Sharp $L^2$ estimates of the Schrödinger maximal function in higher dimensions

Abstract

We show that, for $n\geq 3$, $\lim_{t \to 0} e^{it\Delta}f(x) = f(x)$ holds almost everywhere for all $f \in H^s (\mathbb{R}^n)$ provided that $s>\frac{n}{2(n+1)}$. Due to a counterexample by Bourgain, up to the endpoint, this result is sharp and fully resolves a problem raised by Carleson. Our main theorem is a fractal $L^2$ restriction estimate, which also gives improved results on the size of the divergence set of the Schrödinger solutions, the Falconer distance set problem and the spherical average Fourier decay rates of fractal measures. The key ingredients of the proof include multilinear Kakeya estimates, decoupling and induction on scales.

  • [BCT] Go to document J. Bennett, A. Carbery, and T. Tao, "On the multilinear restriction and Kakeya conjectures," Acta Math., vol. 196, iss. 2, pp. 261-302, 2006.
    @ARTICLE{BCT,
      author = {Bennett, Jonathan and Carbery, Anthony and Tao, Terence},
      title = {On the multilinear restriction and {K}akeya conjectures},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {196},
      year = {2006},
      number = {2},
      pages = {261--302},
      issn = {0001-5962},
      mrclass = {42B20 (44A15 45P05 46E35)},
      mrnumber = {2275834},
      mrreviewer = {Loukas Grafakos},
      doi = {10.1007/s11511-006-0006-4},
      url = {https://doi.org/10.1007/s11511-006-0006-4},
      zblnumber = {1203.42019},
      }
  • [jB] Go to document J. Bourgain, "Some new estimates on oscillatory integrals," in Essays on Fourier analysis in Honor of Elias M. Stein, Princeton Univ. Press, Princeton, NJ, 1995, vol. 42, pp. 83-112.
    @INCOLLECTION{jB,
      author = {Bourgain, Jean},
      title = {Some new estimates on oscillatory integrals},
      booktitle = {Essays on {F}ourier analysis in Honor of {E}lias {M}. {S}tein},
      venue = {{P}rinceton, {NJ},
      1991},
      series = {Princeton Math. Ser.},
      volume = {42},
      pages = {83--112},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {1995},
      mrclass = {42B15 (42B20 47B38)},
      mrnumber = {1315543},
      mrreviewer = {Gary Sampson},
      zblnumber = {0840.42007},
      doi = {10.1515/9781400852949},
      }
  • [jB12] Go to document J. Bourgain, "On the Schrödinger maximal function in higher dimension," Tr. Mat. Inst. Steklova, vol. 280, iss. Ortogonal\cprime nye Ryady, Teoriya Priblizheniĭ i Smezhnye Voprosy, pp. 53-66, 2013.
    @ARTICLE{jB12,
      author = {Bourgain, Jean},
      title = {On the {S}chrödinger maximal function in higher dimension},
      journal = {Tr. Mat. Inst. Steklova},
      fjournal = {Trudy Matematicheskogo Instituta Imeni V. A. Steklova. Rossiĭskaya Akademiya Nauk},
      volume = {280},
      year = {2013},
      number = {Ortogonal\cprime nye Ryady, Teoriya Priblizheniĭ i Smezhnye Voprosy},
      pages = {53--66},
      issn = {0371-9685},
      mrclass = {42B20 (35J10 35Q41)},
      mrnumber = {3241836},
      mrreviewer = {Juan Luis Varona},
      doi = {10.1134/s0081543813010045},
      url = {https://doi.org/10.1134/s0081543813010045},
      zblnumber = {1291.35253},
      }
  • [jB16] Go to document J. Bourgain, "A note on the Schrödinger maximal function," J. Anal. Math., vol. 130, pp. 393-396, 2016.
    @ARTICLE{jB16,
      author = {Bourgain, Jean},
      title = {A note on the {S}chrödinger maximal function},
      journal = {J. Anal. Math.},
      fjournal = {Journal d'Analyse Mathématique},
      volume = {130},
      year = {2016},
      pages = {393--396},
      issn = {0021-7670},
      mrclass = {42B25 (35Q41)},
      mrnumber = {3574661},
      mrreviewer = {Manuel Alejandro Sanabria Garc\'{i}a},
      doi = {10.1007/s11854-016-0042-8},
      url = {https://doi.org/10.1007/s11854-016-0042-8},
      zblnumber = {1361.35151},
      }
  • [BD] Go to document J. Bourgain and C. Demeter, "The proof of the $l^2$ decoupling conjecture," Ann. of Math. (2), vol. 182, iss. 1, pp. 351-389, 2015.
