Complex cellular structures

Abstract

We introduce the notion of a complex cell, a complexification of the cells/cylinders used in real tame geometry. For $\delta \in (0,1)$ and a complex cell $\mathcal{C}$, we define its holomorphic extension $\mathcal{C}\subset \mathcal{C}^\delta $, which is again a complex cell. The hyperbolic geometry of $\mathcal{C}$ within $\mathcal{C}^\delta $ provides the class of complex cells with a rich geometric function theory absent in the real case. We use this to prove a complex analog of the cellular decomposition theorem of real tame geometry. In the algebraic case we show that the complexity of such decompositions depends polynomially on the degrees of the equations involved.

Using this theory, we refine the Yomdin-Gromov algebraic lemma on $C^r$-smooth parametrizations of semialgebraic sets: we show that the number of $C^r$ charts can be taken to be polynomial in the smoothness order $r$ and in the complexity of the set. The algebraic lemma was initially invented in the work of Yomdin and Gromov to produce estimates for the topological entropy of $C^\infty $ maps. For analytic maps our refined version, combined with work of Burguet, Liao and Yang, establishes an optimal refinement of these estimates in the form of tight bounds on the tail entropy and volume growth. This settles a conjecture of Yomdin who proved the same result in dimension two in 1991. A self-contained proof of these estimates using the refined algebraic lemma is given in an appendix by Yomdin.

The algebraic lemma has more recently been used in the study of rational points on algebraic and transcendental varieties. We use the theory of complex cells in these two directions. In the algebraic context we refine a result of Heath-Brown on interpolating rational points in algebraic varieties. In the transcendental context we prove an interpolation result for (unrestricted) logarithmic images of subanalytic sets.

  • [akm:entropy] Go to document R. L. Adler, A. G. Konheim, and M. H. McAndrew, "Topological entropy," Trans. Amer. Math. Soc., vol. 114, pp. 309-319, 1965.
    @ARTICLE{akm:entropy,
      author = {Adler, R. L. and Konheim, A. G. and McAndrew, M. H.},
      title = {Topological entropy},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {114},
      year = {1965},
      pages = {309--319},
      issn = {0002-9947},
      mrclass = {28.70 (54.00)},
      mrnumber = {0175106},
      mrreviewer = {J. C. Oxtoby},
      doi = {10.2307/1994177},
      url = {https://doi.org/10.2307/1994177},
      zblnumber = {0127.13102},
      }
  • [by:domination] Go to document D. Batenkov and Y. Yomdin, "Taylor domination, difference equations, and Bautin ideals," in Difference Equations, Discrete Dynamical Systems and Applications, Springer, Berlin, 2016, vol. 180, pp. 303-319.
    @INCOLLECTION{by:domination,
      author = {Batenkov, Dmitry and Yomdin, Yosef},
      title = {Taylor domination, difference equations, and {B}autin ideals},
      booktitle = {Difference Equations, Discrete Dynamical Systems and Applications},
      series = {Springer Proc. Math. Stat.},
      volume = {180},
      pages = {303--319},
      publisher = {Springer, Berlin},
      year = {2016},
      mrclass = {30B10 (39B12 40B05)},
      mrnumber = {3591775},
      doi = {10.1007/978-3-662-52927-0_21},
      url = {https://doi.org/10.1007/978-3-662-52927-0_21},
      zblnumber = {1356.30002},
      }
  • [bp:poincare] Go to document A. F. Beardon and C. Pommerenke, "The Poincaré metric of plane domains," J. London Math. Soc. (2), vol. 18, iss. 3, pp. 475-483, 1978.
    @ARTICLE{bp:poincare,
      author = {Beardon, A. F. and Pommerenke, Ch.},
      title = {The {P}oincaré metric of plane domains},
      journal = {J. London Math. Soc. (2)},
      fjournal = {The Journal of the London Mathematical Society. Second Series},
      volume = {18},
      year = {1978},
      number = {3},
      pages = {475--483},
      issn = {0024-6107},
      mrclass = {30C75 (30F99 51M10)},
      mrnumber = {0518232},
      mrreviewer = {A. M. Macbeath},
      doi = {10.1112/jlms/s2-18.3.475},
      url = {https://doi.org/10.1112/jlms/s2-18.3.475},
      zblnumber = {0399.30008},
      }
  • [biernacki] M. Biernacki, "Sur les fonctions multivalentes d’ordre $p$," C. R. Acad. Sci., Paris, vol. 203, pp. 449-451, 1936.
    @ARTICLE{biernacki,
      author = {Biernacki, Miecislas},
      title = {Sur les fonctions multivalentes d'ordre $p$},
      journal = {C. R. Acad. Sci., Paris},
      volume = {203},
      pages = {449--451},
      year = {1936},
      zblnumber = {0014.31904},
      }
  • [bm:subanalytic] Go to document E. Bierstone and P. D. Milman, "Semianalytic and subanalytic sets," Inst. Hautes Études Sci. Publ. Math., vol. 67, pp. 5-42, 1988.
    @ARTICLE{bm:subanalytic,
      author = {Bierstone, Edward and Milman, Pierre D.},
      title = {Semianalytic and subanalytic sets},
      journal = {Inst. Hautes \'{E}tudes Sci. Publ. Math.},
      fjournal = {Institut des Hautes \'{E}tudes Scientifiques. Publications Mathématiques},
      volume = {67},
      year = {1988},
      pages = {5--42},
      issn = {0073-8301},
      mrclass = {32B20 (58C06 58C27)},
      mrnumber = {0972342},
      mrreviewer = {Z. Denkowska},
      doi = {10.1007/BF02699126},
      zblnumber = {0674.32002},
      }
  • [me:analytic-interpolation] Go to document G. Binyamini and D. Novikov, "The Pila-Wilkie theorem for subanalytic families: a complex analytic approach," Compos. Math., vol. 153, iss. 10, pp. 2171-2194, 2017.
