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Complex cellular structures

By Gal Binyamini and Dmitry Novikov

Abstract

We introduce the notion of a complex cell, a complexification of the

cells/cylinders used in real tame geometry. For δ ∈ (0, 1) and a complex

cell C, we define its holomorphic extension C ⊂ Cδ, which is again a complex

cell. The hyperbolic geometry of C within Cδ provides the class of complex

cells with a rich geometric function theory absent in the real case. We use

this to prove a complex analog of the cellular decomposition theorem of

real tame geometry. In the algebraic case we show that the complexity of

such decompositions depends polynomially on the degrees of the equations

involved.

Using this theory, we refine the Yomdin-Gromov algebraic lemma on Cr-

smooth parametrizations of semialgebraic sets: we show that the number

of Cr charts can be taken to be polynomial in the smoothness order r and

in the complexity of the set. The algebraic lemma was initially invented in

the work of Yomdin and Gromov to produce estimates for the topological

entropy of C∞ maps. For analytic maps our refined version, combined

with work of Burguet, Liao and Yang, establishes an optimal refinement of

these estimates in the form of tight bounds on the tail entropy and volume

growth. This settles a conjecture of Yomdin who proved the same result in

dimension two in 1991. A self-contained proof of these estimates using the

refined algebraic lemma is given in an appendix by Yomdin.

The algebraic lemma has more recently been used in the study of ra-

tional points on algebraic and transcendental varieties. We use the theory

of complex cells in these two directions. In the algebraic context we refine

a result of Heath-Brown on interpolating rational points in algebraic va-

rieties. In the transcendental context we prove an interpolation result for

(unrestricted) logarithmic images of subanalytic sets.
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1. Introduction

In this section we aim to provide an intuitive motivation for the for-

mal notion of complex cells introduced in Section 2. We discuss the smooth

parametrization problem, particularly the Yomdin-Gromov algebraic lemma

and its sharper forms established in this paper. We then discuss the hyperbolic

obstruction to a Gromov-Yomdin type lemma in the holomorphic category and

motivate the notion of a complex cell as a way of overcoming this obstruction.

Finally we briefly discuss the applications of our parametrization results in

smooth dynamics and in diophantine geometry.

1.1. Smooth parametrizations.

1.1.1. The Yomdin-Gromov Algebraic Lemma. In [53], [52] Yomdin gave a

proof of Shub’s entropy conjecture for C∞-maps. A key step in this proof was

the construction of Cr-smooth parametrizations of semialgebraic sets with the

number of charts depending only on the combinatorial data. More precisely,

for a Cr-smooth function f : U → Rn on a domain U ⊂ Rm, we denote by

‖f‖ = ‖f‖U the maximum norm on U and

(1) ‖f‖r := max
|α|6r

‖Dαf‖
α!

.

The original parametrization theorem of [53], [52] involved a technical condition

on the removal of a small piece from the semialgebraic set being parametrized.

The following refinement by Gromov [22] (see also [13]) is known as the Yomdin-

Gromov Algebraic Lemma.



COMPLEX CELLULAR STRUCTURES 147

Theorem ([22, 3.3. Algebraic Lemma]). Let X ⊂ [0, 1]n be a semialge-

braic set of dimension µ defined by conditions pj(x) = 0 or pj(x) < 0, where

pj are polynomials and
∑

deg pj = β. Let r ∈ N. There exist a constant

C = C(n, µ, r, β) and semialgebraic maps φ1, . . . , φC : (0, 1)µ → X such that

their images cover X and ‖φj‖r 6 1 for j = 1, . . . , C .

Understanding the behavior of the constant C(n, µ, r, β) has been the

key difficulty in establishing a conjectural sharpening of Yomdin’s results for

analytic maps, as we discuss in Section 1.3. More precisely, what is needed

is an estimate C(n, µ, r, β) = polyn(r, β). (See Section 1.5 for this asymptotic

notation.) Such an estimate is our first main result.

Theorem 1. One may take C(n, µ, r, β) = polyn(β) · rµ in the Yomdin-

Gromov algebraic lemma. Moreover the maps φj can be chosen to be semial-

gebraic of complexity polyn(β, r).

1.1.2. Pila-Wilkie’s generalization to o-minimal structures. Parametriza-

tions by Cr-smooth functions have also been used to great effect in the seem-

ingly unrelated study of rational points on algebraic and transcendental sets.

The algebraic lemma was first introduced to this subject by Pila and Wilkie

[40], who proved its far-reaching generalization for arbitrary o-minimal struc-

tures. We refer the reader to [19] for general background on o-minimal geom-

etry.

Theorem ([40, Th. 2.3]). Let X = {Xp ⊂ [0, 1]n} be a family of sets

definable in an o-minimal structure, with dimXp 6 µ. There exists a con-

stant C = C(X, r) such that for any p, there exist definable maps φ1, . . . , φC :

(0, 1)µ → Xp such that their images cover Xp and ‖φj‖r 6 1 for j = 1, . . . , C .

In the diophantine direction, understanding the behavior of C(X, r) with

respect to the geometry of the family X and the smoothness order r is also a

question of great importance, as we discuss in Section 1.4. In the recent paper

[17] Cluckers, Pila and Wilkie made significant progress in this direction by

proving that for subanalytic sets (and also sets in the larger structure Rpow
an ),

one has C(X, r) = polyX(r). For subanalytic sets, we obtain a similar result

with a precise control over the degree.

Theorem 2. In the Pila-Wilkie algebraic lemma for Ran one may take

C(X, r) = OX(rµ), where µ := maxp(dimXp).

1.1.3. Mild parametrizations. It is natural to inquire whether one can in

fact replace the Cr-charts in the algebraic lemma with C∞-charts with ap-

propriate control over the derivatives. In [42] Pila introduced a notion of this
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type called mild parametrization and investigated its diophantine applications

related to the Wilkie conjecture.

Definition 1 (Mild parametrization). A smooth map f : U → [0, 1]n on a

domain U ⊂ Rm is said to be (A,K)-mild if

(2) ‖Dαf‖ 6 α!(A|α|K)|α| ∀α ∈ Nm.

In [27] it is shown that every subanalytic set X ⊂ [0, 1]n admits (A, 0)-mild

(i.e., analytic) parametrizations, but this result is not uniform over families

and its diophantine applications are restricted to the case of curves [27] and

surfaces [28]. We prove the following uniform version. We refer the reader to

[5] for general background on subanalytic geometry.

Theorem 3. Let X = {Xp ⊂ [0, 1]n} be a subanalytic family of sets,

with dimXp 6 µ. There exist constants A = A(X) and C = C(X) such that

for any p, there exist (A, 2)-mild maps φ1, . . . , φC : (0, 1)µ → Xp whose images

cover Xp. If {Xp} is semialgebraic as in the Yomdin-Gromov algebraic lemma,

then one may take A,C = polyn(β).

The construction of a mild parametrization is a priori more delicate than

its Cr counterpart since it requires one to control derivatives of all orders at

once. In fact, Thomas [50] has shown that there exist o-minimal structures

without definable mild parametrizations. In our results there is also a key dif-

ference between the Cr algebraic lemma and its mild counterpart. Namely, in

the Cr version the parametrizing maps are themselves subanalytic and can be

chosen to depend subanalytically on the parameters of the family. We make

no such guarantee in the mild version. In fact, we show that any parametriza-

tion of a family of hyperbolas by a definable family of Ran maps must have

unbounded Cr-norms for some finite r. More precisely we have the following

sharp estimate.

Proposition 2. Let

(3) F = {Fε = (xε, yε) : [0, 1]→ [0, 1]2}, ε ∈ [0, 1]

be an Ran-definable family of maps satisfying xε(t) ·yε(t) = ε. Suppose that for

each r, there exists a constant Mr such that

(4) |∂rt xε(t)| < Mr, |∂rt yε(t)| < Mr

whenever the derivatives are defined. Then the Euclidean length of logFε([0, 1])

is bounded by a constant independent of ε 6= 0. (Here log is applied coordinate-

wise.)

This result is easily seen to be essentially tight: one can indeed construct

parametrizations F as in Proposition 2 to cover any definable family of intervals
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of constant logarithmic length in the hyperbolas. Somewhat surprisingly, our

proof goes via reduction using complex cells to the following simple statement

from geometric function theory, which is proved using a p-valent version of the

Koebe 1/4-theorem.

We introduce the following notation to be used in this section. A more

general form of this notation is defined in Section 2. For r > 0 (resp. r2 >

r1 > 0) and δ ∈ (0, 1), we denote

D(r) := {|z| < r}, D◦(r) := {0 < |z| < r}, A(r1, r2) := {r1 < |z| < r2},(5)

Dδ(r) := D(δ−1r), Dδ
◦(r) := D◦(δ

−1r), Aδ(r1, r2) := A(δr1, δ
−1r2).(6)

Lemma 3. Let ξ : D(2)→ C \ {0} be holomorphic, and suppose that ξ is

p-valent. Then the length of log ξ([−1, 1]) does not exceed 8πp2.

The proof of Proposition 2 and Lemma 3 is given in Section 10.4.

1.2. Holomorphic parametrizations. In the preceding section we discussed

the problem of constructing smooth parametrizations for semialgebraic and

subanalytic sets. It is natural to ask whether such constructions can be analyt-

ically continued to give holomorphic parametrizations in some suitable sense.

In this section we demonstrate an obstruction of a hyperbolic-geometric na-

ture to a naive formulation, and we motivate the notion of a complex cell as a

possible way of overcoming this obstruction.

1.2.1. Parametrizations of analytic curves and questions of uniformity.

Let D := D(1) denote the unit disc. If X is a holomorphic curve and K ⊂ X is

compact, then one can always coverK by images of analytic charts fj : D → X.

To avoid bad behavior near the boundary, we can also require that each fj
extends as a holomorphic map to D1/2. (This is an arbitrary choice that could

be replaced by any fixed neighborhood of D̄.) Parametrizations of this type

are useful in analysis: they allow one to study holomorphic structures on X in

terms of their pullback to D ⊂ D1/2, where a rich geometric function theory

is available. Moreover the theory of resolution of singularities shows that this

type of parametrization can be extended to parametrizations of analytic sets of

any dimension. A notion of this type was introduced by Yomdin [54] under the

name analytic complexity unit (acu). A similar notion was considered under

the name “doubling coverings” in [20].

Ideally one would like to prove that holomorphic parametrizations of the

type described above can be made with a uniform number of charts when X is

replaced by an analytic family Xε of curves (or higher dimensional sets) and

K by its relatively compact subfamily. Indeed, this would be an appropriate

analog of the Yomdin-Gromov algebraic lemma in the holomorphic category.

Unfortunately this is impossible, even for simple families of algebraic curves.
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Consider the family Xε of hyperbolas restricted to the polydisc of radius 2 and

Kε their restriction to a polydisc of radius 1,

(7) Xε := {(x, y) : xy = ε, x, y ∈ D1/2}, Kε := Xε ∩ (D ×D).

The projection to the x-axis gives biholomorphisms Kε ' Aε := A(ε, 1) and

Xε ' A
1/2
ε = A(ε/2, 2). Let f : D1/2 → Xε ' A

1/2
ε . If we equip D1/2 and

A
1/2
ε with their respective hyperbolic metrics, then the Schwarz-Pick lemma

(Lemma 38) implies that f is distance-contracting; see Section 5 for a brief

reminder on this subject. In particular, the conformal diameter of f(D) in

A
1/2
ε is bounded by the conformal diameter of D in D1/2, which is a constant

independent of ε. On the other hand, the conformal diameter of Kε ' Aε in

A
1/2
ε tends to infinity as ε→ 0 (in fact with order log | log ε|— see Remark 48).

It follows that to cover Kε by images of maps as above at least log | log ε| charts

are required, and this is easily seen to be a tight asymptotic. We note that

Yomdin [55] obtains a similar result with | log ε| under the assumption that the

maps are p-valent for some fixed p.

1.2.2. A uniform parametrization result with discs and annuli. It turns

out that in the one-dimensional case, the hyperbolic restriction described above

is essentially the only obstacle to uniform parametrization. Namely, suppose

that in addition to covering Kε by images f(D) of holomorphic maps f :

D1/2 → Xε we also allow images f(A) of holomorphic maps f : A1/2 → Xε

for any annulus A. Note that the conformal diameter of A in A1/2 is not

uniformly bounded: it depends on the conformal modulus of A. With this

added freedom one can indeed construct a parametrization with a uniformly

bounded number of charts for a family of curves. We proceed to explain the

elementary geometric considerations that lead to this result.

To simplify our presentation we suppose that X = {Xε} ⊂ C2 × Cε is

a family of algebraic plane curves that project properly under π : (x, y) → x

(although a similar local argument works in the analytic case without the

assumption of properness). We will parametrize the fibers Kε := Xε∩(D×D).

Fix ε ∈ C. Let Σε ⊂ C denote the finite set of critical values of π|Xε . Denote by

ν the order of the monodromy group of π. Note that #Σε and ν are bounded in

terms of degXε and, in particular, uniformly in ε. Suppose that D is covered

by finitely many sets C ⊂ C of the following types:

(1) a point p ∈ Σε;

(2) a disc p+D(r) such that p+D(2r) does not meet Σε;

(3) a punctured disc p+D◦(r) such that p+D◦(2
νr) does not meet Σε;

(4) an annulus p+A(r1, r2) such that p+A(r1/2
ν , 2νr2) does not meet Σε.

In case (2) one can construct a map f : D → p+D(r)→ Xε as a lift of π|Xε .
In cases (3) and (4) the lift might be multivalued with a monodromy of finite
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Figure 1. Covering of the hyperbola with discs and annuli,

where ∗ corresponds to points of Σε = {±
√
ε}.

order dividing ν, but precomposing with the map z → zν we similarly obtain

univalued charts f : D → Xε or f : Ar → Xε. (The removable singularity

theorem is used to extend from D◦ to D in case (3).) Moreover the assumptions

on C ensure that f extends holomorphically to D1/2 or A
1/2
r . Taking at most

degXε such lifts f we obtain charts covering Xε ∩ π−1(C).

It remains to show that D can be covered by finitely many sets C as

above, with their number depending only on the number of points in Σε (but

not their positions). This is a simple exercise in plane geometry, which we

urge the reader to attempt for themselves. It is also instructive to check that

a similar statement would not hold had we not allowed annuli as in item (4)

above. In Figure 1 we illustrate such a decomposition for the critical points

Σε = {±
√
ε} of the hyperbola y2 = x2 − ε. (This is just our original example

xy = ε rotated to satisfy our assumption of proper projection to the x-axis.)

Decompositions of a similar type appeared under the name “Swiss-cheese

decompositions” in [24], where they were used in the study of Green functions

on Riemann surfaces. They also appeared in [8], where they were used in the

study of collisions of singular points of Fuchsian differential equations.

1.2.3. Parametrizing higher dimensional sets. It is natural to ask whether

a similar “uniform parametrization” statement might hold in higher dimen-

sions. A naive attempt might be to use products of discs and annuli as the

domains of definition. However, since complex annuli (unlike discs) have con-

formal moduli, it turns out to be more natural to allow domains consisting

of families of annuli with varying moduli. As an illustrative example, in the

two-dimensional case we allow domains of the form

(8) C = D◦(1)�A(z1, 2) := {(z1, z2) : 0 < |z1| < 1, |z1| < |z2| < 2}.
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Note that we plug a complex number z2 as the radius of the annulus A(z2, 2),

so that the radius is the absolute value of a holomorphic function on the base.

This allows us to define a kind of analytic extension of cells as we show below.

The notation � above is an example of a more general notation introduced in

Section 2, and the domain above is an example of a complex cell. The defini-

tion closely resembles the notion of cells/cylinders in semialgebraic/subanalytic

geometry, with the order relation x < y replaced by the complex |x| < |y|.
To generalize the parametrization result from curves to higher dimensional

sets we require not only an analog of the domains D,D◦ and A, but also an

analog of their extensions D1/2, D
1/2
◦ , A1/2. Correspondingly our complex cells

C are endowed with a natural notion of δ-extension C ⊂ Cδ. In the example

above,

Cδ = Dδ
◦(1)�Aδ(z1, 2) = D◦(δ

−1)�A(δz1, 2δ
−1)

:= {(z1, z2) : 0 < |z1| < δ−1, δ|z1| < |z2| < 2δ−1}.
(9)

This is defined for any 1/2 < δ < 1. We require the original fiber A(z1, 2)

to remain an annulus over the extension Dδ(1), and with δ < 1/2 the fiber

A(z1, 2) becomes empty for z1 ∈ Dδ(1) \D1/2(1).

Our main result, Theorem 8, shows in particular that one can uniformize

any family of analytic sets uniformly in the parameters of the family if one is

permitted to use general complex cells as the domains for the charts. More

generally, Theorem 8 provides a cellular analog of the constructions of local

resolution of singularities (LRS); see, e.g., [5]. Loosely speaking it allows one

to transform a collection of analytic functions into normal crossings uniformly

over families — using complex cells as the domains of the charts. In the alge-

braic category, Theorem 8 gives effective control (polynomial in the degrees)

on the number and complexity of the charts in terms of the complexity of the

functions being transformed into normal crossings. This is where the most

important step toward improving the asymptotics of the Yomdin-Gromov al-

gebraic lemma takes place, and the proof makes extensive use of the hyperbolic

properties of a cell C viewed as a subset of its extension Cδ.

1.2.4. Sectorial parametrizations. In Section 1.2.1 we discussed the prob-

lem of establishing an analog of the algebraic lemma with holomorphic func-

tions admitting extensions to whole discs, and we showed that (unless one also

allows annuli and more general complex cells) such an analog is impossible.

A more modest goal might be to establish an analog of the algebraic lemma

where the parametrizing maps admit analytic continuation to some suitable

large domain (though not a full disc). If the domain is sufficiently large, one

could, then hope to control the derivatives using complex-analytic methods —

for instance, the Cauchy estimates.
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It turns out that the correct domains for analytic continuation are complex

sectors. More specifically, let S(ε) denote the sector S(ε) = {|Arg z| < ε, |z| <
2}, and for B = (0, 1)µ, let B(ε) denote the direct product of µ copies of S(ε).

All of our refinements of the algebraic lemma follow from the following state-

ment about parametrizations with complex-analytic continuation to sectors.

Theorem 4. Let X = {Xp ⊂ [0, 1]n} be a subanalytic family of sets, with

dimXp 6 µ. Set B = (0, 1)µ. There exist constants C = C(X) and ε = ε(X)

such that for any p, there exist maps φ1, . . . , φC : B → Xp whose images

cover Xp. Moreover each φj extends holomorphically to B(ε) and has unit

C1-norm there. If {Xp} is semialgebraic as in the Yomdin-Gromov algebraic

lemma, then one may take C, ε−1 = polyn(β).

This theorem is proved (in a more general form) in Section 10.1. We start

by constructing a complex-cellular parametrization for Xp, and then we show

how to construct maps from B into a complex cell that extend to B(ε) with

bounded C1-norms. The Cr and mild statements of the algebraic lemma are

deduced from the sectorial version by a simple (and self-contained) argument

based on the Cauchy estimates in Section 10.3.

1.3. Applications in dynamics. The Yomdin-Gromov algebraic lemma was

first invented for the purpose of studying the properties of the topological

entropy of smooth maps. We recall the basic notions of topological entropy

theory, Shub’s entropy conjecture and Yomdin’s result for C∞-maps. We then

discuss a refinement of these results in the analytic category culminating in

Theorem 5 confirming in arbitrary dimension a conjecture of Yomdin that was

previously known only in dimension two. Theorem 5 follows immediately from

the refined algebraic lemma in combination with the work of Burguet, Liao

and Yang [14]. A self-contained proof of Theorem 5 using the refined algebraic

lemma is given in Appendix A (by Yomdin). Below we mostly follow the

notation and presentation of [14].

1.3.1. Topological entropy. Let M be a compact metric space with metric

d : M2 → R>0, and let f : M → M be a continuous map. For n ∈ N, define

the n-th iterated metric by

(10) dn : M ×M → R>0, dn(x, y) = max
i=0,...,n−1

d(f◦i(x), f◦i(y)).

If M is a metric space and Λ ⊂M , then a set K ⊂M is called ε-spanning for

Λ if the ε-neighborhood of K contains Λ. For any subset Λ ⊂ M , ε > 0 and

n ∈ N, let rn(f,Λ, ε) denote the minimal cardinality of an ε-spanning set of Λ

with respect to the dn-metric.

The ε-topological and topological entropies of Λ are defined by

(11) h(f,Λ, ε) = lim sup
n→∞

1

n
log rn(f,Λ, ε), h(f,Λ) = lim

ε→0
h(f,Λ, ε).
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We set h(f, ε) := h(f,M, ε) and h(f) := h(f,M). This latter quantity is called

the topological entropy of f . As its name implies, the topological entropy is

independent of the choice of metric d. It was first defined by Adler, Konheim

and McAndrew [1] in a purely topological fashion, and later shown by Bowen

[10] to be equivalent to the metric definition presented above.

1.3.2. Tail entropy. For x ∈ M , the infinite dynamical ball B∞(x, ε) is

defined by

(12) B∞(x, ε) := {y ∈M : dn(x, y) < ε ∀n ∈ N}.
Following Bowen [11], the ε-tail and tail entropies of f are defined by

(13) h∗(f, ε) = sup
x∈M

h(f,B∞(x, ε)), h∗(f) = lim
ε→0

h∗(f, ε).

Bowen [11] has shown that the ε-tail entropy bounds the difference between

the ε-entropy and the entropy, that is,

(14) |h(f)− h(f, ε)| 6 h∗(f, ε).
If h∗(f, ε) = 0 for some ε > 0, then the system (f,M) is called entropy-

expansive (h-expansive); if h∗(f) = 0, then it is called asymptotically entropy

expansive (asymptotically h-expansive). This notion of tail entropy was first

introduced (with a different definition) by Misiurewicz [35] under the name

conditional entropy. Misiurewicz showed that for asymptotically h-expansive

systems, the measure-theoretical entropy is upper-semicontinuous, and such

systems therefore always admit an invariant measure of maximal entropy.

1.3.3. Yomdin’s results for smooth maps. Assume from now on that M is

a compact C∞-smooth manifold equipped with a Riemannian metric. In [53]

Yomdin proved Shub’s entropy conjecture for C∞-maps. This conjecture states

that the logarithm of the spectral radius Spec f of f∗ : H∗(M,R)→ H∗(M,R)

is a lower bound for h(f). In fact it is relatively easy to show (by comparing

volumes) that

(15) log Spec f 6 h(f) + max
l=1,...,dimM

v0
l (f),

where v0
l (f) is the l-dimensional local volume growth, a quantity related to

h∗(f) whose precise definition we postpone to Appendix A.2.1. Yomdin’s fun-

damental result was that if f is a Cr-map, then

(16) v0
l (f) 6

lR(f)

r
, R(f) = lim

n→∞
1

n
sup
x∈M

log ‖Dxf
◦n‖ .

For C∞-maps, this implies v0
l (f) = 0, and in combination with (15) yields

Shub’s entropy conjecture. Buzzi [16] later observed that Yomdin’s argument

also implied the same estimate h∗(f) 6 (dimM/r)R(f) for the tail entropy.

For C∞-maps, this implies h∗(f) = 0, i.e., that C∞-maps are asymptotically

h-expansive.
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1.3.4. Controlling h∗(f, ε) for analytic maps. Bounding h∗(f, ε) explicitly

as a function of ε is an important problem with consequences for the compu-

tation of h(f) (for instance using (14)) and for the study of the semicontinuity

properties of the entropy. However, for arbitrary C∞-maps f : M → M the

rate of convergence of h∗(f, ε) to zero as ε → 0 can be arbitrarily slow, as

shown by the examples of Burguet, Liao and Yang [14, Th. L].

As before, the asymptotic study of h∗(f, ε) can be related to the asymp-

totic study of the local volume growth v0
l (f, ε), whose precise definition we

again postpone to Appendix A.2.1. In [54] Yomdin considered the case of

a real-analytic map f : M → M of a compact analytic surface M . In this

context, using a holomorphic variant of the algebraic lemma based on the

Bernstein inequality for polynomials, he was able to prove that

(17) v0
1(f, ε) 6 C(f) · log | log ε|

| log ε|
.

Yomdin conjectured [54, Conj. 6.1] that a similar estimate should hold (for v0
l )

for M of arbitrary dimension, but the limitation of the holomorphic paramet-

rization technique to dimension one prevented such a generalization. (See

[55] for some results in this direction in dimension two.) In [14, Th. N] it is

shown that the bound in Yomdin’s conjecture is essentially sharp (for a class

of functions slightly larger than the analytic class).

In [14] Burguet, Liao and Yang revisited the problem of the rate of con-

vergence of the tail entropy for analytic, and more general, maps. The precise

statement of their main result is technical and depends on the behavior of

the algebraic lemma’s constant C(n, µ, r, β). However, under the hypothesis

C(n, µ, r, β) = polyn(r, β), the results of [14, Cor. B] take a particularly simple

form; namely, they imply the generalization of Yomdin’s result (both for v0
l

and h∗) to arbitrary dimension. It is also shown in [14] that C(n, 1, r, β) =

polyn(r, β), and this recovers Yomdin’s result for analytic surfaces.

To summarize, following the work of [14] it has been clear that proving

that C(n, µ, r, β) = polyn(r, β) is the missing step to establishing Yomdin’s

conjecture. Combined with the refined algebraic lemma proved in this paper,

this is now a theorem.

Theorem 5. Let M be a compact analytic manifold and f : M → M be

an analytic map. Then

h∗(f, ε) 6 C(f) · log | log ε|
| log ε|

, v0
l (f, ε) 6 C(f) · log | log ε|

| log ε|
(18)

for l = 1, . . . ,dimM .

An independent proof of the volume-growth part of Theorem 5 is given in

Section 10.5.
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1.4. Applications in diophantine geometry. For p ∈ P`(Q), we define H(p)

to be maxi |pi|, where p ∈ Z`+1 is a projective representative of p with

(19) gcd(p0, . . . ,p`) = 1.

For x ∈ A`(Q), we define its height to be the height of ι(x) for the standard

embedding

(20) ι : A` → P`, ι(x1..`) = (1 : x1 : · · · : x`).

For a set X ⊂ P`(R), we denote

(21) X(Q, H) := {x ∈ X ∩ P(Q)` : H(x) 6 H},

and similarly for X ⊂ R`.
In [9] Bombieri and Pila introduced the interpolation determinant method

for estimating the quantity #X(Q, H) as a function of H when X is the graph

of a Cr (or C∞) smooth function f : [0, 1] → R. It turns out that two very

different asymptotic behaviors are obtained depending on whether the graph

of f belongs to an algebraic plane curve. The algebraic lemma has been used in

both of these directions to generalize from graphs of functions to more general

sets. In Appendix B.1 we give a complex-cellular analog of the Bombieri-Pila

interpolation determinant method and use it to deduce some applications for

both the algebraic and transcendental contexts. We briefly describe the main

results below.

1.4.1. A result for algebraic varieties. We prove the following result.

Theorem 6. Let X ⊂ P(C)` be an irreducible algebraic variety of di-

mension m and degree d. Then X(Q, H) is contained in N hypersurfaces of

degree k, none of which contain X , where

(22) N = poly`(d, k, logH) ·H(m+1)d−1/m(1+poly`(d)/k).

We make note of two particular choices for k, namely,

k = poly`(d)/ε =⇒ N = poly`(d, 1/ε) ·H(m+1)d−1/m+ε,(23)

k = poly`(d) · logH =⇒ N = poly`(d, logH) ·H(m+1)d−1/m
.(24)

The first choice improves the dependence on the degree d to polynomial in

Heath-Brown’s result [26] for hypersurfaces and Broberg’s result [12, Th. 1];

see also Marmon [32]. The second choice replaces an Hε factor by a power

of logH, similar to the various results established for curves by Pila [43] and

Salberger [48]. We remark that in the case of curves, Walsh [51] recently proved

a result eliminating the logH factor altogether, and it would be interesting

to study whether this can be generalized to arbitrary dimension. We briefly

survey the history of these results in Appendix B.2.1 and prove Theorem 6 in

Appendix B.2.2.
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1.4.2. The Pila-Wilkie theorem. Let f : I → R2, and suppose that Xf :=

f(I) is transcendental. Bombieri and Pila [9] and Pila [39] used the interpola-

tion determinant method to show that #X(Q, H) = OX,ε(H
ε) for any ε > 0.

To generalize this result to higher dimensions, let X ⊂ R`. Denote by Xalg

the union of all positive dimensional connected semialgebraic sets contained

in X and by Xtrans := X \Xalg. Pila and Wilkie [40] proved that for any X

definable in an o-minimal expansion of R, we have

(25) #Xtrans(Q, H) = OX,ε(H
ε) ∀ε > 0.

Moreover, if X varies over a definable family, then the asymptotic constants

can be taken uniform over the family. The o-minimal version of the Yomdin-

Gromov algebraic lemma plays the central role in the proof of the Pila-Wilkie

theorem.

1.4.3. The Wilkie conjecture. Wilkie [40] has conjectured that for sets de-

finable in Rexp, the asymptotic in the Pila-Wilkie theorem can be improved to

polyX(logH), and it is natural to make similar conjectures for other “natural”

geometric structures (although such a result does not hold for general suban-

alytic curves — see [41, Exam. 7.5]). One of the key obstacles to proving the

Wilkie conjecture, at least following the Pila-Wilkie strategy, is to obtain an

estimate on C(X, r) that is polynomial in r and the complexity of X. Some

one-dimensional and some restricted two-dimensional cases of the Wilkie con-

jecture have been established using methods involving Pfaffian functions and

mild parametrizations [44], [28], [45], [15]. In [6] we developed a complex-

analytic approach to the Pila-Wilkie theorem in the subanalytic case, and

in [7] we used this approach to prove the Wilkie conjecture for the structure

RRE generated by the exponential and trigonometric functions restricted to

some finite interval.

1.4.4. Applications to unlikely intersections in diophantine geometry. The

Pila-Wilkie theorem has been applied to great effect in the study of unlikely

intersections in diophantine geometry. We briefly mention Pila-Zannier’s proof

the the Manin-Mumford conjecture [47], Pila’s proof of the André-Oort con-

jecture for modular curves [46], and Masser-Zannier’s work on simultaneous

torsion points in elliptic families [33]. We refer the reader to [56], [49] for a

survey. Some of the most striking diophantine applications, particularly around

the study of modular curves and Shimura varieties, require the generality of

the Pila-Wilkie theorem for Ran,exp, i.e., beyond the subanalytic category. Ob-

taining polylogarithmic asymptotics for such unrestricted sets is the natural

challenge going beyond the scope of [7].

1.4.5. Interpolating rational points on log-sets. For definiteness, let loge :

C \ {0} → C denote the principal branch of the standard complex logarithm.
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Below, log can denote λ loge(·) for any λ ∈ C \ {0}, i.e., logarithm with

respect to any (fixed) base. We extend log coordinate-wise as a mapping

log : (C \ {0})` → C`.

Definition 4 (Log-set). If A ⊂ (C \ {0})` is a bounded subanalytic set

(where C` is identified with R2`), then we call logA ⊂ C` a log-set.

