Abstract
We show that a closed, connected and orientable Riemannian manifold $M$ of dimension $d$ that admits a nonconstant quasiregular mapping from $\mathbb {R}^d$ must have bounded dimension of the cohomology independent of the distortion of the map. The dimension of the degree $l$ de Rham cohomology of $M$ is bounded above by $\binom {d}{l}$. This is a sharp upper bound that proves the Bonk-Heinonen conjecture. A corollary of this theorem answers an open problem posed by Gromov in 1981. He asked whether there exists a \hbox $d$-dimensional, simply connected manifold that does not admit a quasiregular mapping from $\mathbb {R}^d$. Our result gives an affirmative answer to this question.
-
[bojarskiiwaniec]
B. Bojarski and T. Iwaniec, "Analytical foundations of the theory of quasiconformal mappings in ${\bf R}^{n}$," Ann. Acad. Sci. Fenn. Ser. A I Math., vol. 8, iss. 2, pp. 257-324, 1983.
@ARTICLE{bojarskiiwaniec,
author = {Bojarski, B. and Iwaniec, T.},
title = {Analytical foundations of the theory of quasiconformal mappings in {${\bf R}\sp{n}$}},
journal = {Ann. Acad. Sci. Fenn. Ser. A I Math.},
fjournal = {Annales Academiae Scientiarum Fennicae. Series A I. Mathematica},
volume = {8},
year = {1983},
number = {2},
pages = {257--324},
issn = {0066-1953},
mrclass = {30C60 (58E15)},
mrnumber = {0731786},
mrreviewer = {H. Renelt},
doi = {10.5186/aasfm.1983.0806},
url = {https://doi.org/10.5186/aasfm.1983.0806},
zblnumber = {0548.30016},
} -
[bonkheinonen]
M. Bonk and J. Heinonen, "Quasiregular mappings and cohomology," Acta Math., vol. 186, iss. 2, pp. 219-238, 2001.
@ARTICLE{bonkheinonen,
author = {Bonk, Mario and Heinonen, Juha},
title = {Quasiregular mappings and cohomology},
journal = {Acta Math.},
fjournal = {Acta Mathematica},
volume = {186},
year = {2001},
number = {2},
pages = {219--238},
issn = {0001-5962},
mrclass = {30C65 (53C21 58A12)},
mrnumber = {1846030},
mrreviewer = {Bianca Stroffolini},
doi = {10.1007/BF02401840},
url = {https://doi.org/10.1007/BF02401840},
zblnumber = {1088.30011},
} -
[bonkpoggi] M. Bonk and P. Poggi-Corradini, The Rickman-Picard theorem, 2019.
@MISC{bonkpoggi,
author = {Bonk, Mario and Poggi-Corradini, P.},
title = {The {R}ickman-{P}icard theorem},
note = {to appear in \emph{Ann. Acad. Sci. Fenn. Ser. A I Math.} {\bf 44},
no.~2},
year = {2019},
arxiv = {1807.07683},
} -
[botttu]
R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, New York-Berlin, 1982, vol. 82.
@BOOK{botttu,
author = {Bott, Raoul and Tu, Loring W.},
title = {Differential Forms in Algebraic Topology},
series = {Grad. Texts in Math.},
volume = {82},
publisher = {Springer-Verlag, New York-Berlin},
year = {1982},
pages = {xiv+331},
isbn = {0-387-90613-4},
mrclass = {57R19 (55-02 58-01 58A12)},
mrnumber = {0658304},
mrreviewer = {Hansklaus Rummler},
zblnumber = {0496.55001},
doi = {10.1007/978-1-4757-3951-0},
} -
[donaldsonsullivan]
S. K. Donaldson and D. P. Sullivan, "Quasiconformal $4$-manifolds," Acta Math., vol. 163, iss. 3-4, pp. 181-252, 1989.
@ARTICLE{donaldsonsullivan,
author = {Donaldson, S. K. and Sullivan, D. P.},
title = {Quasiconformal {$4$}-manifolds},
journal = {Acta Math.},
fjournal = {Acta Mathematica},
volume = {163},
year = {1989},
number = {3-4},
pages = {181--252},
issn = {0001-5962},
mrclass = {57N13 (53C20 58D29)},
mrnumber = {1032074},
mrreviewer = {L. Guillou},
doi = {10.1007/BF02392736},
url = {https://doi.org/10.1007/BF02392736},
zblnumber = {0704.57008},
} -
[drasinpankka]
D. Drasin and P. Pankka, "Sharpness of Rickman’s Picard theorem in all dimensions," Acta Math., vol. 214, iss. 2, pp. 209-306, 2015.