    @ARTICLE{BD,
      author = {Bourgain, Jean and Demeter, Ciprian},
      title = {The proof of the {$l^2$} decoupling conjecture},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {182},
      year = {2015},
      number = {1},
      pages = {351--389},
      issn = {0003-486X},
      mrclass = {42B37 (11E76 46E30 53C40)},
      mrnumber = {3374964},
      mrreviewer = {G. V. Rozenblum},
      doi = {10.4007/annals.2015.182.1.9},
      url = {https://doi.org/10.4007/annals.2015.182.1.9},
      zblnumber = {1322.42014},
      }
  • [BG] Go to document J. Bourgain and L. Guth, "Bounds on oscillatory integral operators based on multilinear estimates," Geom. Funct. Anal., vol. 21, iss. 6, pp. 1239-1295, 2011.
    @ARTICLE{BG,
      author = {Bourgain, Jean and Guth, Larry},
      title = {Bounds on oscillatory integral operators based on multilinear estimates},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {21},
      year = {2011},
      number = {6},
      pages = {1239--1295},
      issn = {1016-443X},
      mrclass = {42B20},
      mrnumber = {2860188},
      mrreviewer = {Andrei K. Lerner},
      doi = {10.1007/s00039-011-0140-9},
      url = {https://doi.org/10.1007/s00039-011-0140-9},
      zblnumber = {1237.42010},
      }
  • [aC] Go to document A. Carbery, "Radial Fourier multipliers and associated maximal functions," in Recent Progress in Fourier Analysis, North-Holland, Amsterdam, 1985, vol. 111, pp. 49-56.
    @INCOLLECTION{aC,
      author = {Carbery, Anthony},
      title = {Radial {F}ourier multipliers and associated maximal functions},
      booktitle = {Recent Progress in {F}ourier Analysis},
      venue = {{E}l {E}scorial, 1983},
      series = {North-Holland Math. Stud.},
      volume = {111},
      pages = {49--56},
      publisher = {North-Holland, Amsterdam},
      year = {1985},
      mrclass = {42B15 (42B25)},
      mrnumber = {0848141},
      mrreviewer = {James E. Daly},
      doi = {10.1016/S0304-0208(08)70279-2},
      url = {https://doi.org/10.1016/S0304-0208(08)70279-2},
      zblnumber = {0632.42012},
      }
  • [lCar] Go to document L. Carleson, "Some analytic problems related to statistical mechanics," in Euclidean Harmonic Analysis, Springer, Berlin, 1980, vol. 779, pp. 5-45.
    @INCOLLECTION{lCar,
      author = {Carleson, Lennart},
      title = {Some analytic problems related to statistical mechanics},
      booktitle = {Euclidean Harmonic Analysis},
      venue = {{P}roc. {S}em., {U}niv. {M}aryland, {C}ollege {P}ark, {M}d., 1979},
      series = {Lecture Notes in Math.},
      volume = {779},
      pages = {5--45},
      publisher = {Springer, Berlin},
      year = {1980},
      mrclass = {82A05},
      mrnumber = {0576038},
      mrreviewer = {A. J. O'Connor},
      zblnumber = {0425.60091},
      doi = {10.1007/BFb0087666},
      }
  • [mC] Go to document M. G. Cowling, "Pointwise behavior of solutions to Schrödinger equations," in Harmonic Analysis, Springer, Berlin, 1983, vol. 992, pp. 83-90.
    @INCOLLECTION{mC,
      author = {Cowling, Michael G.},
      title = {Pointwise behavior of solutions to {S}chrödinger equations},
      booktitle = {Harmonic Analysis},
      venue = {{C}ortona, 1982},
      series = {Lecture Notes in Math.},
      volume = {992},
      pages = {83--90},
      publisher = {Springer, Berlin},
      year = {1983},
      mrclass = {34B25 (47B38)},
      mrnumber = {0729347},
      mrreviewer = {J. Wiesner},
      doi = {10.1007/BFb0069152},
      url = {https://doi.org/10.1007/BFb0069152},
      zblnumber = {0523.47015},
      }
  • [DK] Go to document B. E. J. Dahlberg and C. E. Kenig, "A note on the almost everywhere behavior of solutions to the Schrödinger equation," in Harmonic Analysis, Springer, Berlin-New York, 1982, vol. 908, pp. 205-209.