    @ARTICLE{me:analytic-interpolation,
      author = {Binyamini, Gal and Novikov, Dmitry},
      title = {The {P}ila-{W}ilkie theorem for subanalytic families: a complex analytic approach},
      journal = {Compos. Math.},
      fjournal = {Compositio Mathematica},
      volume = {153},
      year = {2017},
      number = {10},
      pages = {2171--2194},
      issn = {0010-437X},
      mrclass = {11G05 (03C64 11U09 14P15 32B05 32B20)},
      mrnumber = {3705287},
      mrreviewer = {Alexandra Shlapentokh},
      doi = {10.1112/S0010437X17007333},
      url = {https://doi.org/10.1112/S0010437X17007333},
      zblnumber = {06782045},
      }
  • [me:rest-wilkie] Go to document G. Binyamini and D. Novikov, "Wilkie’s conjecture for restricted elementary functions," Ann. of Math. (2), vol. 186, iss. 1, pp. 237-275, 2017.
    @ARTICLE{me:rest-wilkie,
      author = {Binyamini, Gal and Novikov, Dmitry},
      title = {Wilkie's conjecture for restricted elementary functions},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {186},
      year = {2017},
      number = {1},
      pages = {237--275},
      issn = {0003-486X},
      mrclass = {03C64 (11U09)},
      mrnumber = {3665004},
      mrreviewer = {Fabrizio Barroero},
      doi = {10.4007/annals.2017.186.1.6},
      url = {https://doi.org/10.4007/annals.2017.186.1.6},
      zblnumber = {1383.11090},
      }
  • [me:inf16] Go to document G. Binyamini, D. Novikov, and S. Yakovenko, "On the number of zeros of Abelian integrals," Invent. Math., vol. 181, iss. 2, pp. 227-289, 2010.
    @ARTICLE{me:inf16,
      author = {Binyamini, Gal and Novikov, Dmitry and Yakovenko, Sergei},
      title = {On the number of zeros of {A}belian integrals},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {181},
      year = {2010},
      number = {2},
      pages = {227--289},
      issn = {0020-9910},
      mrclass = {34C08 (34C07 37G15)},
      mrnumber = {2657426},
      mrreviewer = {Massimo Villarini},
      doi = {10.1007/s00222-010-0244-0},
      url = {https://doi.org/10.1007/s00222-010-0244-0},
      zblnumber = {1207.34039},
      }
  • [bombieri-pila] Go to document E. Bombieri and J. Pila, "The number of integral points on arcs and ovals," Duke Math. J., vol. 59, iss. 2, pp. 337-357, 1989.
    @ARTICLE{bombieri-pila,
      author = {Bombieri, E. and Pila, J.},
      title = {The number of integral points on arcs and ovals},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {59},
      year = {1989},
      number = {2},
      pages = {337--357},
      issn = {0012-7094},
      mrclass = {11P21 (11D99)},
      mrnumber = {1016893},
      mrreviewer = {Ulrich Rausch},
      doi = {10.1215/S0012-7094-89-05915-2},
      url = {https://doi.org/10.1215/S0012-7094-89-05915-2},
      zblnumber = {0718.11048},
      }
  • [bowen:entropy-group] Go to document R. Bowen, "Entropy for group endomorphisms and homogeneous spaces," Trans. Amer. Math. Soc., vol. 153, pp. 401-414, 1971.
    @ARTICLE{bowen:entropy-group,
      author = {Bowen, Rufus},
      title = {Entropy for group endomorphisms and homogeneous spaces},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {153},
      year = {1971},
      pages = {401--414},
      issn = {0002-9947},
      mrclass = {28.70 (22.00)},
      mrnumber = {0274707},
      mrreviewer = {G. Della Riccia},
      doi = {10.2307/1995565},
      url = {https://doi.org/10.2307/1995565},
      zblnumber = {0212.29201},
      }
  • [bowen:entropy-expansive] Go to document R. Bowen, "Entropy-expansive maps," Trans. Amer. Math. Soc., vol. 164, pp. 323-331, 1972.
    @ARTICLE{bowen:entropy-expansive,
      author = {Bowen, Rufus},
      title = {Entropy-expansive maps},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {164},
      year = {1972},
      pages = {323--331},
      issn = {0002-9947},
      mrclass = {28.70 (54.00)},
      mrnumber = {0285689},
      mrreviewer = {Karl Sigmund},
      doi = {10.2307/1995978},
      url = {https://doi.org/10.2307/1995978},
      zblnumber = {0229.28011},
      }
  • [broberg:note] Go to document N. Broberg, "A note on a paper by R. Heath-Brown: “The density of rational points on curves and surfaces” [Ann. of Math. (2) 155 (2002), no. 2, 553–595. \mr1906595. \zbl1039.11044. \doi102307/3062125,]," J. Reine Angew. Math., vol. 571, pp. 159-178, 2004.
    @ARTICLE{broberg:note,
      author = {Broberg, Niklas},
      title = {A note on a paper by {R}. {H}eath-{B}rown: ``{T}he density of rational points on curves and surfaces'' [{A}nn. of {M}ath. (2) {\bf 155} (2002), no. 2, 553--595. \mr{1906595}. \zbl{1039.11044}. \doi{102307/3062125},
     ]},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {571},
      year = {2004},
      pages = {159--178},
      issn = {0075-4102},
      mrclass = {11G35 (11G05 14G05)},
      mrnumber = {2070148},
      mrreviewer = {Timothy D. Browning},
      doi = {10.1515/crll.2004.039},
      url = {https://doi.org/10.1515/crll.2004.039},
      zblnumber = {1053.11027},
      }
  • [burguet:alg-lemma] Go to document D. Burguet, "A proof of Yomdin-Gromov’s algebraic lemma," Israel J. Math., vol. 168, pp. 291-316, 2008.
