6.20) and (6.21).

Finally, we consider the case Σ− 6= ∅. Then u is not in the image of invD.

In this case, XD,n± = ∅, hence J(n±, hΣ±
D , s1, s2) = 0 by Lemma 6.4. Together

with Lemma 6.5(3), we get J(0, hΣ±
D , s1, s2) = 0.
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6.2.6. Proof of Theorem 6.3 for u = ∞. There are three A(F ) double

cosets with invariant ∞:

w0 =

ñ
0 1

1 0

ô
, n+w0 =

ñ
1 1

1 0

ô
, n−w0 =

ñ
0 1

1 1

ô
.

The argument is the same as in the case u = 0, which we do not repeat.

7. Proof of the main theorem

7.1. Comparison of sheaves.

7.1.1. The perverse sheaf Kd. Let d ≥ 0 be an integer, and consider the

direct image complex ν
√
R

d,! Q` under ν
√
R

d : X ′d → X
√
R

d defined in (A.10). Let

X◦d ⊂ Xd be the open locus of multiplicity-free divisors, and let X
√
R,◦

d (resp.

X ′◦d ) be its preimage in X
√
R

d (resp. X ′d). Restricting ν
√
R

d to X
√
R,◦

d we get a

finite étale Galois cover X ′◦d → X
√
R,◦

d with Galois group Γd = (Z/2Z)d o Sd.

(Note that ν
√
R

d is still étale when the multiplicity-free divisor meets R, as

X ′ → X
√
R

1 is étale.) As in [10, §8.1.1], for 0 ≤ i ≤ d, we consider the following

representation ρd,i = IndΓd
Γd(i)(χ̃i) of Γd, where Γd(i) = (Z/2Z)do(Si×Sd−i), χi

is the character on (Z/2Z)d that is non-trivial on the first i factors and trivial

on the rest, and χ̃i is the extension of χi to Γd(i) that is trivial on Si × Sd−i.
As we noted towards the end of the proof of [10, Prop 8.2], there is a canonical

isomorphism of Γd-representations:

(7.1) IndΓd
Sd

(1) ∼=
d⊕
i=0

ρd,i.

Then ρi gives rise to a local system L(ρd,i) on X
√
R,◦

d (which is smooth

over k). Let jd : X
√
R,◦

d ↪→ “X√Rd be the inclusion. Let

Kd,i = jd,!∗(L(ρd,i)[d])[−d]

be the middle extension perverse sheaf on “X√Rd .

We first study the direct image complex of fd : Md → Ad. By Proposi-

tion 5.5, for d ≥ 2g′ − 1 +N , dimMd = m = Ad.

Proposition 7.1. Let d ≥ 2g′ − 1 +N .

(1) The complex Rfd,!Q`[m] is a perverse sheaf on Ad, and it is the middle

extension of its restriction to any non-empty open subset of Ad.
(2) We have a canonical isomorphism

(7.2) Rfd,!Q` ∼=
d+ρ−N−⊕
i=0

d+ρ−N+⊕
j=0

(Kd+ρ−N−,i �Kd+ρ−N+,j)|Ad .
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Here we are identifying Ad with an open substack of “X√Rd+ρ−N−×Pic
√
R;
√
R,d+ρ

X“X√Rd+ρ−N+
using (5.4).

Proof. (1) We observe that the base Ad is irreducible (because both maps

νa and νb are vector bundles when d ≥ 2g − 1 + N). By Proposition 5.5(1),

Md is smooth and equidimensional. By Proposition 5.5(3)(4), fd is proper

and small. Therefore, Rfd!Q`[m] is a middle extension perverse sheaf from

any non-empty open subset of Ad.
(2) In fact this part holds under a weaker condition d ≥ 3g − 2 + N . By

Proposition 5.5(2) and the Künneth formula, we have

Rfd!Q` ∼= (Rν̂
√
R

d+ρ−N−,!Q` �Rν̂
√
R

d+ρ−N+,!
Q`)|Ad .

Therefore, it suffices to show that for d′ ≥ 2g′ − g = 3g − 2 + ρ (note that

d+ ρ−N± ≥ 3g − 2 + ρ),

Rν̂
√
R

d′! Q` ∼=
d′⊕
i=0

Kd′,i.

We claim that ν̂
√
R

d′ : “X ′d′ → “X√Rd′ is small when d′ ≥ 2g′ − g. In fact, the only

positive dimensional fibers are over the zero section Pic
√
R,d′

X ↪→ “X√Rd′ , which

has codimension d′ − g + 1 (provided that d′ ≥ g − 1). The restriction of ν̂
√
R

d′

over Pic
√
R,d′

X is the norm map Picd
′
X′ → Pic

√
R,d′

X , whose fibers have dimension

g′ − g. Since d′ ≥ 2g′ − g, we have d′ − g + 1 ≥ 2(g′ − g) + 1, which implies

that ν̂
√
R

d′ is small.

Since the source of ν̂
√
R

d′ is smooth and geometrically connected of dimen-

sion d′, and since ν̂
√
R

d′ is proper, Rν̂
√
R

d′! Q`[d] is a middle extension perverse

sheaf from its restriction to X
√
R,◦

d′ . The rest of the argument is the same as

[10, Prop. 8.2], using (7.1). �

Recall from Section 5.1.5 that we have endomorphisms fd,![H
♦
+] and fd,![H

♦
−]

of Rfd,!Q`.

Proposition 7.2. Suppose d ≥ 2g′ − 1 +N . Then the action of fd,![H
♦
+]

(resp. fd,![H
♦
−] ) preserves each direct summand in the decomposition (7.2) and

acts on the summand (Kd+ρ−N−,i�Kd+ρ−N+,j)|Ad by the scalar d+ρ−N+−2j

(resp. d+ ρ−N− − 2i).

Proof. By Proposition 7.1(1), any endomorphism of the middle extension

perverse sheaf Rfd!Q` (up to a shift) is determined by its restriction to any

non-empty open subset of Ad. Therefore, it suffices to prove the same state-

ments over A♦d , over which H♦+ (resp. H♦−) is the pullback of the incidence

correspondence I ′d+ρ−N+
(resp. I ′d+ρ−N−); see Section 5.1.5. The rest of the

argument is the same as [10, Prop. 8.3]. �
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Now we turn to the direct image complex of gd : Nd → Ad. By Proposi-

tion 6.2, when d ≥ 2g′ − 1 +N and Nd 6= ∅, dimNd = dimAd = m.

Proposition 7.3. Let d ≥ 2g′ − 1 +N and d ∈ Qd.
(1) The complex Rgd,!Ld[m] is a perverse sheaf on Ad, and it is the middle

extension of its restriction to any non-empty open subset of Ad.
(2) We have a canonical isomorphism

(7.3) Rgd,!Ld ∼= (Kd+ρ−N−,d11 �Kd+ρ−N+,d12)|Ad .

Proof. (1) As in the proof of [10, Prop. 8.5], gd is not small; however, by

Proposition 6.2(2) and (4), we know that Rgd,!Ld[m] is Verdier self-dual. Since

gd is finite over A♦d , Rgd,!Ld[m] is a middle extension perverse sheaf on A♦d .