Any bounded subanalytic set is a log-set, but log-sets are of course more

general as they involve application of an unrestricted logarithm. In Appen-

dix B.3.1 we show that log-sets appear naturally in the application of the

Pila-Wilkie theorem to the Andrè-Oort conjecture for modular curves in Pila’s

work [46]. They are therefore perhaps the most natural candidate to consider

looking for results in the direction of the Wilkie conjecture for unrestricted sets

(with an eye to the diophantine applications). We prove the following result

in this direction.

Proposition 5. Let X = {Xλ ⊂ [0, 1]`} be an Ran-definable family, and

let n denote the maximal dimension of the fibers of X . Fix k ∈ N, and assume

k = Ω`(1). There exists an Ran-definable family Y = {Yλ,µ ⊂ Xλ} with

maximal fiber dimension strictly smaller than n and κ = OX(k−1/n) such that

the following holds. For any parameter λ and any integer H > 1, there is a

collection of N = poly`(k) ·Hκ parameters {µj} satisfying

(26) (logXλ)trans(Q, H) ⊂
N⋃
j=1

log Yλ,µj .

Each Yλ,µ is defined by intersecting Xλ with a collection of polynomial equations

of degree k in the variables log x1, . . . , log x`.

Proposition 5 is reminiscent of the main inductive step in the proof of the

Pila-Wilkie theorem. In particular, choosing k such that κ < ε and using in-

duction over the fiber dimension, the proposition immediately yields a proof of

the Pila-Wilkie theorem for log-sets. On the other hand, setting k = (logH)n

yields an interpolation result using a constant number of hypersurfaces of poly-

logarithmic degree. This can be seen as the first inductive step toward the

Wilkie conjecture. This is similar to the main result of [17] for sets definable

in the o-minimal structure Rpow
an obtained by adjoining all unrestricted power

functions xλ : R+ → R+ for λ ∈ (0,∞) to Ran.

The proof of Proposition 5 is given in Appendix B.3.3. It relies heavily

on the theory of complex cells and is effective in the following sense: A gen-

eralization of Theorem 8, with polynomial complexity bounds, to a reduct of

Ran that includes the restricted logarithm would automatically yield a proof of

the Wilkie conjecture for log-sets logA with A definable in the reduct. While

we do not prove such a generalization in this paper (and there appear to be
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some technical obstacles to doing so), this seems to offer a plausible approach

to proving the Wilkie conjecture for a large class of unrestricted sets that are

important in applications.

Even for the case that k is a constant independent of H, Proposition 5

yields additional information compared to the standard proof of the Pila-Wilkie

theorem. Namely, in the standard proof the sets Yλ,µ are also defined by

intersecting Xλ with a collection of polynomial equations of degree k in the

variables log x1, . . . , log x`. In general such sets would not be subanalytic. In

our version certain cancellations in the logarithmic terms allow one to find

suitable equations that are subanalytic on Xλ, thus proving that Yλ,µ are also

subanalytic. This eventually implies that the part of Xalg
λ responsible for the

presence of many points of height H is also a union of log-sets.

1.5. A remark on asymptotic notation. In this paper each appearance of

an expression α = O(β) should be interpreted as shorthand notation for α 6
C ·β where C is a universally fixed positive constant (which may be different at

each occurrence). Similarly, α = OX(β) is a shorthand for α 6 CX · β, where

X → CX is a universally fixed, positive valued real function. We similarly

write α = ΩX(β) as shorthand for α > CX ·β and α = ΘX(β) as shorthand for

α = OX(β) and α = ΩX(β). Finally we write α = polyX(β) as a shorthand

for α 6 PX(β), where X → PX is a universally fixed mapping whose values

are univariate polynomials with positive coefficients.

To avoid confusion, we stress that our notation serves as mere placeholders

for specific constants that are left unspecified for brevity, rather than expressing

asymptotic behavior as parameters tend to infinity or zero. For example, the

condition 1/ρ = poly`(ν) in Lemma 60 means that there is a specific polynomial

P`(·) depending on `, such that for any ρ satisfying 1/ρ < P`(ν), the conclusion

of the lemma holds.

1.6. Acknowledgements. We wish to thank Yosef Yomdin for introducing

us to the Yomdin-Gromov algebraic lemma and encouraging us to pursue its

refinements. We also wish to thank Pierre Milman and Andrei Gabrielov for

many helpful discussions before and during the preparation of this paper. Fi-

nally we wish to thank the anonymous referees for exceptionally detailed and

invaluable comments improving many aspects of the paper.

2. Complex cellular structures

2.1. Discs and annuli in the complex plane. For r ∈ C (resp. r1, r2 ∈ C)

with |r| > 0 (resp. |r2| > |r1| > 0), we denote

(27)
D(r) := {|z| < |r|}, D◦(r) := {0 < |z| < |r|},

A(r1, r2) := {|r1| < |z| < |r2|}, ∗ := {0}.
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We also set S(r) := ∂D(r). For any 0 < δ < 1, we define the δ-extensions,

denoted by superscript δ, by

(28)
Dδ(r) := D(δ−1r), Dδ

◦(r) := D◦(δ
−1r),

Aδ(r1, r2) := A(δr1, δ
−1r2), ∗δ := ∗.

We also set Sδ(r) = A(δr, δ−1r). The notion of δ-extension is naturally asso-

ciated with the Euclidean geometry of the complex plane. However, in many

cases it is more convenient to use a different normalization associated with

the hyperbolic geometry of our domains. For any 0 < ρ < ∞, we define the

{ρ}-extension F{ρ} of F to be Fδ, where δ satisfies the equations

(29)

ρ =
2πδ

1− δ2
for F of type D,

ρ =
π2

2| log δ|
for F of type D◦, A.

The motivation for this notation comes from the following fact, describ-

ing the hyperbolic-metric properties of a domain F within its {ρ}-extension.

For a reminder on the hyperbolic metric associated with a planar domain see

Section 5. Fact 6 is proved by explicit computation in Section 5.6.

Fact 6. Let F be a domain of type A,D,D◦, and let S be a component

of the boundary of F in F{ρ}. Then the length of S in F{ρ} is at most ρ.

2.2. Complex cells.

2.2.1. The general setting. We introduce a notation that will be used

throughout the paper. Let X,Y be sets and F : X → 2Y be a map taking

points of X to subsets of Y. Then we denote

(30) X� F := {(x, y) : x ∈ X, y ∈ F(x)}.
In this paper X will be a subset of Cn and Y will be C. If r : X → C \ {0},
then for the purpose of this notation we understand D(r) to denote the map

assigning to each x ∈ X the disc D(r(x)), and similarly for D◦, A.

We now introduce the central notion of this paper, namely, the notion

of a complex cell of length ` ∈ Z>0 and type T(C) ⊂ {∗, D,D◦, A}`. If U is a

complex manifold, we denote by O(U) the space of holomorphic functions on U ,

and by Ob(U) ⊂ O(U) the subspace of bounded functions. As a shorthand we

denote z1..` = (z1, . . . , z`).

Definition 7 (Complex cells). A complex cell C of length zero is the

point C0. The type of C is the empty word. A complex cell of length ` + 1

has the form C1..` � F where the base C1..` is a cell of length `, and the fiber

F is one of ∗, D(r), D◦(r), A(r1, r2) where r ∈ Ob(C1..`) satisfies |r(z1..`)| > 0

for z1..` ∈ C1..`; and r1, r2 ∈ Ob(C1..`) satisfy 0 < |r1(z1..`)| < |r2(z1..`)| for

z1..` ∈ C1..`. The type T(C) is T(C1..`) followed by the type of the fiber F.
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Next, we define the notion of a δ-extension (resp. {ρ}-extension) of a cell

of length ` where δ ∈ (0, 1)` (resp. ρ ∈ (0,∞)`).

Definition 8. The cell of length zero is defined to be its own δ-extension.

A cell C of length ` + 1 admits a δ-extension Cδ := C
δ1..`
1..` � Fδ`+1 if C1..`

admits a δ1..`-extension, and if the function r (resp. r1, r2) involved in F

admits holomorphic continuation to C
δ1..`
1..` and satisfies |r(z1..`)| > 0 (resp.

0 < |r1(z1..`)| < |r2(z1..`)|) in this larger domain. The {ρ}-extension C{ρ} is

defined in an analogous manner.

Note that for 0 < δ1 < δ2 < 1, we have Cδ2 ⊂ Cδ1 , and similarly for

0 < ρ1 < ρ2, we have C{ρ2} ⊂ C{ρ1}. Thus a cell admitting δ1-extension (resp.

{ρ1}-extension) automatically admits δ2-extension (resp. {ρ2}-extension), but

not vice versa. However, see Theorem 9 for a construction that enables a

partial converse.

As a shorthand, when say that Cδ is a complex cell (resp. C{ρ}) we mean

that C is a complex cell admitting a δ (resp. {ρ}) extension. We will usually

speak about δ-extensions where δ ∈ (0, 1) by identifying δ with δ := (δ, . . . , δ)

and similarly with ρ ∈ (0,∞).

Remark 9. It is sometimes convenient to consider repeated extensions. We

denote C{ρ1}{ρ2} := (C{ρ1}){ρ2}. A simple computation shows C{ρ1}{ρ2} ⊂ Cρ

where ρ−1 = poly(ρ−1
1 , ρ−1

2 ).

The dimension of a cell denoted dimC is its length minus the number of

symbols ∗ in its type. This clearly agrees with the dimension of C as a complex

manifold.

2.2.2. The real setting. We introduce the notion of a real complex cell C,

which we refer to in this paper simply as real cells (but note that these are

subsets of C`). We also define the notion of real part of a real cell C (which

lies in R`) and of a real holomorphic function on a real cell. Below we let R+

denote the set of positive real numbers.

Definition 10 (Real complex cells). The cell of length zero is real and

equals its real part. A cell C := C1..` � F is real if C1..` is real and the radii

involved in F can be chosen to be real holomorphic functions on C1..`. The real

part RC (resp. positive real part R+C) of C is defined to be RC1..` �RF (resp.

R+C1..` � R+F) where RF := F ∩ R (resp. R+F := F ∩ R+) except the case

F = ∗, where we set R∗ = R+∗ = ∗. A holomorphic function on C is said to

be real if it is real on RC.

A simple induction shows that a real cell is invariant under the conjugation

z → z̄. Note that the positive real part of a real cell is connected, while the

real part is disconnected if C has fibers of type D◦, A. We remark that for a

function f : C → C to be real, it is enough to require that it is real on R+C.
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Indeed, in this case f(z) = f(z̄) on R+C, and it follows by holomorphicity the

equality holds over C.

2.2.3. Algebraicity. For a pure-dimensional algebraic variety X ⊂ C`, we

define the degree degX to be the number of intersections between X and a

generic affine-linear hyperplane of complementary dimension. (This is the same

as the degree of the projective closure of X in CP `.) We extend this by linearity

to arbitrary varieties, not necessarily pure dimensional. We remind the reader

that deg(X × Y ) = degX · deg Y and by the Bezout theorem deg(X ∩ Y ) 6
degX · deg Y .

For a domain U ⊂ C`, we say that a holomorphic function f : U → C is

algebraic if its graph Gf ⊂ C` × C is an analytic component of (U × C) ∩X,

where X ⊂ C` × C is an algebraic variety. The minimal degree β of a vari-

ety X satisfying this condition is called the degree, or complexity, of f . For

F : U → Ck, we say that F is algebraic if each of its components is, and we

define its complexity to be the maximum among the complexities of the compo-

nents. As an easy consequence of the Bezout theorem, for any pair of algebraic

maps F : U → Ck, G : V → Cd where F (U) ⊂ V , we have the estimate

(31) degF ◦G 6 poly`,k(degF,degG).

We define the notion of an algebraic complex cell of complexity β by

induction as follows: a cell of length 0 is algebraic of complexity 1; a cell

C = C1..` � F is algebraic if C1..` is algebraic and the radii involved in F are

algebraic, and the complexity of C is the maximum among the complexity of

C1..` and the complexities of the radii defining F.

2.3. Cellular maps. We equip the category of complex cells with cellular

maps defined as follows.

Definition 11 (Cellular map). Let C, Ĉ be two cells of length `. We say

that a holomorphic map f : C→ Ĉ is cellular if it takes the form wj = φj(z1..j),

where φj ∈ Ob(C1..j) for j = 1, . . . , `, and moreover φj is a monic polynomial

of positive degree in zj . We say that a cellular map f is prepared (resp. a

translate) in zj if φj(z1..j) = z
qj
j + φ̃j(z1..j−1) for some qj ∈ N>1 (resp. q = 1)

and φ̃j is holomorphic on C1..j−1. We say that f is prepared (resp. a translate)

if it is prepared (resp. a translate) in z1, . . . , z`. We say that f is real if C, Ĉ

are real and the components of f are real.

Cellular maps preserve the length and dimension of cells. The compo-

sition of two cellular maps is cellular, but note that the composition of two

prepared cellular maps is not necessarily prepared. We will often be inter-

ested in covering a cell by cellular images of other cells. Toward this end we

introduce the following definition.
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Definition 12. Let Cδ be a cell and {fj : Cδ′
j → Cδ} be a finite collection

of cellular maps. We say that this collection is a (δ′, δ)-cellular cover of C if

C ⊂ ∪j(fj(Cj)). If (δ′, δ) are clear from the context, we will speak simply of

cellular covers.

The number of maps fj in a cellular cover is called the size of the cover.

If the maps fj are all algebraic of complexity β, we say that the cover has

complexity β.

A real cellular cover is defined as follows.

Definition 13. Let Cδ be a real cell and {fj : Cδ′
j → Cδ} be a finite

collection of real cellular maps. We say that this collection is a real (δ′, δ)-

cellular cover of C if R+C ⊂ ∪j(fj(R+Cj)). If (δ′, δ) are clear from the context,

we will speak simply of real cellular covers.

The restriction to positive real parts in the definition of real cellular covers

is a notational convenience. One can cover the remaining components of RC,

for instance using the signed covering maps introduced in Section 2.6.

Remark 14. We remark that if {fj : Cδ′
j → Cδ} is a cellular cover of C and

{fjk : Cδ′′
jk → Cδ′

j } is a cellular cover of Cj , then {fj ◦ fjk} is a (δ′′, δ)-cover

of C. We will often use this basic principle without further reference.

In this paper when we say that a family of sets or functions is definable, we

mean that it is definable in Ran. The reader unfamiliar with this terminology

can think instead of a family whose total space is a bounded subanalytic set.

By the remark above the following theorem implies, in particular, that a

cellular cover can always be replaced by a cellular cover consisting of prepared

maps.

Theorem 7 (Cellular Preparation Theorem, CPrT). Let f : C{ρ} → Ĉ be

a (real) cellular map. Then there exists a (real) cellular cover {gj : C
{ρ}
j →

C{ρ}} such that each f ◦ gj is prepared.

If C{ρ}, Ĉ, f vary in a definable family Λ, then the size of the cover is

polyΛ(ρ), and the maps gj can be chosen from a single definable family. If

C{ρ}, Ĉ, f are algebraic of complexity β, then the cover has size poly`(β, ρ) and

complexity poly`(β).

In Theorem 7, if C{ρ}, Ĉ, f vary in a definable family Λ = {C{ρα}α , Ĉα, fα}α,

then we mean, more explicitly, that there exists a single definable family {Gβ :

Cβ → Ĉβ}β of maps such that for every f = fα and ρ = ρα, every gj in the

conclusion of the theorem can be chosen as gj = Gβj for a suitable parameter

value βj . We use this shorthand formulation freely below.

The proof of Theorem 7 is given in Section 8.2.



164 GAL BINYAMINI and DMITRY NOVIKOV

2.4. The Cellular Parametrization Theorem. Recall that in semialgebraic

geometry, a cell is said to be compatible with a function if the function vanishes

either identically or nowhere on the cell. We introduce a complex analog below.

Definition 15. For a complex cell C and F ∈ Ob(C), we say that F is

compatible with C if F vanishes either identically or nowhere on C. For a

cellular map f : Ĉ→ C, we say that f is compatible with F if f∗F is compatible

with Ĉ.

The following is our main result.

Theorem 8 (Cellular Parametrization Theorem, CPT). Let ρ, σ ∈ (0,∞).

Let C{ρ} be a (real) cell and F1, . . . , FM ∈ Ob(C
{ρ}) (real) holomorphic func-

tions. Then there exists a (real) cellular cover {fj : C
{σ}
j → C{ρ}} such that

each fj is prepared and compatible with each Fk.

If C{ρ}, F1, . . . , FM vary in a definable family Λ, then the cover has size

polyΛ(ρ, 1/σ) and the maps fj can be chosen from a single definable fam-

ily. If C{ρ}, F1, . . . , FM are algebraic of complexity β, then the cover has size

poly`(β,M, ρ, 1/σ) and complexity poly`(M,β).

The proof of Theorem 8 is given in Section 8.1.

In Section 3.1 we show that the cellular structure of the maps essentially

implies automatic uniformity over families in the statements of the CPT and

CPrT. We state the family versions of these theorems for convenience of use,

to avoid having to make such reductions on numerous occasions.

2.5. Topology and hyperbolic geometry of complex cells. A complex cell C

is homotopy equivalent to a product of points (for fibers ∗, D) and circles (for

fibers D◦, A) by the map zi → Arg zi. Thus π1(C) ' ∏Gi where Gi is trivial

for ∗, D and Z for D◦, A. We let γi denote the generator of Gi chosen with

positive complex orientation for Gi = Z and γi = e otherwise.

Definition 16. Let f : C→ C\{0} be continuous. We define the monomial

associated with f to be zα(f) where

(32) αi(f) = f∗γi ∈ Z ' π1(C \ {0}).

It is easy to verify that f 7→ zα(f) is a group homomorphism from the

multiplicative group of continuous maps f : C→ C \ {0} to the multiplicative

group of monomials, which sends each monomial to itself.

For any hyperbolic Riemann surface X, we denote by dist(·, ·;X) the

hyperbolic distance on X. (See Section 5 for a reminder on this topic.) We

use the same notation when X = C and X = R to denote the usual Euclidean

distance, and when X = CP 1 to denote the Fubini-Study metric normalized

to have diameter 1. For x ∈ X and r > 0, we denote by B(x, r;X) the open
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r-ball centered x in X. For A ⊂ X, we denote by B(A, r;X) the union of

r-balls centered at all points of A.

If f : C{ρ} → C\{0} is a bounded holomorphic map, then we may decom-

pose it as f = zα(f) · U(z), where U : C{ρ} → C \ {0} is a holomorphic map

and α(U) = 0. It follows that the branches of logU : C{ρ} → C are univalued.

The following lemma shows that U enjoys strong boundedness properties when

restricted to C.

Lemma 17 (Monomialization lemma). Let 0 < ρ <∞, and let f : C{ρ} →
C \ {0} be a bounded holomorphic map. Then f = zα(f) · U(z), where logU :

C→ C is univalued and bounded.

If C{ρ} and f vary in a definable family Λ, then |α(f)| = OΛ(1) and

diam(logU(C);C) = OΛ(ρ), diam(Im logU(C);R) = OΛ(1).(33)

If C{ρ}, f are algebraic of complexity β, then |α(f)| = poly`(β) and

diam(logU(C);C) < poly`(β) · ρ, diam(Im logU(C);R) < poly`(β).(34)

The proof of Lemma 17 is given in Section 5.5.

In light of the monomialization lemma, the CPT can be viewed as a cellular

analog of the monomialization of functions/ideals in the theory of resolution of

singularities. Indeed, if C{ρ} is a cell compatible with F , then either F vanishes

identically or F : Cδ → C \ {0}, in which case F is equivalent to zα(f) up to a

unit on C; hence the cells constructed in the CPT may be viewed as “cellular

charts” where F1, . . . , FM are monomialized.

We now give several results on the geometry of holomorphic maps from

cells to hyperbolic Riemann surfaces. We begin with the following domination

lemma, which is valid for arbitrary cellular extensions. In this paper we never

use this lemma directly; instead, we use the finer fundamental lemmas stated

later, which are valid only for extensions with a sufficiently small ρ. However

we still state and prove the domination lemma to stress another line of close

analogy between complex cells and resolution of singularities.

Lemma 18 (Domination Lemma). Let C{ρ} be a complex cell, and sup-

pose1 that ρ > 2e. Let f : C{ρ} → C \ {0, 1} be holomorphic. Then on C one of

the following holds :

(35) |f | = O`(log log ρ) or |1/f | = O`(log log ρ).

The proof of the domination lemma is given in Section 5.

The domination lemma can be seen as a cellular analog of a standard argu-

ment from the theory of resolution of singularities [5, Lemma 4.7]: Suppose f, g

1Note that if C admits a {ρ}-extension for ρ < 2e, then it also admits {2e} extension.
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and f−g are monomials (up to a unit). Then either f divides g or g divides f .

This allows one to principalize an ideal by monomializing its generators and

their pairwise differences. To see the analogy with the domination lemma,

suppose C{ρ} is a cell compatible with f, g, f − g. Then f/g : C{ρ} → C \ {0, 1}
and the domination lemma implies that either f/g or g/f is bounded from

above (i.e., one divides the other in Ob(C)). Moreover the bound depends only

on ` and ρ.

Remark 19. The domination lemma for one-dimensional discs immediately

implies the Little Picard Theorem. Indeed, suppose f : C→ C\{0, 1} is entire.

Applying the domination lemma to f |D(r) for every r > 0, we see that f is

bounded away from 0 or∞ uniformly in C and therefore constant by Liouville’s

theorem.

Similarly, the domination lemma for one-dimensional punctured discs im-

plies the Great Picard Theorem. Indeed, suppose f : D◦(1) → C \ {0, 1} has

an essential singularity at 0. Applying the domination lemma we see that f

is bounded away from 0 or ∞ uniformly in D◦(1/2), which is impossible, for

instance by the removable singularity theorem.

Next, we state the more refined fundamental lemmas on maps f : C{ρ}→X

into a hyperbolic Riemann surface X. By contrast with the domination lemma,

these lemmas yield more precise asymptotic estimates on the image of a com-

plex cell as ρ tends to zero. The proofs of the fundamental lemmas rely on the

(hyperbolic) geometry and topology of X. Rather than formulate the most

general possible form, we prefer to give three separate formulations for the

most useful cases X = D,D \ {0},C \ {0, 1}, where D denotes the unit disc.

Lemma 20 (Fundamental Lemma for D). Let C{ρ} be a complex cell. Let

f : C{ρ} → D be holomorphic. Then

(36) diam(f(C);D) = O`(ρ).

Lemma 21 (Fundamental Lemma for D \ {0}). Let C{ρ} be a complex cell

and 0 < ρ < 1. Let f : C{ρ} → D \ {0} be holomorphic. Then one of the

following holds :

f(C) ⊂ B(0, e−Ω`(1/ρ);C) or diam(f(C);D \ {0}) = O`(ρ).(37)

In particular, one of the following holds :

log |f(C)| ⊂ (−∞,−Ω`(1/ρ)) or diam(log | log |f(C)||;R) = O`(ρ).(38)

Lemma 22 (Fundamental Lemma for C \ {0, 1}). Let C{ρ} be a complex

cell, and let f : C{ρ} → C \ {0, 1} be holomorphic. Then one of the following

holds :

(39) f(C) ⊂ B({0, 1,∞}, e−Ω`(1/ρ);CP 1) or diam(f(C);C \ {0, 1}) = O`(ρ).
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The proofs of the three fundamental lemmas are given in Section 5.

2.6. The ν-cover of a cell. A key difference between the classical notion of

real cellular decompositions and the complex counterpart is the presence of a

non-trivial fundamental group, and with it the existence of non-trivial covering

maps. Recall that for a cell C of length `, we identify π1(C) ' ∏Gi where Gi
is trivial for ∗, D and Z for D◦, A.

Definition 23 (The ν-cover of a cell). Let C be a cell of length 1. For

C = D◦, A and ν ∈ Z, we define the ν-cover C×ν by

(40) D◦(r)×ν := D◦(r
1/ν), A(r1, r2)×ν := A(r

1/ν
1 , r

1/ν
2 ).

For C = D(r), ∗, the cover C×ν is defined only for ν = 1. In all cases we define

Rν : C×ν → C by Rν(z) = zν .

Let C be a cell of length `, and let ν = (ν1, . . . ,ν`) ∈ π1(C) be such

that νj |νk whenever j > k and Gj = Gk = Z. We define the ν-cover C×ν
of C and the associated cellular map Rν : C×ν → C by induction on `. For

C = C1..`−1 � F, we let

(41) C×ν := (C1..`−1)×ν1..`−1
� (R∗ν1..`−1

F×ν`).

We define Rν(z1..`) := zν .

Note that the D◦(r)×ν` fiber (and similarly with A) does not conform,

a priori, with the definition of a complex cell since r1/ν` may in general be

multivalued (with cyclic monodromy of order dividing ν`). However the di-

visibility conditions on ν guarantee that Rν : (C1..`−1)×ν1..`−1
→ C1..`−1 maps

π1(C1..`−1)×ν into ν`π1(C1..`−1) and the pullback R∗ν`(D◦(r))×ν` is indeed uni-

valued and well defined up to a root of unity. We will usually consider the

ν-cover with ν ∈ N, meaning that we take ν with νi = ν when Gi = Z and

νi = 1 otherwise.

Example 24 (On the condition νj |νk in Definition 23). Consider the cell

C = D◦(1)�A(z1, 1). If we try to compute a cellular cover C×(1,2), this should

formally be given by

(42) C×(1,2) = D◦(1)�A(
√

z1, 1) = D◦(1)�A(
√

w1, 1),

where w denotes the coordinates on C×(1,2). This is not a cell in our sense

since
√

w1 is not a univalued function on D◦(1). Computing C×(2,2), on the

other hand, we have

(43) C×(2,2) = D◦(1)�A(
√

z1, 1) = D◦(1)�A(w1, 1)

because z1 = w2
1, and we do obtain a cell.

A minor technicality arises in the real setting. Namely, the real part

RC×ν does not always cover RC: if ν is even, then only the positive real part is
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covered. To cover the remaining components of the real part we introduce the

notion of a signed cover. Namely, for a sequence σ ∈ {±1}`, we define C×ν,σ
and Rν,σ by induction as above but taking Rν,σ(z1..`)k := σk · zνkk . It is then

clear that RC×ν,σ cover RC when σ ranges over all possible signs.

The pullback to a ν-cover will be used in our treatment to resolve the

ramification of multivalued cellular maps. We record a simple proposition

concerning the interaction between extensions and ν-covers.

Proposition 25. Let C be a complex cell and ν ∈ N.

(1) If C admits a δ-extension, then C×ν admits a δ1/ν-extension and the cov-

ering map Rν extends to Rν : (C×ν)δ
1/ν → Cδ .

(2) If C admits a {ρ}-extension, then C×ν admits an {νρ}-extension and the

covering map Rν extends to Rν : (C×ν){νρ} → C{ρ}.

If C is algebraic of complexity β, then C×ν is algebraic of complexity poly`(β, ν).

We leave the simple inductive proof to the reader. We remark that for

the part (2) it is crucial that covering maps are defined to be the identity on

fibers of type D.

2.7. Overview of the proof of the CPT (Theorem 8). In this section we

aim to give an intuitive overview of the proof of the CPT. We will consider

only the algebraic case, which requires the most delicate arguments to control

the complexity with respect to β. We will construct a covering using general

cellular maps instead of prepared maps. (One can later use the CPrT to obtain

a prepared cover.)

The proof will proceed by induction on the length and dimension of C: we

will work with cells of length `+1, assuming that the CPT is already established

for cells of length at most `, and for cells of length `+1 and smaller dimension.

The cases ` = 0 or dimC = 0 are trivial.

2.7.1. Reduction to the case of one function (M = 1). We first note that

the CPT can be easily reduced to the case of one function F . Indeed, suppose

we wish to perform a cellular decomposition for the functions F1, . . . , FM . Let

F be the product of all the Fk, except those that vanish identically on C.

We construct a cellular decomposition fj : C
{σ}
j → C{ρ} compatible with F .

Each of the maps fj whose image is disjoint from the zeros of F is already

compatible with each Fk. Each of the remaining cells Cj has dimension strictly

smaller than C since cellular maps preserve dimension. Thus we can proceed

by induction over the dimension.

2.7.2. Reduction to arbitrary ρ, σ. We will allow ourselves to assume that

ρ is as small as we wish as long as 1/ρ = poly`(β). We will also allow ourselves

to assume that σ is as large as we wish as long as σ = poly`(β). Both of

these assumptions are justified by the refinement theorem (Theorem 9), which
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shows that cells with a given extension can be “refined” into cells with a wider

extension. This theorem generalizes the idea of covering a disc or annulus by

several smaller discs or annuli. The proof of this theorem is independent of

the CPT, and the reader can safely skip the details for now.

2.7.3. Reduction to a proper covering map. Let C := C1..` � F. Let D ∈
C[z1..`] denote the discriminant of F , and construct a cellular decomposition

fj : C
{ρ}
j → C

{ρ}
1..` compatible with D. Each of the cells Cj with fj(Cj) contained

in the zeros of D has dimension strictly smaller than C1..`, and we can therefore

obtain a cellular cover for the cell Cj�(f∗j F) and the function f∗j F by induction

over dimension. Composing this cover with (fj , id) (see Remark 14) we obtain

a covering for the part of C lying over the zeros of D.

It remains to cover the part lying over the images fj(Cj) that are disjoint

from the zeros of D. For each such cell Cj , we can reduce again to the cell

Cj�(f∗j F) and the function f∗j F . We return to the original notation, replacing

Cj � (f∗j F), f∗j F by C� F, F . What we have gained is that the projection

(44) π : (C� F){ρ} ∩ {F = 0} → C, π(z1..`+1) = z1..`

is now a proper covering map. We denote the degree of π by ν and note that

ν = poly`(β).

2.7.4. Covering the zeros. If we set Ĉ := C×ν!, then one can choose ν

univalued sections yj : Ĉ → C of π that are pointwise disjoint and cover the

fiber of π. However, the covering of order ν! has complexity exponential in ν

and therefore in β, and thus it cannot be used explicitly in our construction.

In fact, one can show that yj descends to a univalued function yj : C×νj → C,

where νj 6 ν is the size of the π1(C)-orbit of yj ; see Lemma 54. This is

a simple statement about permutation groups, crucially using the fact that

π1(C) is abelian. We denote Ĉj := C×νj .

Using the sections yj we construct cellular maps (Rνj , id) : Ĉj�∗ → C�F

whose images are contained in the zeros of F and hence compatible with F .

Moreover Proposition 25 shows that these maps admit {ρ · νj}-extensions, and

choosing ρ · νj < σ gives the required extension property.

2.7.5. Covering the complement of the zeros. We now make a simplifying

assumption; namely, we replace F by C. This simplifies the presentation by

allowing us to avoid minor technicalities related to ∂F. Since C is unbounded,

we will formally have to allow unbounded cells in the covering that we con-

struct, but the difference will be minor. The goal is therefore to cover each

fiber C \ {y1, . . . , yν} by a finite collection of discs, punctured discs and annuli

admitting {σ}-extensions. The challenge is that this covering should depend

holomorphically on the base point z1..` ∈ C, and it should be of size poly`(β).