    @INCOLLECTION{DK,
      author = {Dahlberg, Björn E. J. and Kenig, Carlos E.},
      title = {A note on the almost everywhere behavior of solutions to the {S}chrödinger equation},
      booktitle = {Harmonic Analysis},
      venue = {{M}inneapolis, {M}inn., 1981},
      series = {Lecture Notes in Math.},
      volume = {908},
      pages = {205--209},
      publisher = {Springer, Berlin-New York},
      year = {1982},
      mrclass = {35B99 (35J10)},
      mrnumber = {0654188},
      mrreviewer = {Denise Huet},
      zblnumber = {0519.35022},
      doi = {10.1007/BFb0093289},
      }
  • [DG] C. Demeter and S. Guo, Schrödinger maximal function estimates via the pseudoconformal transformation, 2016.
    @MISC{DG,
      author = {Demeter, C. and Guo, S.},
      title = {Schrödinger maximal function estimates via the pseudoconformal transformation},
      year = {2016},
      arxiv = {1608.07640},
      zblnumber = {},
      }
  • [DGL] Go to document X. Du, L. Guth, and X. Li, "A sharp Schrödinger maximal estimate in $\Bbb R^2$," Ann. of Math. (2), vol. 186, iss. 2, pp. 607-640, 2017.
    @ARTICLE{DGL,
      author = {Du, Xiumin and Guth, Larry and Li, Xiaochun},
      title = {A sharp {S}chrödinger maximal estimate in {$\Bbb R^2$}},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {186},
      year = {2017},
      number = {2},
      pages = {607--640},
      issn = {0003-486X},
      mrclass = {42B15 (35Q41 42B37)},
      mrnumber = {3702674},
      mrreviewer = {Huoxiong Wu},
      doi = {10.4007/annals.2017.186.2.5},
      url = {https://doi.org/10.4007/annals.2017.186.2.5},
      zblnumber = {1378.42011},
      }
  • [DGLZ] Go to document X. Du, L. Guth, X. Li, and R. Zhang, "Pointwise convergence of Schrödinger solutions and multilinear refined Strichartz estimates," Forum Math. Sigma, vol. 6, p. 14, 2018.
    @ARTICLE{DGLZ,
      author = {Du, Xiumin and Guth, Larry and Li, Xiaochun and Zhang, Ruixiang},
      title = {Pointwise convergence of {S}chrödinger solutions and multilinear refined {S}trichartz estimates},
      journal = {Forum Math. Sigma},
      fjournal = {Forum of Mathematics. Sigma},
      volume = {6},
      year = {2018},
      pages = {e14, 18},
      issn = {2050-5094},
      mrclass = {42B37 (42B15 42B25)},
      mrnumber = {3842310},
      mrreviewer = {Christoph Kriegler},
      doi = {10.1017/fms.2018.11},
      url = {https://doi.org/10.1017/fms.2018.11},
      zblnumber = {1395.42063},
      }
  • [DGOWWZ] X. Du, L. Guth, Y. Ou, H. Wang, B. Wilson, and R. Zhang, Weighted restriction estimates and application to Falconer distance set problem.
    @MISC{DGOWWZ,
      author = {Du, Xiumin and Guth, Larry and Ou, Y. and Wang, H. and Wilson, B. and Zhang, R.},
      title = {Weighted restriction estimates and application to {F}alconer distance set problem},
      note = {{\em Amer. J. Math.} (to appear)},
      arxiv = {1802.10186},
      }
  • [DKWZ] X. Du, J. Kim, H. Wang, and R. Zhang, Lower bounds for estimates of the Schrödinger maximal function, 2019.
    @MISC{DKWZ,
      author = {Du, Xiumin and Kim, J. and Wang, H. and Zhang, R.},
      title = {Lower bounds for estimates of the {S}chrödinger maximal function},
      year = {2019},
      arxiv = {1902.01430},
      zblnumber = {},
      }
  • [F] Go to document K. J. Falconer, "On the Hausdorff dimensions of distance sets," Mathematika, vol. 32, iss. 2, pp. 206-212 (1986), 1985.
    @ARTICLE{F,
      author = {Falconer, K. J.},
      title = {On the {H}ausdorff dimensions of distance sets},
      journal = {Mathematika},
      fjournal = {Mathematika. A Journal of Pure and Applied Mathematics},
      volume = {32},
      year = {1985},
      number = {2},
      pages = {206--212 (1986)},
      issn = {0025-5793},
      mrclass = {28A75 (28A05)},
      mrnumber = {0834490},
      mrreviewer = {S. J. Taylor},
      doi = {10.1112/S0025579300010998},
      url = {https://doi.org/10.1112/S0025579300010998},
      zblnumber = {0605.28005},
      }
  • [G] Go to document L. Guth, "A short proof of the multilinear Kakeya inequality," Math. Proc. Cambridge Philos. Soc., vol. 158, iss. 1, pp. 147-153, 2015.