    @ARTICLE{burguet:alg-lemma,
      author = {Burguet, David},
      title = {A proof of {Y}omdin-{G}romov's algebraic lemma},
      journal = {Israel J. Math.},
      fjournal = {Israel Journal of Mathematics},
      volume = {168},
      year = {2008},
      pages = {291--316},
      issn = {0021-2172},
      mrclass = {14P10 (14P20 37C99 37D99)},
      mrnumber = {2448063},
      mrreviewer = {Aris Daniilidis},
      doi = {10.1007/s11856-008-1069-z},
      url = {https://doi.org/10.1007/s11856-008-1069-z},
      zblnumber = {1169.14038},
      }
  • [bly] Go to document D. Burguet, G. Liao, and J. Yang, "Asymptotic $h$-expansiveness rate of $C^\infty$ maps," Proc. Lond. Math. Soc. (3), vol. 111, iss. 2, pp. 381-419, 2015.
    @ARTICLE{bly,
      author = {Burguet, David and Liao, Gang and Yang, Jiagang},
      title = {Asymptotic {$h$}-expansiveness rate of {$C^\infty$} maps},
      journal = {Proc. Lond. Math. Soc. (3)},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      volume = {111},
      year = {2015},
      number = {2},
      pages = {381--419},
      issn = {0024-6115},
      mrclass = {37A35 (14P10 30D05 37B40 37E05)},
      mrnumber = {3384516},
      mrreviewer = {Todd Fisher},
      doi = {10.1112/plms/pdv031},
      url = {https://doi.org/10.1112/plms/pdv031},
      zblnumber = {1352.37015},
      }
  • [butler] Go to document L. A. Butler, "Some cases of Wilkie’s conjecture," Bull. Lond. Math. Soc., vol. 44, iss. 4, pp. 642-660, 2012.
    @ARTICLE{butler,
      author = {Butler, Lee A.},
      title = {Some cases of {W}ilkie's conjecture},
      journal = {Bull. Lond. Math. Soc.},
      fjournal = {Bulletin of the London Mathematical Society},
      volume = {44},
      year = {2012},
      number = {4},
      pages = {642--660},
      issn = {0024-6093},
      mrclass = {11G50 (03C64)},
      mrnumber = {2967234},
      mrreviewer = {Chris Miller},
      doi = {10.1112/blms/bdr126},
      url = {https://doi.org/10.1112/blms/bdr126},
      zblnumber = {1253.03063},
      }
  • [buzzi] Go to document J. Buzzi, "Intrinsic ergodicity of smooth interval maps," Israel J. Math., vol. 100, pp. 125-161, 1997.
    @ARTICLE{buzzi,
      author = {Buzzi, Jérôme},
      title = {Intrinsic ergodicity of smooth interval maps},
      journal = {Israel J. Math.},
      fjournal = {Israel Journal of Mathematics},
      volume = {100},
      year = {1997},
      pages = {125--161},
      issn = {0021-2172},
      mrclass = {58F11 (28D99)},
      mrnumber = {1469107},
      mrreviewer = {Jan Kwiatkowski},
      doi = {10.1007/BF02773637},
      url = {https://doi.org/10.1007/BF02773637},
      zblnumber = {0889.28009},
      }
  • [cpw:params] R. Cluckers, J. Pila, and A. Wilkie, Uniform parameterization of subanalytic sets and diophantine applications, 2016.
    @MISC{cpw:params,
      author = {Cluckers, Raf and Pila, Jonathan and Wilkie, Alex},
      title = {Uniform parameterization of subanalytic sets and diophantine applications},
      year = {2016},
      zblnumber = {},
      note = {{\em Ann. Sci. \'{E}cole Norm. Sup}., to appear},
      arxiv = {1605.05916},
      }
  • [dvdd:subanalytic] Go to document J. Denef and L. van den Dries, "$p$-adic and real subanalytic sets," Ann. of Math. (2), vol. 128, iss. 1, pp. 79-138, 1988.
    @ARTICLE{dvdd:subanalytic,
      author = {Denef, J. and van den Dries, L.},
      title = {{$p$}-adic and real subanalytic sets},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {128},
      year = {1988},
      number = {1},
      pages = {79--138},
      issn = {0003-486X},
      mrclass = {03C10 (03C60 14G20 14G30 32B20)},
      mrnumber = {0951508},
      mrreviewer = {Max A. Dickmann},
      doi = {10.2307/1971463},
      url = {https://doi.org/10.2307/1971463},
      zblnumber = {0693.14012},
      }
  • [yf:doubling] O. Friedland and Y. Yomdin, "Doubling coverings of algebraic hypersurfaces," Pure Appl. Funct. Anal., vol. 2, iss. 2, pp. 221-241, 2017.
    @ARTICLE{yf:doubling,
      author = {Friedland, Omer and Yomdin, Yosef},
      title = {Doubling coverings of algebraic hypersurfaces},
      journal = {Pure Appl. Funct. Anal.},
      fjournal = {Pure and Applied Functional Analysis},
      volume = {2},
      year = {2017},
      number = {2},
      pages = {221--241},
      issn = {2189-3756},
      mrclass = {32C15 (32B10 32B25)},
      mrnumber = {3656264},
      mrreviewer = {Tobias Kaiser},
      zblnumber = {1377.32008},
      }
  • [fm:compact] Go to document W. Fulton and R. MacPherson, "A compactification of configuration spaces," Ann. of Math. (2), vol. 139, iss. 1, pp. 183-225, 1994.
    @ARTICLE{fm:compact,
      author = {Fulton, William and MacPherson, Robert},
      title = {A compactification of configuration spaces},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {139},
      year = {1994},
      number = {1},
      pages = {183--225},
      issn = {0003-486X},
      mrclass = {14C05 (05C30 14F25 55P62)},
      mrnumber = {1259368},
      mrreviewer = {Burt Totaro},
      doi = {10.2307/2946631},
      url = {https://doi.org/10.2307/2946631},
      zblnumber = {0820.14037},
      }
  • [gromov:gy] Go to document M. Gromov, "Entropy, homology and semialgebraic geometry," in Séminaire Bourbaki, Vol. 1985/86, Math. Soc. France, Paris, 1987, vol. 145-146, p. 5, 225-240.
