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Sharp L2 estimates of the Schrödinger
maximal function in higher dimensions

By Xiumin Du and Ruixiang Zhang

Dedicated to the memory of Jean Bourgain

Abstract

We show that, for n ≥ 3, limt→0 e
it∆f(x) = f(x) holds almost every-

where for all f ∈ Hs(Rn) provided that s > n
2(n+1)

. Due to a counterexam-

ple by Bourgain, up to the endpoint, this result is sharp and fully resolves

a problem raised by Carleson. Our main theorem is a fractal L2 restriction

estimate, which also gives improved results on the size of the divergence

set of the Schrödinger solutions, the Falconer distance set problem and the

spherical average Fourier decay rates of fractal measures. The key ingre-

dients of the proof include multilinear Kakeya estimates, decoupling and

induction on scales.

1. Introduction

The solution to the free Schrödinger equation

(1.1)

iut −∆u = 0, (x, t) ∈ Rn × R,
u(x, 0) = f(x), x ∈ Rn

is given by

eit∆f(x) = (2π)−n
∫
ei(x·ξ+t|ξ|

2)f̂(ξ) dξ.

In [8], Carleson proposed the problem of identifying the optimal s for

which limt→0 e
it∆f(x) = f(x) almost everywhere whenever f ∈ Hs(Rn), and

he proved convergence for s ≥ 1
4 when n = 1. Dahlberg and Kenig [10]

then showed that this result is sharp. The higher dimensional case has since

been studied by several authors [7], [9], [29], [31], [2], [27], [30], [22], [3], [23],

[11], [4], [25], [12], [13]. In particular, almost everywhere convergence holds if

s > 1
2 −

1
4n when n ≥ 2 (n = 2 due to Lee [22] and n ≥ 2 due to Bourgain [3]).

Keywords: Fourier restriction, weighted restriction, Schrödinger equation, Schrödinger

maximal function, decoupling, refined Strichartz

AMS Classification: Primary: 42B20, 42B37.

c© 2019 Department of Mathematics, Princeton University.

837

http://annals.math.princeton.edu/about
https://doi.org/10.4007/annals.2019.189.3.4


838 X. DU and R. ZHANG

Recently Bourgain [4] gave counterexamples showing that convergence can fail

if s < n
2(n+1) . Since then, Guth, Li and the first author [12] improved the

sufficient condition when n = 2 to the almost sharp range s > 1
3 . In higher

dimensions (n ≥ 3), Guth, Li and the authors [13] proved the convergence for

s > n+1
2(n+2) .

In this article, we establish the following theorem, which is sharp up to

the endpoint.

Theorem 1.1. Let n ≥ 3. For every f ∈ Hs(Rn) with s > n
2(n+1) ,

limt→0 e
it∆f(x) = f(x) almost everywhere.

We use Bm(x, r) to represent a ball centered at x with radius r in Rm. By

a standard smooth approximation argument, Theorem 1.1 is a consequence of

the following estimate of the Schrödinger maximal function.

Theorem 1.2. Let n ≥ 3. For any s > n
2(n+1) , the following bound holds.

For any function f ∈ Hs(Rn),

(1.2)

∥∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥∥
L2(Bn(0,1))

≤ Cs‖f‖Hs(Rn).

Via a localization argument, Littlewood-Paley decomposition and para-

bolic rescaling, Theorem 1.2 is reduced to the following theorem, which we will

prove in this paper.

Theorem 1.3. Let n ≥ 3. For any ε > 0, there exists a constant Cε such

that

(1.3)

∥∥∥∥∥ sup
0<t≤R

|eit∆f |
∥∥∥∥∥
L2(Bn(0,R))

≤ CεR
n

2(n+1)
+ε‖f‖2

holds for all R ≥ 1 and all f with suppf̂ ⊂ A(1) = {ξ ∈ Rn : |ξ| ∼ 1}.
Remark 1.4. When n = 1, 2, our proof of Theorem 1.3 remains valid

and recovers the almost sharp results of the pointwise convergence problem.

However, the sharp L2 estimates of the Schrödinger maximal function are not

as strong as the previous sharp Lp estimates in the cases n = 1, 2:

(1.4)

∥∥∥∥∥sup
t>0
|eit∆f |

∥∥∥∥∥
L4(R)

≤ C‖f‖H1/4(R) [21, Kenig-Ponce-Vega]

and

(1.5)

∥∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥∥
L3(R2)

≤ Cs‖f‖Hs(R2) ∀s > 1

3
[12, D.-Guth-Li]. 1

1The global L3 estimate (1.5) follows easily from the local L3 estimate in [12], via a

localization argument using wave packet decomposition.
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Testing with the standard examples used in restriction theory seems to suggest

that the following estimate holds for all n ≥ 1:

(1.6)

∥∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥∥
L

2(n+1)
n (Rn)

≤ C‖f‖
H

n
2(n+1) (Rn)

.

From (1.4) and (1.5) we see that (1.6) is true for n = 1 and is true

up to the endpoint for n = 2. However, the estimate (1.6) fails in higher

dimensions. In a recent work of Kim, Wang and the authors [15], by looking

at Bourgain’s counterexample [4] in every intermediate dimension, we showed

that the following local estimate,

(1.7)

∥∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥∥
Lp(Bn(0,1))

≤ Cs‖f‖Hs(Rn) ∀s > n

2(n+ 1)
,

fails if p > p0 := 2 + 4
(n−1)(n+2) . Note that 2(n+1)

n > p0 when n ≥ 3 and

henceforth (1.6) fails. To our best knowledge, the following two problems are

still open when n ≥ 3: determine the optimal p = p(n) for which we can

have (1.7), and identify the optimal s = s(n, p) for which (1.7) with p > 2

fixed holds.

Remark 1.5. In our proof of (1.3), no typical L2 arguments such as

Plancherel and TT ∗ are invoked to take advantage of the particular use of the

L2 norm on the left-hand side of (1.3). In fact, the L2 norm will be converted

to Lp norm (see Proposition 3.1), where p = 2(n+1)
n−1 is the sharp exponent for

the l2 decoupling theorem in dimension n. The L2 is used on the left-hand

side of (1.3) mostly because the numerology adds up favorably for that space.

By lattice L-cubes we mean cubes of the form l + [0, L]n with l ∈ (LZ)n.

Our main result is the following fractal L2 restriction estimate, from which

Theorem 1.3 follows.

Theorem 1.6. Let n ≥ 1. For any ε > 0, there exists a constant Cε
such that the following holds for all R ≥ 1 and all f with suppf̂ ⊂ Bn(0, 1).

Suppose that X =
⋃
k Bk is a union of lattice unit cubes in Bn+1(0, R) and

each lattice R1/2-cube intersecting X contains ∼ λ many unit cubes in X . Let

1 ≤ α ≤ n+ 1 and γ be given by

(1.8) γ := max
Bn+1(x′,r)⊂Bn+1(0,R)

x′∈Rn+1,r≥1

#{Bk : Bk ⊂ B(x′, r)}
rα

.