@ARTICLE{drasinpankka,
author = {Drasin, David and Pankka, Pekka},
title = {Sharpness of {R}ickman's {P}icard theorem in all dimensions},
journal = {Acta Math.},
fjournal = {Acta Mathematica},
volume = {214},
year = {2015},
number = {2},
pages = {209--306},
issn = {0001-5962},
mrclass = {30C65},
mrnumber = {3372169},
mrreviewer = {David Matthew Freeman},
doi = {10.1007/s11511-015-0125-x},
url = {https://doi.org/10.1007/s11511-015-0125-x},
zblnumber = {1326.30025},
} -
[eremenkolewis]
A. Eremenko and J. L. Lewis, "Uniform limits of certain $A$-harmonic functions with applications to quasiregular mappings," Ann. Acad. Sci. Fenn. Ser. A I Math., vol. 16, iss. 2, pp. 361-375, 1991.
@ARTICLE{eremenkolewis,
author = {Eremenko, Alexandre and Lewis, John L.},
title = {Uniform limits of certain {$A$}-harmonic functions with applications to quasiregular mappings},
journal = {Ann. Acad. Sci. Fenn. Ser. A I Math.},
fjournal = {Annales Academiae Scientiarum Fennicae. Series A I. Mathematica},
volume = {16},
year = {1991},
number = {2},
pages = {361--375},
issn = {0066-1953},
mrclass = {35J60 (30C65 35B40)},
mrnumber = {1139803},
mrreviewer = {Juha Heinonen},
doi = {10.5186/aasfm.1991.1609},
url = {https://doi.org/10.5186/aasfm.1991.1609},
zblnumber = {0727.35022},
} -
[gehring]
F. W. Gehring, "The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping," Acta Math., vol. 130, pp. 265-277, 1973.
@ARTICLE{gehring,
author = {Gehring, F. W.},
title = {The {$L\sp{p}$}-integrability of the partial derivatives of a quasiconformal mapping},
journal = {Acta Math.},
fjournal = {Acta Mathematica},
volume = {130},
year = {1973},
pages = {265--277},
issn = {0001-5962},
mrclass = {30A60},
mrnumber = {0402038},
mrreviewer = {P. Caraman},
doi = {10.1007/BF02392268},
url = {https://doi.org/10.1007/BF02392268},
zblnumber = {0258.30021},
} -
[gromov1981]
M. Gromov, "Hyperbolic manifolds, groups and actions," in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, Princeton Univ. Press, Princeton, N.J., 1981, vol. 97, pp. 183-213.
@INCOLLECTION{gromov1981,
author = {Gromov, M.},
title = {Hyperbolic manifolds, groups and actions},
booktitle = {Riemann Surfaces and Related Topics: {P}roceedings of the 1978 {S}tony {B}rook {C}onference},
venue = {State {U}niv. {N}ew {Y}ork, {S}tony {B}rook, {N}.{Y}., 1978},
series = {Ann. of Math. Stud.},
volume = {97},
pages = {183--213},
publisher = {Princeton Univ. Press, Princeton, N.J.},
year = {1981},
mrclass = {53C15 (53C45 58F17)},
mrnumber = {0624814},
mrreviewer = {M. Rees},
zblnumber = {0467.53035},
doi = {10.1515/9781400881550},
} -
[gromov2007]
M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, English ed., Birkhäuser Boston, Inc., Boston, MA, 2007.
@BOOK{gromov2007,
author = {Gromov, Misha},
title = {Metric Structures for {R}iemannian and Non-{R}iemannian Spaces},
series = {Modern Birkhäuser Classics},
edition = {{E}nglish},
note = {based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes, translated from the French by Sean Michael Bates},
publisher = {Birkhäuser Boston, Inc., Boston, MA},
year = {2007},
pages = {xx+585},
isbn = {978-0-8176-4582-3; 0-8176-4582-9},
mrclass = {53C23 (53-02)},
mrnumber = {2307192},
zblnumber = {1113.53001},
doi = {10.1007/978-0-8176-4583-0}
} -
[guilleminpollack]
V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974.
@BOOK{guilleminpollack,
author = {Guillemin, Victor and Pollack, Alan},
title = {Differential Topology},
publisher = {Prentice-Hall, Inc., Englewood Cliffs, N.J.},
year = {1974},
pages = {xvi+222},
mrclass = {58-01 (57-01)},
mrnumber = {0348781},
mrreviewer = {K. H. Mayer},
zblnumber = {05788282},
doi = {10.1090/chel/370},
} -
[iwanieclutoborski]
T. Iwaniec and A. Lutoborski, "Integral estimates for null Lagrangians," Arch. Rational Mech. Anal., vol. 125, iss. 1, pp. 25-79, 1993.