To prove Rgd,!Ld[m] is a middle extension perverse sheaf on the whole Ad, we

only need to show that the restriction Rgd,!Ld[m]|∂Ad lies in strictly negative

perverse degrees, where ∂Ad = Ad −A♦d .

We have Ad = Aa=0
d t Ab=0

d . (See notation in the proof of Proposi-

tion 5.5(4).) Below we will show that Rgd,!Ld[m]|Ab=0
d

lies in negative perverse

degrees, and the argument for Aa=0
d is similar.

When d12 < d21 −N+, we have a Cartesian diagram

g−1
d (Ab=0

d ) //

gd

��

(X
√
R

d11
×X

√
R

d22−N−)×
Pic
√
R;
√
R,d+ρ

X

(X
√
R

d12
× Pic

√
R,d21−N+

X )

add
√
R

d11,d22−N−
×h

��

Ab=0
d

// X
√
R

d+ρ−N− ×Pic
√
R;
√
R,d+ρ

X

Pic
√
R,d+ρ−N+

X ,

where the map h is the composition

X
√
R

d12
× Pic

√
R,d21−N+

X

AJ
√
R

d12
×id

−−−−−−→ Pic
√
R,d12

X ×Pic
√
R,d21−N+

X
mult−−−→ Pic

√
R,d+ρ−N+

X .

We have

Rgd,!Ld|Ab=0
d

∼=
(
Radd

√
R

d11,d22−N−,!(Ld11 �Q`)�Rh!(Ld12 �Q`)
)
|Ab=0

d
.

The first factor Radd
√
R

d11,d22−N−,!(Ld11 � Q`) is concentrated in degree 0 since

add
√
R

d11,d22−N− is finite. The second factor is the constant sheaf on Pic
√
R,d+ρ−N+

X

with geometric stalk isomorphic to H∗(X
√
R

d12
⊗ k, Ld12). By Lemma A.6,

H∗(X
√
R

d12
⊗ k, Ld12)

always lies in degrees

≤ dim H1(X
√
R

1 ⊗ k, L) = dim H1
c((X −R)⊗ k, L) = 2g − 2 + ρ.
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Therefore, Rgd,!Ld|Ab=0
d

lies in degrees ≤ 2g − 2 + ρ. Since codimAd(Ab=0
d ) =

d+ρ−N+−g+1 (see the proof of Proposition 5.5(4)), which is ≥ (2g−2+ρ)+1

(for this we only need the weaker condition d ≥ 3g−2+N+), we conclude that

Rgd,!Ld[m]|Ab=0
d

lies in cohomological degrees strictly less than −dimAb=0
d ,

hence in strictly negative perverse degrees.

When d12 ≥ d21 −N+, the argument is similar. The role of the map h is

now played by

h′ : Pic
√
R,d12

X ×X
√
R

d21−N+

id×AJ
√
R

d21−N+−−−−−−−−−→ Pic
√
R,d12

X ×Pic
√
R,d21−N+

X

mult−−−→ Pic
√
R,d+ρ−N+

X .

Using the isomorphism

γ = (h′,pr2) : Pic
√
R,d12

X ×X
√
R

d21−N+

∼−→ Pic
√
R,d+ρ−N+

X ×X
√
R

d21−N+
,

the map h′γ−1 becomes the projection to the first factor of

Pic
√
R,d+ρ−N+

X ×X
√
R

d21−N+
.

By Proposition A.11, mult∗LPic
d+ρ−N+

∼= LPic
d12
� LPic

d21−N+
. Therefore, we have

(γ−1)∗(Ld12 �Q`) ∼= LPic
d+ρ−N+

� L−1
d21−N+

∼= LPic
d+ρ−N+

� Ld21−N+ , and hence

h′!(Ld12 �Q`) ∼= LPic
d+ρ−N+

⊗H∗(X
√
R

d21−N+
⊗ k, Ld21−N+).

Then we use Lemma A.6 again to conclude that Rgd,!Ld[m]|Ab=0
d

lies in strictly

negative perverse degrees.

(2) By (1), we only need to check (7.3) over the open subset A♦d . By

Proposition 6.2(3), the diagram (6.4) is Cartesian over A♦d , and we have

Rgd,!Ld|A♦
d

∼=
(
add

√
R

d11,d22−N−,!(Ld11 �Q`)� add
√
R

d12,d21−N+,!
(Ld12 �Q`)

)
|A♦

d
.

Here add
√
R

i,j is the addition map (A.2). Therefore, it suffices to show that for

any i, j ≥ 0, there is a canonical isomorphism over X
√
R

i+j ,

(7.4) add
√
R

i,j,!(Li �Q`) ∼= Ki+j,i|X
√
R

i+j

.

Now both sides are middle extension perverse sheaves (because add
√
R

i,j is finite

surjective with smooth irreducible source). The isomorphism (7.4) then follows

from the same isomorphism between the restrictions of both sides to (X−R)◦i+j ;

the latter was proved in [10, Prop. 8.5]. �
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7.2. Comparison of traces. For µ, µ′ ∈ Tr,Σ, recall the definition of r±
from (5.13). For f ∈H Σ

G , with fΣ± defined in (2.30), let

Jµ,µ
′
(f) =

Å
∂

∂s1

ãr+ Å ∂

∂s2

ãr− Ä
qN+s1+N−s2J(fΣ± , s1, s2)

ä ∣∣∣∣
s1=s2=0

.

Theorem 7.4. Suppose D is an effective divisor on U of degree d ≥
max{2g′ − 1 +N, 2g}. Then

(7.5) (− log q)−rJµ,µ
′
(hD) = Iµ,µ

′
(hD).

Proof. By Theorem 6.3, we have

qN+s1+N−s2J(hΣ±
D , s1, s2) =

∑
d∈Qd

q(2d12−d−ρ+N+)s1+(2d11−d−ρ+N−)s2

×
∑

a∈A[D(k)

Tr(Fra, (Rg
[
d,!Ld)a).