Then

(1.9) ‖eit∆f‖L2(X) ≤ Cεγ
2

(n+1)(n+2)λ
n

(n+1)(n+2)R
α

(n+1)(n+2)
+ε‖f‖2.
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Note that in Theorem 1.6, λ ≤ γRα/2. As a direct result of Theorem 1.6,

there holds a slightly weaker fractal L2 restriction estimate. It has a relatively

simpler statement:

Corollary 1.7. Let n ≥ 1. For any ε > 0, there exists a constant Cε
such that the following holds for all R ≥ 1 and all f with suppf̂ ⊂ Bn(0, 1).

Suppose that X =
⋃
k Bk is a union of lattice unit cubes in Bn+1(0, R). Let

1 ≤ α ≤ n+ 1 and γ be given by

(1.10) γ := max
Bn+1(x′,r)⊂Bn+1(0,R)

x′∈Rn+1,r≥1

#{Bk : Bk ⊂ B(x′, r)}
rα

.

Then

(1.11) ‖eit∆f‖L2(X) ≤ Cεγ
1

n+1R
α

2(n+1)
+ε‖f‖2.

We will see that Corollary 1.7 is sufficient to derive the sharp L2 estimate

of the Schrödinger maximal function (Theorem 1.3) and all other applications

in Section 2. This corollary can also be proved directly by a slightly simpler ar-

gument. The case n = 1 of Corollary 1.7 can be recovered using the ingredients

in Wolff’s paper [32]. See Section 3.3 for a discussion.

Nevertheless, Theorem 1.6 has two advantages compared to Corollary 1.7.

Firstly, it gives us a better L2 restriction estimate if the set X of unit cubes

is fairly sparse at the scale R1/2. Secondly, it tells us some geometric in-

formation about a set X of unit cubes when ‖eit∆f‖L2(X) is comparable to

‖eit∆f‖L2(B(0,R)). For example, taking α = n+ 1 (hence γ . 1), we have

Corollary 1.8. Let n ≥ 1. Suppose that X =
⋃
k Bk is a union of lattice

unit cubes in Bn+1(0, R) and each lattice R1/2-cube intersecting X contains ∼ λ
many unit cubes in X . Suppose there is a function f with suppf̂ ⊂ Bn(0, 1)

and ‖f‖2 6= 0 such that ‖eit∆f‖L2(X) & R
1/2‖f‖2. Then λ ' R

n+1
2 .

As a remark, the scale R1/2 in Corollary 1.8 is the largest one can have.

Indeed, with the assumption of the corollary, the unit cubes in X do not have

to almost fill Rβ-cubes completely for β > 1/2. One can see this from the

Knapp example where we only have one wave packet.

To prove our main result, Theorem 1.6, we will use a broad-narrow anal-

ysis, which has similar spirit as the techniques in the work of Bourgain-Guth

[6], Bourgain [3], Bourgain-Demeter [5] and Guth [19].

In the broad case, we can exploit the transversality and apply the multi-

linear refined Strichartz estimate, which is a result obtained by Guth, Li and

the authors in [13]. (See [12], [14], [13] for applications of the refined Strichartz

estimate.) In the narrow case, we use the l2 decoupling theorem of Bourgain-

Demeter [5] in a lower dimension and perform induction on scales. The way we
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do induction has its roots in the proof of the linear refined Strichartz estimate,

due to Guth, Li and the first author (essentially proved in [12] — see [13] for

the statement in the general setting).

Our method is related to Bourgain’s in [3], where he has a similar broad-

narrow analysis. (Here we have the size of the small ball being K2 instead of

K as in [3] for a technical issue similar to what one has in [5], [19].) He applied

multilinear restriction to control the broad part in the sharp range s > n
2(n+1)

(except the endpoint). He speculated from this that the above range of s

might be sharp. (See the end of the introduction in [4].) In [3] the narrow part

was handled following the general approach from [6], which gives non-sharp

estimates. Historically, one could view the present non-endpoint solution to

Carleson’s problem as building on [3], providing a subtler way of handling the

narrow part and proving Corollary 1.7. For the stronger Theorem 1.6 and

Corollary 1.8, one needs a different ingredient, namely, the multilinear refined

Strichartz in [13], to handle the broad part.

In Section 2 we show how Corollary 1.7 and Theorem 1.3 follow from The-

orem 1.6, and we also present applications of Theorem 1.6 to other problems,

bounding the size of the divergence set of the Schrödinger solutions (Theo-

rem 2.4), the Falconer distance set problem (Theorems 2.6 and 2.7) and the

spherical average Fourier decay rates of fractal measures (Theorem 2.8). We

prove Theorem 1.6 in Section 3.

Notation. We write

• A . B if A ≤ CB for some absolute constant C, A ∼ B if A . B and

B . A;

• A� B if A is much less than B;

• A / B if A ≤ CεRεB for any ε > 0, R > 1.

Sometimes we also write

• A . B if A ≤ CεB for some constant Cε depending on ε

(when the dependence on ε is unimportant).

By an r-ball (cube) we mean a ball (cube) of radius (side length) r. An

r× · · · × r×L-tube (box) means a tube (box) with radius (short sides length)

r and length L. For a set S, #S denotes its cardinality.

Acknowledgements. The authors would like to thank Larry Guth and

Xiaochun Li for several discussions. They also thank Larry Guth for mak-

ing some historical remarks, as well as sharing his lecture notes on decoupling

online, from which they got much inspiration. The second author would like

to thank Jean Bourgain and Zihua Guo who introduced the problem to him.

The authors are also indebted to Daniel Eceizabarrena and Luis Vega for a
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discussion on the history of the Schrödinger maximal estimate in dimension

1 + 1.
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dation under Grant No. DMS-1638352, the Shiing-Shen Chern Fund and the
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for Advanced Study during the academic year 2017–2018.

2. Applications of Theorem 1.6

2.1. Sharp L2 estimates of the Schrödinger maximal function. In this sub-

section, we show how Corollary 1.7 and Theorem 1.3 follow from Theorem 1.6,

via the dyadic pigeonholing argument and the locally constant property.

Proof of (Theorem 1.6 =⇒ Corollary 1.7). Given X =
⋃
k Bk, a union of

lattice unit cubes in Bn+1(0, R) satisfying the assumptions of Corollary 1.7,

we sort the lattice R1/2-cubes in Rn+1 intersecting X by the number λ of unit

cubes Bk contained in it. Since 1 ≤ λ ≤ RO(1), there are only O(logR) choices

for the dyadic number λ. So we can choose a dyadic number λ and a subset Bλ
of {Bk} such that for each unit cube B in Bλ, the lattice R1/2-cube containing

it contains ∼ λ many unit cubes from Bλ and

‖eit∆f‖L2(X) / ‖eit∆f‖L2(
⋃
B∈Bλ

B).

By applying Theorem 1.6 to ‖eit∆f‖L2(
⋃
B∈Bλ

B), we get

‖eit∆f‖L2(X) / γ
2

(n+1)(n+2)λ
n

(n+1)(n+2)R
α

(n+1)(n+2) ‖f‖2,

and (1.11) follows from the fact that λ ≤ γRα/2. �

Proof of the case α = n of Corollary 1.7 =⇒ Theorem 1.3. We will show

that

(2.1)

∥∥∥∥∥ sup
0<t<R

|eit∆f |
∥∥∥∥∥
L2(Bn(0,R))

/ R
n

2(n+1) ‖f‖2

holds for all R ≥ 1 and all f with Fourier support in Bn(0, 1).