@ARTICLE{iwanieclutoborski,
author = {Iwaniec, Tadeusz and Lutoborski, Adam},
title = {Integral estimates for null {L}agrangians},
journal = {Arch. Rational Mech. Anal.},
fjournal = {Archive for Rational Mechanics and Analysis},
volume = {125},
year = {1993},
number = {1},
pages = {25--79},
issn = {0003-9527},
mrclass = {58E35 (46E35 49J10)},
mrnumber = {1241286},
doi = {10.1007/BF00411477},
url = {https://doi.org/10.1007/BF00411477},
zblnumber = {0793.58002},
} -
[iwaniecmartin]
T. Iwaniec and G. Martin, "Quasiregular mappings in even dimensions," Acta Math., vol. 170, iss. 1, pp. 29-81, 1993.
@ARTICLE{iwaniecmartin,
author = {Iwaniec, Tadeusz and Martin, Gaven},
title = {Quasiregular mappings in even dimensions},
journal = {Acta Math.},
fjournal = {Acta Mathematica},
volume = {170},
year = {1993},
number = {1},
pages = {29--81},
issn = {0001-5962},
mrclass = {30C65},
mrnumber = {1208562},
mrreviewer = {Matti Vuorinen},
doi = {10.1007/BF02392454},
url = {https://doi.org/10.1007/BF02392454},
zblnumber = {0785.30008},
} -
[jormakka] J. Jormakka, "The existence of quasiregular mappings from ${\bf R}^3$ to closed orientable $3$-manifolds," Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, iss. 69, p. 44, 1988.
@ARTICLE{jormakka,
author = {Jormakka, Jorma},
title = {The existence of quasiregular mappings from {${\bf R}^3$} to closed orientable {$3$}-manifolds},
journal = {Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes},
fjournal = {Annales Academiae Scientiarum Fennicae. Series A I. Mathematica Dissertationes},
number = {69},
year = {1988},
pages = {44},
issn = {0355-0087},
mrclass = {57M99 (26B99 30C60)},
mrnumber = {0973719},
mrreviewer = {N. V. Ivanov},
zblnumber = {0662.57007},
} -
[kangasniemi] I. Kangasniemi, Sharp cohomological bound For uniformly quasiregularly elliptic manifolds, 2017.
@MISC{kangasniemi,
author = {Kangasniemi, I.},
title = {Sharp cohomological bound For uniformly quasiregularly elliptic manifolds},
arxiv = {1711.11410},
year = {2017},
zblnumber = {},
} -
[lehtovirtanen] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Second ed., Springer-Verlag, New York-Heidelberg, 1973, vol. 126.
@BOOK{lehtovirtanen,
author = {Lehto, O. and Virtanen, K. I.},
title = {Quasiconformal Mappings in the Plane},
edition = {Second},
note = {translated from the German by K. W. Lucas},
series = {Grundlehren Math. Wissen.},
volume = {126},
publisher = {Springer-Verlag, New York-Heidelberg},
year = {1973},
pages = {viii+258},
mrclass = {30A60},
mrnumber = {0344463},
zblnumber = {0267.30016},
} -
[lewis]
J. L. Lewis, "Picard’s theorem and Rickman’s theorem by way of Harnack’s inequality," Proc. Amer. Math. Soc., vol. 122, iss. 1, pp. 199-206, 1994.
@ARTICLE{lewis,
author = {Lewis, John L.},
title = {Picard's theorem and {R}ickman's theorem by way of {H}arnack's inequality},
journal = {Proc. Amer. Math. Soc.},
fjournal = {Proceedings of the American Mathematical Society},
volume = {122},
year = {1994},
number = {1},
pages = {199--206},
issn = {0002-9939},
mrclass = {30C65},
mrnumber = {1195483},
mrreviewer = {Ilkka Holopainen},
doi = {10.2307/2160861},
url = {https://doi.org/10.2307/2160861},
zblnumber = {0807.30010},
} -
[mattilarickman]
P. Mattila and S. Rickman, "Averages of the counting function of a quasiregular mapping," Acta Math., vol. 143, iss. 3-4, pp. 273-305, 1979.