The remainder of Section 2.7 is devoted to addressing this challenge.
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2.7.6. The affine invariants si,j,k. To achieve our goal we will study the

relative positions of the points yj ∈ C. Toward this end we introduce the

following notation. Let yi, yj , yk be three distinct sections, and denote Ĉi,j,k :=

C×νiνjνk . We define a map si,j,k as follows:

(45) si,j,k : Ĉi,j,k → C \ {0, 1}, si,j,k =
yi − yj
yi − yk

.

By the fundamental lemma for maps into C \ {0, 1} (Lemma 22) one of the

following holds:

(46)
si,j,k(Ĉi,j,k) ⊂ B({0, 1,∞}, e−Ω`(1/(ν

3ρ));CP 1) or

diam(si,j,k(Ĉi,j,k);C \ {0, 1}) = O`(ν
3ρ).

We remark that equivalently (46) holds if we replace Ĉi,j,k by Ĉ, since si,j,k on

Ĉ factors through Ĉi,j,k. We note that si,j,k is invariant under affine transfor-

mations of C, and it is in fact the only affine invariant of (yi, yj , yk). We think

of (46) as implying that the relative positions of any three sections change very

little in Ĉ for ρ � 1. This is the crucial ingredient from hyperbolic geome-

try that will enable us to carry out the decomposition into discs and annuli

uniformly over the base Ĉi,j,k.

Remark 26 (The Fulton-MacPherson compactification). In [21] Fulton and

MacPherson construct a compactification X[ν] for the configuration space Xν\
∆ of ν distinct labeled points in an algebraic variety X (where ∆ is the union of

all diagonals). In the case X = C, the construction using screens is as follows.

Write y1, . . . , yν for the coordinates on Cν \∆. For every subset S ⊂ {1, . . . , ν},
the screen ιS is defined as the map

(47) ιS : Cν \∆→ P(C|S|/C), iS(y1, . . . , yν) = (yα)α∈S ,

where C ⊂ C|S| is the diagonally embedded subspace. The map ιS remembers

the relative positions of {yα}α∈S up to translation (corresponding to the diag-

onally embedded C) and homothety (corresponding to the projectivization).

Consider the map

(48) ι : Cν \∆→ (P1)(
ν
3), ι =

∏
|S|=3

ιS .

Then C[ν] is the Zariski closure of the graph of ι. It is an important fact

that only the screens ιS for S of size three are required to fully determine the

compactification; if one defines ι by a product over all S ⊂ {1, . . . , ν}, one

obtains an isomorphic compactification.

In our setting, we have a natural map y = (y1, . . . , yν) : Ĉ→ Cν \∆. For

an appropriate choice of a rational coordinate on each P1 factor in (48), the
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coordinates of ι can be identified with our maps si,j,k, which are indeed invari-

ant under translation and homothety. The equations (46) imply, in particular,

that the image y(Ĉ) is of small diameter, not only in the metric induced from

Cν , but also in the finer metric induced from the compactification C[ν]. It is

crucial here that one only needs to use the screens S of size three. If we were

to write equations similar to (46) for screens of arbitrary size, the factor ν3

would be replaced by ν!, which is exponential in β and hence too large for our

purposes.

As we proceed to describe the cellular cover for C \ {y1, . . . , yν}, we will

make no explicit reference to the Fulton-MacPherson compactification, working

instead directly with (46). However the reader may find it helpful to interpret

these inequalities as estimates on the metric induced from C[ν].

2.7.7. Clustering around a center yi. We fix a section yi. We will cluster

the remaining sections into annuli centered at yi. Since our constructions are

invariant under affine transformations, we may assume after an appropriate

transformation that yi = 0, and then si,j,k = yj/yk.

Pick an arbitrary base point p ∈ Ĉ. We will say that yj is close to yk
if they satisfy |log |yk(p)/yj(p)|| < 1/ν. Define the clusters around yi to be

the equivalence classes of the transitive closure of this relation. Then for any

yj , yk, if they are in the same cluster, we have |log |yk(p)/yj(p)|| < 1; otherwise

we have |log |yk(p)/yj(p)|| > 1/ν. See Figure 2 for an illustration.

2.7.8. The Voronoi cells associated with yi. We will use the clusters around

yi to construct a collection of Voronoi cells and their mappings into C � C.

Their defining property, which motivates our choice of naming, is the following:

the Voronoi cells associated with yi cover every point z ∈ C \ {y1, . . . , yν} such

that dist(z, yi) 6 2 dist(z, yj) for any j 6= i. In other words, for every section

yi, we will construct cells that cover every point in C except those that are

(twice) closer to some other section yj . Clearly then the union of these cells

for every yi will cover C \ {y1, . . . , yν}, which is our goal.

We begin by covering the empty area between two clusters. This is fairly

straightforward. Suppose that yj is a section with |yj(p)| maximal within its

cluster, and yk is a section with |yk(p)| minimal within the next cluster (see

Figure 2. Clustering around yi; distances are in log-scale.
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Figure 2). Then the annulus A(yje
ε, yke

−ε) for say ε = 1/ν2 does not meet

any of the sections yj over p, and assuming ρ is sufficiently small, this remains

true uniformly over Ĉ by (46). We similarly cover the area between yi = 0 and

the first cluster by a punctured disc, and outside the last cluster by A(·,∞).

2.7.9. Voronoi cells in a cluster. It remains to cover the part of C that

remains outside the annuli above, i.e., near one of the clusters. Choose one of

the clusters, and let yj be a section in the cluster. Since our constructions are

invariant under affine transformations, we may assume after an appropriate

transformation that yi = 0 and also yj = 1. With this choice of coordinates,

we have si,k,j = yk, and (46) implies that yk does not change much over the

cell Ĉ. We will construct our cells over the base Ĉi,j := C×νiνj . Note that the

complexity of this cell is poly`(β) as required.

Suppose yj1 (resp. yj2) is the section with r1 := |yj1(p)| minimal (resp.

r2 := |yj2(p)| maximal) within its cluster. Then 1/e < r1 6 r2 < e. Moreover

the sections in the cluster uniformly remain within A := A(r1e
−ε, r2e

ε) while

the sections belonging to other clusters remain outside A′ := AΘ(1−1/ν).

Let U be the set obtained from A by removing discs of radius 1/10 centered

at each of the points yk(p) for yk belonging to the cluster. Note that any point

in these discs is much closer to yk(p) than to yi(p) = 0, so we do not need

to cover them with the Voronoi cells of yi. Moreover the same remains true

uniformly over Ĉ since by (46) the points yk change very little. To finish

the construction we must therefore cover U using discs whose {σ}-extensions

remain inside A′ and away from the 1/20-discs centered at the points yk(p).

(This way even as p varies over Ĉ the discs and their extensions will not meet

them.) This is clearly possible to achieve with poly`(ν) = poly`(β) discs as

required. See Figure 3 for an illustration of this construction.

Figure 3. Voronoi cells in a cluster
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3. Generalities on complex cells

In this section we cover some generalities on complex cells, their subana-

lytic structure and some uniformity results for families.

3.1. Uniformity in families. In this section we show how the cellular struc-

ture of our maps implies automatic uniformity over families, for instance in the

statement of the CPT.

For p ∈ C1..j , we denote

(49) Cp = {zj+1..` : (p, zj+1..`) ∈ C}.
If C has type F1�· · ·�F`, then Cp is a cell of type Fj+1�· · ·�F`. If C admits

a δ-extension, then so does Cp.

By definition, cellular map f : C→ Ĉ induces a cellular map f1..j : C1..j →
Ĉ1..j for j = 1, . . . , ` by restriction to the first j coordinates. The following

proposition follows directly from the definitions.

Proposition 27. Let f : C→ Ĉ be a cellular map between cells of length `

and j = 1, . . . , `. Then the number of points in f−1
1..j(p) for p ∈ Ĉ1..j is bounded

by a constant ν(f, j) independent of p. Explicitly, one may take

(50) ν(f, j) =
j∏

k=1

degzk φk

in the notation of Definition 11.

The following remark illustrates how the cellular structure of the maps in

the CPT automatically implies uniformity over families.

Remark 28. Suppose ` = n + m. We view C in the statement of the

CPT as a family of cells Cp of length m parametrized over p ∈ C1..n. Let

fj : C
{σ}
j → C{ρ} be the maps constructed in the CPT. By Proposition 27 the

sets

(51) Pj = {pj,k} := (fj)
−1(p)

are finite with the number of points uniformly bounded over p. For each pj,k,

restriction of fj to the fiber gives a prepared cellular map fj,k : (Cj)
{σ}
pj,k → C

{ρ}
p

that is compatible with the restrictions of F1, . . . , Fm to Cp, and such that

fj,k((Cj)pj,k) cover Cp. In other words we obtain a cellular decomposition as in

the CPT for the fibers Cp with the number of cells uniformly bounded over p.

3.2. Laurent expansion in a complex cell. Let C = F1 � · · · � F` be a

complex cell. In this section we show that any holomorphic function on C

can be expanded into a series analogous to the classical Laurent series. We

begin by introducing the notion of normalized monomials. Let α ∈ Z`. We

define the C-normalized monomial z[α] := z
[α1]
1 · · · z[α`]

` where if Fj = D(rj) or
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Fj = D◦(rj), then

(52) z
[αj ]
j =

(zj/rj)
αj αj > 0,

0 otherwise;

if Fj = A(r1,j , r2,j), then

(53) z
[αj ]
j =

(zj/r1,j)
αj αj > 0,

(zj/r2,j)
αj otherwise;

and if Fj = ∗, then

(54) z
[αj ]
j =

1 αj = 0,

0 otherwise.

The normalization is such that |z[α]| is bounded by 1 in C and achieves the

bound only when α = 0.

Below we write posα for the vector whose i-th coordinate is |αi|.

Proposition 29. Let f ∈ Ob(C). Then f has a series expansion, abso-

lutely convergent on compacts in C, as follows :

(55) f(z) =
∑
α∈Z`

cαz[α],

where |cα| 6 ‖f‖. If C admits a δ-extension and f ∈ Ob(C
δ), then also |cα| <

δposα ‖f‖Cδ .

Proof. We proceed by induction on `. The case F` = ∗ reduces imme-

diately to the claim for C1..`−1. Otherwise the standard formula for Laurent

expansions in F` gives

(56) f(z) =
∞∑

α`=−∞
cα`(z1..`−1)z

[α`]
` ,

where

(57) cα`(z1..`−1) =
zα``

z
[α`]
`

(2πi)−1
∮
f(z1..`−1, ζ)

ζα`+1
dζ,

and the integral is over a simple positively oriented curve in F`. The Cauchy

estimate now implies ‖cα`‖C1.`−1
6 ‖f‖, and we proceed to expand cα` by

induction on ` to obtain a series (55) with |cα| < ‖f‖. To see that this

multivariate series is absolutely convergent on compacts, note that for every

z ∈ C and α ∈ Z`, we have

(58) |z[α]| 6 ρ|α| where ρ := max
σ∈{−1,1}`

|z[σ]| < 1,
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and (55) is thus majorated by
∑

α(ρ + ε)|α| in a neighborhood of z. For the

final claim we write a Laurent expansion in Cδ and rewrite the Cδ-normalized

monomials as C-normalized monomials, gaining an extra factor of δposα. �

Let P` := D(1)×` denote the standard unit polydisc. We write simply P

when ` is clear from the context.

Corollary 30. Let f ∈ Ob(C). Then there is a decomposition

(59) f(z) =
∑

σ∈{−1,1}`
fσ(z[σ]),

where fσ ∈ O(P). If C admits a δ-extension and f ∈ Ob(C
δ), then fσ ∈ O(Pδ)

and, moreover, for any δ < ε < 1, we have

(60) ‖fσ‖Pε 6 (1− δ/ε)−` ‖f‖Cδ .

Proof. For the first statement we simply collect all summands with index

α of sign σ in (55) into fσ. (If αj = 0, we arbitrarily treat it as positive for

this purpose.) For the second part, we have

(61) ‖f1,...,1(w)‖Pε 6
∑

α∈(Z>0)`

|cα| ‖wα‖Pε 6
∑

α∈(Z>0)`

(δ/ε)|α| = (1− δ/ε)−`,

and similarly for the other choices of the signs. �

3.3. Subanalyticity. We say that a function is subanalytic on a domain

U ⊂ Cn if it is defined there and its graph over U forms a subanalytic set. Our

goal in this section is to prove the following proposition.

Proposition 31. Let 0 < δ < 1. A complex cell C admitting a δ-extension

is a subanalytic set. If f ∈ Ob(C
δ), then f is subanalytic on C.

Proof. We prove both claims by induction on the length of C, the case of

length zero being trivial. Let C = C1..`�F. Then the radii r(z) or r1(z), r2(z) of

F are subanalytic by induction and it easily follows that C is subanalytic. Now

let f ∈ Ob(C
δ). By Corollary 30 we may write f as a sum of 2`+1 summands

fσ(z[σ]). In the definition of z[σ] each of the radii involved are subanalytic on

C1..` by induction, and each of the divisions involved are “restricted” in the

sense of [18]; i.e., we always have |z[σ]| 6 1 for z ∈ C. It then follows, for

instance using the subanalytic language of [18], that the graph of each fσ and

hence of f is indeed subanalytic over C. �

Remark 32. In Proposition 31 one cannot replace subanalyticity by the

stronger condition of semianalyticity. For example, let C := D◦(1) � D(z1)

and f(z1, z2) := z2e
z2/z1 . Then f ∈ Ob(C

1/2) but the graph of f |C is not

semianalytic. (See Osgood’s example [5, Exam. 2.14].)
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The statement of Proposition 31 also fails if we do not assume δ-extend-

ability of C, as one can see in the example C = D(1) and f = exp( z+1
z−1).

4. Semialgebraic and subanalytic cells

In our terminology, a cell in an o-minimal structure (below cylindrical cell

— see [19]) is the �-product of a sequence of open intervals and points with the

endpoints/points given by continuous definable functions. The image f(R+C)

of a real prepared cellular map is itself a cylindrical cell. More explicitly, if

f(z1..`)j = z
qj
j + φj(z1..j−1) and C = F1 � · · · � F`, then

f(R+C) = I1 � · · · � I`,

Ij :=


{φj} Fj = ∗,
(φj , φj + |rqj |) Fj = D(r), D◦(r),

(φj + |rqj1 |, φj + |rqj2 |) Fj = A(r1, r2).

(62)

Furthermore, we note that f restricts to a real-analytic diffeomorphism from

R+C onto its image.

A cylindrical cell is called compatible with a continuous function F if

sgn(F ) is constant on the cell. Since R+C is connected, if f is compatible

with F in the sense of Definition 15, then cylindrical cell f(R+C) is compatible

with F .

4.1. Cellular parametrizations for semialgebraic and subanalytic sets.

Definition 33. A semialgebraic set S ⊂ Rn has complexity (`, β) if S =

π1..n(S̃), where S̃ ⊂ R` is given by a sign condition

(63) S̃ = {sgn(P1) = σ1, . . . , sgn(PN ) = σN}, σ1, . . . , σN ∈ {−1, 0, 1},

where P1, . . . , PN ∈ R[x1..`] have degrees at most β and N 6 β. If ` = n, we

will say simply that S has complexity β.

The following semialgebraic parametrization result is a simple consequence

of the CPT.

Corollary 34. Let ρ, σ ∈ R+, and let S ⊂ (0, 1)n be semialgebraic

of complexity (`, β). Then there exist poly`(β, ρ, 1/σ) real cellular maps fj :

C
{σ}
j → P

{ρ}
n , each of complexity poly`(β), such that fj(R+C

{σ}
j ) ⊂ S and

∪jfj(R+Cj) = S.

Proof. We first reduce to the case S̃ ⊂ (0, 1)` in the notation of Def-

inition 33 by pulling back the variables xn+1, . . . , x` by the bijection t →
(2t − 1)/(t − t2) between (0, 1) and R (which increases the degrees at most

polynomially).
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Now apply the real CPT to the cell P
{ρ}
` with the collection of polynomials

defining S̃. We obtain a collection of real prepared maps f̃j : C̃
{σ}
j → P

{ρ}
` with

the required complexity estimates such that

f̃j(R+C̃
{σ}
j ) ⊂ S̃ and ∪j f̃j(R+C̃j) = S̃.

The cellular structure of f̃j implies that if we now take Cj := (C̃j)1..n and

fj := (f̃j)1..n, then indeed we have fj(R+C
{σ}
j ) ⊂ S and ∪jfj(R+Cj) = S. �

In an analogous manner one obtains the following subanalytic version.

Corollary 35. Let ρ, σ ∈ R+, and let S ⊂ (0, 1)n be subanalytic. Then

there exist polyS(ρ, 1/σ) real cellular maps fj : C
{σ}
j → P

{ρ}
n such that

fj(R+C
{σ}
j ) ⊂ S and ∪j fj(R+Cj) = S.

Remark 36. We remark that from the proof it is clear that in Corollaries 34

and 35 one can also require the maps fj to be compatible with an additional

collection of functions Fj ∈ Ob(P
{ρ}
n ). We also remark that by rescaling one

can replace the domain (0, 1)n in Corollaries 34 and 35 by any other bounded

semialgebraic/subanalytic ambient set. We will sometimes use [0, 1]n.

4.2. Preparation theorems. The real CPT implies the preparation theorem

for subanalytic functions of Parusinski [38] and Lion-Rolin [31], as we illustrate

below. We illustrate the algebraic case here (where we get more effective

information), but the subanalytic case follows in a similar manner. Let F :

(−1, 1)n → R be a bounded semialgebraic function, and let GF ⊂ Rnx × Ry
be its graph. We aim to cover (0, 1)n by cylinders where F admits a simple

expansion.

We apply Corollary 34 for the set GF , requiring also that the maps fj be

compatible with y (see Remark 36). We obtain maps fj : C
{σ}
j → P

1/2
n × P1/2

such that fj(R+C
{σ}
j ) ⊂ GF and fj(R+Cj) cover GF and, moreover, each map

is compatible with y.

Let f : C{σ} → P
1/2
n × P1/2 be one of the maps fj . Since GF is a graph,

the type of C must end with ∗. It follows from the monomialization lemma

(Lemma 17) that on each C{σ} we have either f∗y ≡ 0 or

(64) f∗y = zα(j)Uj(z),

where U is a holomorphic map bounded away from zero and infinity on C. To

rewrite this expansion in the x-coordinates recall that

(65) zj = (xj − φj(z1..j−1))1/νj ,



178 GAL BINYAMINI and DMITRY NOVIKOV

where we restrict zj to the positive real part R+Cj and take the positive branch.

Since F (x) ≡ y on GF , we have on the cylinder f(R+Cj) the expansion

(66) F (x) = zαU(z),

where z is given by (65). In other words, we have obtained cylinders where F

expands as a monomial with fractional powers times a unit. This implies the

preparation theorem of [31] (in the bounded semialgebraic case). Indeed, in

[31] the unit is required to be bounded away from zero and infinity and satisfy

an analytic expansion of the form U(z) = V (ψ(x1..n−1,xn)), where

ψ(x1..n−1,xn) = (ψ1(x1..n−1), . . . , ψs(x1..n−1),

x1/p
n /a1(x1..n−1), b1(x1..n−1)/x1/p

n ),
(67)

with p a positive integer and ψi, a1, b1 are bounded subanalytic functions, and

V is a non-zero analytic function on the compact closure of the image of ψ. In

our case this expansion is the Laurent expansion of Uj(z) with respect to zn.

Remark 37. Note that in comparison to the preparation theorem of [31]

we obtain explicit bounds on the number of cylinders and their complexity in

the CPT, and effective estimates on the monomial zα and the unit U(z) in the

monomialization lemma (Lemma 17).

The existence of holomorphic continuations to δ-extensions of complex

cells also greatly simplifies the fundamental definitions of [31]. For instance,

while the notion of a function reducible in a cylinder requires a careful inductive

definition in [31], any holomorphic function compatible with a complex cell is

automatically reducible there. Similarly, while the definition of a unit involves a

delicate analytic expansion (67) in [31], a unit in a complex cell is a holomorphic

function satisfying a purely topological definition (the associated monomial

being equal to zero), which implies the real condition.

5. The principal lemmas

Let C be a complex cell of length `. For the results discussed in this

section, any coordinate with type ∗ can be removed without loss of generality,

so we assume that the type does not contain ∗. Then n := dimC = `.

5.1. Hyperbolic geometry of complex cells. For the proofs of the domina-

tion, fundamental and monomialization lemmas of Section 2.5, we need some

basic notions of hyperbolic geometry. Recall that the upper half-plane H ad-

mits a unique hyperbolic metric of constant curvature −4 given by |dz|/2y. A

Riemann surface U is called hyperbolic if its universal cover is the upper half-

plane H. In this case U inherits from H a unique metric of constant curvature

−4, which we denote by dist(·, ·;U). (We sometimes omit U from this notation
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if it is clear from the context.) In particular, a domain U ⊂ C is hyperbolic if

its complement contains at least two points.

Lemma 38 (Schwarz-Pick [34, Th. 2.11]). If f : S → S′ is a holomorphic

map between hyperbolic surfaces S, S′, then

(68) dist(f(p), f(q);S′) 6 dist(p, q;S) ∀p, q ∈ S.

5.2. Maps from cells into hyperbolic Riemann surfaces. We need the fol-

lowing notion of skeleton of a cell.

Definition 39 (Skeleton of a cell). If C is a cell whose type does not in-

clude D◦, then we define its skeleton S(C) as follows: The skeleton of the cell

of length zero is the singleton C0; the skeleton of C1..` � F is S(C1..`) � ∂F,

where

∂∗ := ∗, ∂D(r) := S(r), ∂A(r1, r2) := S(r1) ∪ S(r2).(69)

Each connected component of S(C) is a product of ` circles and points, and

the number of connected components is equal to 2α, where α is the number of

symbols A in the type of C.

In this section we assume that the type of C does not contain D◦. We

assume that C admits a {ρ} extension for some {ρ}>0 and that f : C{ρ}→X is

a holomorphic map to a hyperbolic Riemann surface X. We begin by studying

the hyperbolic behavior of f on the skeleton S(C).

Lemma 40. Let S be a component of the skeleton S(C). Then

(70) diam(f(S);X) 6 nρ.

Proof. Note that the case n = 1 follows immediately from Fact 6 and the

Schwarz-Pick lemma.

We proceed by induction and suppose the claim is proved for cells of

dimension smaller than n. Let z, z′′ ∈ S. We will construct a point z′ ∈ S such

that dist(f(z), f(z′)) 6 ρ and such that z′1 = z′′1. Then z′2..n, z
′′
2..n both belong

to the n−1-dimensional cell Cz′1
, and applying the inductive hypothesis to the

restriction of f to this fiber we conclude that dist(f(z′), f(z′′)) 6 (n−1)ρ, thus

completing the proof.

Let us construct z′. By definition of the skeleton, we have

(71) z1 = ε1r1, z2 = ε2r2(z1), . . . , zn = εnrn(z1..n−1), |εi| = 1,

where r1 > 0 and r2, . . . , rn are holomorphic functions on C{ρ}. Let F denote

the first fiber in C. We define a map γ(z1) : F{ρ} → C{ρ} by γ(z1) = (z1..n),

where

(72) z2 = ε2r2(z1) · · · zn = εnrn(z1..n−1).
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Then γ is holomorphic in F{ρ} and satisfies γ(z1) = z and γ({|z1| = r1}) ⊂ S.

We take z′ := γ(z′′1) ∈ S and note that

(73)

dist(f(z), f(z′);X) = dist(f ◦ γ(z1), f ◦ γ(z′′1);X) 6 dist(z1, z
′′
1;F{ρ}) 6 ρ,

where the first inequality follows from the Schwarz-Pick lemma for f ◦γ and the

second inequality follows since z1, z
′′
1 belong to the boundary of F in F{ρ}. �

Next, we show (essentially by the open mapping theorem) that the bound-

ary of f(C) is controlled by the skeleton.

Lemma 41. We have the inclusion ∂f(C) ⊂ f(S(C)).

Proof. We assume for simplicity that the type of C is A · · ·A; other cases

are treated similarly. Let p ∈ ∂f(C), and fix a point z ∈ C such that f(z) = p.

If z ∈ S(C), then we are done. Otherwise one of the following holds:

(74)

r1,1 <|z1| < r1,2

|r2,1(z1)| <|z2| < |r2,2(z1)|
...

|rn,1(z1..n−1)| <|zn| < |rn,2(z1..n−1)|.

Let k be the largest index for which such inequalities hold. Let

(75) A := A(rk,1(z1..k−1), rk,2(z1..k−1)).

We suppose further that z is chosen such that k is the minimal possible. We

define a map γ(t) : Aδ → C by γ(t) = (z1..n) where z1..k−1 = z1..k−1, zk = t and

(76) zj+1 =
zj+1

rj+1,i(j+1)(z1..j)
rj+1,i(j+1)(z1..j), j > k,

where i(j) is the index, either 1 or 2, such that equality instead of inequality

holds in the jth line of (74). By definition we have γ(zk) = z.

If f ◦γ is non-constant, then by the open mapping theorem, p = f ◦γ(zk) is

an interior point of f ◦γ(A) ⊂ f(C) contrary to our assumption. Otherwise we

have p = f(z′), where z′ = γ(t) and t is any point on ∂A. The index k obtained

for z′ is by definition smaller than that obtained for z, which contradicts our

choice of z. �

Finally, we show that under a suitable topological condition the hyperbolic

diameter of f(C) itself can be bounded.

Lemma 42. Suppose that f∗(π1(C)) = {e} ⊂ π1(X). Then

(77) diam(f(C);X) < 2nnρ.
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Figure 4. Proof of Lemma 42.

Proof. Denote by π : D→ X the universal covering map. By our assump-

tion we may lift f to a map F : C{ρ} → D satisfying f = π ◦ F . Since π is

non-expanding, it is enough to prove the claim for the hyperbolic diameter of

F (C). By Lemma 40 the hyperbolic diameter of F (S), where S is any compo-

nent of the skeleton S(C), is bounded by nρ. By Lemma 41 we also have the

inclusion ∂F (C) ⊂ F (S(C)).

Recall that we assume that the type of C does not contain D◦ and hence

C̄ ⊂ Cδ. In particular, it follows that Z := F (C) is relatively compact, and

hence bounded, in D. Let U denote the unbounded component of D\Z̄, and set

U c := D \ U and Γ := ∂U . To avoid pathologies of plane topology we remark

that Z is subanalytic, hence Z,U and their boundaries can be triangulated,

and the Mayer-Vietoris sequence for reduced homology

(78) 0 = H1(D)→ H̃0(Γ)→ H̃0(Ū)⊕ H̃0(U c)→ H̃0(D)→ 0

is exact. Since H̃0(D) = H̃0(Ū) = 0, we have H̃0(Γ) ' H̃0(U c). We claim

that U c is connected. Assume otherwise and write U c = V1 ∪ V2. Since Z̄ is

connected, without loss of generality Z̄ is contained in V1 and therefore disjoint

from V2. In particular, ∂V2 is disjoint from Z̄, contradicting

(79) ∂V2 ⊂ ∂U c = ∂U ⊂ ∂Z.

In conclusion we have H̃0(Γ) ' H̃0(U c) = 0; i.e., Γ is connected.

We claim that the hyperbolic diameter of F (C) is bounded by the hyper-

bolic diameter of Γ. Indeed, for any two points p, q ∈ F (C), let ` denote the

geodesic line connecting them. Denote by p′ ∈ ` ∩ Γ some point on ` before

p and by q′ ∈ ` ∩ Γ some point on ` after q. Then dist(p, q) 6 dist(p′, q′),

which is bounded by the diameter of Γ. Finally, recall that Γ is connected and

contained in the union of F (Sj) where Sj run over the components of S(C)

(whose number is at most 2n), and the diameter of each F (Sj) is bounded

by nρ. From this it follows easily that the diameter of Γ is at most 2nnρ. �
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5.3. Proof of the domination lemma (Lemma 18). We begin by assuming

that the type of C does not contain D◦. Let

(80) U0 := {|z| < 1
2}, U1 := {|z − 1| < 1

2}, U∞ = {|z| > 2}.

We choose s > 1 such that the hyperbolic distance in C \ {0, 1} between U sq
and ∂Uq is greater than nρ for q = 0, 1,∞, where

(81) U s0 := {|z| < 1
2s}, U s1 := {|z − 1| < 1

2s}, U s∞ = {|z| > 2s}.

From the explicit computations in Section 5.6 we can take s = O(log | log(nρ)|).
If f(C) does not meet U s0 or U s∞, then the proof of the domination lemma is

completed. Henceforth we assume that f(C) meets both U s0 and U s∞.

Lemma 43. Suppose f(C) meets both U s0 and U s∞. Then

(82) f∗π1(C) = {e} ⊂ π1(C \ {0, 1}).

Proof. Recall that we assume the type of C does not contain D◦ and,

in particular, C̄ ⊂ Cδ. Thus f extends to a continuous function on C̄, so

f(C̄) ⊂ C \ {0, 1} is compact and it follows that ∂f(C) meets both U s0 and U s∞.

By Lemma 41 we conclude that there exist two components S0, S∞ of the

skeleton S(C) such that f(S0) meets U s0 and f(S∞) meets U s∞. From Lemma 40

and the choice of s we conclude that f(S0) does not meet the boundary of U0,

i.e., f(S0) ⊂ U0 and similarly f(S∞) ⊂ U∞.

It is easy to verify (it is enough to check this for the standard polyannulus)

that π1(S)→ π1(C) is epimorphic. In particular, if γ ∈ π1(C) denotes any loop,

then this loop is free-homotopy equivalent to a loop contained in S0 and to

a loop contained in S∞. Consequently f∗(γ) is free-homotopy equivalent to

a loop contained in U0 and to a loop contained in U∞. However two such

loops cannot be homotopically equivalent in C \ {0, 1} unless they are both

contractible, hence proving the claim. �

Lemma 43 implies the condition of Lemma 42, and we conclude that the

hyperbolic diameter of f(C) is bounded by 2nnρ. We now choose ŝ > 1 such

that the hyperbolic distance between U ŝ0 and U ŝ∞ is greater than 2nnρ; see

Figure 5 for an illustration. By Section 5.6 we may take ŝ = O(log(n+ log ρ)).

Then f(C) cannot meet both U ŝ0 , U
ŝ
∞ and the domination lemma is proved.

It remains to consider the case that the type of C contains D◦. Let 0 <

ε < 1, and let Cε be the cell obtained from C by replacing each occurrence

of a fiber D◦(r) by A(εr, r). It is clear that Cε admits a {ρ}-extension and

∪ε>0Cε = C. The domination lemma for C thus follows immediately from the

domination lemma for Cε, which was already established.

5.4. Proofs of the fundamental lemmas (Lemmas 20–22). In this section

we may assume that the type of C does not contain D◦. The general case can
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Figure 5. Proof of the domination lemma.

be reduced to this case as in the end of Section 5.3. The fundamental lemma

for D (Lemma 20) is already proved as a consequence of Lemma 42. The proof

of the fundamental lemma for D \ {0} (Lemma 21) is based on the following

simple geometric lemma.