    @incollection{gromov:gy,
      author = {Gromov, M.},
      title = {Entropy, homology and semialgebraic geometry},
      booktitle = {Séminaire Bourbaki, Vol. 1985/86},
      series = {Astérisque},
      publisher={Math. Soc. France, Paris},
      volume = {145-146},
      year = {1987},
      pages = {5, 225--240},
      issn = {0303-1179},
      mrclass = {58F11 (28D20 58C25)},
      mrnumber = {0880035},
      mrreviewer = {H. Knörrer},
      zblnumber = {0611.58041},
      url = {http://www.numdam.org/book-part/SB_1985-1986__28__225_0/},
      }
  • [gr:analytic] Go to document R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, AMS Chelsea Publishing, Providence, RI, 2009.
    @BOOK{gr:analytic,
      author = {Gunning, Robert C. and Rossi, Hugo},
      title = {Analytic Functions of Several Complex Variables},
      note = {reprint of the 1965 original},
      publisher = {AMS Chelsea Publishing, Providence, RI},
      year = {2009},
      pages = {xiv+318},
      isbn = {978-0-8218-2165-7},
      mrclass = {32-01},
      mrnumber = {2568219},
      doi = {10.1090/chel/368},
      url = {https://doi.org/10.1090/chel/368},
      zblnumber = {1204.01045},
      }
  • [hs:variations] Go to document R. Hardt and D. Sullivan, "Variation of the Green function on Riemann surfaces and Whitney’s holomorphic stratification conjecture," Inst. Hautes Études Sci. Publ. Math., vol. 68, pp. 115-137 (1989), 1988.
    @ARTICLE{hs:variations,
      author = {Hardt, Robert and Sullivan, Dennis},
      title = {Variation of the {G}reen function on {R}iemann surfaces and {W}hitney's holomorphic stratification conjecture},
      journal = {Inst. Hautes \'{E}tudes Sci. Publ. Math.},
      fjournal = {Institut des Hautes \'{E}tudes Scientifiques. Publications Mathématiques},
      volume = {68},
      year = {1988},
      pages = {115--137 (1989)},
      issn = {0073-8301},
      mrclass = {32S60 (58G25)},
      mrnumber = {1001451},
      url = {https://doi.org/10.1007/BF02698545},
      doi = {10.1007/BF02698545},
      zblnumber = {0735.30039},
      }
  • [hayman:book] Go to document W. K. Hayman, Multivalent Functions, Second ed., Cambridge Univ. Press, Cambridge, 1994, vol. 110.
    @BOOK{hayman:book,
      author = {Hayman, W. K.},
      title = {Multivalent Functions},
      series = {Cambridge Tracts in Math.},
      volume = {110},
      edition = {Second},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1994},
      pages = {xii+263},
      isbn = {0-521-46026-3},
      mrclass = {30Cxx},
      mrnumber = {1310776},
      mrreviewer = {W. C. Royster},
      doi = {10.1017/CBO9780511526268},
      url = {https://doi.org/10.1017/CBO9780511526268},
      zblnumber = {0904.30001},
      }
  • [heath-brown:density] Go to document D. R. Heath-Brown, "The density of rational points on curves and surfaces," Ann. of Math. (2), vol. 155, iss. 2, pp. 553-595, 2002.
    @ARTICLE{heath-brown:density,
      author = {Heath-Brown, D. R.},
      title = {The density of rational points on curves and surfaces},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {155},
      year = {2002},
      number = {2},
      pages = {553--595},
      issn = {0003-486X},
      mrclass = {11G35 (11G50 14G05 14G40)},
      mrnumber = {1906595},
      mrreviewer = {Carlo Gasbarri},
      doi = {10.2307/3062125},
      url = {https://doi.org/10.2307/3062125},
      zblnumber = {1039.11044},
      }
  • [jmt:mild] Go to document G. O. Jones, D. J. Miller, and M. E. M. Thomas, "Mildness and the density of rational points on certain transcendental curves," Notre Dame J. Form. Log., vol. 52, iss. 1, pp. 67-74, 2011.
    @ARTICLE{jmt:mild,
      author = {Jones, G. O. and Miller, D. J. and Thomas, M. E. M.},
      title = {Mildness and the density of rational points on certain transcendental curves},
      journal = {Notre Dame J. Form. Log.},
      fjournal = {Notre Dame Journal of Formal Logic},
      volume = {52},
      year = {2011},
      number = {1},
      pages = {67--74},
      issn = {0029-4527},
      mrclass = {03C64 (11U09)},
      mrnumber = {2747163},
      mrreviewer = {Patrick Speissegger},
      doi = {10.1215/00294527-2010-037},
      url = {https://doi.org/10.1215/00294527-2010-037},
      zblnumber = {1220.03034},
      }
  • [jt:pfaff-surfaces] Go to document G. O. Jones and M. E. M. Thomas, "The density of algebraic points on certain Pfaffian surfaces," Q. J. Math., vol. 63, iss. 3, pp. 637-651, 2012.
    @ARTICLE{jt:pfaff-surfaces,
      author = {Jones, G. O. and Thomas, M. E. M.},
      title = {The density of algebraic points on certain {P}faffian surfaces},
      journal = {Q. J. Math.},
      fjournal = {The Quarterly Journal of Mathematics},
      volume = {63},
      year = {2012},
      number = {3},
      pages = {637--651},
      issn = {0033-5606},
      mrclass = {03C64 (11G05 14G05)},
      mrnumber = {2967167},
      mrreviewer = {Jean-Philippe Rolin},
      doi = {10.1093/qmath/har011},
      url = {https://doi.org/10.1093/qmath/har011},
      zblnumber = {1253.03065},
      }
  • [katok:fuchsian-groups] S. Katok, Fuchsian Groups, University of Chicago Press, Chicago, IL, 1992.