@ARTICLE{mattilarickman,
author = {Mattila, P. and Rickman, S.},
title = {Averages of the counting function of a quasiregular mapping},
journal = {Acta Math.},
fjournal = {Acta Mathematica},
volume = {143},
year = {1979},
number = {3-4},
pages = {273--305},
issn = {0001-5962},
mrclass = {30C60},
mrnumber = {0549779},
mrreviewer = {V. Mićić},
doi = {10.1007/BF02392097},
url = {https://doi.org/10.1007/BF02392097},
zblnumber = {0443.30043},
} -
[pankka]
P. Pankka, "Mappings of bounded mean distortion and cohomology," Geom. Funct. Anal., vol. 20, iss. 1, pp. 229-242, 2010.
@ARTICLE{pankka,
author = {Pankka, Pekka},
title = {Mappings of bounded mean distortion and cohomology},
journal = {Geom. Funct. Anal.},
fjournal = {Geometric and Functional Analysis},
volume = {20},
year = {2010},
number = {1},
pages = {229--242},
issn = {1016-443X},
mrclass = {30C65 (53C23 58A12)},
mrnumber = {2647140},
mrreviewer = {Leonid V. Kovalev},
doi = {10.1007/s00039-010-0054-y},
url = {https://doi.org/10.1007/s00039-010-0054-y},
zblnumber = {1203.30023},
} -
[rickman1980]
S. Rickman, "On the number of omitted values of entire quasiregular mappings," J. Analyse Math., vol. 37, pp. 100-117, 1980.
@ARTICLE{rickman1980,
author = {Rickman, Seppo},
title = {On the number of omitted values of entire quasiregular mappings},
journal = {J. Analyse Math.},
fjournal = {Journal d'Analyse Mathématique},
volume = {37},
year = {1980},
pages = {100--117},
issn = {0021-7670},
mrclass = {30D60},
mrnumber = {0583633},
mrreviewer = {Tadashi Kuroda},
doi = {10.1007/BF02797681},
url = {https://doi.org/10.1007/BF02797681},
zblnumber = {0451.30012},
} -
[rickman1985]
S. Rickman, "The analogue of Picard’s theorem for quasiregular mappings in dimension three," Acta Math., vol. 154, iss. 3-4, pp. 195-242, 1985.
@ARTICLE{rickman1985,
author = {Rickman, Seppo},
title = {The analogue of {P}icard's theorem for quasiregular mappings in dimension three},
journal = {Acta Math.},
fjournal = {Acta Mathematica},
volume = {154},
year = {1985},
number = {3-4},
pages = {195--242},
issn = {0001-5962},
mrclass = {30C60 (30D35)},
mrnumber = {0781587},
mrreviewer = {Gaven J. Martin},
doi = {10.1007/BF02392472},
url = {https://doi.org/10.1007/BF02392472},
zblnumber = {0617.30024},
} -
@BOOK{rickman1993,
author = {Rickman, Seppo},
title = {Quasiregular Mappings},
series = {Ergeb. Math. Grenzgeb.},
volume = {26},
publisher = {Springer-Verlag, Berlin},
year = {1993},
pages = {x+213},
isbn = {3-540-56648-1},
mrclass = {30C65},
mrnumber = {1238941},
mrreviewer = {Gaven J. Martin},
doi = {10.1007/978-3-642-78201-5},
url = {https://doi.org/10.1007/978-3-642-78201-5},
zblnumber = {0816.30017},
} -
[rickman2006] S. Rickman, "Simply connected quasiregularly elliptic 4-manifolds," Ann. Acad. Sci. Fenn. Math., vol. 31, iss. 1, pp. 97-110, 2006.
@ARTICLE{rickman2006,
author = {Rickman, Seppo},
title = {Simply connected quasiregularly elliptic 4-manifolds},
journal = {Ann. Acad. Sci. Fenn. Math.},
fjournal = {Annales Academiæ Scientiarum Fennicæ . Mathematica},
volume = {31},
year = {2006},
number = {1},
pages = {97--110},
issn = {1239-629X},
mrclass = {30F20 (30C65 57M12 57N13)},
mrnumber = {2210111},
mrreviewer = {Alessia Cattabriga},
zblnumber = {1116.30011},
} -
[vsc]
T. N. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992, vol. 100.
@BOOK{vsc,
author = {Varopoulos, N. Th. and Saloff-Coste, L. and Coulhon, T.},
title = {Analysis and Geometry on Groups},
series = {Cambridge Tracts in Math.},
volume = {100},
publisher = {Cambridge University Press, Cambridge},
year = {1992},
pages = {xii+156},
isbn = {0-521-35382-3},
mrclass = {43A80 (47D03 47F05 58G11 60B15)},
mrnumber = {1218884},
mrreviewer = {A. Hulanicki},
zblnumber = {0813.22003},
doi = {10.1017/CBO9780511662485},
}