Lemma 44. Let z ∈ D\{0}, and let γz denote the shortest non-contractible

loop passing through z. Then (i) length(γz)→∞ as |z| → 1; and (ii) for every

0 < r < 1 and |z| < r, we have length(γz) = Θr(1/| log |z||).

Proof. Let ζ = i−1 log z. Lifting to the universal cover exp(iζ) : H →
D \ {0} we must calculate dist(ζ, ζ + 2π;H). By a standard formula for the

hyperbolic distance [29, Th. 1.2.6], we have

(83) dist(ζ, ζ + 2π;H) = 2 ln

Ñ
π +

»
π2 + Im2 ζ

Im ζ

é
,

and the right-hand side tends to infinity as |z| → 1 and is Θr(1/| log |z||) when

|z| < r. �

Let f : C{ρ} → D \ {0} be holomorphic, and let z ∈ D \ {0} be the point

of f(C̄) with maximum absolute value, which by Lemma 41 belongs to the

image f(S) of a component S of the skeleton of C. By Lemma 40 we have

diam(f(S);D \ {0}) = O`(ρ).

By Lemma 44 part (i), using ρ < 1 there exists a constant 0 < r(`) < 1

such that if |z| > r(`), then f(S) cannot contain a non-contractible loop in

D \ {0}. Then, since π1(S)→ π1(C) is epimorphic, we have

(84) f∗(π1(C)) = f∗(π1(S)) = {e} ⊂ π1(D \ {0}).

In this case, by Lemma 42 we have diam(f(C);D \ {0}) = O`(ρ). Suppos-

ing now that |z| < r(`) and using Lemma 44 part (ii), we similarly see that

if 1/| log |z|| = Ω`(ρ), then f(S) cannot contain a non-contractible loop in

D \ {0} and finish the proof in the same way. In the remaining case we have

log |z| = −Ω`(1/ρ), which concludes the proof of the first statement. The

second statement follows using

(85) dist(ζ1, ζ2;H) > dist(log Im ζ1, log Im ζ2;R).
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We now proceed to the proof of the fundamental lemma for C \ {0, 1}
(Lemma 22). It will suffice to prove the statement for ρ smaller than some

constant O`(1) to be chosen later. Indeed, for ρ larger than such a constant,

we can make the first condition in (39) trivial with an appropriate choice of the

asymptotic constant, since every point in CP 1 lies at distance strictly smaller

than 1 from {0, 1,∞}.
Let S be a component of the skeleton of C. By Lemma 40 we have

diam(f(S);C \ {0, 1}) = O`(ρ). In particular, for ρ = O`(1), we see that f(S)

cannot meet more than one of the sets U0, U1, U∞ in the notation (80). Suppose

first that the f(S) meets none of these sets. Let ρ0 denote the length of the

shortest non-contractible loop in the compact set (U0∪U1∪U∞)c ⊂ C\{0, 1}.
Then for ρ = O`(ρ0) = O`(1), we get diam(f(C);C \ {0, 1}) = O`(ρ) as in the

proof of the case D \ {0}.
Next, suppose that for two different components S, S′, the images f(S)

and f(S′) meet two of the sets U0, U1, U∞, say U0 and U1 respectively. Then

for ρ = O`(1), the images f∗(π1(S)) (resp. f∗(π1(S′)) can only be a power of

the fundamental loop around 0 (resp. 1), and as in the proof of the domination

lemma we conclude that f∗(π1(C)) = {e} and diam(f(C);C \ {0, 1}) = O`(ρ).

Finally, suppose all skeleton components S meet one of the sets U0, U1, U∞,

say U0. Then for ρ = O`(1), we see that f(S) ⊂ D \ {0} for each skeleton

component. In this case we can finish the proof as in the case of D \ {0}.
We need only the estimate for the length of the shortest geodesic in C \ {0, 1}
passing through a given point z close to 0; this is asymptotically the same as

in the metric of D\{0}, for instance by the estimate (93) of [3], given explicitly

in Section 5.6.

5.5. Proof of the monomialization lemma (Lemma 17). The Voorhoeve

index [30] of a holomorphic function f : U → C along a subanalytic curve

Γ ⊂ U is defined by

(86) VΓ(f) :=
1

2π

∫
Γ
| d Arg f(z)|.

We need the following basic fact about Voorhoeve indices.

Lemma 45. Fix ρ > 0. Let Fλ be a definable family of one-dimensional

cells, let fλ : Fρλ → C be a definable family of holomorphic functions, and let

Γλ ⊂ Fλ be a definable family of curves. Then VΓλ(fλ) is uniformly bounded

over λ.

If f,Γ are algebraic of complexity β, then VΓ(f) = poly(β).

Proof. Note that 2πVΓ(f) is the total length of the curve ( f
|f |)(Γ) ⊂ S(1),

which by standard integral geometry is given by the average number of intersec-

tions between the curve and a ray through the origin, i.e., the average number
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of (isolated) solutions of the equation Arg f(z) = α for z ∈ Γ α ∈ [0, 2π). By

o-minimality the maximal number (and, in particular, the average number) of

(isolated) solutions for the pair fλ,Γλ is bounded by a constant independent

of λ. In the algebraic case the number of solutions is bounded by poly(β) by

the Bezout theorem. �

The basic ingredient in the proof of the monomialization lemma is the

following one-dimensional version, proved using the Voorhoeve index.

Lemma 46. Let F be a one-dimensional cell and f : F{ρ} → C\{0}. Then

f = zα(f) · U(z) where logU : F → C is univalued and bounded.

If F{ρ}, f vary in a definable family Λ, then |α(f)| = OΛ(1) and

diam(logU(F);C) = OΛ(ρ), diam(Im logU(F);R) = OΛ(1).

If f is algebraic of complexity β, then |α(f)| = poly(β) and

diam(logU(F);C) < poly(β) · ρ, diam(Im logU(F);R) < poly(β).

Proof. We follow the idea of [30, §4.5]. By definition, α(f) is equal to the

total winding number of f along a concentric circle contained in F for types

D◦, A and zero in type D. In particular, it is bounded by VΓ(f) where Γ is

such a circle, and the statements about α(f) then follow from Lemma 45. In

the algebraic case we see also that the complexity of U is poly(β).

Any two points in F{2ρ} can be joined by two consecutive algebraic curves:

a radial ray and a circle concentric with F. By Lemma 45 the Voorhoeve

index of f along these curves is uniformly bounded (resp. bounded by poly(β)

in the algebraic case). Having already established that |α(f)| is uniformly

bounded (resp. bounded by poly(β) in the algebraic case) we conclude that

the Voorhoeve index of U along any two such curves is similarly bounded by

v = OΛ(1) (and v = poly(β) in the algebraic case).

Let p ∈ F be an arbitrary point. Since the claim is invariant under scalar

multiplication of f , we may assume without loss of generality that U(p) = 1.

Since U∗π1(F) = {e}, we have a well-defined root W : F{ρ} → C\{0} satisfying

W = iU1/(4v) and W (p) = i. Connecting p to any other point q ∈ F{2ρ} by two

curves as above, the Voorhoeve index of W along the curves is bounded by 1/4,

hence the total variation of argument is bounded by π/2. Since ArgW (p) =

π/2, we conclude that in fact W : F{2ρ} → H. By Lemma 42 we then have

diam(W (F);H) = OΛ(ρ). In particular, this implies

(87) diam(logW (F);C) = OΛ(ρ), diam(Im logW (F);R) < π.

The claim for U follows immediately (using the fact that v = poly(β) in the

algebraic case). �
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We are now ready to finish the proof of the monomialization lemma by

induction on `. Let C = C1..`�F. The case F = ∗ reduces trivially to the claim

for C1..`, and the case ` = 0 is proved in Lemma 46. Assume first that the

outer radius of F is 1. Let f̂ : C
{ρ}
1..` → C \ {0} be defined by f̂ := f(z1..`, 1). If

C, f are algebraic of complexity β, then f̂ is algebraic of complexity poly`(β).

By definition we have α(f̂) = α1..`(f), so Û := U(z1..`, 1) is equal to

f̂/zα(f̂). By the inductive hypothesis we have

diam(log Û(C1..`);C) < OΛ(ρ), diam(Im log Û(C1..`);R) < OΛ(1).(88)

In the algebraic case, |α(f̂)| = poly`(β) and

(89) diam(log Û(C1..`);C)<poly`(β) · ρ, diam(Im log Û(C1..`);R)<poly`(β).

Also, for each fixed p ∈ C1..`, by Lemma 46 we have, for the fiber Cp,

diam(logU(Cp);C) < OΛ(ρ), diam(Im logU(Cp);R) < OΛ(1).(90)

In the algebraic case, |α`+1(f)| = poly`(β) and

diam(logU(Cp);C) < poly`(β) · ρ, diam(Im logU(Cp);R) < poly`(β).(91)

The triangle inequality now finishes the proof.

For F with an arbitrary outer radius r, let F′ denote the fiber with outer

radius normalized to 1 and C′ = C1..`�F′. There is a natural biholomorphism

C′ → C given by w1..`+1 → (w1..`, rw`+1). By what was already proved we

obtain a decomposition

(92) f = wα′ · U ′ = z
α′1
1 · · · z

α′`
` · (z`+1/r)

α′`+1U ′

with bounds on logU ′ as above. Finally, we monomialize r by induction over `,

and plugging into (92) we obtain a monomialization of f in the z-coordinates.

5.6. Appendix : computations of hyperbolic lengths. We fix the hyperbolic

metric, λD(z)|dz| with λD(z) = (1− |z|2)−1, of constant curvature −4 on the

unit disc D. An explicit lower bound for the hyperbolic metric λ0,1(z)|dz| on

C \ {0, 1} in U0 is given in [3]:

(93) λ0,1(z) >
1

2|z|
√

2
î
4 + log(3 + 2

√
2)− log |z|

ó , |z| 6 1

2
.

Integrating (93), we see that the hyperbolic distance from {|z| = r} to

{|z| = 1/2} is greater than s for r < ρ̃(s) < 1
2 , where

log ρ̃(s) = −eΘ(s) +O(1).

As z → z−1 is an isometry of C\{0, 1}, the hyperbolic distance from {|z| = r}
to {|z| = 2} is greater than s for r > ρ̃(s)−1.
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5.6.1. Proof of Fact 6. Let F be a domain of type A,D,D◦, and let S be

a component of the boundary of F in F{ρ}. In this section we prove that the

length of S in F{ρ} is at most ρ.

First, consider the case of F of type D. Up to rescaling, Fδ = D(1) and

∂F = {|z| = δ}. Then λD(z) |dz| ≡ (1− δ2)−1 |dz| on ∂F, so the length of ∂F

in D is equal to 2πδ
1−δ2 .

Second, consider the cases F of type D◦, A. If S(r) is (a component of) ∂F,

then S(r) ⊂ Sδ(r) ⊂ Fδ. Therefore, by Schwartz-Pick lemma (Lemma 38), it

is enough to prove the following.

Lemma 47. The length of S(1) in the hyperbolic metric of the annulus

Sδ(1) is equal to π2

2|log δ| .

Proof. Indeed, the mapping φ(z) = πi
2|log δ| log z maps the universal cover

of Sδ(1) to the strip Π = {| Imw| 6 π
2 }, with φ−1([0, π2

|log δ| ]) = S1. This map

preserves hyperbolic distances, so it is enough to find the hyperbolic length of

[0, π2

|log δ| ] in the hyperbolic metric λΠ(w) |dw| of Π. As Π is invariant under

shifts by reals, it is enough to find the λΠ(0). The map ψ(w) = ew−1
ew+1 sends Π

isometrically to the unit disc, with ψ(0) = 0, so λΠ(0) = ψ′(0) = 1/2 and the

length of [0, π2

|log δ| ] in Π is equal to π2

2|log δ| . �

Remark 48. The same chain of conformal mappings allows to compute

explicitly the distance between r > 0 and 1 in the hyperbolic metric of Aδ =

A(δr, δ−1):

(94) distAδ(r, 1) = log
1 + tanφ

1− tanφ
, where φ =

π

4

Ç
1− log δ

log(δ
√
r)

å
.

As r → 0, we get

(95) distAδ(r, 1) = log

Ç
16

π

log(δ
√
r)

log δ

å
+O(1) = log |log r|+O(1).

From the inequalities distAδ(r, 1) < diamAδ A < distAδ(r, 1) + π2

2|log δ| , we see

that

(96) diamAδ A = log |log r|+O(1) as r → 0.

6. Geometric constructions with cells

In this section we develop the two key geometric constructions used in

the proofs of our main theorems: cellular refinement and clustering in fibers

of proper covers.
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6.1. Refinement of cells. In this section we show how cells with a {ρ}-
extension can be refined into cells with a {σ}-extension for 0 < σ < ρ. We

remark that while the statement appears innocuous, the proof actually requires

the full strength of the fundamental lemma for D \ {0} (Lemma 21). The key

difficulty is to construct the refinement of an annulus fiber in a manner that

depends holomorphically on the base.

Theorem 9 (Refinement theorem). Let C{ρ} be a (real) cell, and let 0 <

σ < ρ. Then there exists a (real) cellular cover {fj : C
{σ}
j → C{ρ}} of size

poly`(ρ, 1/σ) where each fj is a cellular translate map.

If C{ρ} varies in a definable family (and σ, ρ vary under the condition

0 < σ < ρ < ∞), then the cells Cj and maps fj can also be chosen from

a single definable family. If C is algebraic of complexity β, then Cj , fj are

algebraic of complexity poly`(β).

The proof of the refinement theorem will occupy the remainder of this

subsection. We begin with the complex case, and we indicate the necessary

modifications for the real case at the end. We proceed by induction on `;

the case ` = 0 is trivial. Consider a cell C � F. By applying the inductive

hypothesis to C and replacing C�F by each Cj � f∗j F we may assume without

loss of generality that the base C already admits E-extension, where E will be

chosen later. The case F = ∗ reduces to the inductive hypothesis directly with

E = {σ}.
As a notational convenience we allow ourselves to rescale the fiber F by

a non-vanishing holomorphic function s ∈ Ob(C
{σ}), where it is understood

that the covering cells Cj that we construct will eventually be rescaled to cover

the original F. When we describe the covering of F we allow ourselves to

use discs centered at a point p ∈ Ob(C
{σ}), where it is understood that such

discs will be centered at the origin in the covering cells Cj that we construct,

and the maps fj will translate the origin to p. We note that rescaling has the

effect of eventually rescaling the centers of the covering discs that we construct

below by a factor of s. In the algebraic case we will always choose s and p

to be algebraic of complexity poly`(β) so that the maps that we eventually

construct will indeed be of complexity poly`(β).

We will consider two separate cases: ρ > 1, σ = 1 and ρ = 1, σ < 1.

The general case can be reduced to a composition of these two cases, first

refining {ρ}-extensions into {1}-extensions and then refining {1}-extensions

into {σ}-extensions

6.1.1. The case ρ > 1, σ = 1. In this case, regardless of the type of F,

we have F{ρ} = Fδ where δ = 1−Θ(ρ−1). We will consider the different fiber

types separately.
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Figure 6. Proof of Lemma 49.

Suppose F is of type D. Up to rescaling, F = D(1). Then we take

E = {1}. Our goal is to cover D(1) by discs whose {1}-extensions remain in

D(δ−1) = D(1+ Θ(ρ−1)). One can use, for example, any disc of radius O(ρ−1)

centered in D(1); clearly poly(ρ) such discs suffice to cover D(1).

Suppose F is of type D◦. Up to rescaling, F = D◦(1). Again we take

E = {1}. Inside D◦(1) we choose the disc D◦ such that D
{1}
◦ remains in D◦(1).

It remains to cover the annulus D◦(1) \D◦, which has inner radius Ω(1), using

poly(ρ) discs whose {1}-extensions remain in D◦(1){ρ}. This can be done as

in the case F = D(r).

Suppose F is of type A. Up to rescaling, F = A(r, 1). We take E = {1}{ρ̂},
where ρ̂ will be chosen later. By the fundamental lemma for D\{0} (Lemma 21)

applied to r on the cell C{1}, one of the following holds:

(97) log |r(C{1})| ⊂ (−∞,−Ω`(1/ρ̂)) or diam(log | log |r(C{1})||;R) = O`(ρ̂).

We will use the following simple lemma (see Figure 6).

Lemma 49. Let α ∈ (0, 1] (resp. β ∈ [1,∞)), and suppose r < α (resp.

rβ < 1) uniformly in C{1}. Then one can cover C � S1−Ω(1/ρ)(α) (resp. C �
S1−Ω(1/ρ)(βr)) by poly(ρ) cells whose {1}-extensions remain in (C� F){ρ}.

Proof. The {1}-extension of a disc of radius O(α/ρ) centered at a point

of S(α) remains in S1−Ω(1/ρ)(α). Moreover, for any point in C{1}, this remains

in A{ρ}(r, 1) since r < α. We choose a collection of poly(ρ) such discs to cover

S1−Ω(1/ρ)(α). Then C�Di gives the required covering. The respective case is

similar, with S(α) replaced by S(βr). �

Below we refer to the map z → log |z| as the logarithmic scale. An annulus

A = A(r1, r2) corresponds in this scale to an interval (log |r1| , log |r2|) whose

length we refer to as the logarithmic width of A.
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Figure 7. Refinement of an annulus.

Suppose that we are in the first case of (97). Inside A(r, 1) we choose

the annulus A such that A{1} = A(r, 1); this can be done with ρ̂ = Ω`(1). It

remains to cover the two annuli components of A(r, 1) \ A. Each of these has

logarithmic width O(1). Lemma 49 allows us to cover subannuli of logarith-

mic width Ω(1/ρ), with α for the outer component and with β for the inner

component. Clearly poly(ρ) applications of the lemma suffice to cover the two

components. See Figure 7 for an illustration.

Suppose that we are in the second case of (97). We may choose ρ̂ = Ω`(1)

such that the ratio of log |r| between any two points of C{1} is in (9/10, 10/9).

We again distinguish two cases. First, suppose that we can uniformly over C{1}

choose inside A(r, 1) the annulus A such that A{1} = A(r, 1). In this case we

can proceed as above. Otherwise, over some point in C{1} we have r(z1..`) = r0

with log |r0| = −O(1). We now apply Lemma 49 to cover the annulus given in

the logarithmic scale by (2/3 log |r0|, 0) (using α) and the annulus given in the

logarithmic scale by (log |r|, log |r|−2/3 log |r0|) (using β). Crucially, the ratio

condition on log |r| in C{1} ensures that these two annuli remain in A(r, 1) and

cover it uniformly over C{1}. Since the width of each of these annuli is O(1),

we see as above that poly(ρ) applications of the lemma suffice to cover them.

6.1.2. The case ρ = 1, σ < 1. In this case we have F{σ} = Fε where

ε = Θ(σ) in type D and ε = e−Θ(1/σ) in types D◦, A. We will consider the

different fiber types separately.

Suppose F is of type D. Up to rescaling, F = D(1). Then we take

E = {σ}. Our goal is to cover D(1) by discs whose {σ}-extensions remain in

D(1){1}. One can use, for example, any disc of radius O(σ) centered in D(1);

clearly poly(1/σ) such discs suffice to cover D(1).

Suppose now that F is of type D◦ or A. Up to rescaling, F = D◦(1) or

F = A(r, 1). We will use the following analog of Lemma 49. The β-case of the

lemma is valid only for type A.
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Lemma 50. Let α ∈ (0, 1] (resp. β ∈ [1,∞)), and suppose r < α (resp.

rβ < 1) uniformly in C{σ}. Then one can cover C � SΩ(1)(α) (resp. C �
SΩ(1)(βr)) by poly(1/σ) cells whose {σ}-extensions remain in (C� F){1}.

Proof. The {1}-extension of a disc of radius α/10 centered at a point of

S(α) remains in Se
−π2/2

(α) ⊂ F{1}. We choose a collection of O(1) such discs

to cover SΩ(1)(α). By what was already proved for discs, we can further cover

each of the discs by poly(1/σ) discs whose {σ}-extensions remain in Se
−π2/2

(α).

Thus for any point in C{σ}, these extensions remain in F{1}. (In type A we use

that r < α.) If {Di} denotes the collection of all discs obtained in this process,

then C�Di gives the required covering. The case of C� SΩ(1)(βr) is similar,

with S(α) replaced by S(βr). �

Suppose F = D◦(1). We take E = {σ}. We first embed D◦(e
−Θ(1/σ)) in

D◦(1) so that the {σ}-extensions remains in D◦(1). It remains to cover the

annulus A(e−Θ(1/σ), 1), or in the logarithmic scale (−Θ(1/σ), 0). Lemma 50

allows us to cover subannuli of logarithmic width Ω(1), and indeed poly(1/σ)

applications suffice to cover the annulus.

Finally suppose F = A(r, 1). We take E = {σ}{ρ̂}, where ρ̂ will be chosen

later. By the fundamental lemma for D \ {0} (Lemma 21) applied to r on the

cell C{σ}, one of the following holds:

(98) log |r(C{σ})| ⊂ (−∞,−Ω`(1/ρ̂)) or diam(log | log |r(C{σ})||;R) = O`(ρ̂).

Suppose that we are in the first case of (98). Inside A(r, 1) we choose the

annulus A (uniformly over C{σ}) such that A{σ} = A(r, 1). This is possible if

log |r| = −Ω(1/σ), i.e., it can be done with ρ̂ = Ω`(σ). It remains to cover

the two annuli components of A(r, 1) \ A. Each of these has width O(1/σ) in

the logarithmic scale. Lemma 50 allows us to cover subannuli of width Ω(1),

with α for the outer component and with β for the inner component. Clearly

poly(1/σ) applications of the lemma suffice to cover the two components.

Suppose that we are in the second case of (98). We may choose ρ̂ = Ω`(1)

such that the ratio of log |r| between any two points of C{1} is in (9/10, 10/9).

We again distinguish two cases. First, suppose that we can uniformly over C{σ}

choose inside A(r, 1) the annulus A such that A{σ} = A(r, 1). In this case we

can proceed as above. Otherwise, over some point in C{σ} we have r(z1..`) = r0

with log |r0| = −O(1/σ). We now apply Lemma 50 to cover the annulus given

in the logarithmic scale by (2/3 log |r0|, 0) (using α) and the annulus given in

the logarithmic scale by (log |r|, log |r| − 2/3 log |r0|) (using β). Crucially, the

ratio condition on log |r| in C{σ} ensures that these two annuli remain in A(r, 1)

and cover it uniformly over C{σ}. Since the logarithmic width of each of these

annuli is O(1/σ), we see as above that poly(1/σ) applications of the lemma

suffice to cover them.
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6.1.3. The real case. Only a very minor modification is needed in order

to treat the real case. If C is real, then all the rescalings performed during

the proof are also real. Wherever we construct a collection of discs to cover

a domain F by discs in the complex case, we now choose a collection of discs

with real centers to cover R+F. This ensures that the cells that we construct

are real, and the rest of the proof remains unchanged.

6.1.4. Uniformity over families and monomialization. The statement re-

garding uniformity over families follows by inspection of the proof. By induc-

tion the refinement maps chosen for the base can all be chosen from a single

definable family. The covering constructed for the fiber, after a uniform rescal-

ing, consists of discs or annuli with a constant center and radius. The family

of all such discs or annuli is certainly definable. We will also make use of the

following remark in the sequel.

Remark 51 (Refinement and monomialization). The type of any cell Cj
obtained by refinement of C{ρ} is obtained from the type of C by possibly

replacing some D◦, A fibers by D fibers. Moreover (fj)∗ : π1(Cj) → π1(C) is

the natural injection. In particular, if F : C→ C\{0} then α(f∗j F ) is obtained

from α(F ) by eliminating indices corresponding to fibers that were replaced

by D in Cj .

Remark 51 follows immediately from the proof. It suffices to note that

D fibers are always covered by D fibers, and D◦, A fibers are covered by a

collection of D fibers and possibly one additional fibers of type D◦, A; and this

additional fiber is always centered at zero, and hence homotopy equivalent to

the original fiber by the injection map.

6.2. Monomial cells. Let C be a cell of length `. An admissible monomial

on C is a function of the form c·zα, where c ∈ C and α = α(f) is the associated

monomial of some function f ∈ Ob(C).

Definition 52 (Monomial cell). We will say that a cell C is monomial if

C = ∗; or if C = C1..` � F, where C1..` is monomial and the radii involved in F

are admissible monomials on C1..`.

By the refinement theorem (Theorem 9) and the monomialization lemma

(Lemma 17) we prove the following proposition.

Proposition 53. Let C{ρ} be a (real) cell, and let 0 < σ < ρ. Then there

exists a (real) cellular cover {fj : C
{σ}
j → C{ρ}} where each Cj is a monomial

cell and each fj is a cellular translate map.

If C{ρ} varies in a definable family Λ, then the cover has size polyΛ(ρ, 1/σ)

and the cells Cj and maps fj can be chosen from a single definable family. If C
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is algebraic of complexity β, then the cover has size poly`(β, ρ, 1/σ) and Cj , fj
are algebraic of complexity poly`(β).

Proposition 53 implies that we could use monomial cells, rather than gen-

eral complex cells, as our standard models for cellular covers. In some cases

this is more convenient, as the monomial cells have a more transparent com-

binatorial and algebraic structure. However for the most part we have chosen

in this paper to state our constructions for general complex cells.

The proof of Proposition 53 will occupy the remainder of this section.

We start by applying the refinement theorem (Theorem 9) to C with some

{σ̂} = {σ̂1}{σ̂2} to be chosen later. Recall that all of the cells constructed in

the refinement theorem can be chosen from one definable family independent

of σ̂. By the monomialization lemma (Lemma 17), if r(z) is any of the radii

involved in the definition of one of these cells Cj , then we have r(z) = zα(r)U(z),

where

diam(Re logU(C
{σ̂2}
j );R) < OΛ(σ̂1),

diam(Re logU(C
{σ̂2}
j );R) < poly`(β) · σ̂1

(99)

in the subanalytic and algebraic cases respectively. We will now construct a

monomial cell C̃
{σ}
j such that Cj ⊂ C̃j ⊂ C̃

{σ}
j ⊂ C{σ̂}, and the identity map

then gives the covering of Cj by a monomial cell as required.

We construct C̃j by induction on `. If Cj is of length zero or one, then it

is already monomial so we may take C̃j := Cj . If Cj := (Cj)1..` � F, then we

set C̃j := ·�(Cj)1..` � F̃, where F̃ is defined as follows. Suppose F = A(r1, r2),

and write r1 = zα1U1 and r2 = zα2U2. Then F̃ = A(r̃1, r̃2) for

(100) r̃1 = zα1 min |U1(z)|, r̃2 = zα2 max |U2(z)|,

where the minimum and maximum are taken over z1..` ∈
·�
(Cj)

{σ}
1..` . It is clear

that Cj ⊂ C̃j , and what remains to be verified is that C̃
{σ}
j ⊂ C

{σ̂}
j . By (99), for

an appropriate choice of σ̂1 we can make diam(Re logU(C
{σ̂2}
j );R) < 1, which

implies that r̃1/r1 > 1/e and r̃2/r1 < e on C
{σ̂2}
j . Now choosing σ̂2 < σ and

also {σ̂} < {σ}/e we have indeed C̃
{σ}
j ⊂ C

{σ̂}
j .

6.3. Clustering in fibers of proper covering maps. In this section we con-

sider a proper covering map π : Z ⊂ C{ρ} × C → C{ρ}. We choose one point

in the fiber of π as the center. Our goal is to group the remaining points into

clusters based on their distances from the center, so that two points belong

to the same cluster if their distances from the center are close in a suitable

sense. The key difficulty of the construction is guaranteeing that these clusters

vary holomorphically with the base point z ∈ C and, in particular, that their

combinatorial structure remains constant.
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We treat the complex case in Section 6.3.1 and the real case in 6.3.2.

6.3.1. The general (complex) setting. Let C{ρ} be a cell, and let Z ⊂ C{ρ}

× C be an analytic set such that the natural projection π : Z → C{ρ} is a

proper covering map. Let ν denote the degree of π, and set Ĉ := C×ν!. Let

Ẑ ⊂ Ĉ × C be the pullback (Rν!, id)∗Z. Then the sections yj : Ĉ → C of

Ẑ over Ĉ are univalued, and we denote their collection by Σ. Each section

yj in fact extends holomorphically to the cell Ĉ{ν!·ρ} by Proposition 25, but

this exponential (in ν) loss in the size of the extension is too large for our

purposes. Instead, we have the following lemma. Denote by νj 6 ν the size of

the π1(C)-orbit of yj thought of as a multivalued section over C.

Lemma 54. Let yj ∈ Σ. Then yj is already univalued as a section over

the cover Ĉj := C×νj , and it extends holomorphically to Ĉ
{νj ·ρ}
j .

Proof. The group π1(C) is abelian. It is enough to check that for any

g ∈ π1(C), we have gνj (yj) = yj . This is elementary: the 〈g〉-action induces a

partition of the orbit π1(C) · yj of size νj into 〈g〉-orbits, and π1(C) acts tran-

sitively on these orbits. Thus they are all of the same size that divides νj . �

Let yi, yj , yk ∈ Σ be three distinct sections. Since π is unramified, the

sections are pairwise distinct over any point of Ĉ. We let νi,j,k := lcm(νi, νj , νk)

and Ĉi,j,k := C×νi,j,k . We define a map si,j,k as follows:

(101) si,j,k : Ĉ
{νi,j,k·ρ}
i,j,k → C \ {0, 1}, si,j,k =

yi − yj
yi − yk

.

By the fundamental lemma for maps into C \ {0, 1} (Lemma 22), one of the

following holds:

(102)
si,j,k(Ĉi,j,k) ⊂ B({0, 1,∞}, e−Ω`(1/(ν

3ρ));CP 1) or

diam(si,j,k(Ĉi,j,k);C \ {0, 1}) = O`(ν
3ρ).

We remark that (102) holds if we replace Ĉi,j,k by Ĉ, since si,j,k on Ĉ factors

through Ĉi,j,k.

Fix yi ∈ Σ. We will cluster the remaining sections into annuli according

to their relative distances from yi, which are expressed by the quantities si,j,k.

Since these quantities are invariant under affine transformations of C, we may

assume for simplicity of the notation that yi = 0. We record a useful corollary

of (102) in this normalization.
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Lemma 55. Suppose ρ=O`(1/ν
3). Let j, k 6= i, and write R := log |yj/yk|.

One of the following holds :

(103)

R|
Ĉ
< −Ω`(1/ν

3ρ) or R|
Ĉ
> Ω`(1/ν

3ρ),

diam(R(Ĉ),R) = O`(ν
3ρ),

maxz∈ĈR(z)

minz∈ĈR(z)
< 1 +O`(ν

3ρ).

Proof. If at some point in Ĉ we have yj/yk ∈ A(1/2, 2), then for ρ = O`(1),

we have by (102) that yj/yk(Ĉ) ⊂ A(1/4, 4). In this domain the log | · |-distance

is bounded up to constant by the C \ {0, 1} distance so diam(R(Ĉ);R) =

O`(ν
3ρ). It remains to consider the case yj/yk(Ĉ) ⊂ D◦(1/2) (or A(2,∞),

which is the same up to inversion). In the first case of (102), we have R =

−Ω`(1/(ν
3ρ)). In the second case of (102), since the C \ {0, 1} metric is equiv-

alent to the D◦(1) metric in D◦(1/2) we have (as in the fundamental lemma

for D◦, Lemma 21) the estimate

(104) diam(log |R(Ĉ)|;R) = O`(ν
3ρ).