    @BOOK{katok:fuchsian-groups,
      author = {Katok, Svetlana},
      title = {Fuchsian Groups},
      series = {Chicago Lectures in Math.},
      publisher = {University of Chicago Press, Chicago, IL},
      year = {1992},
      pages = {x+175},
      isbn = {0-226-42582-7; 0-226-42583-5},
      mrclass = {20H10 (30F35)},
      mrnumber = {1177168},
      mrreviewer = {I. Kra},
      zblnumber = {0753.30001},
      }
  • [ky:rolle] Go to document A. Khovanskii and S. Yakovenko, "Generalized Rolle theorem in ${\bf R}^n$ and ${\bf C}$," J. Dynam. Control Systems, vol. 2, iss. 1, pp. 103-123, 1996.
    @ARTICLE{ky:rolle,
      author = {Khovanskii, A. and Yakovenko, S.},
      title = {Generalized {R}olle theorem in {${\bf R}^n$} and {${\bf C}$}},
      journal = {J. Dynam. Control Systems},
      fjournal = {Journal of Dynamical and Control Systems},
      volume = {2},
      year = {1996},
      number = {1},
      pages = {103--123},
      issn = {1079-2724},
      mrclass = {26B15 (30C15 34A20 53C65)},
      mrnumber = {1377431},
      mrreviewer = {Y. Yomdin},
      doi = {10.1007/BF02259625},
      url = {https://doi.org/10.1007/BF02259625},
      zblnumber = {0941.26009},
      }
  • [lion-rolin] Go to document J. -M. Lion and J. -P. Rolin, "Théorème de préparation pour les fonctions logarithmico-exponentielles," Ann. Inst. Fourier (Grenoble), vol. 47, iss. 3, pp. 859-884, 1997.
    @ARTICLE{lion-rolin,
      author = {Lion, J.-M. and Rolin, J.-P.},
      title = {Théorème de préparation pour les fonctions logarithmico-exponentielles},
      journal = {Ann. Inst. Fourier (Grenoble)},
      fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
      volume = {47},
      year = {1997},
      number = {3},
      pages = {859--884},
      issn = {0373-0956},
      mrclass = {32B20 (14P15 32C05)},
      mrnumber = {1465789},
      mrreviewer = {Zbigniew Szafraniec},
      doi = {10.5802/aif.1583},
      url = {https://doi.org/10.5802/aif.1583},
      zblnumber = {0873.32004},
      }
  • [marmon] Go to document O. Marmon, "A generalization of the Bombieri-Pila determinant method," Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), vol. 377, iss. Issledovaniya po Teorii Chisel. 10, pp. 63-77, 242, 2010.
    @ARTICLE{marmon,
      author = {Marmon, O.},
      title = {A generalization of the {B}ombieri-{P}ila determinant method},
      journal = {Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)},
      fjournal = {Rossiĭskaya Akademiya Nauk. Sankt-Peterburgskoe Otdelenie. Matematicheskiĭ Institut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI)},
      volume = {377},
      year = {2010},
      number = {Issledovaniya po Teorii Chisel. 10},
      pages = {63--77, 242},
      issn = {0373-2703},
      mrclass = {11G50 (11D45 14G05)},
      mrnumber = {2753650},
      mrreviewer = {Alexandra Shlapentokh},
      doi = {10.1007/s10958-010-0178-5},
      url = {https://doi.org/10.1007/s10958-010-0178-5},
      zblnumber = {1288.11030},
      }
  • [mz:torsion] Go to document D. Masser and U. Zannier, "Torsion anomalous points and families of elliptic curves," Amer. J. Math., vol. 132, iss. 6, pp. 1677-1691, 2010.
    @ARTICLE{mz:torsion,
      author = {Masser, D. and Zannier, U.},
      title = {Torsion anomalous points and families of elliptic curves},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {132},
      year = {2010},
      number = {6},
      pages = {1677--1691},
      issn = {0002-9327},
      mrclass = {11G05},
      mrnumber = {2766181},
      mrreviewer = {Hizuru Yamagishi},
      zblnumber = {1225.11078},
      url = {https://muse.jhu.edu/article/404145/pdf},
      }
  • [milnor:dynamics] J. Milnor, Dynamics in One Complex Variable, Third ed., Princeton Univ. Press, Princeton, NJ, 2006, vol. 160.
    @BOOK{milnor:dynamics,
      author = {Milnor, John},
      title = {Dynamics in One Complex Variable},
      series = {Ann. of Math. Stud.},
      volume = {160},
      edition = {Third},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {2006},
      pages = {viii+304},
      isbn = {978-0-691-12488-9; 0-691-12488-4},
      mrclass = {37Fxx (30-01 30D05 37-01)},
      mrnumber = {2193309},
      zblnumber = {1085.30002},
      }
  • [misiurewicz:cond-entropy] Go to document M. Misiurewicz, "Topological conditional entropy," Studia Math., vol. 55, iss. 2, pp. 175-200, 1976.
    @ARTICLE{misiurewicz:cond-entropy,
      author = {Misiurewicz, Micha\l},
      title = {Topological conditional entropy},
      journal = {Studia Math.},
      fjournal = {Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica},
      volume = {55},
      year = {1976},
      number = {2},
      pages = {175--200},
      issn = {0039-3223},
      mrclass = {54H20},
      mrnumber = {0415587},
      mrreviewer = {Timothy N. T. Goodman},
      doi = {10.4064/sm-55-2-175-200},
      url = {https://doi.org/10.4064/sm-55-2-175-200},
      zblnumber = {0355.54035},
      }
  • [nesterenko:hilbert] Y. V. Nesterenko, "Estimates for the characteristic function of a prime ideal," Mat. Sb. (N.S.), vol. 123(165), iss. 1, pp. 11-34, 1984.
    @ARTICLE{nesterenko:hilbert,
      author = {Nesterenko, Yu. V.},
      title = {Estimates for the characteristic function of a prime ideal},
      journal = {Mat. Sb. (N.S.)},
      fjournal = {Matematicheskiĭ Sbornik. Novaya Seriya},
      volume = {123(165)},
      year = {1984},
      number = {1},
      pages = {11--34},
      issn = {0368-8666},
      mrclass = {11J81 (13F20)},
      mrnumber = {0728927},
      mrreviewer = {S. V. Kotov},
      zblnumber = {0579.10030},
      }
  • [newhouse:entropy-volume] Go to document S. E. Newhouse, "Entropy and volume," Ergodic Theory Dynam. Systems, vol. 8$^*$, iss. Charles Conley Memorial Issue, pp. 283-299, 1988.