Using Rg[d,!Ld = RΩ!Rgd,!Ld, we have

∑
a∈A[D(k)

Tr(Fra, (Rg
[
d,!Ld)a) =

∑
ã∈AD(k)

1

# Aut(ã)
Tr(Frã, (Rgd,!Ld)ã).

Here AD ⊂ A is the preimage of A[D. Using Proposition 7.3, we can rewrite

the above as∑
ã∈AD(k)

1

# Aut(ã)
Tr(Frã, (Kd+ρ−N−,d11 �Kd+ρ−N+,d12)ã).

Therefore, we get

qN+s1+N−s2J(hΣ±
D , s1, s2)

=

d+ρ−N−∑
i=0

d+ρ−N+∑
j=0

q(2j−d−ρ+N+)s1+(2i−d−ρ+N−)s2

×
∑

ã∈AD(k)

1

# Aut(ã)
Tr(Frã, (Kd+ρ−N−,i �Kd+ρ−N+,j)ã).

Taking derivatives, we get

(log q)−rJµ,µ
′
(hD) =

d+ρ−N−∑
i=0

d+ρ−N+∑
j=0

(2j − d− ρ+N+)r+(2i− d− ρ+N−)r−

×
∑

ã∈AD(k)

1

# Aut(ã)
Tr(Frã, (Kd+ρ−N−,i �Kd+ρ−N+,j)ã).

(7.6)
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On the other hand, by Theorem 5.6, we have

Iµ,µ
′
(hD)

=
∑

a∈A[D(k)

Tr
(
(f [d,![H

♦
+])r+a ◦ (f [d,![H

♦
−])r−a ◦ Fra, (Rf

[
d,!Q`)a

)

=
∑

ã∈AD(k)

1

# Aut(ã)
Tr
(
(fd,![H

♦
+])

r+
ã
◦ (fd,![H

♦
−])

r−
ã
◦ Frã, (Rfd,!Q`)ã

)
.

By Propositions 7.1 and 7.2, for ã ∈ Ad(k), we have

Tr
(
(fd,![H

♦
+])

r+
ã
◦ (fd,![H

♦
−])

r−
ã
◦ Frã, (Rfd,!Q`)ã

)
=

d+ρ−N−∑
i=0

d+ρ−N+∑
j=0

(d+ ρ−N+ − 2j)r+(d+ ρ−N− − 2i)r−

× Tr
(
Frã, (Kd+ρ−N−,i �Kd+ρ−N+,j)ã

)
.

Therefore

Iµ,µ
′
(hD) =

d+ρ−N−∑
i=0

d+ρ−N+∑
j=0

(d+ ρ−N+ − 2j)r+(d+ ρ−N− − 2i)r−

×
∑

ã∈AD(k)

1

# Aut(ã)
Tr
(
Frã, (Kd+ρ−N−,i �Kd+ρ−N+,j)ã

)
.

(7.7)

Comparing (7.6) and (7.7), we get (7.5). The extra sign (−1)r in (7.5) comes

from the fact that

(d+ ρ−N+ − 2j)r+(d+ ρ−N− − 2i)r−

= (−1)r(2j − d− ρ+N+)r+(2i− d− ρ+N−)r− . �

7.2.1. Fix ξ ∈ S′∞(k). Let V ′(ξ) = H2r
c (Sht′rG(Σ; ξ)⊗ k,Q`)(r). By the

discussion in Section 3.5.6, the finiteness results proved in Section 3.5.5 for the

cohomology of ShtrG(Σ; Σ∞) as a H Σ
G -module are also valid for V ′, hence for

its summand V ′(ξ).

Let

K =
∏
x/∈Σ

G(Ox)×
∏
x∈Σ

Iwx.

Denote by A(K) the space of compactly supported, Q-valued functions on the

double coset G(F )\G(A)/K. The moduli stack Sht0
G(Σ) is exactly the discrete

groupoid G(F )\G(A)/K. Therefore, A(K)⊗Q` is identified with

H0
c(Sht0

G(Σ)⊗ k,Q`).

Corollary 3.40 implies that the image of the action map H Σ
G → End(A(K)) is

a finitely generated Q-algebra with Krull dimension one. Theorem 3.41 allows
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us to write

A(K)⊗Q` = A(K)Eis ⊗Q` ⊕ (⊕π∈ΠΣ(Q`)
A(K)π).

Here ΠΣ(Q`) is the set of cuspidal automorphic representations (with Q`-
coefficients) of G(A) with level K. Each π determines a character λπ : H Σ

G

→ Q`. By strong multiplicity one for G, the character λπ determined π. There-

fore, we may identify ΠΣ(Q`) as a subset of Spec H Σ
G ⊗Q`.

Let›H Σ
` = Im(H Σ

G ⊗Q` −→ EndQ`(V
′(ξ))×EndQ`(A(K)⊗Q`)×Q`[PicX(k)]ιPic).

Then by Corollary 3.40, ›H Σ
` is again a finitely generated Q`-algebra with Krull

dimension one.

Theorem 7.5. Let µ, µ′ ∈ {±1}r. Then for all f ∈ H Σ
G , we have the

identity

(− log q)−rJµ,µ
′
(f) = Iµ,µ

′
(f).

The proof is the same as that of [10, Th. 9.2], using the finiteness property

of ›H Σ
` and [10, Lemma 9.1].

7.3. Conclusion of the proofs.

7.3.1. Proof of Theorem 1.2. Both Iµ,µ′(h) and Jµ,µ′(h) depend only on

the image of h in ›H Σ
` .

Let Y = Spec ›H Σ
` . By Theorem 3.41, we have a decomposition

Yred = ZEis,Q`
∐
Y0,

where Y0 is a finite set of closed points. Under this decomposition, we have a

corresponding decomposition of ›H Σ
` ,

(7.8) ›H Σ
` = ›H Σ

`,Eis × ›H Σ
`,0,

such that Spec ›H Σ,red
`,Eis = ZEis,Q` and Spec ›H Σ,red

`,0 = Y0. We have a decompo-

sition

V ′(ξ)⊗Q` = V ′(ξ)Eis ⊗Q` ⊕ (⊕m∈Y0(Q`)
V ′(ξ)m),

where Supp(V ′(ξ)Eis) ⊂ ZEis,Q` and V ′(ξ)m is the generalized eigenspace of

V ′(ξ)⊗Q` under the character m of ›H Σ
` . Under this decomposition, let Zµm(ξ)

be the projection of Zµ(ξ) ∈ V ′(ξ) (the cycle class of θ′µ∗ [Sht
µ

T (µ∞ · ξ)]) to the

direct summand V ′(ξ)m.

Let h ∈ ›H Σ
`,0, viewed as (0, h) ∈ ›H Σ

` under the decomposition (7.8). Since

the H Σ
G -action on V ′(ξ) is self-adjoint with respect to the cup product pairing,

we have

(7.9) Iµ,µ
′
(h) =

∑
m∈Y0(Q`)

(Zµm(ξ), h ∗ Zµ′m (ξ)).
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On the other hand, we have

Jµ,µ
′
(h)

=
∑

π∈ΠΣ(Q`)

λπ(h)

Å
∂

∂s1

ãr+ Å ∂

∂s2

ãr− Ä
qN+s1+N−s2Jπ(hΣ± , s1, s2)

ä ∣∣∣∣
s1=s2=0

.

(7.10)

By the discussion in Section 7.2.1, ΠΣ(Q`) can be viewed as a subset of

Y0(Q`). Now let π be as in the statement of Theorem 1.2. Let h = eπ be the

idempotent in ›H Σ
`,0 ⊗Q` corresponding to π ∈ ΠΣ(Q`) ⊂ Y0(Q`). In (7.9) and

(7.10) we plug in h = eπ, and we get

Iµ,µ
′
(eπ) = (Zµπ (ξ), Zµπ (ξ)),

Jµ,µ
′
(eπ) =

Å
∂

∂s1

ãr+ Å ∂

∂s2

ãr− Ä
qN+s1+N−s2Jπ(hΣ± , s1, s2)

ä ∣∣∣∣
s1=s2=0

.