    @ARTICLE{G,
      author = {Guth, Larry},
      title = {A short proof of the multilinear {K}akeya inequality},
      journal = {Math. Proc. Cambridge Philos. Soc.},
      fjournal = {Mathematical Proceedings of the Cambridge Philosophical Society},
      volume = {158},
      year = {2015},
      number = {1},
      pages = {147--153},
      issn = {0305-0041},
      mrclass = {42B08 (26D15)},
      mrnumber = {3300318},
      mrreviewer = {Timothy Michael Wertz},
      doi = {10.1017/S0305004114000589},
      url = {https://doi.org/10.1017/S0305004114000589},
      zblnumber = {1371.42007},
      }
  • [G1] Go to document L. Guth, "A restriction estimate using polynomial partitioning," J. Amer. Math. Soc., vol. 29, iss. 2, pp. 371-413, 2016.
    @ARTICLE{G1,
      author = {Guth, Larry},
      title = {A restriction estimate using polynomial partitioning},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {29},
      year = {2016},
      number = {2},
      pages = {371--413},
      issn = {0894-0347},
      mrclass = {42B20},
      mrnumber = {3454378},
      mrreviewer = {Bl. Sendov},
      doi = {10.1090/jams827},
      url = {https://doi.org/10.1090/jams827},
      zblnumber = {1342.42010},
      }
  • [G2] Go to document L. Guth, "Restriction estimates using polynomial partitioning II," Acta Math., vol. 221, iss. 1, pp. 81-142, 2018.
    @ARTICLE{G2,
      author = {Guth, Larry},
      title = {Restriction estimates using polynomial partitioning {II}},
      journal = {Acta Math.},
      volume = {221},
      year = {2018},
      number = {1},
      pages = {81--142},
      ISSN = {0001-5962},
      MRCLASS = {42B20},
      MRNUMBER = {3877019},
      DOI = {10.4310/ACTA.2018.v221.n1.a3},
      URL = {https://doi.org/10.4310/ACTA.2018.v221.n1.a3},
      zblnumber = {06983625},
     }
  • [KPV] Go to document C. E. Kenig, G. Ponce, and L. Vega, "Oscillatory integrals and regularity of dispersive equations," Indiana Univ. Math. J., vol. 40, iss. 1, pp. 33-69, 1991.
    @ARTICLE{KPV,
      author = {Kenig, Carlos E. and Ponce, Gustavo and Vega, Luis},
      title = {Oscillatory integrals and regularity of dispersive equations},
      journal = {Indiana Univ. Math. J.},
      fjournal = {Indiana University Mathematics Journal},
      volume = {40},
      year = {1991},
      number = {1},
      pages = {33--69},
      issn = {0022-2518},
      mrclass = {35J10 (35Q55 35S30)},
      mrnumber = {1101221},
      mrreviewer = {Peter R. Popivanov},
      doi = {10.1512/iumj.1991.40.40003},
      url = {https://doi.org/10.1512/iumj.1991.40.40003},
      zblnumber = {0738.35022},
      }
  • [sL] Go to document S. Lee, "On pointwise convergence of the solutions to Schrödinger equations in $\Bbb R^2$," Int. Math. Res. Not., vol. 2006, iss. 1, p. I, 2006.
    @ARTICLE{sL,
      author = {Lee, Sanghyuk},
      title = {On pointwise convergence of the solutions to {S}chrödinger equations in {$\Bbb R^2$}},
      journal = {Int. Math. Res. Not.},
      fjournal = {International Mathematics Research Notices},
      volume = {2006},
      year={2006},
      number = {1},
      pages = {Art. ID 32597, 21},
      issn = {1073-7928},
      mrclass = {35Q40 (35J10)},
      mrnumber = {2264734},
      mrreviewer = {Mathieu Lewin},
      zblnumber = {1131.35306},
      doi = {10.1155/IMRN/2006/32597},
      }
  • [Liu] Go to document A. Iosevich and B. Liu, "Pinned distance problem, slicing measures, and local smoothing estimates," Trans. Amer. Math. Soc., vol. 371, iss. 6, pp. 4459-4474, 2019.