By viewing |eit∆f(x)| essentially as constant on unit balls,2 we can find

a set X described as follows: X is a union of unit balls in Bn(0, R) × [0, R]

satisfying the property that each vertical thin tube of dimensions 1×· · ·×1×R
contains exactly one unit ball in X, and

(2.2)

∥∥∥∥∥ sup
0<t<R

|eit∆f |
∥∥∥∥∥
L2(Bn(0,R))

/ ‖eit∆f‖L2(X).

2We refer the readers to [6, §§2–5] for the standard formalism of this locally constant

property.
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The desired estimate (2.1) follows by applying Corollary 1.7 to ‖eit∆f‖L2(X)

with α = n and γ . 1. �

2.2. Other applications. By formalizing the locally constant property, from

Corollary 1.7 we derive some weighted L2 estimates, Theorems 2.2 and 2.3,

which in turn have applications to several problems described below.

Definition 2.1. Let α ∈ (0, d]. We say that µ is an α-dimensional measure

in Rd if it is a probability measure supported in the unit ball Bd(0, 1) and

satisfies that

(2.3) µ(B(x, r)) ≤ Cµrα ∀r > 0, ∀x ∈ Rd.

Denote dµR(·) := Rαdµ( ·R).

Theorem 2.2. Let n ≥ 1, α ∈ (0, n] and µ be an α-dimensional measure

in Rn. Then

(2.4)

∥∥∥∥∥ sup
0<t<R

|eit∆f |
∥∥∥∥∥
L2(Bn(0,R);dµR(x))

/ R
α

2(n+1) ‖f‖2,

whenever R ≥ 1 and f has Fourier support in Bn(0, 1).

Theorem 2.3. Let n ≥ 1, α ∈ (0, n + 1] and µ be an α-dimensional

measure in Rn+1. Then

(2.5)
∥∥∥eit∆f∥∥∥

L2(Bn+1(0,R);dµR(x,t))
/ R

α
2(n+1) ‖f‖2,

whenever R ≥ 1 and f has Fourier support in Bn(0, 1).

We defer the proof of these weighted L2 estimates to the end of this

subsection. Let us first see their applications. We omit history and various

previous results on the following three problems and refer the readers to [13],

[14], [24] and the references therein.

(I) Hausdorff dimension of the divergence set of the Schrödinger solutions.

A natural refinement of Carleson’s problem was initiated by Sjögren and Sjölin

[28]: Determine the size of the divergence set; in particular, consider

αn(s) := sup
f∈Hs(Rn)

dim

ß
x ∈ Rn : lim

t→0
eit∆f(x) 6= f(x)

™
,

where dim stands for the Hausdorff dimension.

The following theorem is a direct result of Theorem 2.2 (cf. [13], [24]).

When n = 2, it recovers the corresponding result derived from the sharp L3

estimate of the Schrödinger maximal function in Du-Guth-Li [12]. When n ≥ 3,

it improves the previous best known result in Du-Guth-Li-Zhang [13].
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Theorem 2.4. Let n ≥ 2. Then

(2.6) αn(s) ≤ n+ 1− 2(n+ 1)s

n
,

n

2(n+ 1)
< s <

n

4
.

(II) Falconer distance set problem. Let E ⊂ Rd be a compact subset. Its

distance set ∆(E) is defined by

∆(E) := {|x− y| : x, y ∈ E}.

Conjecture 2.5 (Falconer [16]). Let d ≥ 2, and let E ⊂ Rd be a compact

set. Then

dim(E) >
d

2
⇒ |∆(E)| > 0.

Here | · | denotes the Lebesgue measure and dim(·) is the Hausdorff dimension.

Following a scheme due to Mattila (cf. [14, Prop. 2.3]), Theorem 2.3 im-

plies the following result towards Falconer’s conjecture. When d = 2, 3, this

recovers the previous best known results of Wolff (d=2, [32]) and Du-Guth-Ou-

Wang-Wilson-Zhang (d=3, [14]), via a different approach. In the case d ≥ 4,

this improves the previous best known result in [14]:

Theorem 2.6. Let d ≥ 2 and E ⊂ Rd be a compact set with

dim(E) >
d2

2d− 1
=
d

2
+

1

4
+

1

8d− 4
.

Then |∆(E)| > 0.

By applying a very recent work of Liu [20, Th. 1.4], Theorem 2.3 also

implies the following result for the pinned distance set problem, with the same

threshold.

Theorem 2.7. Let d ≥ 2, and let E ⊂ Rd be a compact set with

dim(E) >
d2

2d− 1
=
d

2
+

1

4
+

1

8d− 4
.

Then there exists x ∈ E such that its pinned distance set

∆x(E) := {|x− y| : y ∈ E}

has positive Lebesgue measure.

(III) Spherical average Fourier decay rates of fractal measures. Let βd(α)

denote the supremum of the numbers β for which

(2.7) ‖µ̂(R·)‖2L2(Sd−1) ≤ Cα,µR
−β

whenever R > 1 and µ is an α-dimensional measure in Rd. The problem of

identifying the precise value of βd(α) was proposed by Mattila [26].
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A lower bound of βd(α) as in Theorem 2.8 follows from Theorem 2.3 (cf.

[14, Rem. 2.5]). When d = 2, this recovers the sharp result of Wolff [32].

When d = 3 and α ∈ (3
2 , 2], this recovers the previous best known result

of Du-Guth-Ou-Wang-Wilson-Zhang [14]. In the case d = 3, α ∈ (2, 3) or

d ≥ 4, α ∈ (d/2, d), this improves the previous best known result in [14].

Theorem 2.8. Let d ≥ 2 and α ∈ (d2 , d). Then

βd(α) ≥ (d− 1)α

d
.

The proofs of Theorems 2.2 and 2.3 are entirely similar and we only do

the proof of the former here, which is slightly more involved.

Proof of Theorem 2.2. Denote eit∆f(x) by Ef(x, t) and (x, t) by x̃. Since

suppf̂ ⊆ Bn(0, 1), we have suppÊf ⊆ Bn+1(0, 1). Thus there exists a Schwartz

bump function ψ on Rn+1 (we require ψ̂ ≡ 1 on Bn+1(0, 100)) such that

(Ef)2 = (Ef)2 ∗ ψ.

The function max|ỹ−x̃|≤e100n |ψ(ỹ)| is rapidly decaying. We call it ψ1(x̃).

Note also that any (x, t) in Rn+1 belongs to a unique integral lattice cube

whose center we denote by m̃ = (m,mn+1) = (m1, . . . ,mn+1) = m̃(x, t).

