Cichoń’s maximum

Abstract

Assuming four strongly compact cardinals, it is consistent that all entries in Cichoń’s diagram (apart from $\mathrm {add}(\mathcal {M})$ and $\mathrm {cof}(\mathcal {M})$, whose values are determined by the others) are pairwise different; more specifically,
$\aleph _1 < \mathrm{add}(\mathcal {N})$ $\lt \mathrm{cov}(\mathcal {N}) < \mathfrak {b} < \mathrm{non}(\mathcal {M}) < \mathrm{cov}(\mathcal {M}) < \mathfrak{d} < \mathrm{non}(\mathcal{N}) < \mathrm{cof}(\mathcal{N}) < 2^{\aleph _0}$.

Authors

Martin Goldstern

Institute of Discrete Mathematics and Geometry, TU Wien, Wien, Austria

Jakob Kellner

Institute of Discrete Mathematics and Geometry, TU Wien, Wien, Austria

Saharon Shelah

Einstein Institute of Mathematics, Givat Ram, Jerusalem 91904, Israel and Rutgers University, Piscataway, NJ, USA