By ρ = O`(1/ν
3) the right-hand side is O`(1), and exponentiating we conclude

that R(Ĉ) varies multiplicatively by a factor of size at most 1 +O`(ν
3ρ). �

We fix a quantity 0 < γ < 1, which we call the gap. Pick an arbitrary

point p ∈ Ĉ, and let

(105) Si := {log |yj(p)| : yj ∈ Σ, yj 6= yi} ⊂ R.

We say that two points s, s′ in Si belong to the same cluster if they are con-

nected in the transitive closure of the relation |s − s′| < 5| log γ|. We order

the clusters with respect to < on R. Let mi be the number of clusters in Si.

For 1 6 q 6 mi, we let Ii,q denote the minimal closed interval containing the

2| log γ|-neighborhood of the q-th cluster Si,q. For each q, we arbitrarily choose

ŷi,q ∈ Σ to be one of the sections with log |ŷi,q(p)| ∈ Ii,q and call it the center

of the cluster. We define li,q and ri,q by

(106) eIi,q = [li,q|ŷi,q(p)|, ri,q|ŷi,q(p)|].

Note that

(107) γ5ν < li,q < γ2, γ−2 < ri,q < γ−5ν .

We also fix some δ < 1 arbitrarily close to 1 (merely to ensure that the bound-

ary circles below are covered).
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We define three types of fibers over Ĉ as follows:

Fi,q = Aδ(li,qŷi,q, ri,qŷi,q), q = 1, . . . ,mi,(108)

Fi,q+ = Aδ(ri,qŷi,q, li,q+1ŷi,q+1), q = 1, . . . ,mi − 1,(109)

Fi,0+ = Dδ
◦(li,1ŷi,1), Fi,m+ = Aδ(ri,qŷi,q,∞).(110)

Note that each of these fibers actually depends only on yi, ŷi,q for Fi,q and on

yi, ŷi,q, ŷi,q+1 for Fi,q+. Thus each fiber actually arises as a pullback by the

projection Ĉ→ Ĉi,j,k of a fiber defined over Ĉi,j,k for a suitable choice of i, j, k.

We denote this cover by Ĉi,q or Ĉi,q+.

The key properties of these domains are summarized in the following

proposition.

Proposition 56. Suppose 1/ρ > poly`(ν, | log γ|). Then the following

hold uniformly over Ĉ:

(1) The fibers Fi,q,Fi,q+ are well defined and cover C \ {0}.
(2) The domains Fγi,q\Fi,q do not contain any of the points yj for q = 1, . . . ,mi.

(3) The domains F
γ
i,q+ do not contain any of the points yj for q = 0, . . . ,mi.

Proof. The only non-trivial assertion in the first statement is that Fi,q+ is

well defined, i.e., that ri,qŷi,q < li,q+1ŷi,q+1 uniformly over Ĉ. At p we have by

construction

(111) log |ŷi,q+1(p)/ŷi,q(p)| > log(ri,q/li,q+1) + | log γ|.

We need to prove that

(112) log |ŷi,q+1/ŷi,q| > log(ri,q/li,q+1)

uniformly over Ĉ. This follows easily from Lemma 55 for an appropriate choice

of ρ. The only non-trivial case is the last one, which follows if one recalls that

log(ri,q/li,q+1) < 10ν| log γ|.
The third statement follows from the second: Over p all the points yj

except yi = 0 lie in the domains Fi,q, and assuming that they never cross into

the boundaries F
γ
i,q \ Fi,q, this remains true uniformly over Ĉ. We proceed to

the proof of the second statement. We will show that yj does not belong to

the outer boundary of Fγi,q \ Fi,q. (The case of the inner boundary is similar.)

By construction over p one of the following holds:

log |yj(p)/ŷq(p)| < log ri,q − 2| log γ|, log |yj(p)/ŷq(p)| > log ri,q + 3| log γ|.
(113)

We must prove that one of the following holds uniformly over Ĉ:

(114) log |yj/ŷq| < log ri,q, log |yj/ŷq| > log ri,q + | log γ|.

This follows in the same manner as the first statement. �
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Since the sections yj do not meet the Fi,q+ and ∂Fi,q, it follows that each

section yj 6= yi lies in a single Fi,q uniformly over Ĉ. We say that such a section

belongs to the cluster Fi,q.

Remark 57. If we focus our attention on a single cluster Fi,q, then it is

convenient, up to an affine transformation over Ĉi,q, to assume that both yi = 0

and ŷi,q = 1. With γ, ρ as in Proposition 56 we then have Fi,q = Aδ(li,q, ri,q).

For any yj in the Fi,q cluster, our choice of ρ ensures that the second option

of (102) holds, and we have diam(yj(Ĉi,q),C \ {0, 1}) = O`(ν
3ρ).

6.3.2. The real setting. Suppose that C{ρ} is a real cell and Z ⊂ C{ρ} ×C
is real, i.e., invariant under z→ z̄. In this case we would like to construct the

fibers Fi,q,Fi,q+ to be real as well. However, the construction above produces

fibers whose centers and radii are given in terms of the sections yj , which are

generally not real. We now modify this construction to produce real fibers.

We fix p ∈ RĈ.

The pullbacks Ĉ, Ẑ of C, Z by Rν! are also real. Since Ẑ is a cover, each

section yj is either always real or always non-real on RĈ. We denote the former

sections by ΣR and the latter by ΣC. If yj ∈ Σ, then by the symmetry of Ẑ

there exists a symmetric section yj̄ ∈ Σ defined by yj̄(z) := yj(z̄).

Definition 58. Let yj ∈ ΣC. Making a real affine transformation we pass

to a chart where yj(p) = i, yj̄(p) = −i. Then the pair yj , yj̄ is called admissible

if D(1/10) contains none of the points yk(p) for yk ∈ Σ.

An admissible center is a map of the form (yj + yj̄)/2, where yj ∈ ΣR or

yj , yj̄ ∈ ΣC is an admissible pair. Every admissible center is real on RĈ. We

denote the set of admissible centers by {c1, . . . , ct}.
Lemma 59. Let yj ∈ ΣC, and by a real affine transformation pass to a

chart where yj(p) = i, yj̄(p) = −i. Then D(1/5) contains cl(p) for an admissi-

ble center cl.

Proof. If yj , yj̄ is admissible, then the claim is obvious. Otherwise there

exists a section yk(p) ∈ D(1/10). If yk ∈ ΣR, we can take cl = yk. Other-

wise, rescaling to make yk(p) = i we see that it will be enough to prove the

claim for yk. Repeating this reduction at most ν times if necessary finishes the

proof. �

The motivation for the notion of admissibility comes from the following

lemma.

Lemma 60. Suppose 1/ρ = poly`(ν). For every section yj and admissible

center cl, we have cl 6= yj uniformly over Ĉ, unless cl = yj ∈ ΣR.

Proof. If cl = yk ∈ ΣR for some k, then the claim follows from the fact

that Ẑ is a cover whose sections are pairwise distinct over any point of Ĉ.
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Assume therefore that cl = (yk + yk̄)/2 for yk ∈ ΣC. We make a real affine

transform to pass to a chart where yk(p) = i. Suppose that at some point

p̃ ∈ Ĉ we have yj = (yk + yk̄)/2, i.e., sj,k,k̄(p̃) = −1. Then by (102) we have

|sj,k,k̄(p) + 1| = O`(ν
3ρ). For a suitable choice of ρ, this readily implies that

|yj(p)| < 1/10, contradicting the admissibility of cl. �

Lemma 60 implies that we can define maps s̃l,j,k as follows:

(115) s̃l,j,k : Ĉ
{νl,j,k·ρ}
l,j,k → C \ {0, 1}, s̃i,j,k =

cl − yj
cl − yk

.

Fix an admissible center cl. We will cluster the sections yj into annuli according

to their relative distances from cl in analogy with the complex construction.

As before, we make a real affine transformation and assume that cl = 0.

We define the intervals Il,q in the same way as in the complex setting.

However, a small variation is needed in the choice of ŷl,q, which must be real

on RĈ to maintain the real structure of our construction. Let yj be one of

the sections with yj(p) ∈ Il,q. We define ŷl,q :=
√
yjyj̄ . Clearly ŷl,q is real

on RĈ. To see that it is univalued on Ĉ, note that yj and yj̄ have the same

associated monomial by symmetry, hence yjyj̄ has an even associated monomial

and admits a univalued square root.

With ŷl,q chosen as above, we continue the construction as in the complex

case. To verify that all the arguments remain valid we need an analog of

Lemma 55 where either yj or yk (or both) are replaced by a cluster center

ŷl,q :=
√
yhyh̄. This follows essentially from the same lemma applied to yh

and to yh̄; we leave the details for the reader. As a consequence we see that

Proposition 56 and Remark 57 continue to hold, with the fibers Fi,q and Fi,q+

now real on RĈ.

7. Cellular Weierstrass Preparation Theorem

In this section we state and prove a cellular analog of the Weierstrass

Preparation Theorem.

Definition 61. Let γ ∈ (0, 1) and C�Fγ be a cell, and let F ∈ Ob(C�Fγ).

We say that C� Fγ is a Weierstrass cell with gap γ for F if

• F vanishes identically on C� Fγ ; or

• F is non-vanishing on C� ∗ if F = ∗; or

• F is non-vanishing on C� (Fγ \ F) if F = D,D◦, A.

If Ĉ is a cell and F ∈ Ob(Ĉ), we say that a cellular map f : C � Fγ → Ĉ

is Weierstrass with gap γ for F if C � Fγ is a Weierstrass cell with gap γ for

f∗F .
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In our applications it is convenient to use γ-extensions Fγ rather than the

{·}-extensions in the definition of the gap of F, even when the base cell C is

considered with a {ρ} extension C{ρ}.

Theorem 10 (Cellular Weierstrass Preparation Theorem (WPT)). Let

ρ, σ > 0. Let C{ρ} be a (real) cell and F ∈ Ob(C
{ρ}) a (real) function. Then

there exist N (real) Weierstrass maps fj : C
{σ}
j � F

γ
j → C{ρ} for F with gap

γ < 1 such that C ⊂ ∪jfj(Cj � Fj).

If C{ρ}, F vary in a definable family Λ, one may take N = polyΛ(ρ, 1/σ),

γ = γΛ < 1 and the maps fj from a single definable family. If C{ρ}, F are

algebraic of complexity β, then one may take N = poly`(β, ρ, 1/σ), γ = 1 −
1/ poly`(β) and the maps fj algebraic of complexity poly`(β).

Remark 62. The cellular WPT is analogous to the classical WPT in the

following sense. Let C�Fγ be a Weierstrass cell for F ∈ Ob(C�Fγ) with F of

type D,D◦, A, and suppose that F does not vanish identically. Then

(116) π : C� Fγ ∩ {F = 0} → C

defines a proper ramified covering map; the condition that F does not vanish

in C� (Fγ \ F) guarantees that the zeros of F cannot leave F. The zeros of F

in C� Fγ therefore agree with the zeros of a “Weierstrass polynomial”

(117) P (z, w) =
∏

η∈π−1(z)

(w − η) = wν +
ν−1∑
j=0

cj(z)wj

with cj(z) ∈ Ob(C), where boundedness follows from boundedness of F and

holomorphicity follows by the removable singularity theorem.

A key difference between the classical Weierstrass preparation theorem

and the cellular analog is that the cellular version does not require transforming

the coordinates to general position.

Example 63. Consider the unit polydisc P3 ⊂ P
1/10
3 ⊂ C3

x,y,z and the func-

tion F = zx−y. Then the classical Weierstrass preparation with respect to the

w-direction is impossible. On the other hand a covering of P3 by Weierstrass

cells with gap 1/2 for F is given by the cells

• ∗ � ∗ �D(1) where F ≡ 0;

• ∗ �D◦(1)�D◦(1) and D◦(1)�A(2x, 4)�D(1) where F has no zeros; and

• D◦(1)�D(3x)�D(4) where F has a single zero in each fiber.

We will prove the WPT and CPT by simultaneous induction on ` := `(C)

and dimC. The cases ` = 0 and dimC = 0 are trivial. We now prove the WPT

for a cell C� F of length `+ 1 assuming that the CPT and WPT are true for

cells of smaller length or equal length and smaller dimension. The case F = ∗
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reduces to the CPT for C so we assume F is D,D◦, A. The proof of the CPT

is postponed to Section 8.1.

We will give two separate proofs: one in the algebraic case, and one in the

analytic case. This is the only part of the proof of the main theorems where

our arguments significantly diverge for these two cases.

7.1. Proof in the algebraic case.

7.1.1. Algebraic discriminants. We need the following simple lemma on

discriminants.

Lemma 64. Let C be a cell of length `+ 1 and F ∈ Ob(C), both algebraic

of complexity β. Suppose that F does not vanish identically on C. Then there

exist the following :

• A polynomial P ∈ C[z1..`+1] of complexity poly`(β), not identically vanish-

ing on C, and satisfying {F = 0} ⊂ {P = 0}.
• A polynomial D ∈ C[z1..`] of complexity poly`(β), not identically vanishing

on C1..`, such that the projection

(118) π : (C1..` × C) ∩ {P = 0} → C1..`, π(z1..`+1) = z1..`

is proper covering map outside {D = 0}.

If F is real, then P,D can be chosen real as well.

Proof. We may assume without loss of generality that the type of C does

not contain ∗, since any such coordinate can be ignored for the statement of

the lemma. Then C ⊂ C`+1 is open.

By definition the graph of F is contained in some irreducible algebraic

variety GF ⊂ C`+1×Cw. Since F is not identically vanishing on C, the equation

w = 0 cuts GF properly in a subvariety of dimension `, and the projection of

this variety to C`+1 contains {F = 0} and is contained in a proper algebraic

hypersurface of degree poly`(β), i.e., in a set {P = 0} where P ∈ C[z1..`+1]

is not identically vanishing (on C, since C is open). We may assume without

loss of generality that P is square-free as a polynomial in C(z1..`)[z`+1] and, in

particular, has no multiple roots for a generic value of z1..`. Then the classical

discriminant D′ of P satisfies the conditions of the lemma, except that some

zeros of P may still escape to infinity outside D′ = 0. To eliminate this

possibility we define D to be the product of D′ with the leading coefficient of

P with respect to z`+1.

For the final statement, if F is real, then its graph is invariant under

conjugation, and the same is then also true for GF . The polynomial P is then

also real by construction. �
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7.1.2. Proof of the algebraic WPT. We now proceed to the proof of the

WPT. Suppose F = A(r1, r2). (The cases D(r), D◦(r) are similar.) Applying

the refinement theorem (Theorem 9), we may assume that ρ is already as small

as we wish as long as 1/ρ = poly`(1/σ, β).

There is no harm in replacing F by the polynomial P obtained from

Lemma 64 applied to the function F · z`+1 · (z`+1 − r1) · (z`+1 − r2). In other

words, we may assume without loss of generality that F is a polynomial in the

z`+1 variable and that it vanishes when z`+1 is either 0, r1(z1..`) or r2(z1..`).

We let D denote the corresponding discriminant.

We apply the CPT to C with D and let fj : C
{ρ}
j → C{ρ} denote the

resulting cellular cover. If fj(C
{ρ}
j ) is contained in {D = 0}, then since cellular

maps preserve dimension, dimCj 6 dim{D = 0} 6 dimC− 2. In this case we

set

(119) Ĉj := Cj � f∗j F, f̂j := (fj , id) : Ĉ
{ρ}
j → C{ρ}

and inductively apply the WPT to Ĉj and f̂∗j F . We obtain Weierstrass maps

fj,k : C
{σ}
j,k �Fγ → Ĉ

{ρ}
j for F , and the compositions fj,k ◦ f̂j : C

{σ}
j,k �Fγ → C{ρ}

are Weierstrass maps for F which cover f(Cj)� F.

It remains to consider the case that fj(C
{ρ}
j ) is disjoint from {D = 0}.

In the same way as before, it will suffice to prove the WPT for Ĉj and f̂∗j F ,

where Ĉj and f̂∗j F are defined similarly. We return now to the original notation

replacing this pair by C, F . We note that F is still polynomial in z`+1 (though

perhaps not in the other coordinates) and the projection

(120) π : (C{ρ} × C) ∩ {F = 0} → C{ρ}, π(z1..`+1) = z1..`

is a proper covering map. It will suffice to prove the WPT under these condi-

tions. We are now in a position to use the constructions of Section 6.3.1. Note

that ν = poly`(β). We will choose γ = 1 − 1/ poly`(β). (The precise choice

will be determined later.)

Recall that we may choose ρ small as long as 1/ρ = poly`(1/σ, β). We take

{ρ} < {σ} · {ρ̂} where ρ̂ is chosen in such a way that Proposition 56 holds over

C{σ}. The zero map is a section of π, which we denote by y0. Since r1, r2 are

sections of π, they belong to certain clusters around y0 = 0, say with indices

q1 6 q2. We may also assume that r1 = ŷ0,q1 and if q1 6= q2, then r2 = ŷ0,q2 .

If q1 = q2 = q, then we define F̃ = F0,q. If q1 < q2, then we define

(121) F̃ := A(l0,q1r1, r0,q2r2),

i.e., we take the left endpoint of the F0,q1 cluster and the right endpoint of

the F0,q2 cluster. Since r1, r2 are univalued over C, this is actually a fiber

over C, which contains A(r1, r2) and satisfies the Weierstrass condition with

gap γ by Proposition 56. Recall that we may assume {ρ} < 1/2. Then the
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inclusion F̃γ ⊂ F{ρ} follows from (107) if we choose γ satisfying γ5ν < 1/2

where ν := deg π. Since ν = poly`(β), one can indeed choose γ satisfying this

condition with γ = 1− 1/poly`(β).

7.1.3. The real setting. If C and F are real, then P is also real, and con-

sequently the coverings constructed by inductive applications of the CPT can

be taken to be real. After these reductions, the fiber constructed in (121) is

clearly real as well.

7.2. Proof in the analytic case. Before giving the proof of the WPT in the

analytic case we develop some general results concerning the Laurent coeffi-

cients of definable families of holomorphic functions.

7.2.1. Laurent domination in definable families. We will study the follow-

ing property of the Taylor/Laurent coefficients of a holomorphic function.

Definition 65 (Taylor domination). A holomorphic function f : D(r)→ C
with r > 0 is said to possess the (p,M) Taylor domination property2 [2] if its

Taylor expansion f(z) =
∑
ak(z − z0)k satisfies the estimate

(122) |ak|rk < M max
j=0,...,p

|aj |rj , k = p+ 1, p+ 2, . . . .

Similarly, for r2 > r1 > 0, a holomorphic function f : A(r1, r2) → C is said

to possess the (p,M) Laurent domination property if its Laurent expansion

f(z) =
∑
ak(z − z0)k satisfies the estimates

(123)

|ak|rk2 < M max
j=−p,...,p

|aj |rj2, k = p+ 1, p+ 2, . . . ,

|ak|rk1 < M max
j=−p,...,p

|aj |rj1, k = −p− 1,−p− 2, . . . .

We will need the following lemma on Laurent expansions.

Lemma 66. Let S := S(1), and let {fλ : Sδ
2 → C}λ be a definable family

of holomorphic functions for some 0 < δ < 1. Then there exists B such that

for every λ, we have

(124) ‖fλ‖Sδ 6 B ‖fλ‖S .

If we write fλ(z) =
∑
ak(λ)zk, then there exists p ∈ N and m > 0 such that

for all λ, we have

(125) |aj(λ)| > m ‖fλ‖S for some j = j(λ) ∈ {−p, . . . , p}.

Proof. By Lemma 45, the Voorhoeve index of fλ along any circle in Sδ
2

is uniformly bounded over λ and over the circle. Fix λ, and assume without

loss of generality (up to rotation) that the maximum of fλ on Sδ is attained

2Note that we use a slightly simplified form of the definition given in [2].
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at δi or δ−1i. Let C be the circle with diameter [δi, δ−1i], and fix some disc D

with C ⊂ D and D̄ ⊂ Sδ
2
. The Voorhoeve index of fλ over ∂D is uniformly

bounded over λ, and it follows from [30, Th. 3]3 that BS∩D,D(fλ) is uniformly

bounded by some constant B1, where

(126) BK,U (f) = log max
z∈Ū
|f(z)| − log max

z∈K
|f(z)|.

Thus

(127) ‖fλ‖Sδ = max
z∈D̄
|f(z)| 6 eB1 ‖fλ‖S ,

proving the first part with B = eB1 .

From the first part and the Cauchy estimate it follows that

(128) |ak(λ)| 6 Bδ|k| ‖fλ‖S .

Then

‖fλ‖S 6
∑
k∈Z
|ak(λ)| =

∑
k∈{−p,...,p}

|ak(λ)|+
∑

k 6∈{−p,...,p}
|ak(λ)|

6
∑

k∈{−p,...,p}
|ak(λ)|+ 2Bδp+1

1− δ
‖fλ‖S .

(129)

The result now follows with p such that 2Bδp+1

1−δ < 1/2 and m = 1/(4p+ 2). �

As a direct corollary of Lemma 66 we obtain the following result. We

remark that a similar statement for families of discs appeared (in a slightly

different form and with a different proof) in [17]. The disc case also follows

fairly directly from a classical theorem of Biernacki [4]. However the annulus

case does not seem to follow in a similar manner.

Corollary 67. Let F = {Fλ} be a definable family of discs or annuli,

and let fλ : Fελ → C be a definable family of holomorphic functions for some

0 < ε < 1. Then the functions fλ have the (p,M) Laurent domination property

in Fλ for some uniformly bounded p,M .

Proof. We prove the annuli case, the disc case being simpler. Since the

claim is invariant under rescaling, we may assume without loss of generality

that Fλ is of the form A(r1, 1). We need to prove

(130) |ak| < M max
j=−p,...,p

|aj |, k = p+ 1, p+ 2, . . . .

3The result there is stated for K with nonempty interior, but it actually holds for K of

the form S ∩D; see [30, §4.1].
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Indeed by the Cauchy estimates and Lemma 66 with δ2 = ε, we have

(131) |ak(λ)| 6 B ‖fλ‖s δ
k 6

B

m
|aj(λ)| for some j ∈ {−p, . . . , p}.

For k = −p− 1, . . ., we proceed similarly, assuming now that Fλ is of the form

A(1, r2). �

We record a simple consequence of the Taylor domination property.

Proposition 68. Let A := A(r1, r2) with 0 < r1 < r2 and 0 < δ < 1. Let

f : Aδ → C be a holomorphic function with (p,M) Taylor domination. Write

(132) f(z) =
p∑

j=−p
ajz

j +Rp(z).

Then for z ∈ A, we have

(133) |Rp(z)| <
2δ

1− δ
M max

j=−p,...,p
|ajzj |.

Proof. The Taylor domination property in Aδ gives

(134)

|ak|rk2 < δk−pM max
j=−p,...,p

|aj |rj2, k = p+ 1, p+ 2, . . . ,

|ak|rk1 < δ−k−pM max
j=−p,...,p

|aj |rj1, k = −p− 1,−p− 2, . . . ,

and the same clearly holds with r1, r2 replaced by z ∈ A. Summing over

k = p+ 1, . . . ,∞ and k = −p− 1, . . . ,−∞, we obtain (133). �

7.2.2. Proof of the analytic WPT. We may assume without loss of gener-

ality that C�F admits an extension slightly wider than {ρ}. Then (C�F){ρ}

is subanalytic and, in particular, the family of all discs or annuli of the form

{z1..`} × F̃ with {z1..`} × F̃1/2 ⊂ (C � F){ρ} is definable. Applying Lemma 67

we find p,M such that F possesses the (p,M) Laurent domination property

on every fiber {z1..`} × F̃ as above.

Applying the refinement theorem (Theorem 9), we may assume that ρ

is already as small as we wish as long as 1/ρ = poly`(1/σ). Since the maps

constructed in the refinement theorem are cellular translate maps, every disc

or annulus {z1..`} × F̃1/2 ⊂ (C � F){ρ} in a refined cell maps to a disc or

annulus satisfying the same requirement in our original cell C. Thus we may

assume that after refinement our function F still possesses the (p,M) Laurent

domination property on every fiber {z1..`} × F̃ as above. Note that crucially

(p,M) does not depend on our choice of {ρ}.
Suppose F = A(r1, r2). (The cases D(r), D◦(r) are similar.) If F vanishes

identically on C � F, then there is nothing to prove, so suppose otherwise.

Rescaling F by r2 we may assume that r2 = 1 and |r1| < 1. We write a
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Laurent expansion

(135) F (z1..`+1) =
∞∑

k=−∞
ak(z1..`)z

k
`+1,

where ak ∈ Ob(C
{ρ}). We apply the CPT to the collection a−p, . . . , ap on C{ρ}.

In the same way as in Section 7.1 we may reduce to the case where every ak is

either identically zero or non-vanishing on C{ρ}. Note also that since this step

only reparametrizes the base without affecting the fiber, the (p,M) Laurent

domination property still holds uniformly for every z1..` ∈ C{ρ}.

Let Π ⊂ {−p, . . . , p} denote the indices k such that ak 6= 0. For (j, k) ∈
Π2, j 6= k, we define

(136) rjk(z1..`) = k−j

√
aj(z1..`)

ak(z1..`)
;

that is, S(|rjk|) is the circle in z`+1 where the j-th and k-th terms of (135)

are of the same modulus. Note that rjk is multivalued. We let Σ denote

the set consisting of 1, 2 and the pairs (j, k) ∈ Π2, j 6= k, and we set µ :=

2 + (2p+ 1)p > #Σ.

We show that the zeros of F can only occur in concentric annuli of bounded

width around the radii rjk. It is more convenient to state this in the logarithmic

scale. We set sα := log |rα| for every α ∈ Σ and note that sα is single valued

on C1..`.

Lemma 69. There exists a constant B = B(M,p) > 0 such that for any

z1..`+1 ∈ C satisfying

(137) | log |z`+1| − sα(z1..`)| > B for α ∈ Σ,

we have F (z1..`+1) 6= 0.

Proof. Assume that (137) holds for some unspecified constant B that will

be chosen later. Set r := |z`+1|. For (j, k) ∈ Π2, j 6= k, we have

(138)

∣∣∣∣∣∣log
|ajzj`+1|
|akzk`+1|

∣∣∣∣∣∣ = |(j − k)[− log(|rjk|+ log r]| > B.

In particular, there exists one term j0 ∈ Π such that |aj0z
j0
`+1| is maximal and

we have

(139) |akzk`+1| < e−B|aj0z
j0
`+1|, k ∈ {−p, . . . , p} \ {j0}.

Set

(140) Rp(z1..`+1) := F (z1..`+1)−
p∑

k=−p
aj(z1..`)z

k
`+1.
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Since 1, 2 ∈ Σ, we have eBr1(z1..`) < r < e−Br2(z1..`). Then Proposition 68

implies (with δ = e−B) that

(141) |Rp(z1..`)| <
2M

eB − 1
|aj0z

j0
`+1|.

In particular, choosing B such that 2pe−B + 2M
eB−1

< 1 we see that

(142) |Rp(z1..`)|+
∑

k∈Π\{j0}
|akzk`+1| < |aj0z

j0
`+1|

so F (z1..`+1) 6= 0 as claimed. �

Our goal will be to construct an annulus A ⊂ F{ρ} concentric with F that

contains F and such that A1/2 \A remains at logarithmic distance at least B

from each of the |rα|, uniformly over C{σ}. In light of Lemma 69 this will be a

Weierstrass cell with gap γ = 1/2 for F .

Apply the CPT to the cell C{ρ} and the hypersurfaces {rα = rβ} for

(α, β) ∈ Σ2, α 6= β. (Recall that rα are multivalued, so formally we raise

both sides to a power and clear denominators to obtain a bounded analytic

equation.) Once again we may reduce to the case that each of these equations

is satisfied either identically or nowhere in C{ρ}.

We let Z denote the union of the graphs over C{ρ} of the zero function,

which we denote by y0, and of all rα for α ∈ Σ. By the condition above,

π : Z → C{ρ} is a proper covering map. We are now in a position to use the

constructions of Section 6.3.1 with the value of γ given by γ̃ = δ2/2, where

δ := e−B.

Recall that we may choose ρ small as long as 1/ρ = poly`(1/σ). We take

{ρ} < {σ} · {ρ̂}, where ρ̂ is chosen in such a way that Proposition 56 holds

over C{σ}. Since r1, r2 are sections of π they belong to certain clusters around

y0 = 0, say with indices q1 6 q2. We may also assume that r1 = ŷ0,q1 and if

q1 6= q2, then r2 = ŷ0,q2 .

If q1 = q2, then we define Ã = Fδ0,q. If q1 < q2, then we define

(143) Ã := Aδ(l0,q1r1, r0,q2r2);

i.e., we take the left endpoint of the F0,q1 cluster and the right endpoint of

the F0,q2 cluster and apply δ-extension. (Recall δ = e−B.) Since r1, r2 are

univalued over C, this is actually a fiber over C. Proposition 56 and our choice

γ̃ = δ2/2 ensures that A1/2 \A remains at logarithmic distance at least B from

each of the |rα|, uniformly over C{σ} as was our goal. The inclusion Ã1/2 ⊂ F{ρ}

follows from (107) provided that we choose {ρ} small enough. (Note that B

and hence δ, γ̃ did not depend on our choice of {ρ}.)
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7.2.3. The real setting. If C and F are real, then the Laurent coefficients

aj are also real, and consequently the coverings constructed by inductive ap-

plications of the CPT can be taken to be real. After these reductions, the fiber

constructed in (143) is clearly real as well.

7.2.4. Uniformity over families. Uniformity of the number of cells over

definable families follows readily from the proof. Indeed the indices p,M have

already been shown to be uniformly bounded over families. The fact that all

Weierstrass cells can be chosen from a single definable family follows exactly

as in the case of the refinement theorem (Theorem 9).

7.2.5. Analytic discriminants. Later we will also need the following lemma

on analytic discriminants.

Lemma 70. Let C{ρ} be a cell, and let Z ⊂ C{ρ} × D(r) be an analytic

subset, for some r > 0, such that the projection π : Z → C{ρ} is proper. Then

there exists 0 6= D ∈ Ob(C) such that π is a covering map outside {D = 0}. If

C, Z are real, then D can be chosen real as well. If C{ρ}, Z vary in a definable

family, then D can also be chosen to vary in a definable family.

Proof. According to [23, Th. III.B.21] the map π is an analytic cover and,

in particular, it is a λ-sheeted covering map, for some λ ∈ N, outside a set

A ⊂ C{ρ} that is negligible in the sense of [23, Def. III.B.2]. Then letting

(144) PZ(z, w) :=
∏

η∈π−1(z)

(w − η),

we obtain a monic polynomial of degree λ with holomorphic bounded coeffi-

cients in C{ρ} \ A, which by [23, Def. III.B.2] extend to holomorphic bounded

coefficients in C{ρ}. Then D can be taken to be the classical discriminant of

PZ with respect to w. If C, Z are real, then PZ and hence D are also real. It is

clear that this construction can be made uniform over definable families. �

8. Proofs of the CPT and CPrT

In this section we finish the proof of the CPT and CPrT for a cell C� F.