Then we have

∥∥∥∥∥ sup
0<t<R

|eit∆f |
∥∥∥∥∥

2

L2(Bn(0,R);dµR)

=

∫
Bn(0,R)

sup
0<t<R

|Ef(x, t)|2dµR(x)

≤
∫
Bn(0,R)

sup
0<t<R

Ä
|Ef |2 ∗ |ψ|

ä
(x, t)dµR(x)

≤
∫
Bn(0,R)

sup
0<t<R

Ä
|Ef |2 ∗ ψ1

ä
(m̃(x, t))dµR(x)

≤
∑

m=(m1,...,mn)∈Zn
|mi|≤R

,

Ç∫
|x−m|≤10

dµR(x)

å
· sup
mn+1∈Z

0≤mn+1≤R

(|Ef |2 ∗ ψ1)(m,mn+1).

(2.8)

For each m ∈ Zn, let b(m) be an integer in [0, R] such that

sup
mn+1∈Z

0≤mn+1≤R

(|Ef |2 ∗ ψ1)(m,mn+1) = (|Ef |2 ∗ ψ1)(m, b(m)).
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Also we assume ‖f‖2 = 1 so |eit∆f | is uniformly bounded pointwisely. For

each m ∈ Zn, we define

νm :=

∫
|x−m|≤10

dµR(x) . 1.

By (2.8), we have∥∥∥∥∥ sup
0<t<R

|eit∆f |
∥∥∥∥∥

2

L2(Bn(0,R);dµR)

.
∑

ν dyadic
ν∈[R−100n,1]

∑
m∈Zn,|mi|≤R

νm∼ν

ν · (|Ef |2 ∗ ψ1)(m, b(m)) +R−90n.
(2.9)

For each dyadic ν, denote Aν = {m ∈ Zn : |mi| ≤ R, νm ∼ ν}. Performing

a dyadic pigeonholing over ν we see that there exists a dyadic ν ∈ [R−100n, 1]

such that for any small ε > 0,∥∥∥∥∥ sup
0<t<R

|eit∆f |
∥∥∥∥∥

2

L2(Bn(0,R);dµR)

/
∑
m∈Aν

ν · (|Ef |2 ∗ ψ1)(m, b(m)) +R−89n

.
∑
m∈Aν

ν ·
Ç∫

Bn+1((m,b(m)),Rε)
|Ef |2

å
+R−89n

.ν ·
∫⋃

m∈Aν B
n+1((m,b(m)),Rε)

|Ef |2 +R−89n.

(2.10)

Consider the set Xν =
⋃
m∈Aν B

n+1((m, b(m)), Rε). It is a union of a col-

lection of distinct Rε-balls and at the same time, it is also a union of unit balls.

These balls’ projection onto the (x1, . . . , xn)-plane are essentially disjoint. (A

point can be covered . Rε times.) For every r > R2ε, by the definition of

Aν , the intersection of Xν and any r-ball can be contained in no more than

R10nεν−1rα disjoint Rε-balls. Hence we can apply Corollary 1.7 to Xν with

γ . R100nεν−1 and α. With (2.10) this gives

(2.11)

∥∥∥∥∥ sup
0<t<R

|eit∆f |
∥∥∥∥∥

2

L2(Bn(0,R);dµR)

/ ν
n−1
n+1R

α
n+1 ‖f‖22 . R

α
n+1 ‖f‖22.

This concludes the proof. �

3. Main inductive proposition and proof of Theorem 1.6

To prove Theorem 1.6, we will use a broad-narrow analysis, which involves

inductions. To make everything work we introduce another parameter K and
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state the theorem in a slightly different way. We say that a collection of quan-

tities are dyadically constant if all the quantities are in the same interval of the

form [2j , 2j+1], where j is an integer. This is our main inductive proposition:

Proposition 3.1. Let n ≥ 1. For any 0 < ε < 1/100, there exist con-

stants Cε and 0 < δ = δ(ε) � ε (e.g. δ = ε100) such that the following holds

for all R ≥ 1 and all f with suppf̂ ⊂ Bn(0, 1). Let p = 2(n+1)
n−1 (p = ∞ when

n = 1). Suppose that Y =
⋃M
k=1Bk is a union of lattice K2-cubes in Bn+1(0, R)

and each lattice R1/2-cube intersecting Y contains ∼ λ many K2-cubes in Y ,

where K = Rδ . Suppose that

‖eit∆f‖Lp(Bk) is dyadically a constant in k = 1, 2, . . . ,M.

Let 1 ≤ α ≤ n+ 1 and γ be given by

(3.1) γ := max
Bn+1(x′,r)⊂Bn+1(0,R)

x′∈Rn+1,r≥K2

#{Bk : Bk ⊂ B(x′, r)}
rα

.

Then

(3.2) ‖eit∆f‖Lp(Y ) ≤ CεM−
1

n+1γ
2

(n+1)(n+2)λ
n

(n+1)(n+2)R
α

(n+1)(n+2)
+ε‖f‖2.

Theorem 1.6 follows from Proposition 3.1 by a dyadic pigeonholing argu-

ment:

Proof of (Proposition 3.1 =⇒ Theorem 1.6). Given X =
⋃
k Bk, a union

of lattice unit cubes satisfying the assumptions of Theorem 1.6, we sort these

unit cubes Bk according to the value of ‖eit∆f‖Lp(Bk). Assuming ‖f‖2 = 1,

there are only O(logR) significant dyadic choices for this value. Therefore, we

can choose X ′ ⊂ X, a union of unit cubes B, such that¶
‖eit∆f‖Lp(B) : B ∈ X ′

©
are dyadically constant

and

‖eit∆f‖L2(X) / ‖eit∆f‖L2(X′).

Let M be the total number of unit cubes B in X ′. Since f has Fourier support

in the unit ball, by locally constant property, |eit∆f | is essentially constant on

unit balls. Therefore, the estimate (1.9) is equivalent to

(3.3) ‖eit∆f‖Lp(X′) /M
− 1
n+1γ

2
(n+1)(n+2)λ

n
(n+1)(n+2)R

α
(n+1)(n+2) ‖f‖2,

where p = 2(n+1)
n−1 , and γ, λ are as in the assumptions of Theorem 1.6.

We further sort the unit cubes B in X ′ as follows:

(1) Let β be a dyadic number and Bβ a sub-collection of the unit cubes in X ′

such that for each B in Bβ, the lattice K2-cube B̃ containing B satisfies

‖eit∆f‖Lp(B̃) ∼ β.

Denote the collection of relevant K2-cubes by B̃β.
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(2) Fix β. Let λ′ be a dyadic number and Bβ,λ′ a sub-collection of Bβ such

that for each B ∈ Bβ,λ′ , the lattice R1/2-cube Q containing B contains

∼ λ′ many K2-cubes from B̃β. Denote the collection of relevant K2-cubes

by B̃β,λ′ .
Since there are only O(logR) many significant choices for all dyadic num-

bers β, λ′, we can choose some β and λ′ so that #Bβ,λ′ ' M . Then it follows

easily by definition that

M ′ := #B̃β,λ′ 'M, λ′ ≤ λ

and

γ′ := max
Bn+1(x′,r)⊂Bn+1(0,R)

x′∈Rn+1,r≥K2

#{B̃ ∈ B̃β,λ′ : B̃ ⊂ B(x′, r)}
rα

≤ γ.