Applying Theorem 7.5 to eπ,

(− log q)−r
Å
∂

∂s1

ãr+ Å ∂

∂s2

ãr− Ä
qN+s1+N−s2Jπ(hΣ± , s1, s2)

ä ∣∣∣∣
s1=s2=0

= (Zµπ (ξ), Zµπ (ξ)).

By Proposition 2.10, the left side above is the left side of (1.7). The proof of

Theorem 1.2 is complete.

7.3.2. Proof of Theorem 1.3. Make a change of variables t1 = s1 + s2,

t2 = s1 − s2. We haveÅ
∂

∂t1

ãr1 Å ∂

∂t2

ãr−r1
=

1

2r

Å
∂

∂s1
+

∂

∂s2

ãr1 Å ∂

∂s1
− ∂

∂s2

ãr−r1
=

1

2r

∑
I⊂{1,2,...,r}

(−1)#(I∩{r1+1,...,r})
Å
∂

∂s1

ãr−#I Å ∂

∂s2

ã#I

.

Therefore,

L (r1)
Å
π,

1

2

ã
L (r−r1)

Å
π ⊗ η, 1

2

ã
=

Å
∂

∂t1

ãr1 Å ∂

∂t2

ãr−r1
(L (π, t1 +

1

2
)L (π ⊗ η, t2 +

1

2
))

∣∣∣∣
t1=t2=0

=
1

2r

∑
I⊂{1,2,...,r}

(−1)#(I∩{r1+1,...,r})

×
Å
∂

∂s1

ãr−#I Å ∂

∂s2

ã#I

LF ′/F (π, s1, s2)

∣∣∣∣
s1=s2=0

.

For I ⊂ {1, 2, . . . , r}, let σI ∈ {±1}r be the element that is −1 on the i-th

coordinate if i ∈ I and 1 elsewhere. We may view σI as an element in Ar,Σ.
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Let µ ∈ Tr,Σ. By Theorem 1.2,Å
∂

∂s1

ãr−#I Å ∂

∂s2

ã#I

LF ′/F (π, s1, s2)

∣∣∣∣
s1=s2=0

= (Zµπ (ξ), ZσI ·µπ (ξ)) = (Zµπ (ξ), σI · Zµπ (ξ)) ,

where the second equality follows from Lemma 4.10. Therefore

L (r1)
Å
π,

1

2

ã
L (r−r1)

Å
π ⊗ η, 1

2

ã
=

1

2r

∑
I⊂{1,2,...,r}

(−1)#(I∩{r1+1,...,r}) (Zµπ (ξ), σI · Zµπ (ξ))

=

Ñ
Zµπ (ξ),

1

2r

∑
I⊂{1,2,...,r}

(−1)#(I∩{r1+1,...,r})σI · Zµπ (ξ)

é
=

Ñ
Zµπ (ξ),

r1∏
i=1

1 + σi
2

r∏
j=r1

1− σj
2
· Zµπ (ξ)

é
= (Zµπ (ξ), εr1 · Zµπ (ξ)) .

Since εr1 is an idempotent in Q[(Z/2Z)r] that is self-adjoint with respect to

the intersection pairing on Sht′rG(Σ; ξ), we have

(Zµπ (ξ), εr1 · Zµπ (ξ)) = (εr1 · Zµπ (ξ), εr1 · Zµπ (ξ)) .

The theorem is proved.

Appendix A. Picard stack with ramifications

In this appendix we record some constructions in the geometric class field

theory with ramifications of order two, which will be used in the descriptions

of the moduli spaces in Sections 5 and 6.

A.1. The Picard stack and Abel-Jacobi map with ramifications. Let R ⊂
X be a reduced finite subscheme.

Definition A.1. Let Pic
√
R

X be the functor on k-schemes whose S-valued

points is the groupoid of triples L\ = (L,KR, ι), where

• L is a line bundle over X × S;

• KR is a line bundle over R× S;

• ι : K⊗2
R
∼→ L|R×S is an isomorphism of line bundles over R× S.

We have a decomposition Pic
√
R

X = td∈Z Pic
√
R,d

X , where Pic
√
R,d

X is the

subfunctor defined by imposing that deg(Ls) = d for each geometric point

s ∈ S.
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A.1.1. We present Pic
√
R

X as a quotient stack. Let PicX,R be the moduli

stack classifying (L, γ), where L is a line bundle over X and γ is a trivialization

of LR. The Weil restriction ResRk Gm acts on PicX,R by changing the trivial-

ization γ, whose quotient is naturally isomorphic to PicX . From the definition

of Pic
√
R

X we see there is a natural isomorphism of stacks

Pic
√
R

X
∼= [PicX,R /[2] ResRk Gm].

Here the quotient is obtained by making ResRk Gm act on PicX,R via the square

of the usual action, and the notation /[2] is to emphasize the square action.

When R = ∅, ResRk Gm = Spec k by convention, and the above discussion is

still valid.

The forgetful map (L,KR, ι) 7→ L gives a morphism of stacks

Pic
√
R

X −→ PicX ,

which is a ResRk µ2-gerbe.

A.1.2. Variant of Pic
√
R

X . We will also need the following variant of Pic
√
R

X .

Let Pic
√
R;
√
R

X be the stack whose S-points consist of (L,KR, ι, αR), where

(L,KR, ι) ∈ Pic
√
R

X (S) and αR is a section of KR. Then we have

Pic
√
R;
√
R

X
∼= PicX,R

[2],ResRk Gm
× ResRk A1.

Here the action of ResRk Gm on PicX,R is the square action and its action on

ResRk A1 is by dilation.

Definition A.2. For each integer d ≥ 0, let “X√Rd be the k-stack whose

S-points is the groupoid of tuples (L\, a, αR), where

• L\=(L,KR, ι)∈Pic
√
R,d

X (S) — in particular, ι is an isomorphism K⊗2
R
∼→ LR;

• a is a global section of L;

• αR is a section of KR such that ι(α⊗2
R ) = aR, where aR is the restriction of

aR to R× S.

We let X
√
R

d ⊂ “X√Rd be the open substack defined by requiring that a is non-

zero along the geometric fiber X × {s} for all geometric points s ∈ S.

A.1.3. Forgetting the square roots (KR, ι, αR) we get a morphism to the

stack “Xd defined in [10, §3.2.1]:

ω̂
√
R

d : “X√Rd −→ “Xd.

Over a geometric point (L, a ∈ Γ(XK ,L)) ∈ “Xd(K), the fiber of ω̂
√
R

d is a

product
∏
x∈R(K) Px, where Px ∼= SpecK if a(x) 6= 0, and Px ∼= [SpecK/µ2,K ]



516 ZHIWEI YUN and WEI ZHANG

if a(x) = 0. In particular, the restriction of ω̂
√
R

d to X
√
R

d ,

ω
√
R

d : X
√
R

d −→ Xd,

realizes Xd as the coarse moduli scheme of X
√
R

d . When d = 1, X
√
R

1 is the

DM curve with coarse moduli space X and automorphic group µ2 along R.