We proceed by induction on the length and dimension. By the note following

Theorem 10, we may already assume that the WPT holds for C� F.

8.1. Proof of the CPT. We will prove the CPT in a slightly weakened

form, replacing the prepared maps fj by arbitrary cellular maps. We later

prove that this weaker form implies the CPrT, which in turn directly implies

the stronger form of the CPT. We describe the proof for the complex version of

the CPT, and at the end we indicate the changes required for the real version.

To avoid cluttering the text, we state our proof for the algebraic version of the

CPT with polynomial estimates in the complexity β. The subanalytic version
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where these polynomial estimates are replaced by uniformity over definable

families is obtained in a completely analogous manner.

8.1.1. Reduction to the case of one function (M = 1). We claim that it

is enough to prove the CPT for a single function F . We suppose that this is

already proved and prove the result for an arbitrary collection F1, . . . , FM . We

may suppose that none of the Fj vanish identically on C. Let F := F1 · · ·FM ,

and apply the CPT to C, F to obtain a cellular cover fj : C
{σ}
j → (C � F){ρ}

compatible with F . Fix some fj . If fj(C
{σ}
j ) lies outside the zeros of F , then

it is already compatible with F1, . . . , FM . Otherwise it lies in the zeros of

F , and since cellular maps preserve dimension, we have dimCj < dimC � F.

By induction we obtain cellular maps fjk : C
{σ}
jk → C

{σ}
j that are compatible

with f∗j F1, . . . , f
∗
j FM . Then the compositions fj ◦ fjk are compatible with

F1, . . . , FM and cover fj(Cj), and taken together this gives a cellular cover of

C� F with poly`(β, 1/σ, ρ) maps as required.

8.1.2. Reduction to large σ and small ρ. Applying the refinement theorem

(Theorem 9) to C we may suppose that it already admits a {ρ̂}-extension for

ρ̂−1 = poly`(ρ, β). Below we will assume that ρ is already as small as we wish

subject to this asymptotic. Similarly, it is enough to prove the CPT with any

σ̂ = poly`(β) since we may afterwards apply the refinement theorem to the

resulting cells to obtain cells with σ-extensions. Below we will assume that σ

is already as large as we wish subject to this asymptotic.

8.1.3. Reduction to a Weierstrass cell for F . We apply the WPT to cover

C � F by cells of the form fj : C
{ρ}
j � F

γ
j → (C � F){ρ} that are Weierstrass

for F with gap γ = 1 − 1/ poly`(β). It is enough to prove the CPT for each

of these cells separately; i.e., we may assume that F ∈ Ob(C
{ρ} � Fγ) does not

vanish in C{ρ} � (Fγ \ F). If F is of type ∗, then the CPT reduces to the CPT

for C1..`−1. Suppose F = A(r1, r2). (The cases D(r), D◦(r) are similar.)

8.1.4. Reduction to a proper covering map. Since C{ρ}�F is a Weierstrass

cell for F , the zero locus of F in this cell is proper ramified cover of C under

the projection π1..` : C{ρ} × Fγ → C{ρ} (see Remark 62). In the analytic case,

by Lemma 70 there exists D ∈ Ob(C
{ρ}) not identically vanishing on C such

that the restriction of π1..` to the zero locus of F is a proper covering map

outside {D = 0}. In the algebraic case, by Lemma 64 we see that such D can

be taken to be a polynomial of complexity poly`(β).

We apply the CPT to C and the function D and let fj : C
{ρ}
j → C{ρ}

denote the resulting cellular cover. If fj(C
{ρ}
j ) is contained in {D = 0}, then

cellular maps preserve dimension dimCj 6 dim{D = 0} 6 dimC − 2. In this
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case we set

(145) Ĉj := Cj � f∗j F, f̂j := (fj , id) : Ĉ
{ρ}
j → C{ρ}

and note that f∗j F ∈ Ob(Ĉ
{ρ̂}
j ) for ρ̂ = poly`(ρ, β). We inductively apply the

CPT to Ĉj with its ρ̂-extension and f̂∗j F . We obtain a cellular cover fj,k :

C
{σ}
j,k → Ĉ

{ρ̂}
j compatible with F , and the compositions fj,k ◦ f̂j : C

{σ}
j,k → C{ρ}

are compatible with F and cover f(Cj)� F.

It remains to consider the case that fj(C
{ρ}
j ) is disjoint from {D = 0}. In

the same way as before, it will suffice to prove the CPT for Ĉj and f̂∗j F . We

return now to the original notation replacing this pair by C, F where we may

now assume that the discriminant locus is empty. We denote by Z the union of

(C{ρ}�Fγ)∩{F = 0} and the graphs of r1, r2 and the zero function over C{ρ}.

Then π := (π1..`)|Z is a proper unramified covering map: For the zero locus

of F , this is true by non-vanishing of the discriminant; for the remaining three

graphs we only need to verify that 0, r1(z1..`), r2(z1..`) are pairwise disjoint and

mutually disjoint from the zeros of F for every z1..` ∈ C{ρ}. This follows from

the Weierstrass condition since r1, r2 lie in Fγ \ F (and 0 is never in F).

We are now in a position to use the constructions of Section 6.3.1. We

denote the degree of π by ν and note that ν = poly`(β).

8.1.5. Covering the zeros. By Lemma 54, each section yj of π lifts to a

univalued map yj : Ĉ
νj ·ρ
j → C. For every yj 6= r1, r2, 0, the image of this map

lies in (C{ρ} � Fγ) ∩ {F = 0}; i.e., it gives a cell compatible with F . The

collections of all of these cells cover the zeros of F in C�F. Note that we may

also include the analogous maps for r1, r2 as they never meet the zeros of F ,

but this is not essential as they do not belong to F. On the other hand we

may not include the y0 = 0 map as its image lies outside Fγ .

The remaining (and far more non-trivial) task is to cover the complement

of this set of zeros.

8.1.6. The Voronoi cells associated with y0 = 0. For the remainder of the

proof we fix a point p ∈ Ĉ. We may assume that ρ is small enough that

Proposition 56 holds, not only over C but over C{σ}. The zero map is a section

of π that we denote by y0. We will construct a collection of cells that we call

the Voronoi cells of y0.

Since r1, r2 are sections of π, they belong to certain clusters around y0 = 0,

say with indices q1 6 q2. For q = q1, . . . , q2 − 1, the fibers F
γ
0,q+ over Ĉ0,q

contain none of the zeros yj and are contained in Fγ . Therefore the maps

Ĉ0,q+ � F0,q+ → C� F admit γ-extensions compatible with F . These give our

first Voronoi cells.
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Now fix q ∈ {q1, q1 + 1, . . . , q2} and consider the cluster F0,q. Up to

an affine transformation as in Remark 57 we may assume that ŷ0,q = 1 and

F0,q = Aδ(l0,q, r0,q). Recall that γ = 1 − 1/ poly`(β), and therefore we have

F0,q ⊂ A(1/2, 2). Recall also that

(146) diam(yj(Ĉ),C \ {0, 1}) = O`(ν
3ρ)

for any of the yj belonging to F0,q.

Let α > 0 be such that the discs of radius α centered at yj(p) belongs to

F
γ
0,q(p). Clearly we can choose α−1 = poly`(β). Let Up(α) be the set obtained

from F0,q(p) by removing all of these discs. We can cover Up(α) by poly`(β)

discs Dk centered at Up(α) such that D
1/2
k does not meet the discs of radius

α/2 centered at yj(p). These give our remaining Voronoi cells. We claim

that Ĉ0,q �D1/2
k is compatible with F . Indeed, over p the discs Dk remain at

distance α/2 from the zeros, and by (146) the points yj do not move enough to

meet Di for ρ sufficiently small. By the same reasoning we obtain the following

fundamental property of the Voronoi cells.

Lemma 71. The Voronoi cells associated with y0 cover every point z1..`+1

∈ C� F such that

(147) dist(z`+1, y0) < (2α)−1 dist(z`+1, yj)

for every yj .

8.1.7. The Voronoi cells associated with yi. Let yi be one of the non-zero

sections of π. We will construct a collection of Voronoi cells for yi by analogy

with y0. The only additional difficulty is making sure that all cells remain

in Fγ . Our goal will be to construct cells with the following property.

Lemma 72. The Voronoi cells associated with yi cover every point z1..`+1

∈ C� F such that

(148) dist(z`+1, yi) 6 2α dist(z`+1, y0)

and

(149) dist(z`+1, yi) 6 (2α)−1 dist(z`+1, yj)

for every yj 6= y0, yi.

We make an affine transformation such that yi = 0. Since yi ∈ F, we know

that in these coordinates D(ry0) ⊂ Fγ for r ∼ 1 − γ = 1/ poly`(β). In the

notation of Section 6.3.1, let Fi,q0 be the last cluster whose outer boundary at

p is smaller than ry0(p). With our choice of γ the logarithmic width of each

cluster can be assumed to be bounded by log 2. Therefore the inner boundary
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Figure 8. Construction of the F̃i,q0+ fiber near the boundary.

of Fi,q0+1 at p is at least ry0(p)/2. If the outer boundary of Fi,q0 is smaller

than γ2ry0(p)/2, then we also set

(150) F̃i,q0+ = Aδ(ri,q0 ŷi,q0 , γry0/2).

See Figure 8 for an illustration of this construction. One can check in the same

way as in Proposition 56 that when defined, F̃i,q0+ is a well defined annulus

over Ĉi,q0+ and F̃
γ
i,q0+ ⊂ Fγ contains no zeros.

The fibers Fi,q,Fi,q+ for q = 1, . . . , q0 − 1, the fiber Fi,q0 , and F̃i,q0+ if

it is defined cover D(γ2ry0/2) uniformly over Ĉ. We can choose our α =

1/ poly`(β) in such a way that this disc contains all points satisfying (148).

It will be enough to construct the Voronoi cells covering the points in these

fibers that also satisfy (149). This is done in a manner completely analogous

to the Voronoi cells of y0, except that in place of F0,q1+, . . . ,F0,(q2−1)+ we use

Fi,0+, . . . ,Fi,(q0−1)+ and F̃i,q0+ if it is defined; and instead of F0,q1 , . . . ,F0,q2 we

use Fi,1, . . . ,Fi,q0−1.

8.1.8. Conclusion. We claim that the Voronoi cells for y0 and the other

sections yj cover C � F \ {F = 0}. Indeed, let z ∈ C � F. If dist(z`+1, y0) <

(2α)−1 dist(z`+1, yj) for every yj , then z is covered by the Voronoi cells of y0.

Otherwise it is covered by the Voronoi cell of yj for the section yj closest to

z`+1. Since the roots of {F = 0} were already covered in Section 8.1.5, this

concludes the proof of the CPT in the complex case.

8.1.9. The real case of the CPT. The proof of the CPT in the real case

proceeds in the same manner up to Section 8.1.5. At this point one should

cover only the sections yj that are real, ensuring that we indeed obtain real

cells. Since the sections yj are locally unramified, each of them is either purely

real or purely non-real on R+C so we can indeed choose those yj that are real

to obtain a covering of the zeros of F in R+(C� F).
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The next step is the construction of the Voronoi cells. To ensure that the

constructed cells are real, one should replace the construction of Section 6.3.1

by that of Section 6.3.2 as we explain below.

The section y0 = 0 is real and therefore forms an admissible center. The

Voronoi cells for y0 are constructed as in the complex case Section 8.1.6, except

that the discs Dk are now chosen with real centers such that their positive parts

cover R+Up(α). The points z`+1 that are left uncovered over p are those that

have distance at most α to some section yk. If z`+1 ∈ R, then by Lemma 59 such

points also have distance at most α to some admissible center cl = (yj + yj̄)/2.

By analogy with Lemma 71 we obtain the following lemma.

Lemma 73. The Voronoi cells associated with y0 cover every point z1..`+1

∈ R+(C� F) such that

(151) dist(z`+1, y0) < (2α)−1 dist(z`+1, cl)

for every admissible center cl.

For the remaining Voronoi cells, we construct them centered around the

admissible centers cl rather than the sections yj . The construction is analogous,

replacing again the covering of Up(α) by a real covering of R+Up(α). We

similarly obtain the following lemma.

Lemma 74. The Voronoi cells associated with cl cover every point z1..`+1 ∈
R+(C� F) such that

(152) dist(z`+1, cl) 6 2α dist(z`+1, y0)

and

(153) dist(z`+1, cl) 6 (2α)−1 dist(z`+1, cm)

for every cm 6= y0, yl.

The proof is then concluded in the same manner.

8.2. Proof of the CPrT. In this section we will prove the CPrT using the

WPT and CPT. We will need a simple remark on the structure of the maps

constructed in these two theorems.

Remark 75. The maps constructed in the CPT can be assumed to be

translates in the final variable, as the reader may easily verify by examining the

inductive proof. Similarly, the maps constructed in the WPT can be assumed

to be translates in the final two variables: the CPT and refinement theorem

(Theorem 9) are applied in the base to give a translate in the next-to-last

variable, whereas in the last variable the map is the identity.

The main inductive step for the proof of the CPrT is contained in the

following lemma.
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Lemma 76. Let f : C{ρ} → Ĉ be a (real) cellular map. Then there exists

a (real) cellular cover {gj : C
{ρ}
j → C{ρ}} such that each f ◦ gj is prepared in

the last variable.

If C{ρ}, Ĉ, f vary in a definable family Λ, then the size of the cover is

polyΛ(ρ), and the maps gj can be chosen from a single definable family. If

C{ρ}, Ĉ, f are algebraic of complexity β, then the cover has size poly`(β, ρ) and

complexity poly`(β).

Proof. We describe the proof for the complex case, and at the end we

indicate the changes required for the real version. Uniformity over families is

obtained by a straightforward generalization of the argument.

Let C := C1..` � F. Recall that the last coordinate of f has the form

P (z1..`; z`+1) where P is a monic polynomial in z`+1 (say of degree µ) with

coefficients holomorphic in C
{ρ}
1..`. If F = ∗, then we can just replace z`+1 by

zero in the expression above, so f itself is already prepared. So assume F is of

type D,D◦, A.

Let Σ ⊂ C denote the set critical points of P with respect to z`+1, i.e.,

(154) Σ :=

®
∂P

∂z`+1
(z1..`+1) = 0

´
.

Note that since P is a monic polynomial of positive degree in z`+1 the hyper-

surface Σ has zero-dimensional fibers over C1..`.

We apply the CPT to C and Σ to obtain a cellular cover {gj : C
{ρ}
j → C{ρ}}

compatible with Σ. If the image of gj is contained in Σ, then since the fibers

of Σ over C1..` are zero dimensional, Cj has type ending with ∗ and in this case

f ◦ gj is already prepared as noted above. It remains to consider the case that

the image of gj is disjoint from Σ. Recall from Remark 75 that gj is a translate

in its last variable w`+1. Then we have

(155)
∂

∂w`+1
(P ◦ gj) =

∂P

∂z`+1
(gj(w1..`+1)) 6= 0

since the image of gj is disjoint from Σ. It will now be enough to prove the

lemma with f replaced by each f ◦gj as above. In other words we may assume

without loss of generality that Σ = ∅.
Recall that P is bounded in absolute value by some constant N on C{ρ}.

Write D := D(N), and consider the cell

(156) C̃ := C1..` �D � F

with coordinates z1..`, w, z`+1, which also admits a {ρ}-extension. Let Γ ⊂ C̃{ρ}

be the hypersurface given by

(157) Γ := {w = P (z1..`; z`+1)}.
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We apply the WPT to C̃{ρ} and Γ to obtain a cellular cover {gα : C
{ρ/µ}
α �Fγα →

C̃{ρ}} of C̃ by Weierstrass cells for Γ (i.e., for the function w − P (z1..`; z`+1)).

Suppose first that gα(Cα � Fα) ⊂ Γ. Then since Γ has zero-dimensional

fibers over C1..` �D (because P is monic), we have Fα = ∗ and

(158) ψα(z1..`, w, ∗) := gα(z1..`, w, ∗) = (. . . , w + φα(z1..`), ζα(z1..`, w)),

where ψα : Cα � ∗ → Γ is a cellular map admitting a {ρ/µ}-extension. Here

we used the fact that gα is a translate in its next to last variable. For later

purposes we set ν(α) = 1.

Suppose now that gα(Cα�Fα) 6⊂ Γ. Then by the definition of a Weierstrass

cell it follows that g∗αΓ forms a cover of Cα. Since we are assuming that Σ = 0,

this is a covering map of degree ν(α) 6 µ. Then g∗αΓ admits ν(α) multivalued

sections. Each section sα,j : Cα � ∗ → g∗αΓ takes the form

(159) sα,j(z1..`, w, ∗) = (z1..`, w, ζ̂α,j(z1..`, w)),

where ζ̂ is ramified of order at most ν(α, j) 6 ν(α) (see Lemma 54). We note

that in the algebraic case, sα,j is algebraic of degree poly`(β) since it is the

section of a hypersurface of complexity poly`(β).

We set Cα,j�∗ := (Cα�∗)×ν(α,j). Pulling back sα,j by Rν(α,j) : Cα,j�∗ →
Cα � ∗ we obtain a univalued cellular map sα,j ◦Rν(α,j) : Cα,j � ∗ → g∗αΓ, and

finally composing with gα we obtain a cellular map

(160) ψα,j := gα ◦ sα,j ◦Rν(α,j) : Cα,j � ∗ → Γ

of the form

(161) ψα,j(z1..`, w, ∗) = (. . . , wν(α,j) + φα,j(z1..`), ζα,j(z1..`, w)).

Here again we used the fact that gα is a translate in its next to last variable.

By Lemma 25 the map ψα,j admits a {ρ}-extension.

Let β be one of the indices α or (α, j) for the maps ψ constructed in (158)

and (161). Set fβ := ((ψβ)1..`, ζβ) : C
{ρ}
β → C{ρ}. Then f ◦ fβ is prepared in its

final variable. Indeed, since ψβ maps into Γ, we have

(162) wν(α) + φβ(z1..`) = P ((ψβ)1..`(z1..`), ζβ(z1..`, w)) = (f ◦ fβ)`+1

for every (z1..`, w) ∈ C
{ρ}
β . It remains to show that the union over β of fβ(Cβ)

covers C. But this is clear, since ψβ(Cβ � ∗) covers C̃ ∩ Γ by construction and

the projection of C̃ ∩ Γ to z1..`+1 equals C by our choice of D.

We now consider the real case. We proceed in the same manner up to

the construction of the sections ψα,j . Note that some of these sections may

not be real. However, since the critical locus Σ is empty, it follows that on

R+Cα,j the section ψα,j is either always real or always non-real. Since we are

only interested in covering R+Γ, we may replace the full set of sections ψα,j



COMPLEX CELLULAR STRUCTURES 215

by those sections that are real on R+Cα,j . With this modification we obtain a

real cover of C as required. �

We are now ready to finish the proof of the CPrT by induction. Suppose

that the CPrT is already proved for cells of length `; we will prove it for a

cell C := C1..` � F. By Lemma 76 we may assume that the map f is already

prepared in its final variable. By the inductive hypothesis we can find a cellular

cover gj : C
{ρ}
j → C

{ρ}
1..` such that f1..` ◦ gj is prepared. Then ĝj := gj � id :

(Cj � (g∗jF)){ρ} → C{ρ} is a cellular cover for C, where f ◦ ĝj is prepared as

required.

9. Analysis on complex cells

In this section we prove some basic estimates for holomorphic functions

in complex cells. We also introduce the notion of a quadric cell that allows for

some finer estimates and is used in the construction of smooth parametrizations

in Section 10.

We fix the notation for the remainder of this section. We let C = F1 �
· · · � F` denote a complex cell. As a matter of normalization, we assume that

Fj is of the form ∗, D(1), D◦(1) or A(rj , 1). Every cell is isomorphic to a cell

of this form by an appropriate rescaling map. We say that such a cell C is

normalized. We fix 0 < δ < 1 and assume that C admits a δ-extension.

9.1. Logarithmic derivatives. The following proposition is a cellular ana-

log of the classical fact that a logarithmic derivative of a holomorphic function

admits at most first order poles.

Proposition 77. Let 0 < δ < 1/8, and let f ∈ Ob(C
δ) be non-vanishing.

Then for z ∈ C, we have

(163)

∣∣∣∣ 1f ∂f∂zi

∣∣∣∣ 6 Of (|zi|−1) for i = 1, . . . , `.

If C, f are algebraic of complexity β, then

(164)

∣∣∣∣ 1f ∂f∂zi

∣∣∣∣ 6 poly`(β) · |zi|−1 for i = 1, . . . , `.

Proof. By the monomialization lemma (Lemma 17), we have

log f =
∑
k

mk log zk + logU,

where g = logU is holomorphic and bounded in C1/4. The derivative of the

first term with respect zi is bounded by |mizi|−1, and in the algebraic case

|mi| = poly`(β). It remains to give a similar estimate for ∂g
∂zi

. Since we only

care about the derivatives we may, after a translate, assume that the image
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of g contains 0. Then by the monomialization lemma in the algebraic case,

‖g‖C1/4 6 poly`(β).

Write a decomposition g =
∑

σ gσ(z[σ]) as in Corollary 30,

(165) gσ ∈ Ob(P
1/2), ‖gσ‖P1/2 = O`(‖g‖C1/4).

We estimate the derivative by

(166)

∣∣∣∣∂gσ∂zi

∣∣∣∣ 6 ∑̀
j=1

∣∣∣∣∣∣(gσ)′j(z
[σ])

∂(z
[σj ]
j )

∂zi

∣∣∣∣∣∣ .
By the Cauchy formula for gσ in P1/2, we see that

∥∥∥(gσ)′j

∥∥∥
P

= O`(‖gσ‖P1/2),

which is poly`(β) in the algebraic case.

For σj = 1, the derivative
∂(z

[σj ]

j )

∂zi
is 0 if i 6= j and 1 if i = j. For σj = −1,

the derivative
∂(z

[σj ]

j )

∂zi
is 0 for i > j, −ri/z2

i for i = j and z−1
j

∂rj
∂zi

for i < j. But

(167)

∣∣∣∣∣− riz2
i

∣∣∣∣∣ =

∣∣∣∣ rizi · 1

zi

∣∣∣∣ 6 |zi|−1,

∣∣∣∣z−1
j

∂rj
∂zi

∣∣∣∣ =

∣∣∣∣∣ rjzj · 1

rj

∂rj
∂zi

∣∣∣∣∣ 6 K|zi|−1,

where the final inequality follows by induction on ` and K = poly`(β) in

the algebraic case. From the above we conclude that
∣∣∣ ∂g∂zi ∣∣∣ < K ′|zi|−1 for an

appropriate constant K ′ as claimed. �

9.2. Quadric cells. We say that the C cell is quadric if the radii rj (for Fj
of annulus type) have a univalued square root, rj = ρ2

j on C1..j−1. This can

also be stated by saying that the associated monomial of rj has even degrees.

We note that if C is quadric, then Cδ is quadric as well. We denote by QC the

positive quadrant defined by replacing each fiber Fj = A(rj , 1) in the definition

of C by A(ρj , 1). We denote by QδC the cell obtained by taking F̃j = A(ρj , δ
−1).

Recall the notation of Definition 23.

Proposition 78. Let C be a cell admitting a δ-extension. Set ν :=

(2`−1, . . . , 1). Then C×ν is quadric and admits a δ1/2`−1
-extension.

Proof. If (α1, . . . , αj−1) are the degrees of the associated monomial of rj ,

then the associated monomial of the j-th fiber of C×ν has degrees

2j−`(2`−1α1, . . . , 2
`−j+1αj−1),

all of which are even as claimed. The existence of a δ1/2`−1
-extension is a

simple exercise. �

Suppose C is a quadric cell and σ ∈ {−1, 1}`, with negative entries allowed

only for indices j such that Fj is an annulus. We define the inversion map

Iσ : C → C by the identity on coordinates zj with σ = 1 and by rj/zj on

coordinates zj with σ = −1. Using inversions we can prove the following.
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Proposition 79. Let C be a (real) cell admitting a δ-extension. There

exists a collection of (real) quadric normalized cells Cj and (real) cellular maps

{fj : Cδj → Cδ} such that fj(QCj) covers C (and fj(R+QCj) covers R+C). If C

is algebraic of complexity β, then Cj , fj are algebraic of complexity poly`(β).

Proof. By the refinement theorem (Theorem 9) we may assume that C

admits a δ2`-extension. Applying Proposition 78 we see that C×ν admits a

δ2-extension, is quadric, and after rescaling may also be assumed to be nor-

malized. It will suffice to prove the claim for C×ν , so henceforth we replace C

by C×ν .

We essentially want to use the collection of all the inversion maps Iσ
to cover C by Iσ(QC) and R+C by Iσ(R+QC). The minor technical issue is

that this does not cover the equators {zj = ρj}. To avoid this problem we

use a slightly larger cell C̃. Namely, we replace each fiber Fj = A(rj , 1) by

F̃j = A(δrj , 1). Since C admits a δ2-extension, C̃ admits a δ-extension. We can

now cover C by the union of Iσ(QC̃) (and similarly for the real part). �

The following proposition is our principal motivation for introducing the

notion of a quadric cell.

Lemma 80. Let δ < 1/4, and let Cδ be a quadric cell and f ∈ Ob(C
δ).

Then

(168)

∥∥∥∥∥ ∂f∂zj

∥∥∥∥∥
QC

6 O`(‖f‖Cδ · δ) for j = 1, . . . , `.

Proof. We assume without loss of generality that ‖f‖Cδ = 1. By Corol-

lary 30, f =
∑

σ fσ(z[σ]) with ‖fσ‖P2δ = O`(1). It will suffice to prove the

claim for each of these summands, so fix σ ∈ {−1, 1}`.
If σj = 1, then

(169)
∂

∂zj
fσ(z[σ]) = (fσ)′j(z

[σ]) +
∑

k>j,σk=−1

(fσ)′k(z
[σ]) · 1

zk
· ∂rk
∂zj

.

By the Cauchy formula,

(170)
∥∥∥(fσ)′j

∥∥∥
P

= O`(δ ‖fσ‖P2δ) = O`(δ).

Also, since ρk =
√
rk is holomorphic of norm at most 1 in Cδ1..k−1, we have

(171)

∥∥∥∥∥ 1

zk

∂rk
∂zj

∥∥∥∥∥
QC

=

∥∥∥∥∥2∂
√
rk

∂zj

√
rk

zk

∥∥∥∥∥
QC

6 O`(δ),

where we used induction over ` and the fact that
∣∣√rk/zk∣∣ < 1 in QC. Com-

bining these estimates we see that
∥∥∥ ∂
∂zj

fσ(z[σ])
∥∥∥
QC

= O`(δ).
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The case σj = −1 is similar. We have

(172)
∂

∂zj
fσ(z[σ]) = −(fσ)′j(z

[σ]) · rj
z2
j

+
∑

k>j,σk=−1

(fσ)′k(z
[σ]) · 1

zk
· ∂rk
∂zj

,

which can be estimated in the same manner noting that

∥∥∥∥ rjz2j
∥∥∥∥
QC

6 1 by defini-

tion. �

9.3. Straightening the positive quadrant. Let C be a normalized quadric

cell of length ` admitting a δ 6 1/100 extension. To simplify the notation we

assume that C contains no fibers of type D. (We can replace each fiber of type

D by fibers of type D◦ and ∗.) To further simplify the notation we also assume

that C contains no fibers of type ∗. (If it does, then one should add additional

single coordinates to B defined below in order to preserve the cellular structure

of the map.)

Let B := (0, 1)×`. We define a map h : B → R+C
δ inductively by

(173) hi(u) = ui +Ri(u1..i−1), Ri :=
»
ri ◦ h1..i−1.

Here ri denotes the inner radius of Fi if it is of type A, and 0 if it is of type D◦.

Since C is normalized, it follows that R+QC ⊂ h(B) ⊂ Cδ. We think of h as a

straightening of the positive quadrant. Our goal will be to show that h can be

analytically continued to a polysector

(174) S`(ε) := {|Arg ui| < ε, |ui| < 2 : i = 1, . . . , `}

for some positive ε > 0. This will be used in Section 10 to construct paramet-

rizations of R+C with control on derivatives.

Proposition 81. There exists ε > 0 such that h can be analytically ex-

tended to S`(ε), and we have

(175) h(S`(ε)) ⊂ Q1/4C ∩ {|Arg zj | 6 π/4 : j = 1, . . . , `}.

Moreover, for any j such that Fj is an annulus, we have

(176)

∥∥∥∥∥ ui
Rj

∂Rj
∂ui

∥∥∥∥∥
S`(ε)

6M`, i = 1, . . . , `

for some M` > 0; i.e., logRj is a C1-bounded function of log u. If C is algebraic

of complexity β, then ε−1,M` = poly`(β).

Proof. By induction on ` we may assume that h1..`−1 extends to S`−1(ε)

for a sufficiently small ε, that

(177) h1..`−1(S`−1(ε)) ⊂ Q1/4C1..`−1 ∩ {|Arg zj | 6 π/4 : j = 1, . . . , `− 1},

and that (176) already holds for R1..`−1 with an appropriate constant M`−1.

(As a shorthand notation we write R1..`−1 to mean only those Rj that are
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defined, i.e., such that Fj is an annulus.) Our first goal is to prove (176) for

R` assuming F` is an annulus.

Since logR1..`−1 is a C1-bounded function of log u1..`−2 we may, taking

ε < π/(4M`−1), suppose that on S`−1(ε), we have

(178) |Arg ui|, |ArgRi| 6 π/4, i = 1, . . . , `− 1.

Indeed Ri is real on RSi−1(ε), and since every point of Si−1(ε) lies at loga-

rithmic distance at most ε from this real part, it follows that logRi and, in

particular, ArgRi is at distance at most M`−1 · ε from zero. We note that this

implies

(179) |ui|, |Ri| 6 |ui +Ri| = |zi|, i = 1, . . . , `− 1.

Now computing the left-hand side of (176) with j = ` we have

(180)
ui
R`

∂R`
∂ui

= ui

Ç
1
√
r`

∂
√
r`

∂zi
◦ h1..`−1

å
+ ui

∑
i<j<`

∂Rj
∂ui

Ç
1
√
r`

∂
√
r`

∂zj
◦ h1..`−1

å
.

By (177) the image h1..`−1(S`−1(ε)) is contained in C
1/4
1..`−1. Applying Propo-

sition 77 and using (179), for some K > 0, we have∣∣∣∣∣uiÄ 1
√
r`

∂
√
r`

∂zi
◦ h1..`−1

ä∣∣∣∣∣ 6 ∣∣∣∣Kui
zi

∣∣∣∣ 6 K,(181) ∣∣∣∣∣ 1
√
r`

∂
√
r`

∂zj
◦ h1..`−1

∣∣∣∣∣ 6 K

|zj |
6

K

|Rj |
.(182)

Plugging into (180) and using the inductive (176) we get

(183)

∥∥∥∥ ui
R`

∂R`
∂ui

∥∥∥∥
S`−2(ε)

6 K

Ñ
1 +

∑
i<j<`

∣∣∣∣∣ uiRj ∂Rj∂ui

∣∣∣∣∣
é
6 K

Ä
1+(`− i−1)M`−1

ä
as claimed. In the algebraic case K = poly`(β), and by induction we have

indeed M` = poly`(β).