Applying Proposition 3.1 to ‖eit∆f‖Lp(Y ) with Y =
⋃
B̃∈B̃β,λ′

B̃ and pa-

rameters M ′, γ′, λ′, we get

‖eit∆f‖Lp(X) / ‖eit∆f‖Lp(Y ) /M
− 1
n+1γ

2
(n+1)(n+2)λ

n
(n+1)(n+2)R

α
(n+1)(n+2) ‖f‖2,

as desired. �

The rest of this section is devoted to a proof of Proposition 3.1. Note

that when the radius R is . 1, the estimate (3.2) is trivial. So we can assume

that R is sufficiently large compared to any constant depending on ε. We will

induct on radius R in our proof.

In the proof, we will sometimes have paragraphs starting with “Intuition.”

We hope that these will help the readers understand what we do next.

Intuition. For our union Y of K2-cubes, we want to use decoupling theory

on each K2-cube. This will relate the whole eit∆f to its contributions eit∆fτ
from various 1/K-caps τ in the frequency space. Instead of doing decoupling

in dimension n + 1, we are going to do a broad-narrow analysis following

Bourgain-Guth [6], Bourgain [3], Bourgain-Demeter [5] and Guth [19]. For

each K2-cube, one of the following two has to happen:

(i) It is broad in the sense that there are n + 1 contributing caps that are

transversal. In this case the function is controlled by multilinear estimates

that are usually strong enough.

(ii) It is narrow (i.e., not broad). In this case all the contributing caps have

normal directions close to a hyperplane, which enables us to use decoupling

in dimension n.

Either way we get better estimates than a direct (n+1)-dimensional decoupling.

We control the broad part directly and do an induction on the narrow part.

Our induction has its roots in the proof of the refined Strichartz estimate in

[12], [13].
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Throughout this section we fix p = 2(n+1)
n−1 . In the frequency space we

decompose Bn(0, 1) into disjoint K−1-cubes τ . Denote the set of K−1-cubes τ

by S. For a function f with suppf̂ ⊂ Bn(0, 1), we have f =
∑
τ fτ , where f̂τ

is f̂ restricted to τ . Given a K2-cube B, we define its significant set as

S(B) :=

®
τ ∈ S : ‖eit∆fτ‖Lp(B) ≥

1

100(#S)
‖eit∆f‖Lp(B)

´
.

Note that due to the triangle inequality,∥∥∥ ∑
τ∈S(B)

eit∆fτ
∥∥∥
Lp(B)

∼ ‖eit∆f‖Lp(B).

We say that a K2-cube B is narrow if there is an n-dimensional subspace V

such that for all τ ∈ S(B),

Angle(G(τ), V ) ≤ 1

100nK
,

where G(τ) ⊂ Sn is a spherical cap of radius ∼ K−1 given by

G(τ) :=

®
(−2ξ, 1)

|(−2ξ, 1)|
∈ Sn : ξ ∈ τ

´
,

and Angle(G(τ), V ) denotes the smallest angle between any non-zero vector

v ∈ V and v′ ∈ G(τ). Otherwise, we say the K2-cube B is broad. It follows

from this definition that for any broad B, there exist τ1, . . . , τn+1 ∈ S(B) such

that for any vj ∈ G(τj),

(3.4) |v1 ∧ v2 ∧ · · · ∧ vn+1| & K−n.

Denote the union of broad K2-cubes Bk in Y by Ybroad and the union of narrow

K2-cubes Bk in Y by Ynarrow. We call it the broad case if Ybroad contains≥M/2

many K2-cubes, and the narrow case otherwise. We will deal with the broad

case in Section 3.1, using the multilinear refined Strichartz estimate from [13].

We handle the narrow case in Section 3.2 by an inductive argument via the

Bourgain-Demeter l2 decoupling theorem [5] and induction on scales.

3.1. Broad case. Recall that K = Rδ. A key tool we are using in the

broad case is the following multilinear refined Strichartz estimate from [13],

which is proved using l2 decoupling, induction on scales and multilinear Kakeya

estimates (see [1], [17]).

Theorem 3.2 (cf. [13, Th. 4.2]). Let q = 2(n+2)
n . Let f be a function with

Fourier support in Bn(0, 1). Suppose that τ1, . . . , τn+1 ∈ S and (3.4) holds for

any vj ∈ G(τj). Suppose that Q1, Q2, . . . , QN are lattice R1/2-cubes in Bn+1
R ,

so that

‖eit∆fτi‖Lq(Qj) is dyadically a constant in j for each i = 1, 2, . . . , n+ 1.
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Let Y denote
⋃N
j=1Qj . Then for any ε > 0,

(3.5)

∥∥∥∥∥∥
n+1∏
i=1

∣∣∣eit∆fτi∣∣∣ 1
n+1

∥∥∥∥∥∥
Lq(Y )

≤ CεRεN−
n

(n+1)(n+2) ‖f‖2.

Throughout the remainder of this subsection we will prove Proposition 3.1

in the broad case. In the broad case, there are ∼M many broad K2-cubes B.

Denote the collection of (n+ 1)-tuple of transverse caps by Γ:

Γ := {τ̃ = (τ1, . . . , τn+1) : τj ∈ S and (3.4) holds for any vj ∈ G(τj)}.

Then for each broad B,

(3.6)
∥∥∥eit∆f∥∥∥p

Lp(B)
≤ KO(1)

n+1∏
j=1

Å∫
B

∣∣∣eit∆fτj ∣∣∣pã 1
n+1

for some τ̃ = (τ1, . . . , τn+1) ∈ Γ. In order to exploit the transversality, we want

to bound the above geometric average of integrals by an integral of geometric

average up to a loss of KO(1). We can do this by using translations and

locally constant property. Given a K2-cube B, denote its center by xB. We

break B into finitely overlapping balls of the form B(xB + v, 2), where v ∈
B(0,K2) ∩ Zn+1. For each τj , we can view |eit∆fτj | essentially as constant on

each B(xB + v, 2). Choose vj ∈ B(0,K2) ∩ Zn+1 such that ‖eit∆fτj‖L∞(B) is

attained in B(xB + vj , 2). Denote vj = (xj , tj), and define fτj ,vj by’fτj ,vj (ξ) := ”fτj (ξ)ei(xj ·ξ+tj |ξ|2).

Then

eit∆fτj ,vj (x) = ei(t+tj)∆fτj (x+ xj),

and |eit∆fτj ,vj (x)| attains ‖eit∆fτj‖L∞(B) in B(xB, 2). Therefore,

(3.7)

∫
B

∣∣∣eit∆fτj ∣∣∣p ≤ KO(1)
∫
B(xB ,2)

∣∣∣eit∆fτj ,vj ∣∣∣p.
Now for each broad B, we find some τ̃ = (τ1, . . . , τn+1) ∈ Γ and ṽ =

(v1, . . . , vn+1) such that∥∥∥eit∆f∥∥∥p
Lp(B)

≤KO(1)
n+1∏
j=1

Ç∫
B(xB ,2)

∣∣∣eit∆fτj ,vj ∣∣∣p
å 1
n+1

≤KO(1)
∫
B(xB ,2)

n+1∏
j=1

∣∣∣eit∆fτj ,vj ∣∣∣ p
n+1 .