Definition A.3. For an open subset U ⊂ X, we define U
√
R

d to be the

subset of X
√
R

d that is the preimage of Ud under the map ω
√
R

d .

We have another description of “X√Rd as follows. Evaluating a section of a

line bundle along R gives a morphism

evRd : “Xd −→ [ResRk A1/ResRk Gm].

From the construction of “X√Rd we get a Cartesian diagram“X√Rd
ω̂
√
R

d
��

ev
√
R

d
// [ResRk A1/ResRk Gm]

[2]

��“Xd

evRd
// [ResRk A1/ResRk Gm].

(A.1)

Here the vertical map [2] is the square map on both ResRk A1 and ResRk Gm.

Lemma A.4.

(1) The map evRd is smooth when restricted to Xd.

(2) X
√
R

d is a smooth DM stack over k.

Proof. (1) We may argue by base changing to k. We have

[ResRk A1/ResRk Gm]k
∼=

∏
x∈R(k)

[A1/Gm],

and the map evR
d,k

: Xd,k →
∏
x∈R(k)[A

1/Gm] is the product of the evaluation

maps evx for x ∈ R(k). The following general statement follows from an easy

calculation of tangent spaces.

Claim. Let Z be a smooth and irreducible k-scheme and fi : Z → [A1/Gm]

be a collection of morphisms, 1 ≤ i ≤ n. Assume the image of each fi does not

lie entirely in [{0}/Gm], so the scheme-theoretic preimage of [{0}/Gm] under

fi is a divisor Di ⊂ Z . Let f : Z → ∏n
i=1[A1/Gm] ∼= [An/Gnm] be the fiber

product of the fi’s. Then f is a smooth morphism if and only if the divisors

D1, . . . , Dn are smooth and intersect transversely.

We apply this claim to Z = Xd,k and the maps evx for x ∈ R(k). The

divisor Dx in this case is the locus in Xd,k classifying those degree d divisors
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D of X containing x. For a subset I ⊂ R(k), the intersection DI = ∩x∈IDx

is the locus classifying those degree d divisors D of X containing all points

in I. This is non-empty only if #I ≤ d. When this is the case, we have an

isomorphism Xd−#I
∼= DI given by D 7→ D +

∑
x∈I x. (The fact that this is

an isomorphism can be checked by an étale local calculation, reducing to the

case X is A1.) In particular, DI ⊂ Xd,k is smooth of codimension #I. This

shows that the divisors {Dx}x∈R(k) intersect transversely. By the claim above,

the map evR
d,k

is smooth when restricted to Xd,k.

(2) Since evRd |Xd is smooth by part (1), so is ev
√
R

d |X
√
R

d

by the Cartesian

diagram (A.1). Therefore, X
√
R

d is a smooth algebraic stack over k. Since the

square map [ResRk A1/ResRk Gm]→ [ResRk A1/ResRk Gm] is relative DM and Xd

is a scheme, we see that X
√
R

d is a DM stack again from (A.1). �

A.1.4. The addition map. Suppose d1, d2 ∈ Z≥0. Then we have a map‘add

√
R

d1,d2
: “X√Rd1

× “X√Rd2
−→ “X√Rd1+d2

sending (L\1, a1, αR,1,L\2, a2, αR,2) to (L\1⊗L
\
2, a1⊗a2, αR,1⊗αR,2). It restricts

to a map

(A.2) add
√
R

d1,d2
: X
√
R

d1
×X

√
R

d2
−→ X

√
R

d1+d2
.

In particular, applying this construction iteratively, we get a map (for

d ≥ 0)

(A.3) p
√
R

d : (X
√
R

1 )d −→ X
√
R

d ,

which is Sd-invariant with respect to the permutation action on the source.

A.1.5. The Abel-Jacobi map. Forgetting the sections a we get a morphism”AJ

√
R;
√
R

d : “X√Rd −→ Pic
√
R;
√
R,d

X .

We also get a map ”AJ

√
R

d : “X√Rd −→ Pic
√
R,d

X

by further forgetting αR. Let AJ
√
R;
√
R

d and AJ
√
R

d be the restrictions of”AJ

√
R;
√
R

d and ”AJ

√
R

d to X
√
R

d . When R = ∅, AJ
√
R

d reduces to the usual

Abel-Jacobi map.

A.1.6. Presentation of Pic
√
R

X (k). For x ∈ R, let

O√x = Ox ×k(x) k(x), O×√
x

= O×x ×k(x)× k(x)×,
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where the second projections k(x)→ k(x) and k(x)× → k(x)× are the square

maps. Let O×√
R

=
∏
x∈RO×√x ×

∏
x∈|X−R|O×x . We have a homomorphism

O×√
R
→ O× =

∏
x∈|X|O×x → A×F .

Lemma A.5. There is a canonical isomorphism of Picard groupoids

(A.4) F×\A×F /O
×√
R

∼−→ Pic
√
R

X (k)

sending $−1
x (where $x is a uniformizer at x ∈ |X−R|) to the point OX(x)\ =

(OX(x),OR, 1) ∈ Pic
√
R

X (k).

Proof. Consider the groupoid P̂ic

√
R

X (k) classifying

(L, τη, {τx}x∈|X|,KR, ι, tR = {tx}x∈R),

where (L,KR, ι) ∈ Pic
√
R

X (k), τη : L|SpecF
∼= F is a trivialization of L at the

generic point, and τx : L|SpecOx
∼= Ox is a trivialization of L in the formal

neighborhood of x, tx : Kx
∼→ k(x) is a trivialization of Kx for every x ∈ R,

such that the following diagram is commutative:

K⊗2
x

ιx
//

t⊗2
x
��

Lx

τx|x
��

k(x)⊗2 k(x).

Similarly, we define P̂icX(k) to classify part of the data (L, τη, {τx}x∈|X|) as

above. The forgetful map P̂ic

√
R

X (k) → P̂icX(k) is an equivalence; the choices

of the extra data (KR, ι, τR) are unique up to a unique isomorphism.

We have an isomorphism P̂icX(k)
∼→ A×F sending (L, τη, {τx}x∈|X|) to

(τx ◦ τ−1
η )x∈|X| ∈ A×. Therefore, we get a canonical isomorphism

α : A×F
∼−→ P̂ic

√
R

X (k).

It is easy to see that for x ∈ |X −R|, α($−1
x ) has image OX(x)\ in Pic

√
R

X (k).

There is an action of F× on P̂ic

√
R

X (k) by changing τη. For x ∈ |X − R|,

there is an action of O×x on P̂ic

√
R

X (k) by changing τx. For x ∈ R, there is

an action of O×√
x

= O×x ×k(x)× k(x)× on P̂ic

√
R

X (k) by changing τx and tx

compatibly. Therefore, we get an action of F× × O×√
R

on P̂ic

√
R

X (k). The

isomorphism α is equivariant with respect to these actions. The forgetful map

P̂ic

√
R

X (k) → Pic
√
R

X (k) is a torsor for the action of F× × O×√
R

. Therefore, α

induces the equivalence (A.4). �
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A.2. Geometric class field theory. In this subsection, we fix L to be a rank

one Q`-local system on X
√
R

1 . Since X
√
R

1 is a smooth DM curve with coarse

moduli space X and automorphic group µ2 along R, such a local system is the

same datum as a rank one Q`-local system on X−R with monodromy of order

at most 2 at the x ∈ R.

