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A bound on the cohomology of
quasiregularly elliptic manifolds

By Eden Prywes

Abstract

We show that a closed, connected and orientable Riemannian manifold

M of dimension d that admits a nonconstant quasiregular mapping from

Rd must have bounded dimension of the cohomology independent of the

distortion of the map. The dimension of the degree l de Rham cohomol-

ogy of M is bounded above by
(
d
l

)
. This is a sharp upper bound that

proves the Bonk-Heinonen conjecture. A corollary of this theorem answers

an open problem posed by Gromov in 1981. He asked whether there ex-

ists a d-dimensional, simply connected manifold that does not admit a

quasiregular mapping from Rd. Our result gives an affirmative answer to

this question.

1. Introduction

Let M be a closed, connected and orientable Riemannian manifold of

dimension d. A K-quasiregular mapping, K ≥ 1, is a continuous mapping

f : Rd →M such that f ∈W 1,d
loc (Rd,M) and the differential, Df : TRd → TM ,

satisfies

‖Df(x)‖d ≤ KJf (x)

for almost every x ∈ Rd, where Jf = det(Df). If M admits such a nonconstant

quasiregular mapping, then we call M quasiregularly elliptic. The main result

of this paper is as follows.

Theorem 1.1. Let M be a closed, connected and orientable Riemannian

manifold of dimension d. If M admits a nonconstant quasiregular mapping

from Rd, then dimH l(M) ≤
(d
l

)
, for 0 ≤ l ≤ d, where H l(M) is the de Rham

cohomology of M of degree l.

Theorem 1.1 is the first result that gives a restriction, independent of the

fundamental group of M and the distortion K of the mapping, on quasiregular
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ellipticity of closed manifolds. A K-dependent version of Theorem 1.1 was

proved by Bonk and Heinonen [2]. They showed that dimH l(M) ≤ C(d, l,K)

and conjectured that the constant is independent of K. Theorem 1.1 answers

this with a sharp bound. The d-dimensional torus, T d = S1 × · · · × S1, is

quasiregularly elliptic and dimH l(T d) =
(d
l

)
.

This theorem also gives an answer to a longstanding open problem first

posed by Gromov in 1981 [9, p. 200]. He asked whether their exists a d-dimen-

sional, simply connected manifold that does not admit a nonconstant quasi-

regular mapping from Rd. Theorem 1.1 implies the following corollary.

Corollary 1.2. The simply connected manifold M = #n(S2 × S2), the

connected sum of n copies of S2 × S2, is not quasiregularly elliptic for n ≥ 4.

Proof. Firstly, the 2-sphere S2, and hence S2 × S2, is simply connected.

Furthermore, since the dimension is larger than 2, the connected sum of simply

connected manifolds is simply connected. So M is simply connected.

The sphere S2 satisfies dimH2(S2) = 1. By the Künneth formula,

dimH2(S2 × S2) = 2.

By the Mayer-Vietoris Theorem,

H2(#n(S2 × S2)) ∼= ⊕nH2(S2 × S2).

Therefore dimH2(M) = 2n >
(4
2

)
. So by Theorem 1.1, M is not quasiregularly

elliptic. �

Theorem 1.1 is a generalization of a classical theorem for holomorphic

functions in dimension 2. Let M be a Riemann surface. By the uniformiza-

tion theorem, the universal cover of M is either “C,C, or D. If f : C → M

is holomorphic, then f lifts to a holomorphic mapping from C to the univer-

sal cover of M . If the universal covering space is D, then Liouville’s theorem

states that f is constant. This implies that the only compact Riemann sur-

faces that admit holomorphic mappings are homeomorphic to “C and S1 × S1.

Every quasiregular mapping f can be decomposed as f = g ◦ φ, where g is

holomorphic and φ : C → C is a quasiconformal homeomorphism [16, p. 247].

So in dimension 2, any manifold admitting a quasiregular mapping also admits

a holomorphic mapping.