    @ARTICLE{Liu,
      author = {Iosevich, Alex and Liu, Bochen},
      title = {Pinned distance problem, slicing measures, and local smoothing estimates},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {371},
      year = {2019},
      number = {6},
      pages = {4459--4474},
      issn = {0002-9947},
      mrclass = {28A75 (42B20)},
      mrnumber = {3917228},
      doi = {10.1090/tran/7693},
      url = {https://doi.org/10.1090/tran/7693},
      zblnumber = {07031954},
      }
  • [LR] Go to document R. Lucà and K. M. Rogers, "Average decay of the Fourier transform of measures with applications," J. Eur. Math. Soc. (JEMS), vol. 21, iss. 2, pp. 465-506, 2019.
    @ARTICLE{LR,
      author = {Lucà, Renato and Rogers, Keith M.},
      title = {Average decay of the {F}ourier transform of measures with applications},
      journal = {J. Eur. Math. Soc. (JEMS)},
      fjournal = {Journal of the European Mathematical Society (JEMS)},
      volume = {21},
      year = {2019},
      number = {2},
      pages = {465--506},
      issn = {1435-9855},
      mrclass = {42B15 (28A80)},
      mrnumber = {3896208},
      doi = {10.4171/JEMS/842},
      url = {https://doi.org/10.4171/JEMS/842},
      zblnumber = {07023651},
      }
  • [LR17] Go to document R. Lucà and K. M. Rogers, "Coherence on fractals versus pointwise convergence for the Schrödinger equation," Comm. Math. Phys., vol. 351, iss. 1, pp. 341-359, 2017.
    @ARTICLE{LR17,
      author = {Lucà, Renato and Rogers, Keith M.},
      title = {Coherence on fractals versus pointwise convergence for the {S}chrödinger equation},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {351},
      year = {2017},
      number = {1},
      pages = {341--359},
      issn = {0010-3616},
      mrclass = {35Q40 (28A80)},
      mrnumber = {3613507},
      mrreviewer = {Joseph L. Shomberg},
      doi = {10.1007/s00220-016-2722-8},
      url = {https://doi.org/10.1007/s00220-016-2722-8},
      zblnumber = {1375.35422},
      }
  • [LR17a] Go to document R. Lucà and K. M. Rogers, "A note on pointwise convergence for the Schrödinger equation," Math. Proc. Cambridge Philos. Soc., vol. 166, iss. 2, pp. 209-218, 2019.
    @ARTICLE{LR17a,
      author = {Lucà, Renato and Rogers, Keith M.},
      title = {A note on pointwise convergence for the {S}chrödinger equation},
      journal = {Math. Proc. Cambridge Philos. Soc.},
      fjournal = {Mathematical Proceedings of the Cambridge Philosophical Society},
      volume = {166},
      year = {2019},
      number = {2},
      pages = {209--218},
      issn = {0305-0041},
      mrclass = {28A78 (35Q41)},
      mrnumber = {3903115},
      doi = {10.1017/S0305004117000743},
      url = {https://doi.org/10.1017/S0305004117000743},
      zblnumber = {07036806},
      }
  • [M04] Go to document P. Mattila, "Hausdorff dimension, projections, and the Fourier transform," Publ. Mat., vol. 48, iss. 1, pp. 3-48, 2004.
    @ARTICLE{M04,
      author = {Mattila, Pertti},
      title = {Hausdorff dimension, projections, and the {F}ourier transform},
      journal = {Publ. Mat.},
      fjournal = {Publicacions Matemàtiques},
      volume = {48},
      year = {2004},
      number = {1},
      pages = {3--48},
      issn = {0214-1493},
      mrclass = {28A80 (37C45 42B10)},
      mrnumber = {2044636},
      mrreviewer = {Peter R. Massopust},
      doi = {10.5565/PUBLMAT_48104_01},
      url = {https://doi.org/10.5565/PUBLMAT_48104_01},
      zblnumber = {1049.28007},
      }
  • [MVV] Go to document A. Moyua, A. Vargas, and L. Vega, "Schrödinger maximal function and restriction properties of the Fourier transform," Internat. Math. Res. Notices, iss. 16, pp. 793-815, 1996.