Starting from L, we will give a canonical construction of local systems Ld

on X
√
R

d for d ≥ 0 and show that it descends to Pic
√
R,d

X . In the case R = ∅,

such a construction goes back to Deligne.

A.2.1. The local system Ld. Consider the Sd-invariant map p
√
R

d in (A.3).

The complex p
√
R

d,! L
�d is a middle extension perverse sheaf on X

√
R

d (i.e., it

is the middle extension of a local system from a dense open subset of X
√
R

d )

because p
√
R

d is a finite map from a smooth and geometrically connected DM

stack. Therefore, the Sd-invariant part

Ld := (p
√
R

d,! L
�d)Sd

is also a middle extension perverse sheaf on X
√
R

d .

Lemma A.6. Suppose the local system L is geometrically non-trivial. Then

Hi(X
√
R

d ⊗ k, Ld) =

∧d
(
H1(X

√
R

1 ⊗ k, L)
)
, i = d,

0, i 6= d.

Proof. By construction, the graded vector space H∗(X
√
R

d ⊗ k, Ld) is the

Sd-invariants of the graded vector space H∗(X
√
R

1 , L)⊗d. (Here Sd acts by per-

muting the factors with the Koszul sign convention.) Since L is geometrically

non-trivial, H∗(X
√
R

1 , L) is concentrated in degree 1. Hence H∗(X
√
R

d ⊗ k, Ld)
is concentrated in degree d and is equal to ∧d

(
H1(X

√
R

1 ⊗ k, L)
)

in that de-

gree. �

Lemma A.7. The perverse sheaf Ld is a local system of rank one on X
√
R

d .

Proof. Since Ld is a middle extension perverse sheaf on X
√
R

d , to show it is

a local system of rank one, it suffices to check the stalks of Ld at any geometric

point of X
√
R

d is one-dimensional. Consider a geometric point (L\, a, αR) ∈
X
√
R

d with div(a) = D. By factorizing the situation according to the points

in D, we reduce to show that for x ∈ R(k), Ld has one-dimensional stalk at

the geometric point dx ∈ X
√
R

d (k). The point dx has automorphism µ2, and

the restriction of p
√
R

d to the preimage of this orbifold point is

pdx : [pt/µ2]d −→ [pt/µ2]
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induced by the multiplication map m : µd2 → µ2. The restriction of L to

x = [pt/µ2] ∈ X
√
R

1 is given by either the trivial or the sign representation of

µ2 on Q`. Therefore, pdx,!L
�d
x is the Kd = ker(m : µd2 → µ2)-coinvariants on

L�dx , which is L�dx itself since Kd always acts trivially on it. Therefore, the

stalk of Ld at dx is one-dimensional. �

Lemma A.8. For d1, d2 ≥ 0, there is a canonical isomorphism of local

systems on X
√
R

d1
×X

√
R

d2
,

αd1,d2 : add
√
R,∗

d1,d2
Ld1+d2

∼= Ld1 � Ld2 ,

which is commutative and associative in the obvious sense.

Proof. Let d = d1 + d2. Since both add
√
R,∗

d1,d2
Ld and Ld1 � Ld2 are local

systems, it suffices to give such an isomorphism over a dense open substack

of X
√
R

d1
× X

√
R

d2
. Let U = X − R. Let U◦d ⊂ X

√
R

d be the open subscheme

consisting of multiplicity-free divisors on U . Let (Ud1 × Ud2)◦ ⊂ X
√
R

d1
×X

√
R

d2

be the preimage of U◦d under add
√
R

d1,d2
.

The monodromy representation of the local system L|U is given by a ho-

momorphism

χ : π1(U) −→ {±1}.
For any n ∈ Z≥0, there is a canonical homomorphism

ϕn : π1(U◦n) −→ π1(U)n o Sn

given by the branched Sn-cover Un → Un.

The monodromy representation of the local system Ld1 �Ld2 |(Ud1×Ud2 )◦ is

given by

π1((Ud1 × Ud2)◦)
(p1∗,p2∗)−−−−−→ π1(U◦d1

)× π1(U◦d2
)

ϕd1×ϕd2−−−−−→ (π1(U)d1 o Sd1)× (π1(U)d2 o Sd2)

= π1(U)d o (Sd1 × Sd2)
(χ,...,χ)×1−−−−−−→ {±1}.

(A.5)

The last map is χ on all the π1(U)-factors and trivial on Sd1 × Sd2 .

On the other hand, the local system add∗d1,d2
Ld|U◦

d
is given by the character

(A.6) π1((Ud1 × Ud2)◦)
add∗−−−→ π1(U◦d )

ϕd−→ π1(U)d o Sd
(χ,...,χ)×1−−−−−−→ {±1}.

Observe that (A.5) and (A.6) are the same homomorphisms. This gives the

desired isomorphism αd1,d2 . We leave the verification of the commutativity

and associativity properties of αd1,d2 as an exercise. �

Lemma A.9. For d ≥ ρ + max{2g − 1, 1}, the local system Ld on X
√
R

d

descends to Pic
√
R,d

X via the map AJ
√
R

d .
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Proof. The case R = ∅ is well known; we treat only the case R 6= ∅.

When d ≥ 2g−1+ρ, by Riemann-Roch, AJ
√
R

d is a locally trivial fibration,

and therefore it suffices to show that the restriction of Ld to geometric fibers

of AJ
√
R

d are trivial.

Fix a geometric point L\ = (L,KR, ι) ∈ Pic
√
R,d

X (K) for some algebraically

closed field K. We base change the situation from k to K without changing

notation. The fiber of AJ
√
R

d over L\ is

M = H0(X,L)◦ ×H0(R,LR) H0(R,KR),

where H0(X,L)◦ = H0(X,L) − {0}, and the map H0(R,KR) → H0(R,LR) is

the square map via ι. The torus Gm acts on M by weight 2 on H0(X,L) and

weight 1 on H0(R,KR). Then the map M → X
√
R

d factors through the quotient

[M/Gm]. The triviality of Ld|[M/Gm] follows from the claim below.

Claim. [M/Gm] is simply-connected.

It remains to prove the claim. Choosing a basis for H0(R,LR) and extend-

ing it to H0(X,L), we may identify M with a punctured affine space An−{0},
and the action of Gm has weights 2 (on the first n− ρ coordinates) and 1 (on

the last ρ coordinates). Since n = d − g + 1 ≥ ρ + 1, the weight 2 appears at

least once.