A 1-quasiregular mapping on C is a holomorphic function. If we study

quasiregular ellipticity for K = 1 in higher dimensions, then the results are

as restrictive as in the d = 2 case. If M admits a 1-quasiregular mapping

from Rd, then M must be a quotient of the d-dimensional sphere or torus

(see [2, Prop. 1.4]). The condition of 1-quasiregularity is consequently too

restrictive. When K ≥ 1, there are several results regarding ellipticity. For

manifolds of dimension 3, Theorem 1.1 has been shown by Jormakka in [14]. He

proved that if M is quasiregularly elliptic, then M must be a quotient of S3, T 3,
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or S2×S1. In dimension 4, in [23], Rickman showed that (S2×S2)#(S2×S2)

is quasiregularly elliptic. Theorem 1.1 shows that the connected sum of four

copies of S2 × S2 is not quasiregularly elliptic.

For d ≥ 4, there are very few conditions on the topology of M that

restrict which manifolds can be quasiregularly elliptic, independent of K. A

theorem by Varopoulos gives such a result. It states that the polynomial order

of growth of the Cayley graph of the fundamental group of a quasiregularly

elliptic manifold is bounded by d (see [24, Th. X.5.1] or [10, Ch. 6]). This

result gives a K-independent bound on the size of the fundamental group of

the manifold. However, it does not apply to manifolds with small fundamental

groups and especially gives no information regarding simply-connected spaces.

A recent theorem due to Kangasniemi [15] gives a K-independent bound

on the cohomology for manifolds that admit uniformly quasiregular self-map-

pings. He proved an analogue to Theorem 1.1 with the added assumption

that M admits a non-injective K-quasiregular mapping f : M →M such that

the iterates of f are also K-quasiregular. Such a mapping is called uniformly

quasiregular. The bound in this theorem is sharp since the torus admits uni-

formly quasiregular self-mappings.

There are also related results when a quasiregularly elliptic manifold M is

open. In dimension 2, one can use the same arguments as in the compact case to

deduce that M is homeomorphic to R2 or S1×R. This result implies Picard’s

theorem as a corollary. In higher dimensions, Rickman [20] proved what is

now known as the Rickman-Picard theorem, showing that a K-quasiregular

mapping from Rd to the d-dimensional sphere Sd can omit at most C(d,K)

points. The fact that the constant depends on K is unavoidable as seen in the

constructions by Rickman [21] and Drasin and Pankka [6].

We next outline the proof for Theorem 1.1. We argue by contradiction.

Let k >
(d
l

)
, and let α1, . . . , αk be representatives of cohomology classes that

form a basis in H l(M). Using Poincaré duality we can choose closed (n − l)-
forms β1, . . . , βk on M such thatˆ

M
αi ∧ βj = δij

for 1 ≤ i, j ≤ k and where δij is the Kronecker delta. In previous papers on

quasiregular ellipticity, p-harmonic forms were used instead of smooth forms

arising from Poincaré duality. Our approach allows us to avoid the use of this

machinery.

Since we argue by contradiction, there exists a quasiregular mapping

f : Rd → M . The pullbacks ηi = f∗αi and θi = f∗(βi) are closed forms

on Rd, and they satisfy local Lp-bounds depending on the Jacobian of f . This

allows us to use a rescaling procedure to obtain forms on the unit ball in Rd
such that the rescaled forms are pointwise orthogonal almost everywhere.
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In the papers by Eremenko and Lewis, [7] and [17], the authors applied

a similar rescaling to A-harmonic functions in order to prove the Rickman-

Picard theorem for quasiregular mappings. Instead of rescaling functions, we

consider rescalings of differential forms. We also note that Kangasniemi [15]

rescaled differential forms in the uniformly quasiregular case. The differential

forms in his case rescale so that they are orthogonal at every point to each

other. The main connection between the techniques used in this paper and

the above two results is that in the limit the rescaled objects obey pointwise

results. This is the crucial ingredient of the proof.

The rescaling captures how f : Rd → M behaves on average. Since

quasiregular mappings have equidistribution properties similar to holomorphic

mappings, f will map a large set evenly over M . This can be measured by

the size of the Jacobian of f on a set. We choose a sequence of balls, Bn, so

that the integral of the Jacobian of f on Bn tends to infinity. The differen-

tial forms, ηi and θi, rescaled from Bn to B(0, 1), will converge to averages of

themselves on M . The limits in this rescaling will be both non-zero and pair

to 0 pointwise. On M , we have thatˆ
M
αi ∧ βj = 0

for i 6= j. However, the limits of the rescaled forms, η̃i and θ̃j , will satisfy

η̃i ∧ θ̃j = 0

for almost every x ∈ B(0, 1).