    @ARTICLE{newhouse:entropy-volume,
      author = {Newhouse, Sheldon E.},
      title = {Entropy and volume},
      journal = {Ergodic Theory Dynam. Systems},
      fjournal = {Ergodic Theory and Dynamical Systems},
      volume = {8$^*$},
      year = {1988},
      number = {Charles Conley Memorial Issue},
      pages = {283--299},
      issn = {0143-3857},
      mrclass = {58F11 (58C25)},
      mrnumber = {0967642},
      mrreviewer = {Y. Yomdin},
      doi = {10.1017/S0143385700009469},
      url = {https://doi.org/10.1017/S0143385700009469},
      zblnumber = {0638.58016},
      }
  • [parusinski:preparation] Go to document A. Parusiński, "Lipschitz stratification of subanalytic sets," Ann. Sci. École Norm. Sup. (4), vol. 27, iss. 6, pp. 661-696, 1994.
    @ARTICLE{parusinski:preparation,
      author = {Parusiński, Adam},
      title = {Lipschitz stratification of subanalytic sets},
      journal = {Ann. Sci. \'{E}cole Norm. Sup. (4)},
      fjournal = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Quatrième Série},
      volume = {27},
      year = {1994},
      number = {6},
      pages = {661--696},
      issn = {0012-9593},
      mrclass = {32B20 (58A35)},
      mrnumber = {1307677},
      mrreviewer = {Patrice Orro},
      doi = {10.24033/asens.1703},
      url = {https://doi.org/10.24033/asens.1703},
      zblnumber = {0819.32007},
      }
  • [pila:density-Q] Go to document J. Pila, "Geometric postulation of a smooth function and the number of rational points," Duke Math. J., vol. 63, iss. 2, pp. 449-463, 1991.
    @ARTICLE{pila:density-Q,
      author = {Pila, J.},
      title = {Geometric postulation of a smooth function and the number of rational points},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {63},
      year = {1991},
      number = {2},
      pages = {449--463},
      issn = {0012-7094},
      mrclass = {11J99},
      mrnumber = {1115117},
      mrreviewer = {Richard T. Bumby},
      doi = {10.1215/S0012-7094-91-06320-9},
      url = {https://doi.org/10.1215/S0012-7094-91-06320-9},
      zblnumber = {0763.11025},
      }
  • [pila-wilkie] Go to document J. Pila and A. J. Wilkie, "The rational points of a definable set," Duke Math. J., vol. 133, iss. 3, pp. 591-616, 2006.
    @ARTICLE{pila-wilkie,
      author = {Pila, J. and Wilkie, A. J.},
      title = {The rational points of a definable set},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {133},
      year = {2006},
      number = {3},
      pages = {591--616},
      issn = {0012-7094},
      mrclass = {03C64 (11G99 11U09)},
      mrnumber = {2228464},
      mrreviewer = {Alexandra Shlapentokh},
      doi = {10.1215/S0012-7094-06-13336-7},
      url = {https://doi.org/10.1215/S0012-7094-06-13336-7},
      zblnumber = {1217.11066},
      }
  • [pila:subanalytic-dilation] Go to document J. Pila, "Integer points on the dilation of a subanalytic surface," Q. J. Math., vol. 55, iss. 2, pp. 207-223, 2004.
    @ARTICLE{pila:subanalytic-dilation,
      author = {Pila, Jonathan},
      title = {Integer points on the dilation of a subanalytic surface},
      journal = {Q. J. Math.},
      fjournal = {The Quarterly Journal of Mathematics},
      volume = {55},
      year = {2004},
      number = {2},
      pages = {207--223},
      issn = {0033-5606},
      mrclass = {32B20},
      mrnumber = {2068319},
      mrreviewer = {P. Bundschuh},
      doi = {10.1093/qjmath/55.2.207},
      url = {https://doi.org/10.1093/qjmath/55.2.207},
      zblnumber = {1111.32004},
      }
  • [pila:mild] J. Pila, "Mild parameterization and the rational points of a Pfaff curve," Comment. Math. Univ. St. Pauli, vol. 55, iss. 1, pp. 1-8, 2006.
    @ARTICLE{pila:mild,
      author = {Pila, Jonathan},
      title = {Mild parameterization and the rational points of a {P}faff curve},
      journal = {Comment. Math. Univ. St. Pauli},
      fjournal = {Commentarii Mathematici Universitatis Sancti Pauli},
      volume = {55},
      year = {2006},
      number = {1},
      pages = {1--8},
      issn = {0010-258X},
      mrclass = {11G50 (11D75)},
      mrnumber = {2251995},
      mrreviewer = {R. Wallisser},
      zblnumber = {1129.11029},
      }
  • [pila:pems] Go to document J. Pila, "Note on the rational points of a Pfaff curve," Proc. Edinb. Math. Soc. (2), vol. 49, iss. 2, pp. 391-397, 2006.
    @ARTICLE{pila:pems,
      author = {Pila, Jonathan},
      title = {Note on the rational points of a {P}faff curve},
      journal = {Proc. Edinb. Math. Soc. (2)},
      fjournal = {Proceedings of the Edinburgh Mathematical Society. Series II},
      volume = {49},
      year = {2006},
      number = {2},
      pages = {391--397},
      issn = {0013-0915},
      mrclass = {11J99 (11D99)},
      mrnumber = {2243794},
      mrreviewer = {R. Wallisser},
      doi = {10.1017/S0013091504000847},
      url = {https://doi.org/10.1017/S0013091504000847},
      zblnumber = {1097.11037},
      }
  • [pila:pfaff] Go to document J. Pila, "The density of rational points on a Pfaff curve," Ann. Fac. Sci. Toulouse Math. (6), vol. 16, iss. 3, pp. 635-645, 2007.