    @ARTICLE{MVV,
      author = {Moyua, A. and Vargas, A. and Vega, L.},
      title = {Schrödinger maximal function and restriction properties of the {F}ourier transform},
      journal = {Internat. Math. Res. Notices},
      fjournal = {International Mathematics Research Notices},
      year = {1996},
      number = {16},
      pages = {793--815},
      issn = {1073-7928},
      mrclass = {42B25 (35B10 35J10)},
      mrnumber = {1413873},
      mrreviewer = {Cristian E. Gutiérrez},
      doi = {10.1155/S1073792896000499},
      url = {https://doi.org/10.1155/S1073792896000499},
      zblnumber = {0868.35024},
      }
  • [SS] Go to document P. Sjögren and P. Sjölin, "Convergence properties for the time-dependent Schrödinger equation," Ann. Acad. Sci. Fenn. Ser. A I Math., vol. 14, iss. 1, pp. 13-25, 1989.
    @ARTICLE{SS,
      author = {Sjögren, Peter and Sjölin, Per},
      title = {Convergence properties for the time-dependent {S}chrödinger equation},
      journal = {Ann. Acad. Sci. Fenn. Ser. A I Math.},
      fjournal = {Annales Academiae Scientiarum Fennicae. Series A I. Mathematica},
      volume = {14},
      year = {1989},
      number = {1},
      pages = {13--25},
      issn = {0066-1953},
      mrclass = {35J10},
      mrnumber = {0997967},
      mrreviewer = {Denise Huet},
      doi = {10.5186/aasfm.1989.1428},
      url = {https://doi.org/10.5186/aasfm.1989.1428},
      zblnumber = {0629.35055},
      }
  • [pS] Go to document P. Sjölin, "Regularity of solutions to the Schrödinger equation," Duke Math. J., vol. 55, iss. 3, pp. 699-715, 1987.
    @ARTICLE{pS,
      author = {Sjölin, Per},
      title = {Regularity of solutions to the {S}chrödinger equation},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {55},
      year = {1987},
      number = {3},
      pages = {699--715},
      issn = {0012-7094},
      mrclass = {35B65 (35D10 35J10)},
      mrnumber = {0904948},
      mrreviewer = {Ya. A. Roĭtberg},
      doi = {10.1215/S0012-7094-87-05535-9},
      url = {https://doi.org/10.1215/S0012-7094-87-05535-9},
      zblnumber = {0631.42010},
      }
  • [TV] Go to document T. Tao and A. Vargas, "A bilinear approach to cone multipliers. I. Restriction estimates," Geom. Funct. Anal., vol. 10, iss. 1, pp. 185-215, 2000.
    @ARTICLE{TV,
      author = {Tao, T. and Vargas, A.},
      title = {A bilinear approach to cone multipliers. {I}. {R}estriction estimates},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {10},
      year = {2000},
      number = {1},
      pages = {185--215},
      issn = {1016-443X},
      mrclass = {42B15 (42B25)},
      mrnumber = {1748920},
      mrreviewer = {Andreas Seeger},
      doi = {10.1007/s000390050006},
      url = {https://doi.org/10.1007/s000390050006},
      zblnumber = {0949.42012},
      }
  • [lV] Go to document L. Vega, "Schrödinger equations: pointwise convergence to the initial data," Proc. Amer. Math. Soc., vol. 102, iss. 4, pp. 874-878, 1988.
    @ARTICLE{lV,
      author = {Vega, Luis},
      title = {Schrödinger equations: pointwise convergence to the initial data},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the American Mathematical Society},
      volume = {102},
      year = {1988},
      number = {4},
      pages = {874--878},
      issn = {0002-9939},
      mrclass = {35J10},
      mrnumber = {0934859},
      mrreviewer = {E. Müller-Pfeiffer},
      doi = {10.2307/2047326},
      url = {https://doi.org/10.2307/2047326},
      zblnumber = {0654.42014},
      }
  • [W] Go to document T. Wolff, "Decay of circular means of Fourier transforms of measures," Internat. Math. Res. Notices, iss. 10, pp. 547-567, 1999.
    @ARTICLE{W,
      author = {Wolff, Thomas},
      title = {Decay of circular means of {F}ourier transforms of measures},
      journal = {Internat. Math. Res. Notices},
      fjournal = {International Mathematics Research Notices},
      year = {1999},
      number = {10},
      pages = {547--567},
      issn = {1073-7928},
      mrclass = {42B10 (42B25)},
      mrnumber = {1692851},
      mrreviewer = {Steen Pedersen},
      doi = {10.1155/S1073792899000288},
      url = {https://doi.org/10.1155/S1073792899000288},
      zblnumber = {0930.42006},
      }

Authors

Xiumin Du

University of Maryland, College Park, MD

Ruixiang Zhang

University of Wisconsin-Madison, Madison, WI