(3.8)

Since there are only KO(1) choices for τ̃ and ṽ, we can choose some τ̃ and ṽ

such that (3.8) holds for at least K−CM broad balls B. From now on, fix

τ̃ and ṽ, and let fj denote fτj ,vj . Next we further sort the collection B of

remaining broad balls as follows:
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(1) For a dyadic number A, let BA be a sub-collection of B in which for each B,

we have ∥∥∥∥∥∥
n+1∏
j=1

∣∣∣eit∆fj∣∣∣ 1
n+1

∥∥∥∥∥∥
L∞(B(xB ,2))

∼ A.

(2) Fix A, and for dyadic numbers λ̃, ι1, . . . , ιn+1, let BA,λ̃,ι1,...,ιn+1
be a sub-

collection of BA in which for each B, the R1/2-cubeQ containing B contains

∼ λ̃ cubes from BA and

‖eit∆fj‖Lq(Q) ∼ ιj , j = 1, 2, . . . , n+ 1.

Here q = 2(n+2)
n .

Recall that p > q, where p = 2(n+1)
n−1 is the sharp exponent for decoupling in

dimension n, and q = 2(n+2)
n is the exponent for which the multilinear refined

Strichartz estimate in dimension n + 1 holds. The first dyadic pigeonholing

together with the locally constant property enables us to dominate Lp-norm

by Lq-norm using reverse Hölder. The second dyadic pigeonholing allows us

to apply the multilinear refined Strichartz estimate to control the Lq-norm.

We can assume that ‖f‖2 = 1. Then all the above dyadic numbers making

significant contributions can be assumed to be between R−C and RC for a

large constant C. Therefore, there exist some dyadic numbers A, λ̃, ι1, . . . , ιn+1

such that BA,λ̃,ι1,...,ιn+1
contains ≥ K−CM many cubes B. Fix a choice of

A, λ̃, ι1, . . . , ιn+1, and denote BA,λ̃,ι1,...,ιn+1
by B for convenience (a mild abuse

of notation). Then, in the broad case, it follows from (3.8) and our choice of

A that

‖eit∆f‖Lp(Y ) ≤KO(1)

∥∥∥∥∥∥
n+1∏
j=1

∣∣∣eit∆fj∣∣∣ 1
n+1

∥∥∥∥∥∥
Lp(∪B∈BB(xB ,2))

≤KO(1)M
1
p
− 1
q

∥∥∥∥∥∥
n+1∏
j=1

∣∣∣eit∆fj∣∣∣ 1
n+1

∥∥∥∥∥∥
Lq(∪B∈BB(xB ,2))

≤KO(1)M
− 1

(n+1)(n+2)

∥∥∥∥∥∥
n+1∏
j=1

∣∣∣eit∆fj∣∣∣ 1
n+1

∥∥∥∥∥∥
Lq(∪Q∈QQ)

,

(3.9)

where Q is the collection of relevant R1/2-cubes Q when we define B. Note

that

(#Q)λ ≥ (#Q)λ̃ ∼ #B ≥ K−CM,

so

(3.10) Ñ := #Q ≥ K−CM
λ
.
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Applying Theorem 3.2, we get∥∥∥∥∥∥
n+1∏
j=1

∣∣∣eit∆fj∣∣∣ 1
n+1

∥∥∥∥∥∥
Lq(∪Q∈QQ)

≤ KO(1)
Å
M

λ

ã− n
(n+1)(n+2)

‖f‖2,

and therefore by (3.9),

‖eit∆f‖Lp(Y ) ≤ KO(1)M−
1

n+2λ
n

(n+1)(n+2) ‖f‖2.

Note that

M−
1

n+2λ
n

(n+1)(n+2) ≤ KO(1)M−
1

n+1γ
2

(n+1)(n+2)λ
n

(n+1)(n+2)R
α

(n+1)(n+2)

holds if and only if M ≤ KO(1)γ2Rα. Indeed, by definition (3.1) of γ, we have

M ≤ γRα and γ ≥ K−2α. So the broad case is done.

3.2. Narrow case. For each narrow ball, we have the following lemma,

which is a consequence of the l2 decoupling theorem in dimension n and

Minkowski’s inequality. This argument is essentially contained in Bourgain-

Demeter’s proof of the l2 decoupling conjecture, and we omit the details. (See

the proof of Proposition 5.5 in [5].)

Lemma 3.3. Suppose that B is a narrow K2-cube in Rn+1. Then for any

ε > 0,

‖eit∆f‖Lp(B) ≤ CεKε

(∑
τ∈S

∥∥∥eit∆fτ∥∥∥2

Lp(ωB)

)1/2

.

Here p = 2(n+1)
n−1 , S denotes the set of K−1-cubes that tile Bn(0, 1), and ωB

is a weight function that is essentially a characteristic function on B. More

precisely, ωB has Fourier support in B(0,K−2) and satisfies

1B(x̃) . ωB(x̃) ≤
Ç

1 +
|x̃− C(B)|

K2

å−1000n

.

For each τ ∈ S, we will deal with eit∆fτ by parabolic rescaling and induc-

tion on radius. In order to do so, we need to further decompose f in physical

space and perform dyadic pigeonholing several times to get the right setup for

our inductive hypothesis at scale R1 := R/K2 after rescaling.

Intuition. For each 1/K-cap τ , all wave packets associated with fτ through

a given point have to lie in a common box that has one side length R and other

side lengths R/K. Every single box of this type will become an R/K2-ball if

we perform a parabolic rescaling to transform τ into the standard 1-cap. We

want to use the inductive hypothesis for radius R/K2 in an efficient way. A

few dyadic pigeonholing steps will be needed.
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First, we break the physical ball Bn(0, R) into R/K-cubes D. For each

pair (τ,D), let f2τ,D be the function formed by cutting off f on the cube

D (with a Schwartz tail) in physical space and the cube τ in Fourier space.

Note that eit∆f2τ,D , restricted to Bn+1(R), is essentially supported on an

R/K × · · · × R/K × R-box,3 which we denote by 2τ,D. The box 2τ,D is in

the direction given by (−2c(τ), 1) and intersects t = 0 at the cube D, where

c(τ) is the center of τ . For a fixed τ , the different boxes 2τ,D tile Bn+1(0, R).

In particular, for each τ , a given K2-cube B lies in exactly one box 2τ,D. We

write f =
∑

2 f2 for abbreviation. By Lemma 3.3, for each narrow K2-cube B,

(3.11) ‖eit∆f‖Lp(B) . K
ε4
Ç∑

2

∥∥∥eit∆f2∥∥∥2

Lp(ωB)

å1/2

.

We will have a gain 1
K2ε from induction on radius. Therefore, in (3.11)

we are allowed to lose a small power of K. This small power depends on ε and

should be smaller than 2ε. It could be ε2, ε3, ε4, etc.

Next, we perform a dyadic pigeonholing to get our inductive hypothesis

for each f2. Recall that K = Rδ, where δ = ε100. Denote

R1 := R/K2 = R1−2δ, K1 := Rδ1 = Rδ−2δ2
.