We now pass to proving that h can be analytically extended to S`(ε),

satisfying (175). By assumption, h1..`−1 is already extended and satisfies (177).

If F` is an annulus (the D◦ case is similar but easier), then what remains to

be verified is that

(184) Rl(u1..`−1) + {|Arg u`| < ε, |u`| < 2} ⊂ {|R`| < |z`| < 4}

for u1..`−1 ∈ S`−1(ε). Having established (176) for R`, we can now assume

that (178) holds for R` as well (for a sufficiently small ε). Then (184) follows

by an elementary geometric argument illustrated in Figure 9. �
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Figure 9. Analytic continuation of h to S`(ε).

Corollary 82. Let S`(ε) be as in Proposition 81. Then the Jacobian of

h satisfies

(185)

∥∥∥∥∥
ñ
∂hi
∂uj

ô
− I`×`

∥∥∥∥∥
S`(ε)

6 O`(δ).

Proof. By induction on ` we may assume that the Jacobian of h1..`−1

already satisfies the condition. It remains to produce a bound for each ∂h`
∂uj

with j < `. We have

(186)
∂h`
∂uj

=
∂
Ä√

r` ◦ h1..`−1)

∂uj
,

and since the norm of the Jacobian of h1..`−1 is O`(1), it remains to show that

the derivatives
∂
√
r`

∂zk
◦ h1..`−1 are bounded by O`(δ) for k = 1, . . . , `− 1. Since

h1..`−1(S`−1(ε)) ⊂ Q1/4C1..`−1 and
√
r` is bounded by 1 in Cδ1..`−1, this follows

from Lemma 80. �

The following is a direct corollary of Lemma 80 and Corollary 82.

Corollary 83. Let S`(ε) be as in Proposition 81. Let F ∈ Ob(C
δ), and

set Φ := F ◦ h. Then

(187)

∥∥∥∥ ∂Φ

∂ui

∥∥∥∥
S`(ε)

< O`(‖F‖ · δ), i = 1, . . . , `.
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10. Smooth parametrization results

In this section we use complex cells to prove the various refinements of the

Yomdin-Gromov algebraic lemma described in Section 1.1. All of these results

follow fairly directly from a parametrization result involving functions with a

holomorphic continuation to a complex sector, which we describe first.

10.1. Sectorial parametrizations of subanalytic sets. We say that B ⊂ R`
is a cube if it is a direct product of intervals (0, 1) and singletons {0}. We

will say that a map h : B → R` is cellular if hj depends only on x1..j . The

sectorial cube B(ε) ⊂ C` corresponding to B is the direct product where we

replace each interval (0, 1) by the sector S(ε) := {|Arg z| < ε, |z| < 2}. We

define cellular maps h : B(ε)→ C` similarly.

Theorem 11. Let A ⊂ [0, 1]` be subanalytic. There exists a collec-

tion of cubes B1, . . . , BN and injective cellular maps φj : Bj → A such that

A = ∪jφj(Bj). Moreover there exists ε > 0 such that each φj extends to a

holomorphic map φj : Bj(ε)→ P
1/2
` with C1-norm O`(1).

If A is semialgebraic of complexity β, then we have N, 1/ε = poly`(β).

Proof. Set δ = 1/100 as in Section 9.3. We begin by applying Corollary 34

in the semialgebraic case or Corollary 35 in the subanalytic case with {ρ} < 1/2

and {σ} < δ, followed by Proposition 79 to construct a collection of quadric

normalized cells Cj and real maps fj : Cδj → P
1/2
` such that fj(R+C

δ) ⊂ A and

A = ∪jfj(R+QCj). By construction each fj is a composition of a prepared

cellular map, a rescaling map, a covering map and an inversion map. Since

each of these maps is injective on the positive real part, we see that fj is

injective on R+Cj .

Let hj : Bj(ε) → Cδ be the straightening map constructed for Cj in

Section 9.3, and set φj := fj ◦ hj . The map hj is cellular and injective by

construction, so φj is cellular and injective on Bj . We have

(188) A =
⋃
j

fj(R+QCj) ⊂
⋃
j

φj(Bj) ⊂ A.

Finally, by Corollary 83 the C1-norm of φj is bounded by O`(1). �

Later we will use the Cauchy estimate to pass from the sectorial paramet-

rizations of Theorem 11 to parametrizations with bounded higher-order deriva-

tives. Toward this end the following simple combinatorial lemma will be useful.

Proposition 84. Let B(ε) be a sectorial cube, and let Φ : B(ε) → C
have C1-norm 1. There is a decomposition

(189) Φ(u) =
∑

I⊂{1,...,`}
ΦI(u),
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where ΦI : B(ε) → C depends on ui : i ∈ I only, vanishes on ∪i∈I{ui = 0}
and has C1-norm bounded by O`(1). In particular, for every I 6= ∅ we have

(190) |ΦI(u)| 6 O`(min
i∈I
|ui|) for u ∈ B(ε).

Proof. We proceed by reverse induction on j, defined as the minimal

i ∈ {1, . . . , `} such that Φ depends on ui and does not vanish identically

on {ui = 0}. If the condition defining j is empty, then we may take Φ = ΦI ,

where I denotes the set of indices that Φ depends on. Otherwise write

(191) Φ = (Φ−R) +R, R(u) = Φ(u1, . . . ,uj−1, 0,uj+1, . . . ,u`).

Since the first summand vanishes on {uj = 0} and the second summand does

not depend on uj we may finish for each of them by induction. (The C1-norm

of the summands are majorated by 2 and 1 respectively.) �

10.2. The algebraic reparametrization lemmas. We give more detailed state-

ments of the algebraic lemmas in the Cr-smooth and mild contexts and show

that these statements imply the statements appearing in Section 1.1. Our

result in the Cr case is as follows.

Theorem 12. Let X ⊂ [0, 1]` be subanalytic. There exist A > 0, cubes

B1, . . . , BC such that for any r ∈ N, there exist subanalytic injective cellular

maps φj : Bj → X whose images cover X , with

(192) ‖Dαφj‖ 6 α!(Ar)|α| for |α| 6 r.

If X is semialgebraic of complexity β, then A,C = poly`(β) and the maps φj
are semialgebraic of complexity poly`(β, r).

The cellular structure and injectivity of the parametrizing maps implies

that the result of Theorem 12 is automatically uniform over families. Indeed,

suppose X ⊂ Rn+m is a bounded subanalytic set viewed as a family {Xp} of

subsets of Rm. Construct φ1, . . . , φC as above. For any p ∈ Rn and any j =

1, . . . , C, the fiber (φj)
−1
1..n(p) is either empty or a cubeBp,j ⊂ Rm. The φj of the

latter type restrict to parametrizing maps φp,j for Xp with the same Cr-norm

bound (192) (now in m variables). One can subdivide the domains of the φp,j
into smaller cubes to obtain a parametrization with unit Cr norms as follows.

Let µ := dimXp. Subdividing Bp,j into Nµ subcubes Bp,j,k of side length 1/N

and rescaling back to the unit cube gives maps φp,j,k : Bp,j,k → Rm with

(193)
‖Dαφp,j,k‖

α!
6
Å
Ar

N

ã|α|
for |α| 6 r.

Taking N = Ar one obtains unit norms above. This gives the Cr statements

of Section 1.1.

Our result in the mild case is as follows.
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Theorem 13. Let X ⊂ [0, 1]` be subanalytic. There exist A < ∞, cubes

B1, . . . , BC and (A, 2)-mild injective cellular maps φj : Bj → X whose images

cover X .

If X is semialgebraic of complexity β, then one may take A,C = poly`(β).

As in the case of Theorem 12, the result of Theorem 13 is automatically

uniform over families due to the cellular structure and the injectivity of the

maps.

10.3. Proofs of the smooth parametrization results. Let X be as in The-

orems 12 or 13. By Theorem 11 there exists a collection of cubes B1, . . . , BC
and injective cellular maps φj : Bj → X such that X = ∪jφj(Bj), and each φj
extends to a holomorphic map φj : Bj(ε) → C` with C1-norm O`(1). More-

over in the algebraic case C, 1/ε = poly`(β). We will always assume ε < 1. It

will be enough to prove the parametrization results for each φj(Bj) separately,

so we fix a pair (B,φ) := (Bj , φj) and proceed to consider the problem of

parametrizing φ(B).

Let Φ denote one of the coordinates of φ, and recall that Φ has C1-norm

O`(1). To control higher derivatives we will consider the map φ̃ := φ◦S, where

S is a “flattening” bijection S : B → B. We will see that an appropriate choice

of S (one for the Cr version and another for the mild version) allows one to

control the higher derivatives of Φ ◦ S using the Cauchy estimates.

To simplify the notation, we will suppose below that B is of the form

(0, 1)`. (In general the direct product may also contain copies of ∗, but these

obviously have no impact on parametrization questions.) We will take Φ to be

any function of C1-norm O`(1) in B(ε).

10.3.1. Proof of the Cr-parametrization result. Consider the bijection (see

Figure 10)

(194) Pr : B → B, Pr(w1..`) = (wr
1, . . . ,w

r
`).

In the notation of Section 10.3, Theorem 12 follows from the following lemma.

Lemma 85. The function Φ ◦ Pr has bounded Cr-norm

(195)
∣∣∣(Φ ◦ Pr)(α)(w)

∣∣∣ 6 α! (O`(r/ε))
|α| for |α| 6 r.

Proof. Since Φ extends holomorphically to B(ε), the composition Φ ◦ Pr
extends holomorphically to

(196) Ω := B(ε/r) ∩ {|ζi| < 21/r, i = 1, . . . , `}.

In particular, for every w ∈ B, it contains the polydisc Dw = {|ξi −wi| 6
(sin ε

r )wi}. Denote by S(Dw) its skeleton.
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Figure 10. Reparametrization of B(ε) in the Cr case.

Using Proposition 84 we see that

(197) (Φ ◦ Pr)(α)(w) =
∑
I

(ΦI ◦ Pr)(α)(w) =
∑

suppα⊂I
(ΦI ◦ Pr)(α)(w),

so it is enough to consider (ΦI ◦ Pr)(α)(w) only for those summands with

suppα ⊂ I. Applying the Cauchy formula we have∣∣∣(ΦI ◦ Pr)(α)(w)
∣∣∣ =

∣∣∣∣∣(2πi)−`α!

∫
S(Dw)

ΦI ◦ Pr(ξ)∏
(ξi −wi)αi+1

dξ1 . . . dξ`

∣∣∣∣∣
6 α!

∏Å
wi sin

ε

r

ã−αi
max

ξ∈S(Dw)
|ΦI ◦ Pr(ξ)| .

(198)

Denote wmin := mini∈I wi. By Proposition 84 we have

(199) |ΦI ◦ Pr(ξ)| 6 O`(1) ·min
i∈I
|ξri | 6 O`(1) · |wr

min| ,

where in the last inequality we used
(
1 + sin ε

r

)r < e. Then (198) implies

(200)
∣∣∣(ΦI ◦ Pr)(α)(w)

∣∣∣ 6 O`(1)

Å
sin

ε

r

ã−|α|
α!w

r−|α|
min 6 α! (O`(r/ε))

|α|

as long as |α| 6 r. �

10.3.2. Proof of the mild parametrization result. Consider the bijection

(see Figure 11)

(201) Exp : B → B, Exp(w1..`) =

Å
exp

Å
1− 1

w1

ã
, . . . , exp

Å
1− 1

w`

ãã
.

In the notation of Section 10.3, Theorem 13 follows from the following lemma.

Lemma 86. The function Φ ◦ Exp is (A, 2)-mild,

(202)
∣∣∣(Φ ◦ Exp)(α)(w)

∣∣∣ 6 α!(A|α|2)|α| for α ∈ N`

with A = O`(1/ε).
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Figure 11. Reparametrization of B(ε) in the mild case.

Proof. Since Φ extends holomorphically to B(ε), the composition Φ ◦Exp

extends holomorphically to the domain Ω := Exp−1B(ε) and it is easy to check

that for any w ∈ B,

(203) Dw :=

ß
|ξi −wi| 6

1

2
εw2

i

™
⊂ Ω.

Denote by S(Dw) := {|ξi −wi| = 1
2εw

2
i } the skeleton of Dw.

Using Proposition 84 in the same way as in Section 10.3.1 we see that it is

enough to consider (ΦI ◦Exp)(α)(w) only for those summands with suppα ⊂ I.

Applying the Cauchy formula we have

(204)
∣∣∣(ΦI ◦ Exp)(α)(w)

∣∣∣ =

∣∣∣∣∣(2πi)−`α!

∫
S(Dw)

ΦI ◦ Exp(ξ)∏
(ξi −wi)αi+1

dξ1 . . . dξ`

∣∣∣∣∣
6 α!

∏Å
w2
i

ε

2

ã−αi
max

ξ∈S(Dw)
|ΦI ◦ Exp(ξ)| .

By Proposition 84 we have

(205) |ΦI ◦ Exp(ξ)| 6 O`(1) min
i∈I

∣∣∣exp
Ä
1− ξ−1

i

ä∣∣∣
6 O`(1) exp(−max

i∈I
Re ξ−1

i ) 6 O`(1) exp(−max
i∈I

w−1
i ),

where in the last inequality we used the fact that for w < ε−1, the mapping

ξ 7→ 1/ξ maps the circle {|ξ − w| 6 1
2εw

2} inside the circle {
∣∣ξ − w−1

∣∣ < 2}.
Denote wmin = mini∈I wi. Then (204) implies

(206)

∣∣∣(ΦI ◦ Exp)(α)(w)
∣∣∣ 6 α!O`(1)(2/ε)|α|w

−2|α|
min e

− 1
wmin

6 α!O`
Ä
(8/ε)|α|

ä
|α|2|α|e−2|α|,

where the final estimate is a simple maximization exercise (with the maximum

attained at wmin = 1
2|α|). �

10.4. Uniform parametrizations in Ran. In this section we give a proof of

Proposition 2. We begin by proving Lemma 3.

Proof of Lemma 3. It is enough to prove that log ξ has derivative bounded

by 4πp2 in [−1, 1]. Note that log ξ is well defined and p-valent in D(2). Let

r := |(log ξ)′(z0)| for some z0 ∈ D(1). By the p-valent analog of the Koebe
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1/4-theorem, log ξ(z0 +D(1)) contains a disc of radius at least r/(4p); see [25,

Th. 5.1]. On the other hand, it cannot contain a disc of radius larger than πp

since then ξ = elog ξ would not be p-valent. Thus r 6 4πp2 as claimed. �

We now proceed to the proof of Proposition 2. To avoid confusion we will

denote the order of derivatives in the statement of the proposition by k instead

of r, which we reserve here to denote a radius. As a first step we will reduce to

the case of a single complex cell. Let GF ⊂ [0, 1]2e,t×[0, 1]2x,y denote the graph of

F (e, t) = Fe(t). We also denote x(e, t) = xe(t) and y(e, t) = ye(t). According

to Theorem 35 and Remark 36 there exists a collection of prepared cellular

maps fj : C
1/4
j → P

1/2
4 such that fj(R+Cj) covers GF and fj(R+C

1/2
j ) ⊂ GF .

By Remark 36 we may also assume that fj is compatible with the function e.

Let C denote one of the cells Cj and f := fj . It will be enough to prove that

(207) log[f(R+C) ∩ {e = e0}]

has bounded Euclidean length independent of e0 6= 0.

We first note that since C maps into a graph, its type must end with ∗∗.
We proceed to consider the first two fiber types. If the type of C begins with ∗,
then f(R+C) meets only one line e = e0 and the length of (207) is bounded

by the (finite) log-length of the hyperbola xy = e0 in [0, 1]2. Similarly if the

type of C begins with D or A, then since fj is compatible with e, we conclude

that fj(R+C) meets only lines e = e0 with e0 bounded away from 0, and the

same argument holds. The only non-trivial case is therefore when the type of

C begins with D◦ and f maps this punctured disc to a disc centered at e = 0.

Let C be of the form C = D◦(R)�F�∗�∗. If F = ∗, then f(R+C) meets,

for every e0, only one point in xy = e0. Otherwise we may write f in the form

(208) (e, t, x, y) = f(ε, τ, ∗, ∗) = (εm, τn + φ(ε), ξ(ε, τ), η(ε, τ)).

If F = D(r), then the functions ξ(ε, τ), η(ε, τ) are p-valent in τ ∈ D1/2(r) for

some p uniform over ε ∈ D◦(R) by subanalyticity of f restricted to C1/2 (see

Proposition 31). The claim then follows from Lemma 3. If F = D◦(r), then

by the removable singularity theorem both ξ(ε, τ) and η(ε, τ) can be extended

to D◦(R) � D(r), with extensions satisfying the same relation ξ · η = εm for

ε ∈ D◦(R). In particular, both ξ(ε, τ) and η(ε, τ) do not vanish, and we can

proceed as above.

The remaining case is F = A(r1, r2). We now make three reductions.

First, we replace f with

(209) (e, t, x, y) = g(ε, τ, ∗, ∗) = (εm, τn/rn2 (ε), ξ(ε, τ), η(ε, τ))

defined on the same cell. This amounts to an affine transformation of the

coordinate t. Evidently, the image of ξ, τ is unchanged, and the constant

Mk in (4) is replaced by
∣∣∣rnk2 (ε)

∣∣∣Mk, which is again uniformly bounded in ε.
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Second, we replace C with C̃ = D◦(R)�A(r, 1)�∗�∗ for r := r1(ε)/r2(ε) and

replace g with the composition

(210) (e, t, x, y) = g̃(ε, τ, ∗, ∗) = g ◦ π = (εm, τn, ξ(ε, τr2(ε)), η(ε, τr2(ε))) ,

where π : C̃ → C is the mapping (ε, τ, ∗, ∗) → (ε, τr2(ε), ∗, ∗). This only

amounts to a reparametrization of the set g(C) leaving both the image of ξ, η

and the bounds (4) unchanged. Finally by a similar rescaling of ε we may

assume that R = 1. Without loss of generality we return to our original

notation, assuming now that C = D◦(1) � A(r, 1) � ∗ � ∗ and f(ε, τ, ∗, ∗) =

(εm, τn, ξ(ε, τ), η(ε, τ)).

Using Corollary 30, decompose η as

(211) η(ε, τ) = a(ε, τ) + b(ε, rτ ),

where both a, b are holomorphic and bounded in a neighborhood of P
1/2
2 .

We have ∂t = τ1−n

n ∂τ , and a straightforward induction shows that if ∂kt η is

bounded, then ∂kτ η is bounded as well. Since ∂kτ a is bounded uniformly in

ε by the Cauchy estimates for a, we conclude that ∂kτ b(ε,
r
τ ) is also bounded

uniformly in ε. We claim that this is impossible unless b ≡ b(ε) or r ∼ 1. This

finishes the proof; in the former case η itself extends as a holomorphic function

to P
1/2
2 , and we return to the case of functions on discs treated above using

Lemma 3; in the latter case, we may (for instance following the proof of the

refinement theorem, Theorem 9) cover D◦(1) � A(r, 1) by finitely many cells

of the type D◦(1)�D(1) returning again to the disc case.

It remains to prove the claim above. Let v = r
τ , so b(ε, v) is holomorphic

and bounded in a neighborhood of P1/2. Suppose

r(ε) = εm(c+ . . . ), m > 0, c 6= 0,(212)

b(ε, v) =
∑
`>0

ε`b`(v), b` ∈ Ob(D1/2),(213)

and let `0 be the first index such that b`0 is non-constant. A simple computation

using ∂τ = −v2

r ∂v gives

(214) ∂kτ b(ε, v) =
∑

`>`0−mk
ε`b̃`,k(v),

where

(215) b̃`0−mk,k =
Ä
−v2

c ∂v
äk
b`0(v) 6≡ 0,

and the final inequality follows since b`0 is non-constant, and the operator

(v2∂v)
k does not kill any non-constant holomorphic functions as can be seen

by examining its action on Taylor expansions. For k such that `0 −mk < 0,

we see that ∂kτ b(ε, v) has a pole in ε = 0 for any v such that b̃`0−mk,k(v) 6= 0

and is therefore unbounded as ε→ 0, contradicting our assumption.
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10.5. Proof of Theorem 5. We indicate the proof with the notation of [14].

Applying the refined algebraic lemma to the graph of the polynomial map P :

[0, 1]l → [0, 1]l in [14, §2.1.2] one obtains the estimate Cr,l,m = polym,l(r). This

implies that the sequence Mk := kk
2

is (l,m)-admissible for any l,m ∈ N. Then

[14, Cor. B] applies to any map f that satisfies ‖f‖r < Crr
2

for some constant

C and every r > 0. In particular, it applies to analytic maps. We also have

(216) GM (t) = sup
k
{k log k < t} = Θ

Å
t

log t

ã
.

Thus (18) follows from the conclusion of [14, Cor. B].

Appendix A. Applications in dynamics (by Yosef Yomdin)

A.1. Non-dynamical parametrization results. In this section we present

a non-dynamical result, based on the refined algebraic lemma. This result

reduces the problem of bounding dynamical local entropy (considered in Sec-

tion A.2 below) to a “combinatorial” analysis of the complexity of long com-

positions of smooth functions. Set Q := [0, 1]. Our basic unit of complexity is

defined as follows.

Definition 87 (k-complexity unit (k-cu)). A k-complexity unit is a Ck map

φ : Ql → Rm with ‖φ‖k 6 1. We say that {φq : Ql → Rm} is a k-cu cover of a

set A ⊂ Rm if A is contained in the union of the images of φq.

Remark 88. In this appendix it is more convenient to use Q = [0, 1] in

place of (0, 1). We remark that in the formulation of the refined algebraic

lemma (Lemma 1), if the semialgebraic set X is closed, then one can use

parametrizing maps φj : Qµ → X with unit Ck-norms in Qµ. To see this,

apply the refined algebraic lemma to obtain a Ck+1 parametrization of X by

maps φj : (0, 1)µ → X and note that each such map extends to a Ck map on

Qµ by elementary calculus, and φj(Q
µ) ⊂ X since X is closed.

Theorem 14 below can be considered as a kind of “Taylor formula” for

Ck-parametrizations: It measures the complexity of the graph of a Ck-map

in terms of a covering by k-cu’s; exactly as in the usual Taylor formula, the

estimates depend only on the k-th derivative. A result of this type appears

(in a weaker form) in [53, Th. 2.1]. In [22] it is improved and split into “Main

Lemma” and “Main Corollary”. Following [22], we split below Theorem 2.1 of

[53] into Theorem 14 and Corollary 89, and we incorporate other improvements

due to Gromov. Below we denote by Gg the graph of a map g.

Theorem 14. Let g : Ql → Rm be a Ck-mapping such that maxx∈Ql ‖dkg‖
6 M. Then Gg ∩ Ql+m admits a k-cu cover of the form {(φq, g ◦ φq)} of size

polyl,m(k)M l/k.
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Proof. Let S := {x ∈ Ql : ‖g(x)‖ 6 1}. We subdivide Ql into sub-cubes

Qlj of size γ = (kM1/k)−1 and parametrize each Qlj by an affine mapping

ηj : Ql → Qlj . The number N1 of the sub-cubes is klM l/k. Since the k-th

derivative under this parametrization is multiplied by γk, for θj := g ◦ ηj we

get the bound
∥∥∥dkθj∥∥∥ 6 k−k.

Let Pj be the Taylor polynomial of θj of degree k− 1 at the center of Ql.

By the Taylor remainder formula we have

(217)
∥∥∥dlθj − dlPj∥∥∥ ≤ 1

(k − l)!kk
, l = 0, . . . , k.

Put Sj = {x ∈ Ql : ||Pj(x)|| 6 3
2}. By (217) we have |θj − Pj | < 1

2 , and hence

the sets ηj(Sj) for j = 1, . . . , N1 cover S.

In the next step, which is central for all the construction, we apply the

refined algebraic lemma (see Remark 88) to the graph of Pj over Sj with

smoothness order k. We get k-cu’s ψij : Ql → Sj for i = 1, . . . , N2 with

the images of ψij covering Sj , such that Pj ◦ ψij are also k-cu’s. Moreover

N2 6 polyl,m(k). Now we estimate the derivatives (θj ◦ψij)(s) for s = 1, . . . , k,

comparing them with the derivatives of Pj ◦ψij via the Faà di Bruno formula:

(218) (F ◦G)(s) =
s∑
l=1

Bl
s(G

′, G′′, . . . , G(s−l+1)) · F (l) ◦G,

with Bl
s the so-called Bell polynomials satisfying, in particular,

(219) Bs :=
s∑
l=1

Bl
s(1, . . . , 1) < ss.

This formula is linear with respect to F , and applying it to F = θj − Pj and

G = ψij , for s = 1, . . . , k, we get

|(θj ◦ ψij)(s) − (Pj ◦ ψij)(s)| = |((θj − Pj) ◦ ψij)(s)|

≤
s∑
l=1

Bl
s(ψ
′
ij , ψ

′′
ij , . . . , ψ

(k−l+1)
ij ) · |(θj − Pj)(l) ◦ ψij | 6

Bs
kk
6 1,

(220)

by the bounds (217), and because ψij are k-cu’s. Since Pj ◦ ψij is also a k-cu,

we conclude that |(θj ◦ ψij)(s)| 6 2. Therefore, another subdivision of Ql into

sub-cubes of size 1
2 and the corresponding affine parametrizations of these sub-

cubes reduces the derivative bounds to 1. We denote by {ψi,j,p} the collection

of N1N22l = polyl,m(k)M l/k maps obtained in this way. Set φi,j,p := ηj ◦ψi,j,p.
Then φi,j,p is a k-cu since ψi,j,p is, and g ◦ φi,j,p = θj ◦ ψi,j,k is a k-cu as shown

above. �
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Next we modify Theorem 14 to make it suitable to apply to n-fold itera-

tions f◦n = f ◦f ◦· · ·◦f . The main reason to separate Theorem 14 from Corol-

lary 89 below is that in the latter it is not enough to assume that ||dkg|| 6M
only for the highest derivative: we need ||dsg|| 6M for all s = 1, . . . , k.

Corollary 89. Let g : Ql→Rm be a Ck-mapping such that maxx∈B′ ‖dsg‖
6 M for s = 1, . . . , k. Let σ : Ql → Ql be a k-cu, and put h = g ◦ σ. Then

Gh∩Ql+m admits a k-cu cover of the form {(φq, h◦φq)} of size polyl,m(k)M l/k.

Proof. By the Faà di Bruno formula (218) we have, for the k-th derivative

of h,

(221) |h(k)| = |(g ◦ σ)(k)| =
∣∣∣∣ k∑
l=1

Bl
k(σ
′, σ′′, . . . , σ(k−l+1)) · g(l) ◦ σ

∣∣∣∣ < kkM.

Now we apply Theorem 14 to h, and get the required covering by k-cu’s. �

A.2. Applications to volume growth and entropy. Let Y be a compact m-

dimensional C∞-smooth Riemannian manifold, and let f : Y → Y be a smooth

(at least C1+µ, with µ > 0) mapping. The topological entropy h(f) was defined

in Section 1.3. Below we consider another “entropy-type” dynamical invariant

called the volume growth.

A.2.1. Volume growth. For σl : Ql → Y a C∞-mapping, and for S ⊂ Ql a

measurable subset, let v(σl, S) denote the l-dimensional volume of the image

of σl(S) in Y . Put v(f, σl, S, n) = v(f◦n ◦ σl, S), and put

v(f, σl, S) = lim sup
n→∞

1

n
log v(f, σl, S, n), v(f, σl) = v(f, σl, Ql).(222)

Finally, we put

vl(f) = sup
σl
v(f, σl), v(f) = max

l
vl(f),(223)

where the supremum is taken over all C∞-maps σl : Ql → Y . An important

inequality obtained by Newhouse in [37] connects the volume growth to the

topological entropy,

(224) h(f) 6 v(f).

The inverse inequality is not always true, but the question of its validity is

important in many dynamical applications. In particular, as it was explained

in Section 1.3.3, this inverse inequality implies Shub’s entropy conjecture. In

order to analyze its validity we define a δ-local volume growth at x ∈ Y as

(225) vl(f, δ, x) = sup
σl

v(f, σl, Bn
δ (x)) = sup

σl
lim sup
n→∞

1

n
log v(f, σl, Bn

δ (x), n),
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where Bn
δ (x) is the δ-ball centered at x in the n-th iterated metric dn. The

quantity vl(f, δ, x) measures the exponential rate of volume growth of the part

of the images of f◦n ◦σl that always stay at a distance at most δ from the orbit

of f◦n(x) for n→∞. Finally, we put

(226) vl(f, δ) = sup
x∈Y

vl(f, δ, x), v0
l (f) = lim

δ→0
vl(f, δ).

The δ-tail entropy can be also be defined in an analogous manner setting

h∗(f, δ, x) = h(f,Bn
δ (x)) and h∗(f, δ) := supx∈Y h

∗(f, δ, x). There is a version

of Newhouse’s inequality (224) for these invariants.

A.2.2. Local volume growth and entropy. The following partial inverse

to (224) is almost immediate:

(227) vl(f) 6 h(f, δ) + vl(f, δ).

Indeed, h(f, δ) counts the minimal number of the balls Bn
δ (x) covering Y , while

vl(f, δ) bounds the volume growth on each of these balls. As δ → 0, we obtain

the bound

(228) vl(f) 6 h(f) + v0
l (f).

Thus the inverse to the Newhouse inequality is satisfied if v0
l (f) = 0. Our first

goal is to establish the following result.

Theorem 15 ([53]). If f : Y → Y is C∞-smooth, then v0
l (f) = 0.

A.2.3. Local Ck-complexity growth. From now on we concentrate on bound-

ing from above the local volume growth vl(f, δ, x) for a given x ∈ Y . For this

purpose we define yet another entropy-like invariant hl,k(f, δ, x), which mea-

sures the “local Ck-complexity growth” in a δ-neighborhood of the orbit of x

(cf. [22], [54]):

(229) hl,k(f, δ, x) = sup
σl

lim sup
n→∞

1

n
logNk(f, σ

l, δ, x, n),

where σl : Ql → Y varies over all Ck-smooth mappings and Nk(f, σ
l, δ, x, n) is

the minimal number of k-cu’s ψj : Ql → Ql, whose images cover (σl)−1(Bn
δ (x)),

and for which f◦n ◦ σl ◦ ψj are k-cu’s.

An almost immediate fact is that

(230) vl(f, δ, x) 6 hl,k(f, δ, x).

Indeed, since f◦n ◦ σl ◦ ψj are k-cu’s, the l-volume of their image does not

exceed a certain constant depending only on l,m, and hence

(231) vl(f, σ
l, Bn

δ (x), n) 6 Om(Nk(f, σ
l, δ, x, n))

As n → ∞ in (222) and (229), the asymptotic constant disappears. Thus it

remains to bound from above hl,k(f, δ, x).
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Below the derivatives of f : Y → Y , and their norms, are defined via the

local coordinate charts on Y .