    @ARTICLE{pila:pfaff,
      author = {Pila, Jonathan},
      title = {The density of rational points on a {P}faff curve},
      journal = {Ann. Fac. Sci. Toulouse Math. (6)},
      fjournal = {Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série 6},
      volume = {16},
      year = {2007},
      number = {3},
      pages = {635--645},
      issn = {0240-2963},
      mrclass = {11G50 (11D45 11D75)},
      mrnumber = {2379055},
      mrreviewer = {Alexandra Shlapentokh},
      doi = {10.5802/afst.1162},
      url = {https://doi.org/10.5802/afst.1162},
      zblnumber = {1229.11053},
      }
  • [pila:exp-alg-surface] Go to document J. Pila, "Counting rational points on a certain exponential-algebraic surface," Ann. Inst. Fourier (Grenoble), vol. 60, iss. 2, pp. 489-514, 2010.
    @ARTICLE{pila:exp-alg-surface,
      author = {Pila, Jonathan},
      title = {Counting rational points on a certain exponential-algebraic surface},
      journal = {Ann. Inst. Fourier (Grenoble)},
      fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
      volume = {60},
      year = {2010},
      number = {2},
      pages = {489--514},
      issn = {0373-0956},
      mrclass = {11G50 (03C64)},
      mrnumber = {2667784},
      mrreviewer = {Alexandra Shlapentokh},
      doi = {10.5802/aif.2530},
      url = {https://doi.org/10.5802/aif.2530},
      zblnumber = {1210.11074},
      }
  • [pila:andre-oort] Go to document J. Pila, "O-minimality and the André-Oort conjecture for $\Bbb C^n$," Ann. of Math. (2), vol. 173, iss. 3, pp. 1779-1840, 2011.
    @ARTICLE{pila:andre-oort,
      author = {Pila, Jonathan},
      title = {O-minimality and the {A}ndré-{O}ort conjecture for {$\Bbb C^n$}},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {173},
      year = {2011},
      number = {3},
      pages = {1779--1840},
      issn = {0003-486X},
      mrclass = {11G18 (03C64 11U09 14G35)},
      mrnumber = {2800724},
      mrreviewer = {Alexandra Shlapentokh},
      doi = {10.4007/annals.2011.173.3.11},
      url = {https://doi.org/10.4007/annals.2011.173.3.11},
      zblnumber = {1243.14022},
      }
  • [pila-zannier] Go to document J. Pila and U. Zannier, "Rational points in periodic analytic sets and the Manin-Mumford conjecture," Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., vol. 19, iss. 2, pp. 149-162, 2008.
    @ARTICLE{pila-zannier,
      author = {Pila, Jonathan and Zannier, Umberto},
      title = {Rational points in periodic analytic sets and the {M}anin-{M}umford conjecture},
      journal = {Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.},
      fjournal = {Atti della Accademia Nazionale dei Lincei. Rendiconti Lincei. Matematica e Applicazioni},
      volume = {19},
      year = {2008},
      number = {2},
      pages = {149--162},
      issn = {1120-6330},
      mrclass = {11J95 (11G10 14G05)},
      mrnumber = {2411018},
      mrreviewer = {Pavlos Tzermias},
      doi = {10.4171/RLM/514},
      url = {https://doi.org/10.4171/RLM/514},
      zblnumber = {1164.11029},
      }
  • [salberger:density] Go to document P. Salberger, "On the density of rational and integral points on algebraic varieties," J. Reine Angew. Math., vol. 606, pp. 123-147, 2007.
    @ARTICLE{salberger:density,
      author = {Salberger, Per},
      title = {On the density of rational and integral points on algebraic varieties},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {606},
      year = {2007},
      pages = {123--147},
      issn = {0075-4102},
      mrclass = {11G35 (11G50 14G05)},
      mrnumber = {2337644},
      mrreviewer = {Ulrich Derenthal},
      doi = {10.1515/CRELLE.2007.037},
      url = {https://doi.org/10.1515/CRELLE.2007.037},
      zblnumber = {1130.14020},
      }
  • [scanlon:survey] Go to document T. Scanlon, "Counting special points: logic, Diophantine geometry, and transcendence theory," Bull. Amer. Math. Soc. (N.S.), vol. 49, iss. 1, pp. 51-71, 2012.
    @ARTICLE{scanlon:survey,
      author = {Scanlon, Thomas},
      title = {Counting special points: logic, {D}iophantine geometry, and transcendence theory},
      journal = {Bull. Amer. Math. Soc. (N.S.)},
      fjournal = {American Mathematical Society. Bulletin. New Series},
      volume = {49},
      year = {2012},
      number = {1},
      pages = {51--71},
      issn = {0273-0979},
      mrclass = {11U09 (03C64 11G99)},
      mrnumber = {2869007},
      mrreviewer = {Alexandra Shlapentokh},
      doi = {10.1090/S0273-0979-2011-01354-4},
      url = {https://doi.org/10.1090/S0273-0979-2011-01354-4},
      zblnumber = {1323.11041},
      }
  • [thomas:mild] Go to document M. E. M. Thomas, "An o-minimal structure without mild parameterization," Ann. Pure Appl. Logic, vol. 162, iss. 6, pp. 409-418, 2011.
    @ARTICLE{thomas:mild,
      author = {Thomas, Margaret E. M.},
      title = {An o-minimal structure without mild parameterization},
      journal = {Ann. Pure Appl. Logic},
      fjournal = {Annals of Pure and Applied Logic},
      volume = {162},
      year = {2011},
      number = {6},
      pages = {409--418},
      issn = {0168-0072},
      mrclass = {03C64},
      mrnumber = {2775705},
      mrreviewer = {Jean-Philippe Rolin},
      doi = {10.1016/j.apal.2010.11.004},
      url = {https://doi.org/10.1016/j.apal.2010.11.004},
      zblnumber = {1251.03043},
      }
  • [vdd:book] Go to document L. van den Dries, TameTopology and $o$-Minimal Structures, Cambridge Univ. Press, Cambridge, 1998, vol. 248.