Suppose Y → [M/Gm] is a finite étale map with Y connected. Con-

sider the map π : Pn−1 → [M/Gm] given by [x1, . . . , xn−ρ, y1, . . . , yρ] 7→
[x2

1, . . . , x
2
n−ρ, y1, . . . , yρ]. Then π is a branched Galois cover with Galois group

µn−ρ2 . Since Pn−1 is simply-connected, π lifts to π̃ : Pn−1 → Y . Therefore,

the function field K(Y ) ⊂ K(Pn−1) corresponds to a subgroup Γ ⊂ µn−ρ2 so

that Y is the normalization of [M/Gm] in SpecK(Y ). We consider the open

subset M◦, where the last coordinate yρ 6= 0; then M◦/Gm ∼= An−1. Let Y ◦

be the preimage of M◦/Gm in Y , and let (Pn−1)◦ ∼= An−1 be the preimage in

Pn−1. Then Y ◦ is the GIT quotient of (Pn−1)◦ by Γ. If Γ 6= µn−ρ2 , then there

is a non-empty subset I ⊂ {1, . . . , n−ρ} such that Γ is contained in the kernel

of e∗I : µn−ρ2 → µ2 given by e∗I(εi) = εi if i ∈ I and 1 is i /∈ I. In this case,

xI =
∏
i∈I xi is fixed by Γ, hence xI ∈ O(Y ◦). However, xI /∈ O(M◦/Gm) (only

x2
I ∈ O(M◦/Gm)). This implies that Y ◦ →M◦/Gm is ramified along the divi-

sor xI = 0 in Y ◦, a contradiction. Therefore, Γ = µn−ρ2 and Y = [M/Gm]. �

A.2.2. Construction of LPic
d for all d ∈ Z. Let LPic

d be the descent of Ld

to Pic
√
R,d

X when d ≥ ρ + max{2g − 1, 1}. Next we extend the local systems

{LPic
d } to all components of Pic

√
R

X .

Fix any integer d. For any divisor D =
∑
x∈|X−R| nx · x ∈ Div(X − R)

of degree d′, we have a canonical line LD = ⊗L⊗nxx . Tensoring with OX(D)\
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(the canonical lift of OX(D) to Pic
√
R

X ) defines an isomorphism tD : Pic
√
R,d

X →
Pic
√
R,d+d′

X . If d′ + d ≥ max{2g − 1, 1}+ ρ, then LPic
d+d′ is already defined, and

we define LPic
d to be the local system t∗DL

Pic
d+d′ ⊗ L

⊗−1
D on Pic

√
R,d

X . We claim

that LPic
d thus defined is canonically independent of the choice of D, as long as

the degree d′ of D satisfies d′ ≥ max{2g−1, 1}+ρ−d. To show this, it suffices

to show that for any n, n′ ≥ max{2g−1, 1}+ρ (so that LPic
n and LPic

n′ are both

defined as the descent of Ln and Ln′) and any D ∈ Divn
′−n(X − R), there is

a canonical isomorphism t∗DL
Pic
n′
∼= LPic

n ⊗ LD as local systems on Pic
√
R,n

X . It

is easy to reduce to the case D effective. Since AJ
√
R

n has connected geometric

fibers, it is enough to give such an isomorphism after pulling back to X
√
R

n ;

i.e., we need to give a canonical isomorphism of local systems on X
√
R

n ,

(A.7) T ∗DLn′
∼= Ln ⊗ LD,

where TD : X
√
R

n → X
√
R

n′ is the addition by D. Such an isomorphism is given

by Lemma A.8 by taking restricting αn,n′−n to X
√
R

n × {D}.
We have therefore defined a canonical local system LPic

d on Pic
√
R

d for each

d∈Z. Let LPic be the local system on Pic
√
R

X whose restriction to Pic
√
R

d is LPic
d .

Lemma A.10. For d ≥ 0, we have a canonical isomorphism of local sys-

tems on X
√
R

d

AJ
√
R,∗

d LPic
d
∼= Ld.

Proof. Let D be a divisor on X−R of degree d′ ≥ max{2g− 1, 1}+ρ−d.

By construction we have LPic
d = t∗DL

Pic
d+d′ ⊗ L

⊗−1
D . Pulling back both sides to

X
√
R

d , and noting AJ
√
R

d+d′ ◦ TD = tD ◦AJ
√
R

d , we get

AJ
√
R∗

d LPic
d = AJ

√
R∗

d t∗DL
Pic
d+d′ ⊗ L⊗−1

D = T ∗DAJ
√
R∗

d+d′L
Pic
d+d′ ⊗ L⊗−1

D

= T ∗DLd+d′ ⊗ L⊗−1
D ,

which is canonically isomorphic to Ld by (A.7). �

Proposition A.11. The local system LPic is a character sheaf on Pic
√
R

X .

More precisely, this means the following :

(1) There is a canonical trivialization ι : LPic|e ∼= Q`, where e is the origin of

Pic
√
R

X .

(2) There is a canonical isomorphism of local systems on Pic
√
R

X ×Pic
√
R

X ,

µ : mult∗LPic ∼= LPic � LPic,

where mult : Pic
√
R

X ×Pic
√
R

X → Pic
√
R

X is the multiplication map.
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(3) The isomorphism µ is commutative and associative in the obvious sense,

and its restrictions to {e} × Pic
√
R

X and Pic
√
R

X ×{e} are the identity maps

on LPic (after using ι to trivialize LPic|e).

Proof. By construction, LPic|e ∼= LPic
d |O(D)\ ⊗ L⊗−1

D
∼= Ld|D ⊗ L⊗−1

D for

any effective divisor D ∈ Div(X −R) of large degree d. (We are viewing D as

a k-point of (X − R)d ⊂ X
√
R

d , so Ld|D means the stalk of Ld at this k-point

D.) If we write D =
∑
x∈|X−R| nx ·x, then by construction we have a canonical

isomorphism Ld|D ∼= ⊗x∈|X−R|L⊗nxx = LD, which gives a trivialization ιD :

LPic|e ∼= Q`. We leave it as an exercise to check that ιD is independent of the

choice of D.

Now we construct the isomorphism µ, i.e., a system of isomorphisms

µd1,d2 : mult∗d1,d2
LPic
d1+d2

∼= LPic
d1
� LPic

d2

for all d1, d2 ∈ Z. When d1, d2 ≥ ρ+ max{2g− 1, 1}, LPic
di

and LPic
d1+d2

come by

descent from Ldi and Ld1+d2 . Since AJ
√
R

d1+d2
has connected geometric fibers,

it suffices to give µd1,d2 after pulling back both sides to X
√
R

d1+d2
, in which case

the desired isomorphism is given by αd1,d2 constructed in Lemma A.8.

For general d1, d2, let D1, D2 ∈ Div(X−R) with degrees degDi = ni such

that ni + di ≥ ρ+ max{2g − 1, 1} for i = 1, 2. Then by construction,

(A.8) LPic
d1
� LPic

d2
∼= (t∗D1

LPic
d1+n1

� t∗D2
LPic
d2+n2

)⊗ (L⊗−1
D1
⊗ L⊗−1

D2
).