Tile 2 by KK2
1 × · · · × KK2

1 × K2K2
1 -tubes S, and also tile 2 by R1/2 ×

· · · × R1/2 × KR1/2-tubes S′ (all running parallel to the long axis of 2). To

understand these scales, see Figure 1 for the change in physical space (3.20)

during the process of parabolic rescaling. In particular, after rescaling the 2

becomes an R1-cube, and the tubes S′ and S become lattice R
1/2
1 -cubes and

K2
1 -cubes respectively. We apply the following to regroup tubes S and S′ inside

each 2:

(1) Sort those tubes S that intersect Y according to the value ‖eit∆f2‖Lp(S)

and the number of narrow K2-cubes contained in it. For dyadic numbers

η, β1, we use S2,η,β1 to stand for the collection of tubes S ⊂ 2, each of

which containing ∼ η narrow K2-cubes in Ynarrow and ‖eit∆f2‖Lp(S) ∼ β1.

(2) For fixed η, β1, we sort the tubes S′ ⊂ 2 according to the number of tubes

S ∈ S2,η,β1 contained in it. For dyadic number λ1, let S2,η,β1,λ1 be the sub-

collection of S2,η,β1 such that for each S ∈ S2,η,β1,λ1 , the tube S′ containing

S contains ∼ λ1 tubes from S2,η,β1 .

(3) For fixed η, β1, λ1, we sort the boxes 2 according to the value ‖f2‖2, the

number #S2,η,β1,λ1 and the value γ1 defined below. For dyadic numbers

β2,M1, γ1, let Bη,β1,λ1,β2,M1,γ1 denote the collection of boxes 2, each of

3In reality, our boxes will have edge length slightly larger, say being larger by Kε100 times.

See, e.g., the wave packet decomposition theorem in [18]. This would not hurt us in any way,

and we omit this technicality for reading convenience.
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Figure 1. Tubes of different scales in the 2.

which satisfying that

‖f2‖2 ∼ β2, #S2,η,β1,λ1 ∼M1

and

(3.12) max
Tr⊂2:r≥K2

1

#{S ∈ S2,η,β1,λ1 : S ⊂ Tr}
rα

∼ γ1,

where Tr are Kr× · · · ×Kr×K2r-tubes in 2 running parallel to the long

axis of 2.

Let Y2,η,β1,λ1 be the union of the tubes S in S2,η,β1,λ1 , and χ
Y2,η,β1,λ1

the

corresponding characteristic function. Then on Ynarrow, we can write

eit∆f=
∑

η,β1,λ1,β2,M1,γ1

Ñ ∑
2∈Bη,β1,λ1,β2,M1,γ1

eit∆f2 · χY2,η,β1,λ1

é
+O(R−1000n)‖f‖2.

The small error term O(R−1000n)‖f‖2 will prove to be harmless in our

computations. We will neglect this term in the sequel. Again, to make the

statement really rigorous one needs to increase the side lengths of 2 by a tiny

power of R, say Rδ
100 ∼ Kδ99

. As before, we choose to ignore this technicality

in order to facilitate the main exposition.
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In particular, on each narrow B we have

(3.13) eit∆f =
∑

η,β1,λ1,β2,M1,γ1

à
∑

2∈Bη,β1,λ1,β2,M1,γ1
B⊂Y2,η,β1,λ1

eit∆f2

í
.

Without loss of generality, we assume that ‖f‖2 = 1. Then we can further

assume that the dyadic numbers above are in reasonable ranges, say

1 ≤ η ≤ KO(1), R−C ≤ β1 ≤ KO(1), 1 ≤ λ1 ≤ RO(1)

and

R−C ≤ β2 ≤ 1, 1 ≤M1 ≤ RO(1), K−2n ≤ γ1 ≤ RO(1),

where C is a large constant such that the contributions from those β1 and

β2 less than R−C are negligible. Therefore, there are only O(logR) significant

choices for each dyadic number. Because of (3.11) and (3.13), by pigeonholing,

we can choose η, β1, λ1, β2,M1, γ1 so that

(3.14) ‖eit∆f‖Lp(B) . (logR)6Kε4

à
∑

2∈Bη,β1,λ1,β2,M1,γ1
B⊂Y2,η,β1,λ1

‖eit∆f2‖2Lp(ωB)

í1/2

holds for a fraction & (logR)−6 of all narrow K2-cubes B.

We fix η, β1, λ1, β2,M1, γ1 for the rest of the proof. Let Y2 and B stand for

the abbreviations of Y2,η,β1,λ1 and Bη,β1,λ1,β2,M1,γ1 respectively. Finally we sort

the narrow balls B satisfying (3.14) by #{2 ∈ B : B ⊂ Y2}. Let Y ′ ⊂ Ynarrow

be a union of narrow K2-cubes B, each of which obeying

(3.15) ‖eit∆f‖Lp(B) . (logR)6Kε4

Ñ ∑
2∈B:B⊂Y2

‖eit∆f2‖2Lp(ωB)

é1/2

and

(3.16) #{2 ∈ B : B ⊂ Y2} ∼ µ

for some dyadic number 1 ≤ µ ≤ KO(1). Moreover, the number of K2-cubes

B in Y ′ is & (logR)−7M .

Now we are done with dyadic pigeonholing argument. Let us put all

these together. By our assumption that ‖eit∆f‖Lp(Bk) is essentially constant

in k = 1, 2, . . . ,M , in the narrow case we have

(3.17) ‖eit∆f‖pLp(Y ) . (logR)7
∑
B⊂Y ′

‖eit∆f‖pLp(B).
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For each B ⊂ Y ′, it follows from (3.15), (3.16) and Hölder’s inequality that

(3.18) ‖eit∆f‖pLp(B) . (logR)6pKε4pµ
p
2
−1

∑
2∈B:B⊂Y2

‖eit∆f2‖pLp(ωB).

Putting (3.17) and (3.18) together and, as before, omitting the rapidly decaying

tails,

(3.19) ‖eit∆f‖Lp(Y ) . (logR)13Kε4µ
1

n+1

(∑
2∈B

∥∥∥eit∆f2∥∥∥p
Lp(Y2)

)1/p

.

Next, to each ‖eit∆f2‖Lp(Y2) we apply parabolic rescaling and induction

on radius. For each 1/K-cube τ = τ2 in Bn(0, 1), we write ξ = ξ0 +K−1ζ ∈ τ ,

where ξ0 is the center of τ . Then

|eit∆f2(x)| = K−n/2|eit̃∆g(x̃)|

for some function g with Fourier support in the unit cube and ‖g‖2 = ‖f2‖2,

where the new coordinates (x̃, t̃) are related to the old coordinates (x, t) by

(3.20)

x̃ = K−1x+ 2tK−1ξ0,

t̃ = K−2t.

For simplicity, denote the above relation by (x̃, t̃) = F (x, t). Therefore

(3.21)

‖eit∆f2(x)‖Lp(Y2) = K
n+2
p
−n

2 ‖eit̃∆g(x̃)‖Lp(Ỹ ) = K−
1

n+1 ‖eit̃∆g(x̃)‖Lp(Ỹ ),

where Ỹ is the image of Y2 under the new coordinates.