    @BOOK{vdd:book,
      author = {van den Dries, Lou},
      title = {TameTopology and $o$-Minimal Structures},
      series = {London Math. Soc. Lecture Note Ser.},
      volume = {248},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1998},
      pages = {x+180},
      isbn = {0-521-59838-9},
      mrclass = {03-02 (03C50 03C60 14P10 52-02 54-02 55-02 57-02)},
      mrnumber = {1633348},
      mrreviewer = {O. V. Belegradek},
      doi = {10.1017/CBO9780511525919},
      url = {https://doi.org/10.1017/CBO9780511525919},
      zblnumber = {0953.03045},
      }
  • [walsh:boundd-rational] Go to document M. N. Walsh, "Bounded rational points on curves," Int. Math. Res. Not. IMRN, vol. 14, pp. 5644-5658, 2015.
    @ARTICLE{walsh:boundd-rational,
      author = {Walsh, Miguel N.},
      title = {Bounded rational points on curves},
      journal = {Int. Math. Res. Not. IMRN},
      fjournal = {International Mathematics Research Notices. IMRN},
      year = {2015},
      volume = {14},
      pages = {5644--5658},
      issn = {1073-7928},
      mrclass = {14H25 (14G05 14G25)},
      mrnumber = {3384452},
      mrreviewer = {Daniel Loughran},
      doi = {10.1093/imrn/rnu103},
      url = {https://doi.org/10.1093/imrn/rnu103},
      zblnumber = {1345.14029},
      }
  • [yomdin:gy] Go to document Y. Yomdin, "$C^k$-resolution of semialgebraic mappings. Addendum to: “Volume growth and entropy”," Israel J. Math., vol. 57, iss. 3, pp. 301-317, 1987.
    @ARTICLE{yomdin:gy,
      author = {Yomdin, Y.},
      title = {{$C^k$}-resolution of semialgebraic mappings. {A}ddendum to: ``{V}olume growth and entropy''},
      journal = {Israel J. Math.},
      fjournal = {Israel Journal of Mathematics},
      volume = {57},
      year = {1987},
      number = {3},
      pages = {301--317},
      issn = {0021-2172},
      mrclass = {58C27 (32B20 54H20 57R45 58F11)},
      mrnumber = {0889980},
      mrreviewer = {Pierre D. Milman},
      doi = {10.1007/BF02766216},
      url = {https://doi.org/10.1007/BF02766216},
      zblnumber = {0641.54037},
      }
  • [yomdin:entropy] Go to document Y. Yomdin, "Volume growth and entropy," Israel J. Math., vol. 57, iss. 3, pp. 285-300, 1987.
    @ARTICLE{yomdin:entropy,
      author = {Yomdin, Y.},
      title = {Volume growth and entropy},
      journal = {Israel J. Math.},
      fjournal = {Israel Journal of Mathematics},
      volume = {57},
      year = {1987},
      number = {3},
      pages = {285--300},
      issn = {0021-2172},
      mrclass = {58C27 (32B20 54H20 57R45 58F11)},
      mrnumber = {0889979},
      mrreviewer = {Pierre D. Milman},
      doi = {10.1007/BF02766215},
      url = {https://doi.org/10.1007/BF02766215},
      zblnumber = {0641.54036},
      }
  • [yomdin:entropy-analytic] Go to document Y. Yomdin, "Local complexity growth for iterations of real analytic mappings and semicontinuity moduli of the entropy," Ergodic Theory Dynam. Systems, vol. 11, iss. 3, pp. 583-602, 1991.
    @ARTICLE{yomdin:entropy-analytic,
      author = {Yomdin, Y.},
      title = {Local complexity growth for iterations of real analytic mappings and semicontinuity moduli of the entropy},
      journal = {Ergodic Theory Dynam. Systems},
      fjournal = {Ergodic Theory and Dynamical Systems},
      volume = {11},
      year = {1991},
      number = {3},
      pages = {583--602},
      issn = {0143-3857},
      mrclass = {58F11 (28D20 58F30)},
      mrnumber = {1125891},
      mrreviewer = {M. L. Blank},
      doi = {10.1017/S0143385700006350},
      url = {https://doi.org/10.1017/S0143385700006350},
      zblnumber = {0756.58041},
      }
  • [yomdin:param-dim2] Go to document Y. Yomdin, "Analytic reparametrization of semi-algebraic sets," J. Complexity, vol. 24, iss. 1, pp. 54-76, 2008.
    @ARTICLE{yomdin:param-dim2,
      author = {Yomdin, Y.},
      title = {Analytic reparametrization of semi-algebraic sets},
      journal = {J. Complexity},
      fjournal = {Journal of Complexity},
      volume = {24},
      year = {2008},
      number = {1},
      pages = {54--76},
      issn = {0885-064X},
      mrclass = {14P10},
      mrnumber = {2386930},
      mrreviewer = {Andreas Fischer},
      doi = {10.1016/j.jco.2007.03.009},
      url = {https://doi.org/10.1016/j.jco.2007.03.009},
      zblnumber = {1143.32007},
      }
  • [zannier:book] Go to document U. Zannier, Some Problems of Unlikely Intersections in Arithmetic and Geometry, Princeton Univ. Press, Princeton, NJ, 2012, vol. 181.
    @BOOK{zannier:book,
      author = {Zannier, Umberto},
      title = {Some Problems of Unlikely Intersections in Arithmetic and Geometry},
      series = {Ann. of Math. Stud.},
      volume = {181},
      note = {with appendixes by David Masser},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {2012},
      pages = {xiv+160},
      isbn = {978-0-691-15371-1},
      mrclass = {11G35 (11G15 11G18 11G50 14G05)},
      mrnumber = {2918151},
      mrreviewer = {Yuri Bilu},
      zblnumber = {1246.14003},
      doi = {10.1515/9781400842711},
      url = {https://doi.org/10.1515/9781400842711},
      }

Authors

Gal Binyamini

The Weizmann Institute of Science, Rehovot, Israel

Dmitry Novikov

The Weizmann Institute of Science, Rehovot, Israel