On the other hand, LPic
d1+d2

∼= t∗D1+D2
Ld1+d2+n1+n2 ⊗ L

⊗−1
D1+D2

, hence

mult∗d1,d2
LPic
d1+d2

∼= mult∗d1,d2
t∗D1+D2

Ld1+d2+n1+n2 ⊗ L
⊗−1
D1+D2

∼= ((tD1 × tD2)∗mult∗d1+n1,d2+n2
Ld1+d2+n1+n2)

⊗ (L⊗−1
D1
⊗ L⊗−1

D2
).

(A.9)

Comparing the right-hand sides of (A.8) and (A.9), the desired isomorphism

µd1,d2 is induced from the already-constructed µd1+n1,d2+n2 . Again we leave it

as an exercise to check that µd1,d2 is independent of the choices of D1, D2, and

it satisfies commutativity, associativity, and compatibility with ι. �

A.3. Ramified double cover. Let ν : X ′ → X be a double cover with ram-

ification locus R ⊂ X, where X ′ is also a smooth projective and geometrically

connected curve over k. Let σ : X ′ → X ′ be the non-trivial involution over X.

Let R′ ⊂ X ′ be the reduced preimage of R, then ν induces an isomorphism

R′
∼→ R.

A.3.1. The norm map on Picard. Let iR : R ↪→ X be the inclusion. We

consider the étale sheaf Gm,R on R as an étale sheaf on X via iR,∗. There is a
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restriction map Gm,X → Gm,R. Consider the following étale sheaf on X:

G
√
R

m,X = Gm,X ×Gm,R,[2] Gm,R,

where the map Gm,R → Gm,R is the square map. By construction, Pic
√
R

X is

the moduli stack of G
√
R

m,X -torsors over X.

We have the sheaf homomorphism induced by the norm map Nm : ν∗Gm,X′
→ Gm,X and the restriction map rR′ : ν∗Gm,X′ → ν∗Gm,R′ = Gm,R. Comput-

ing with local coordinates at R, we see that the composition ν∗Gm,X′
Nm−−→

Gm,X
rR−→ Gm,R (the latter rR is given by restriction) is the square of the

restriction map rR′ . Therefore, (Nm, rR′) induces a sheaf homomorphism

Nm
√
R

X′/X : ν∗Gm,X′ −→ G
√
R

m,X ,

which is easily seen to be surjective by local calculation at R. The map Nm
√
R

X′/X

on sheaves induces a morphism of Picard stacks

Nm
√
R

X′/X : PicX′ −→ Pic
√
R

X ,

which lifts the usual norm map NmX′/X : PicX′ → PicX .

A.3.2. The norm map on symmetric powers. There is also a natural lifting

of the norm map ν̂d : “X ′d → “Xd:

(A.10) ν̂
√
R

d : “X ′d −→ “X√Rd .

In fact, for (L′, a′) ∈ “X ′d(S), where L′ is a line bundle over X ′×S and a′ a global

section of L′, L = NmX′/X(L′) is a line bundle over X × S, and a = Nm(a′)

is a section of L. We have a canonical isomorphism ι : (L′|R′×S)⊗2 ∼= (L′ ⊗
σ∗L′)|R′×S ∼= L|R×S . Under ι, a′|R′×S gives a square root of the restriction

a|R×S . We then send (L′, a′) to (L,L′|R′×S , ι, a, a′|R′×S) ∈ “X√Rd (S).

By construction, we have a commutative diagram“X ′d ν̂
√
R

d
//

ÂJ
′
d

��

“X√Rd
ÂJ

√
R

d��

PicX′
Nm
√
R

X′/X
// Pic

√
R

X ,

where ”AJ
′
d is the Abel-Jacobi map for X ′.

A.3.3. Descent of line bundles. A local calculation shows that the image

of 1−σ : ν∗Gm,X′ → ν∗Gm,X′ is equal to the kernel of Nm
√
R

X′/X . Therefore, we

have an exact sequence of étale sheaves on X:

1 −→ Gm,X −→ ν∗Gm,X′
1−σ−−→ ν∗Gm,X′

Nm
√
R

X′/X−−−−−→ G
√
R

m,X −→ 1.
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Taking the corresponding Picard stacks we get an exact sequence of Picard

stacks:

(A.11) 1 −→ PicX
ν∗−→ PicX′

1−σ−−→ PicX′
Nm
√
R

X′/X−−−−−→ Pic
√
R

X −→ 1.

A.3.4. The local system L. The direct image sheaf ν∗Q` has a decom-

position ν∗Q` = Q` ⊕ LX′/X into σ-eigensheaves with eigenvalues 1 and −1.

Then LX′/X |X−R is a Q`-local system of rank one with monodromy in {±1}
ramified exactly along R. Let L be the local system on X

√
R

1 corresponding to

(LX′/X⊗Q`)|X−R. Associated to L is a local system LPic on Pic
√
R

X constructed

in Section A.2.

Let F ′ = k(X ′), a quadratic extension of F unramified away from R. By

class field theory, F ′/F gives rise to an idèle class character

ηF ′/F : F×\A×F /O
×√
R
−→ {±1}.

For the notation O×√
R

, see Section A.1.6.

Proposition A.12.Under the sheaf-to-function correspondence, the func-

tion on Pic
√
R

X (k) given by LPic is the idèle class character ηF ′/F under the

isomorphism (A.4).

Proof. Let fL : Pic
√
R

X (k) → Q×` be the function attached to LPic. By

Proposition A.11, fL is a group homomorphism. We know that ηF ′/F is char-

acterized by the property that for a uniformizer $x at x ∈ |X −R|,

ηF ′/F ($−1
x ) =

1 if x is split in F ′,

−1 if x is inert in F ′.

Now x is split (resp. inert) in F ′ if and only if Tr(Frx, Lx) = 1 (resp. Tr(Frx, Lx)

= −1). Therefore

ηF ′/F ($−1
x ) = Tr(Frx, Lx).

We only need to check that fL enjoys the same property as ηF ′/F . Since $−1
x

corresponds to O(x)\ ∈ Pic
√
R,dx

X (k) under (A.4), we need to show

Tr(FrO(x)\ , L
Pic|O(x)\) = Tr(Frx, Lx) ∀x ∈ |X −R|.

Let d = dx. By Lemma A.10, LPic
d pulls back to Ld on X

√
R

d ; viewing x as a

divisor of degree d on X − R (and denoted [x]), it maps to O(x)\ via AJ
√
R

d ,

hence the left side above is equal to Tr(Frk, Ld|[x]). Therefore, it suffices to show

(A.12) Tr(Frk, Ld|[x]) = Tr(Frx, Lx).

By the construction of Ld, there is an isomorphism Ld|[x]
∼= L⊗dx such that

the Frk-action on Ld|[x] corresponds to the automorphism `1 ⊗ `2 ⊗ · · · ⊗ `d 7→
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`2⊗ · · · ⊗ `d⊗Frx(`1) on L⊗dx . This shows (A.12) and finishes the proof of the

proposition. �
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