Proposition 90. Assume that for certain positive constants L,M the

inequalities

(232) ‖df‖ 6 L, max
s=2,...,k

‖dsf‖
1
s−1 6M

are satisfied. Then for each x ∈ Y and for each δ 6M−1, we have

(233) hl,k(f, δ, x) 6
l logL

k
+ log polym(k).

Proof. Using the local coordinate charts at the points x, f(x), f◦2(x), . . .

of the orbit of x under f , we replace iterations of f with compositions of a

non-autonomous sequence F of mappings fi : Bm
1 → Rm with fi(0) = 0, where

Bm
1 is the unit ball in Rm, centered at the origin.

Fix δ6M−1, and consider the concentric ball Bm
δ ⊂Bm

1 . Let η : Bm
1 →Bm

δ

be a linear contraction η(x) = δx. Instead of the sequence F of mappings fi,

we consider a sequence F̄ of δ-rescaled mappings f̄i = η−1 ◦ fi ◦ η : Bm
1 → Rm.

For the derivatives, we have dsf̄i = δs−1dsfi, and by the assumptions we get

(234) ||df̄i|| 6 L, max
s=2,...,k

||dsf̄i|| 6 1.

Thus δ-rescaling “kills” all the derivatives of fi, starting with the second one.

The first derivative (having a dynamical meaning) does not change.

We have to estimate the number N̄k,n := Nk(F̄, σ
l, 1, 0, n) which, by an

evident change of notation, is the minimal number of k-cu’s ψj : Ql → Ql,

whose images cover (σl)−1(B̄n
1 (0)), and for which f̄n ◦ f̄n−1 ◦ · · · ◦ f̄1 ◦ σl ◦ ψj

are k-cu’s.

We will prove via induction by n that

(235) N̄k,n ≤ L
nl
k Cn,

where C = polym(k) is the constant from Corollary 89. Assume that (235) is

valid for n. To prove it for n+ 1 we use Corollary 89. We apply it to g = f̄n+1

and to each k-cu ν of the form

(236) ν = f̄n ◦ f̄n−1 ◦ · · · ◦ f̄1 ◦ σl ◦ ψj ,

obtained in the n-th step. For each ν we get at most N = CL
l
k new k-cu’s

φq : Ql → Ql whose images cover (σl)−1(B̄n+1
1 (0)), and for which the compo-

sitions f̄n+1 ◦ ν ◦ φq are also k-cu’s. By the induction assumption, the number

N̄k,n of the k-cu’s ν is at most L
nl
k Cn. Therefore

(237) N̄k,n+1 6 N̄k,nN 6 N̄k,nCL
l
k 6 L

(n+1)l
k Cn+1.

This completes the induction, proving (235) for n ∈ N. Taking log and dividing

by n finishes the proof. �
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To finish the proof of Theorem 15 we should eliminate the extra term

log polym(k) in (233). We do this by replacing f by its iterate f◦q for some

sufficiently large q.

Let f be as in Proposition 90. For each q ∈ N, the first derivative of f◦q

is bounded by Lq. Denote by Mq a constant satisfying

(238) max
s=2,...,k

||dsf q||
1
s−1 6Mq.

The constants Mq can be estimated from L,M using Faà di Bruno formula

(see, e.g., [14]). We do not provide an explicit expression here since below, for

analytic f , we get it in a much easier way. Using the equality hl,k(f
◦q, δ, x) =

qhl,k(f, δ, x) and applying Proposition 90 to f◦q we obtain the following result,

which contains Theorem 15.

Corollary 91. For each δ 6 1/Mq , we have

(239) hl,k(f, δ, x) 6
l logL

k
+

log polym(k)

q
.

In particular, for q →∞ and δ → 0,

(240) lim
δ→0

hl,k(f, δ, x) 6
l logL

k
, v0

l (x) = 0.

A.2.4. Volume growth for analytic maps. Now, following [14], we show

how Corollary 91 can be used to provide an explicit bound for the local volume

growth and local entropy. Setting q(k) = Om(1) · k log k
l logL we immediately obtain

the following.

Corollary 92. For each δ ≤ δ(k) = 1
Mq(k)

, we have

(241) hl,k(f, δ, x) 6
2l logL

k
.

For C∞-functions f , Corollary 92 reduces the problem of estimating the

asymptotic behavior of hl,k(f, δ) as δ → 0 to the problem of estimating the

growth of Mq(k), i.e., the growth of the high-order derivatives of f◦q(k). We

find it explicitly for analytic f , referring the reader to [14], where a much more

general setting is presented.

Let Y ⊂ Rp be a compact m-dimensional real analytic submanifold, and

let f : Y → Y be a real analytic mapping. We assume that f is extendible

to a complex analytic mapping f̃ : U → Cp in a neighborhood U of Y in Cp
of size ρ. More accurately, for each point x ∈ Y , the complex polydisc at x

of radius ρ is contained in U . We assume that the norm ||f̃ || is bounded by

D in U , and the norm of its first derivative ||df̃ || is bounded there by L. The

following theorem immediately implies the statement about volume growth in

Theorem 5 since the volume of the image of a k-cu is universally bounded; the

statement about tail entropy follows similarly, but we omit the details.
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Theorem 16. Let f be as above and l = 1, . . . ,m. For every δ > 0, there

exists k ∈ N such that for every x ∈ Y , we have

(242) hl,k(f, δ, x) 6 Om(logL) · log | log δ|
| log δ|

.

In particular,

(243) vl(f, δ) 6 Om(logL) · log | log δ|
| log δ|

.

Proof. Since, by the assumptions, ||df̃ || 6 L, this complex mapping can

expand distances at most L times. Therefore, the q-th iterate f◦q is extendible

to at least a complex neighborhood Uq of Y of the size ρ
Lq , and it is bounded

there by D. Applying Cauchy formula, we conclude that for each x ∈ Y , we

have

(244)
∥∥∥dsf̃◦q∥∥∥ 6 Ds!ÅLq

ρ

ãs
, s = 0, 1, 2, . . . .

Therefore

(245)
∥∥∥dsf̃◦q∥∥∥1/s

6 D1/s · s · L
q

ρ
, s = 0, 1, 2, . . . .

In particular, for s = 0, 1, 2, . . . , k, we have

(246)
∥∥∥dsf̃◦q∥∥∥1/s

6
DkLq

ρ
= 2Om(k log k)

for k sufficiently big. Therefore Mq(k) = 2Om(k log k) (note that the difference

between the 1/s and 1/(s−1) power is absorbed into the asymptotic constant),

and Corollary 92 applies with δ = 2−Om(k log k). Solving for fixed δ, we see that

Corollary 92 applies with

(247) k = Ωm

Ç
| log δ|

log | log δ|

å
.

With this k, Corollary 92 gives

(248) hl,k(f, δ, x) 6
2l logL

k
= Om(logL) · log | log δ|

| log δ|
as claimed. �

Appendix B. Applications in diophantine geometry

For p ∈ P`(Q), we define H(p) to be maxi |pi| where p ∈ Z`+1 is a projec-

tive representative of p with gcd(p0, . . . ,p`) = 1. For x ∈ A`(Q), we define its

height to be the height of ι(x) for the standard embedding

(249) ι : A` → P`, ι(x1..`) = (1 : x1 : · · · : x`).

For a set X ⊂ P`(R), we denote

(250) X(Q, H) := {p ∈ X ∩ P(Q)` : H(p) 6 H},
and similarly for X ⊂ R`.
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In [9] Bombieri and Pila introduced a method for studying the quantity

#X(Q, H) as a function of H when X is the graph of a Cr (or C∞) smooth

function f : [0, 1] → R2. It turns out that two very different asymptotic

behaviors are obtained depending on whether the graph of f belongs to an

algebraic plane curve. The Yomdin-Gromov algebraic lemma has been used in

both of these directions, to generalize from graphs of functions to more general

sets. In Section B.1 we give a complex-cellular analog of the Bombieri-Pila

determinant method. We then present an application in the algebraic context

in Section B.2 and in the transcendental context in Section B.3.

B.1. The Bombieri-Pila method for complex cells. The classical Bombieri-

Pila method is based on a clever estimate for certain interpolation determinants

of a collection of functions, which is obtained using Taylor expansions. In

this section we develop a parallel theory over complex cells, replacing Taylor

expansions by Laurent expansions.

B.1.1. Interpolation determinants. Let µ∈N. Let f := (fj : U → R)j=1,...,µ

be a tuple of functions and p := (p1, . . . , pµ) ∈ Uµ a tuple of points. For minor

technical simplifications we will assume that f1 ≡ 1.

We define the interpolation determinant

(251) ∆(f ; p) := det(fi(pj))16i,j6µ.

Bombieri-Pila [9] give an estimate for ∆(f ; p) assuming that f have bounded

Cr norm (for sufficiently large r) and p are contained in a sufficiently small

ball. In our complex analytic analog the small ball will be replaced by a cell C

with a sufficiently wide δ-extension, f will be replaced by a tuple holomorphic

functions on Cδ and the Cr-norm will be replaced by the maximum norm in Cδ.

Let C be a complex cell, and let m 6 dimC denote the number of D-fibers.

Set

(252) Em :=
m

m+ 1
(m!)1/m.

Fix 0 < δ < 1/2, and let δ be given by δ in the D-coordinates and δEmµ
1+1/m

in the A,D◦ coordinates. We suppose that C admits a δ-extension.

Lemma 93. With C as above, we suppose that f1, . . . , fµ ∈ Ob(C
δ) with

diam(fi(C
δ),C) 6M and p1, . . . , pµ ∈ C. Then

(253) |∆(f ; p)| 6MµµO`(µ)δEmµ
1+1/m−O`(µ).

When m = 0, the bound above holds4 if we replace m = 0 by m = 1.

4In fact one can easily derive better estimates in this case, but this is not needed in this

paper.
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Proof. Since f1 ≡ 1, the interpolation determinant is unchanged if we

replace each fj by fj − const for j > 2. In this way we may assume without

loss of generality that ‖fi‖Cδ 6 M . We may also assume by rescaling that

M = 1.

Write a Laurent expansion

(254) fi(z) =

Ñ ∑
α∈Z`,|α|<Emµ1+1/m

ci,αz[α]

é
+Ri(z),

and note that by Proposition 29 we have |ci,α| < δposα and

‖Ri‖C 6
∑

|α|>Emµ1+1/m

δposα

6
∑

k>Emµ1+1/m

(2k + 1)`δk = O`(µ
2`)δEmµ

1+1/m
,

(255)

where the final two estimates are elementary and left to the reader. We ex-

pand the determinant ∆(f ,p) multilinearly into µO`(µ) determinants ∆I where

each fi is replaced by one of the summands in (254). We may consider only

those ∆I where each normalized monomial appears at most once; otherwise

the determinant has two identical columns. We claim that each such ∆I is

majorated in C by µO`(µ)δEmµ
1+1/m

.

Consider first the case that ∆I contains a residue Ri or one of the coef-

ficients ci,α where α contains a non-vanishing A,D◦ coordinate. Expand ∆I

into µ! summands. Each summand contains either a term Ri(pj) or ci,|α| as

above, and the estimate then follows from (255) or from our assumption on δ.

The remaining determinants ∆I involve only the m variables of type D,

which we assume for simplicity of the notation are given by z1..m. We expand

∆I into a µ! summands. Each summand is a product

(256) c1,α1z[α1] · · · cµ,αµz[αµ], α1, . . . ,αµ ∈ Nm

with distinct αj . By the estimate on the Laurent coefficients this summand

is bounded by δ
∑

i,j
αji . Let Lm(k) denote the number of monomials of degree

k in m variables. The minimal term δq will clearly be obtained if we choose

Lm(0) of the αjs of degree 0, Lm(1) of degree 1 and so on. Let ν be the

largest integer satisfying
∑ν
k=0 Lm(k) 6 µ. Then q >

∑ν
k=0 Lm(k) · k. Simple

computations give

Lm(k) =
km−1

(m− 1)!
+Om(km−2),

k∑
j=0

Lm(j) =
km

m!
+Om(km−1),

(257)

µ =
νm

m!
+O(νm−1), ν =(m!µ)1/m +O(1),

and finally q = Emµ
1+1/m −O(µ) as claimed. �
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Lemma 93 gives essentially the same estimate as the classical Bombieri-

Pila method, but with dimension m instead of dimC. The key point is that

for δ corresponding to {ρ}-extensions with ρ � 1, the D◦, A-coordinates of

δ have order 2−1/ρ (compared with order ρ for the D coordinates), which

allows us to produce cellular covers satisfying the conditions of Lemma 93.

Roughly one may say that the punctured discs and annuli that we produce

are so thin that they may be ignored for the purposes of the Bombieri-Pila

method. More accurately we have the following version of the refinement

theorem (Theorem 9).

Lemma 94. Let C1/2 be a (real) complex cell. Let µ ∈ N and 0 < δ < 1.

Then there exists a (real) cellular cover {fj : C
δj
j → C1/2} of size

(258) N =

poly`(µ log(1/δ)) · δ−2 dimC for complex covers,

poly`(µ log(1/δ)) · δ− dimC for real covers,

where each fj is a cellular translate map, and δj is defined as in Lemma 93

(for Cj).

If C1/2 varies in a definable family (and δ varies under the condition 0 <

δ < 1), then the cells Cj and maps fj can also be chosen from a single definable

family. If C is algebraic of complexity β, then Cj , fj are algebraic of complexity

poly`(β).

Proof. We begin by constructing, using the refinement theorem (Theo-

rem 9), a cellular cover {gj : C
{ρ}
j → C1/2} such that 2−1/ρ = O`(δ

Emµ1+1/m
)

holds for every m = 1, . . . ,dimC. The size of this cover is poly`(µ log(1/δ)).

We now fix some g = gj . It will be enough to construct a cellular cover

{fj : C
δj
j → C

{ρ}
j } as in the conclusion of the lemma. Since each D◦, A co-

ordinate already has the desired extension, we need only refine the D fibers

to achieve a δ-extension. This is elementary; after rescaling each D-fiber to

D(1) we cover D(1) (resp. (−1, 1)) by δ−2 (resp. δ−1) discs (resp. real discs)

of radius δ. �

B.1.2. Polynomial interpolation determinants. Let Λ ⊂ N` be a finite set,

and set d := maxα∈Λ |α| and µ := #Λ. For minor technical simplifications we

assume 0 ∈ ∆. Let f := (f1, . . . , f`) be a collection of functions with a common

domain U and p := (p1, . . . ,pµ) ∈ Uµ a collection of points. We define the

Λ-interpolation determinant

(259) ∆Λ(f ; p) := ∆(g; p), g := (fα : α ∈ Λ).

Basic linear algebra shows that for S ⊂ U the set f(S) ⊂ C` belongs to a

hypersurface {P = 0} with suppP ⊂ Λ if and only if ∆Λ(f ; p) vanishes for any

p ⊂ S of size µ.



238 GAL BINYAMINI and DMITRY NOVIKOV

The following is due to Bombieri and Pila [9].

Lemma 95. Let H ∈ N, and suppose H(f(pj)) 6 H for any j = 1, . . . , µ.

Then ∆Λ(f ; p) either vanishes or satisfies

(260) |∆Λ(f ; p)| > H−µd.

Proof. Let 0 < Qj 6 H denote the common denominator of f(pj). The

column corresponding to pj in ∆Λ(f ; p) consists of rational numbers with com-

mon denominator dividing Qdj . Factoring this common denominator from each

column we obtain a matrix with integer entries whose determinant is either

vanishing or an integer. In the latter case

�(261) |∆Λ(f ; p)| >
µ∏
j=1

Q−dj > H
−µd.

B.2. Rational points on algebraic hypersurfaces.

B.2.1. Previous work. Let X ⊂ P2(C) be an irreducible algebraic curve of

degree d. Let f : I → X be a Cr-smooth function with ‖f‖r 6 1, and write

Xf := f(I). Pila [39] proves, using a generalization of the method of [9], that

for a sufficiently large r = r(d), one has #Xf (Q, H) = Oε,d(H
2/d+ε) for any

ε > 0.

If one allows r = r(d,H), for instance if f is C∞-smooth, then the

Bombieri-Pila method can be pushed further to replace H2/d+ε by H2/d logkH

for some k > 0. The study of #X(Q, H) is therefore directly related to the Cr

parametrization complexity of X in the sense of the Yomdin-Gromov algebraic

lemma. Using an explicit parametrization construction Pila [43] proved that

#X(Q, H) 6 (6d)104dH2/d(logH)5.

In [26] Heath-Brown has developed a non-Archimedean version of the

Bombieri-Pila method and used it to derive the estimate

#X(Q, H) = Oε,d(H
2/d+ε).

This was later improved (in arbitrary dimension `) by Salberger [48] to

O`,d(H
2/d logH)

and very recently by Walsh [51] to O`,d(H
2/d).

For a general irreducible variety X ⊂ P(C)` of dimension m, Broberg [12,

Th. 1] (generalizing a result of Heath-Brown [26]) has proved that X(Q, H)

is contained in O`,d,ε(H
(m+1)d−1/m+ε) hypersurfaces {Pi = 0}, which have de-

grees O`,d,ε(1) and which do not contain X. Intersecting X with each of the

hypersurfaces one obtains varieties of dimension m− 1, and could potentially

proceed by induction to eventually obtain estimates on #X(Q, H). Marmon

[32] has recovered this result using the Bombieri-Pila method by appealing to

the Yomdin-Gromov algebraic lemma.
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B.2.2. Proof of Theorem 6. In this section we will prove Theorem 6 using

the complex-cellular version of the Bombieri-Pila method. We remark that a

result similar to Theorem 6 could probably also be proved by following the

argument of [32] and replacing the Yomdin-Gromov algebraic lemma by our

refined version.

We will work in the affine setting. Let ιj denote the j-th standard chart

x1..` → (· · · : xj : 1 : xj+1 : · · · ). If z = (z0 : · · · : z`) ∈ P`(C) with |zj |
maximal, then in the ιj-chart z corresponds to a point x ∈ P̄`, and moreover

H(z) = H(x). We assume without loss of generality that j = 0. Below, x

denotes the affine coordinates in this chart. It will suffice to count the points

of height H in P̄` ∩X0 where X0 := ι−1
0 (X).

We fix some degree-lexicographic monomial ordering on C[x1..`] and let

Λ := N` \ LT(I), where I ⊂ C[x1..`] denotes the ideal of X0 and LT(I) the

set of leading exponents of I with respect to the fixed ordering. Set Λ(k) :=

Λ ∩ {|α| 6 k}. Then µ(k) := #Λ(k) is the Hilbert function of X0. This

function eventually equals the Hilbert polynomial of I, and by Nesterenko’s

estimate [36] we have

(262) µ(k) >

Ç
k +m+ 1

m+ 1

å
−
Ç
k +m+ 1− d

m+ 1

å
= dkm/m! + polym(d)km−1.

We will apply the Bombieri-Pila method with Λ(k)-interpolation determinants.

Let Cδ be a complex cell as in Lemma 93 and f : Cδ → P
1/2
` ∩ X0 be a

cellular map. Let p ⊂ C be a µ-tuple of points satisfying H(f(pj)) 6 H for

j = 1, . . . , µ. Then by Lemmas 93 and 95 we have

(263) H−µk 6 |∆Λ(k)(f ; p)| 6 2µµO`(µ)δEmµ
1+1/m−O`(µ)

unless ∆Λ(k)(f ; p) = 0. Note that in the right-hand side of (263), Lemma 93

gives the estimate with m equal to the number of disc fibers in C (which is

at most dimC), and this implies the same estimate with m = dimX0. Thus

unless ∆Λ(k)(f1..`; p) = 0 we have, for k > polym(d),

− log δ <
O`(logµ) + k logH

Emµ1/m +O`(1)

<
k logH +O`(log k)

Emµ1/m +O`(1)
<
m+ 1

m
· k logH +O`(log k)

kd1/m(1 + polym(d)/k)1/m

< O`(1) +
m+ 1

m
· logH

d1/m
(1 + poly`(d)/k),

(264)

where we used µ(k) = poly`(k). Therefore, for

(265) δ = O`(1) ·H−
m+1
m

d−1/m(1+poly`(d)/k),
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we have ∆Λ(k)(f1..`; p) = 0 for any p as above, and [f(C)](Q, H) is therefore

contained in a hypersurface {P = 0} satisfying suppP ⊂ Λ(k). In particular,

P is of degree at most k and does not vanish identically on X0.

We use the CPT to construct a real cellular cover of R(P
1/2
` ∩X0) of size

poly`(d) admitting 1/2-extensions and then apply Lemma 94 to further refine

each of the cells to satisfy the conditions of Lemma 93. In this way we obtain

N = poly`(d) · δ−m poly`(µ log(1/δ))

= poly(d, k, logH) ·H(m+1)d−1/m(1+poly`(d)/k)
(266)

real cells, and applying the construction above to each of them produces the

required collection of hypersurfaces.

B.3. Rational points on transcendental sets.

B.3.1. Log-sets in diophantine applications of the Pila-Wilkie theorem. In

some of the most remarkable applications of the Pila-Wilkie theorem, particu-

larly those related to modular curves and more general Shimura varieties, it is

necessary to count rational points on sets that are definable in Ran,exp but not

in Ran. We briefly recall the most standard example coming from the universal

covers of modular curves.

Recall that the universal covering map j : H → SL2(Z)\H ' C can be

factored as a composition j(τ) = J(q) where q = e2πiτ and J(q) : D◦(1) → C
is meromorphic in a neighborhood of q = 0. We extend j and J as functions of

several variables coordinate-wise, and we denote by Ω ⊂ Hn the (coordinate-

wise) standard fundamental domain for j. In [46] a key step is the application

of the Pila-Wilkie theorem to sets of the form Y := Ω∩ j−1(X) where X ⊂ Cn
is an algebraic variety. This set is not (in general) subanalytic: it is of the form

Y = Ω∩ logA, where log(·) = (2πi)−1 loge(·) and A := D(1/2)∩J−1(X). Note

that since J is meromorphic in the closure of D(1/2), the set A is subanalytic,

so that Y is a log-set.

B.3.2. An interpolation result for logarithms of complex cells. Let Cδ/2 be

a complex cell and let n := dimC and m denote the number of fibers of type D.

Let f := (f0, . . . , fn) be a tuple of non-vanishing holomorphic functions on Cδ/2.

We write x0..n = log f0..n and denote X := x(C).

Recall that π1(C) ' Zn−m, so we may take α(fj) ∈ Zn−m for j = 0, . . . , n.

Then there exist m + 1 vectors γ0, . . . ,γm ∈ Zn+1 linearly independent over

Z and satisfying
∑n
j=0 γ

k
jα(fj) = 0 for every k = 0, . . . ,m. We write gk =∏

j f
γkj
j . Then g0, . . . ,gm are non-vanishing holomorphic functions on Cδ/2

with trivial associated monomials. Then the logarithms y0..m := log g0..m,

which are Z-linear combinations of the x-variables, are holomorphic univalued

functions in Cδ/2.
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Proposition 96. Let k,H ∈ N and δ > 0. Suppose that Cδ satisfies the

conditions of Lemma 93 with δ and µ ∼ km+1. If k = Ω`(1) and

(267) log δ < −Of (k
−1/m logH),

then X(Q, H) is contained in an algebraic hypersurface {P (y) = 0} of degree

at most k in Cn+1.

If Cδ, f vary over a definable family such that the type of C and the asso-

ciated monomials of f0..n are fixed, then the asymptotic constants can be taken

uniformly over the family.

Proof. Since y are fixed Z-linear combinations of x, we have H(y) =

Of (H(x)). Thus it will be enough to prove the statement for Y (Q, H) instead

of X(Q, H), where Y := y(C).

By the monomialization lemma (Lemma 17) the diameter of yj(C
δ) is

bounded in C for j = 0, . . . ,m by some quantity M = Of (1) that can be taken

uniform over definable families. We are thus in position to apply Lemma 93

with

(268) Λ(k) = {α ∈ Nm+1 : |α| 6 k}, µ(k) ∼ km+1.

Let p ⊂ C be a µ-tuple of points satisfying H(y(pj)) 6 H for j = 1, . . . , µ.

Then by Lemmas 93 and 95 we have

(269) H−µk 6 |∆Λ(k)(y; p)| 6MµµO`(µ)δEmµ
1+1/m−O`(µ)

unless ∆Λ(k)(x; p) = 0. In the former case we have

(270) log δ >
−Of (k logH)

k1+1/m −O`(1)
= −Of (k

−1/m logH).

Therefore, for δ satisfying (267), we have ∆Λ(k)(y; p) = 0 for any p as above,

and Y (Q, H) is indeed contained in a hypersurface of degree at most k in the

y-variables. �

Remark 97 (Logarithms in families). We remark that if gλ : C
1/2
λ → C\{0}

is a definable family of functions with trivial associated monomials, then log gλ :

Cλ → C is not necessarily definable (in Ran) as illustrated by the example

gλ ≡ λ for λ ∈ (0, 1]. However, if we define g̃λ = gλ/ ‖gλ‖Cλ , then log g̃λ is

definable. Indeed by the monomialization lemma (Lemma 17) we know that

wλ = log g̃λ(C) ⊂ D(M) for some uniformly bounded M . Then the graph

of a (univalued) branch of log g̃λ is definable, being one of the components of

the definable set ewλ = g̃λ(z) with w ∈ D(M) and z ∈ Cλ. (Note that the

exponential here is restricted to a compact set.)
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B.3.3. Proof of Proposition 5. We apply Corollary 35 to the subanalytic

set given by the total space X ⊂ [0, 1]K of the family {Xλ}, where we order the

parameter variables before the fiber variables. We obtain real cellular maps

fj : C
1/2
j → P

1/2
K such that fj(R+C

1/2
j ) ⊂ X and ∪jfj(R+Cj) = X. We may

also require by Remark 36 that each fj is compatible with the fiber variables

x1..`. It will be enough to prove the statement for each fj(R+Cj) separately,

so fix C = Cj and f = fj and assume X = f(R+C).

We view C as a subanalytic family of cells Cλ of length `. If the type of Cλ
has dimension strictly less than n, then we can take Y = X, so assume it has

dimension n. Below we let f0..n denote the f -pullback of some fixed n+1-tuple

of the variables x1..`. Note that the associated monomials α(fj) of fj on Cλ
are independent of λ. (It is obtained from the associated monomial of fj on C

by eliminating the λ variables.)

Let R = {fλ,θ : Cλ,θ → Cλ} denote the refinement family consisting of the

refinement cells of Cλ as in Lemma 94. We split R into subfamilies R(T) con-

sisting of the cells Cλ,θ of type T. According to Remark 51 the types T are those

obtained from the type of Cλ by possibly replacing some D◦, A fibers by D.

Fix some T, and let m denote the number of fibers of type D. The associated

monomial of f∗λ,θfj is constant over R(T): it is obtained from α(fj) by elimi-

nating those indices that correspond to fibers that were replaced by D in T.

We can thus apply Proposition 96 to f∗λ,θf0..n to deduce that if the cell

Cλ,θ admits δ/2 extension and if δ = H−OX(k−1/m), then

(271) [xλ,θ(Cλ,θ)](Q, H) ⊂ {P (yλ,θ) = 0}

for some polynomial P (yλ,θ) of degree k, where yλ,θ are some fixed Z-linear

combinations of xλ,θ := log(f∗λ,θf0..n) that are holomorphic in C
δ/2
λ,θ . Note that

yλ,θ does not necessarily depend definably on the parameters. However, the

normalized ỹλ,θ defined by replacing xλ,θ with their normalized versions x̃λ,θ
is definable according to Remark 97. For each fixed value of the parameters,

we have ỹλ,θ = yλ,θ + const and, in particular, the hypersurface {P (yλ,θ) = 0}
can be rewritten as a hypersurface {P̃ (ỹλ,θ) = 0} in the ỹλ,θ-variables.

We now define a family Ỹλ,θ,c with the parameter θ of R and the parameter

c encoding the coefficients of an arbitrary non-zero polynomial Pc of degree k,

(272) Ỹλ,θ,c := R(fλ,θ(Cλ,θ) ∩ {Pc(ỹλ,θ) = 0}).

For any λ, according to Lemma 94, we can choose a collection of

(273) N = poly`(k, δ
−1) = poly`(k) ·HOX(k−1/n)

cells Cλ,θj that admit δ-extensions, satisfy the conditions of Lemma 93, and

cover Cλ. For each of them there exists a polynomial Pcj (ỹλ,θj ) whose zeros
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contain [xλ,θ(Cλ,θ)](Q, H). The union over j = 1, . . . , N of log Ỹλ,θj ,cj thus

contains (logXλ)(Q, H).

Recall that Ỹ was constructed for some choice of n+ 1 of the coordinates

x1..`. We now repeat this construction to obtain Ỹ S for each such choice S. We

define a family {Ŷλ,µ}, with the parameter µ encoding the parameters (θS , cS)

for each choice of S, and the fiber given by

(274) Ŷλ,µ =
⋂
S

Ỹ S
λ,θS ,cS

.

As before, for every λ, there is a choice of N = poly`(k)HOX(k−1/n) parameters

µj such that the union of (log Ŷλ,µj )(Q, H) contains (logXλ)(Q, H).

If Ŷλ,µ has dimension n, then Xλ satisfies a polynomial equation of degree

k in log f0..n for every n + 1 tuple of coordinates f0..n among x1..`, and in this

case logXλ is contained in an algebraic variety of dimension n. Since Xλ has

pure dimension n, this implies that (logXλ)trans = ∅. Thus if we define Y by

removing from Ŷ any fibers of dimension n, the conditions of the proposition

are satisfied.

Appendix C. List of notation and definitions

The following table lists some of the main notation and definitions used

in this paper. We do not include the notation used in the two appendices.

Notation Meaning Def.

‖·‖U Maximum norm on U §1.1.1

‖·‖r Smooth r-norm (1)

(A,K)-mild Mild parametrization Def. 1

H(·) Height of rational point §1.4

X(Q, H) Points of height H in X

Xalg, Xtrans Algebraic and transcendental parts of X §1.4.2

Log-set Def. 4

D,D◦, A, ∗ Basic fibers types (27)

Fδ,F{ρ} Extensions of basic fibers (28), (29)

X� F Fibered dot-product (30)

O(U),Ob(U) Holomorphic (bounded) functions on U §2.2.1

C Complex cell Def. 7

Cδ,C{ρ} Extensions of cells Def. 8

RC,R+C (Positive) real part of a cell Def. 10

f : C→ Ĉ (Prepared) cellular map Def. 11

Compatible Def. 15

α(f) Associated monomial of f Def. 16

dist(·, ·;X) Distance in X §2.5
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Notation Meaning Def.

diam(A;X) The diameter of A in X

B(x, r;X) Ball of radius r around x

C×ν , Rν ν-cover of C Def. 23

C×ν,σ, Rν,σ Signed covers §2.6

z[α] Normalized monomial §3.2

P` Unit polydisc in C`
S(C) Skeleton of C Def. 39

VΓ(f) Voorhoeve index of f along Γ §5.5

Monomial cell Def. 52

Fi,q,Fi,q+ Clusters around yi Prop. 56

Weierstrass cell Def. 61

(p,M) domination Laurent domination property Def. 65

QC Positive quadrant of C §9.2

Iσ Inversion map on C

S`(ε) Polysector in C` (174)

B(ε) Sectorial extension of cube §10.1
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