Note that we can apply our inductive hypothesis (3.2) at scale R1 =

R/K2 to ‖eit̃∆g(x̃)‖Lp(Ỹ ) with new parameters M1, γ1, λ1, R1. More precisely,

Ỹ = F (Y2) consists of ∼M1 distinct K2
1 -cubes F (S) in an R1-ball F (2), and

the K2
1 -cubes F (S) are organized into R

1/2
1 -cubes F (S′) such that each cube

F (S′) contains ∼ λ1 cubes F (S). Moreover, ‖eit̃∆g(x̃)‖Lp(F (S)) is dyadically a

constant in S ⊂ Y2. By our choice of γ1, we have

max
Bn+1(x′,r)⊂F (2)
x′∈Rn+1,r≥K2

1

#{F (S) : F (S) ⊂ B(x′, r)}
rα

∼ γ1.

Henceforth, by (3.21) and inductive hypothesis (3.2), at scale R1 we have

‖eit∆f2(x)‖Lp(Y2)

.K−
1

n+1M
− 1
n+1

1 γ
2

(n+1)(n+2)

1 λ
n

(n+1)(n+2)

1

Å
R

K2

ã α
(n+1)(n+2)

+ε

‖f2‖2.
(3.22)
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From (3.19) and (3.22) we obtain

‖eit∆f‖Lp(Y )

.K2ε4µ
1

n+1K−
1

n+1M
− 1
n+1

1 γ
2

(n+1)(n+2)

1 λ
n

(n+1)(n+2)

1

Å
R

K2

ã α
(n+1)(n+2)

+ε
(∑
2∈B
‖f2‖p2

)1/p

.K2ε4
Å
µ

#B

ã 1
n+1

K−
1

n+1M
− 1
n+1

1 γ
2

(n+1)(n+2)

1 λ
n

(n+1)(n+2)

1

Å
R

K2

ã α
(n+1)(n+2)

+ε

‖f‖2,

(3.23)

where the last inequality follows from orthogonality
∑

2 ‖f2‖22 . ‖f‖22 and the

assumption that ‖f2‖2 ∼ constant in 2 ∈ B.

Intuition. To finish our inductive argument, we have to relate the old and

new parameters. Our setup allows us to do this in a nice way: Given M1, λ1

and γ1, if η is small, i.e., each S contains very few narrow K2-cubes, then M

is relatively small; if η is large, i.e., each S contains a lot of narrow K2-cubes,

then λ and γ are relatively large. Both make the right-hand side of what we

want to prove reasonably large. This is the reason why one could believe the

numerology will work out.

Consider the cardinality of the set {(2, B) : 2 ∈ B, B ⊂ Y2 ∩Y ′}. By our

choice of µ as in (3.16), there is a lower bound

#{(2, B) : 2 ∈ B, B ⊂ Y2 ∩ Y ′} & (logR)−7Mµ.

On the other hand, by our choices of M1 and η, for each 2 ∈ B, Y2 contains

∼M1 tubes S and each S contains ∼ η narrow cubes in Ynarrow, so

#{(2, B) : 2 ∈ B, B ⊂ Y2 ∩ Y ′} . (#B)M1η.

Therefore, we get

(3.24)
µ

#B
.

(logR)7M1η

M
.

Next by our choices of γ1 as in (3.12) and η,

γ1 · η

∼ max
Tr⊂2:r≥K2

1

#{S : S ⊂ Y2 ∩ Tr}
rα

·#{B : B ⊂ S ∩ Ynarrow for any fixed S ⊂ Y2}

. max
Tr⊂2:r≥K2

1

#{B ⊂ Y : B ⊂ Tr}
rα

≤ Kγ(Kr)α

rα
= γKα+1,

where the last inequality follows from the definition (3.1) of γ and the fact

that we can cover a Kr× · · · ×Kr×K2r-tube Tr by ∼ K finitely overlapping
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Kr-balls. Hence,

(3.25) η .
γKα+1

γ1
.

Finally we relate λ1 and λ by considering the number of narrow K2-balls

in each relevant R1/2 × · · · ×R1/2 ×KR1/2-tube S′. Recall that each relevant

S′ contains ∼ λ1 tubes S in Y2, and each such S contains ∼ η narrow balls.

On the other hand, we can cover S′ by ∼ K finitely overlapping R1/2-balls

and by assumption each R1/2-ball contains . λ many K2-cubes in Y . Thus it

follows that

(3.26) λ1 .
Kλ

η
.

By inserting (3.24) and (3.26) into (3.23),

‖eit∆f‖Lp(Y )

.
K3ε4

K2ε

Å
ηγ1

Kα+1

ã 2
(n+1)(n+2)

M−
1

n+1λ
n

(n+1)(n+2)R
α

(n+1)(n+2)
+ε‖f‖2

.
K3ε4

K2ε
M−

1
n+1γ

2
(n+1)(n+2)λ

n
(n+1)(n+2)R

α
(n+1)(n+2)

+ε‖f‖2,

where the last inequality follows from (3.25). Since K = Rδ and R can be

assumed to be sufficiently large compared to any constant depending on ε, we

have K3ε4

K2ε � 1 and the induction closes for the narrow case. This completes

the proof of Proposition 3.1. �

3.3. Remark. In Section 2, we have seen that Corollary 1.7 is a direct

result of Theorem 1.6, and they are equally useful in the applications to the

sharp L2 estimate of the Schrödinger maximal function. We can also prove

Corollary 1.7 from scratch using a similar argument as in this section, which

is slightly easier in two aspects compared to that of Theorem 1.6. First, in

the broad case, it is sufficient to use multilinear restriction estimates and not

necessary to invoke the multilinear refined Strichartz. Secondly, because there

is one parameter less, the dyadic pigeonholing argument in the narrow case

would be slightly reduced; for example, see Figure 2 for tubes of different

scales in the 2 under the setting of Corollary 1.7.

In fact, an adaptation of some arguments in the work [32] of Wolff on the

Falconer distance set problem in dimension 2 can already imply Corollary 1.7

when n = 1. In the special case n = 1, the broad versus narrow dichotomy

becomes the one on bilinear versus linear. To handle the linear part, the idea

of induction on scales and splitting the ball into rectangular boxes “2” of size

R×R/K in our proof already existed in Wolff’s paper. We thank Hong Wang

for pointing this out to us.
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Figure 2. Tubes of different scales in the 2 (in inductive argument

for Corollary 1.7).
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[25] R. Lucà and K. M. Rogers, A note on pointwise convergence for the

Schrödinger equation, Math. Proc. Cambridge Philos. Soc. 166 no. 2 (2019), 209–

218. MR 3903115. Zbl 07036806. https://doi.org/10.1017/S0305004117000743.

[26] P. Mattila, Hausdorff dimension, projections, and the Fourier transform, Publ.

Mat. 48 no. 1 (2004), 3–48. MR 2044636. Zbl 1049.28007. https://doi.org/10.

5565/PUBLMAT 48104 01.

[27] A. Moyua, A. Vargas, and L. Vega, Schrödinger maximal function and

restriction properties of the Fourier transform, Internat. Math. Res. Notices

no. 16 (1996), 793–815. MR 1413873. Zbl 0868.35024. https://doi.org/10.1155/

S1073792896000499.
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