Once the differential forms on the unit ball are constructed and we know

that they pair pointwise to 0, we see that at most
(d
l

)
= dim(

∧l Rd) of the

forms can be non-zero. This will imply that the sets where at least one of

the forms is 0 covers the entire ball, apart from a set of measure 0. However,

the size of the rescaled forms is governed by the size of the Jacobian of f . In

order to prove this we need to first show that the Jacobian of f satisfies a

reverse Hölder inequality. In general, the Jacobian of a quasiregular mapping

is in L1
loc(Rd). Bojarski and Iwaniec [1], using a method similar to Gehring’s

lemma [8], showed that if f : Rd → Rd, then the Jacobian of f is in L1+ε
loc (Rd)

for a sufficiently small ε > 0. In addition, they show that f satisfies a reverse

Hölder inequality, i.e.,Ç
1

|B(x, r2)|

ˆ
B(x, r

2
)
J

(1+ε)
f

å1/(1+ε)

≤ C(d, ε,K)
1

|B(x, r)|

ˆ
B(x,r)

Jf ,

where x ∈ Rd and r > 0. If f : Rd → M , then the Jacobian of f will be

in L1+ε
loc (Rd), but it will not necessarily satisfy a reverse Hölder inequality.

The reverse Hölder inequality only holds when H l(M) 6= 0 for some l, where

1 ≤ l ≤ d− 1.
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An example of a map that does not satisfy a reverse Hölder inequality is

f(z) = ez : C → “C. The Jacobian of f in this case is e2x/(1 + e2x)2, where

x = Re(z). If we consider balls of the form B(0, r), then the term on the

left-hand side of the inequality will be comparable to r−1/(1+ε) while the term

on the right-hand side be comparable to r−1. This is not possible and hence

such an inequality cannot be satisfied. Crucially, H1(“C) = {0} and so the

inequality is not expected to hold.

Once we know that the Jacobian of f satisfies a reverse Hölder inequality,

we prove that the size of the Jacobian governs the size of the rescaled forms, ηi
and θi, on Bn. In turn, this shows that the integral of the Jacobian of f on Bn
will be arbitrarily small as n→∞. At this point we arrive at a contradiction

since the balls were exactly chosen so that the integral of the Jacobian of f is

bounded away from 0. Hence the number of forms is bounded by
(d
l

)
. These

forms correspond to the dimension of the degree l de Rham cohomology on M ,

proving Theorem 1.1.

The structure of the paper is as follows. Section 2 gives a brief introduc-

tion to differential forms on manifolds and pullbacks of differential forms by

quasiregular mappings. We also show the reverse Hölder inequality for the

Jacobian of f . For the relationship between quasiregular mappings and differ-

ential forms, see [2, §3] and [13]. The use of differential forms in this setting

is inspired by the work of Bonk and Heinonen [2], Donaldson and Sullivan [5]

and Iwaniec and Martin [13].

In Section 3 we discuss equidistribution properties for f . In Section 4

we define the rescalings of the differential forms and prove certain required

convergence results. Section 5 gives the proof of Theorem 1.1. Some of the

methods in the proof are influenced by techniques developed by Pankka [19].

For a reference on the facts used for quasiregular mappings, see [2], [5] and [22].

1.1. Acknowledgments. The author thanks Mario Bonk for both introduc-

ing him to the problem and the many discussions and comments on the paper.

The author would also like to thank Pekka Pankka for conversations in Helsinki

on this topic. The author was partially supported by NSF grant DMS-1506099.

2. Exterior algebra and differential forms

This section gives an introduction to the tools needed to prove Theo-

rem 1.1.

Let
∧l(Rd) denote the space of degree l exterior powers of the cotangent

bundle of Rd for 1 ≤ l ≤ d− 1. Let D ⊂ Rd be an open domain. By C∞c (D),

we denote the space of smooth functions with compact support in D. We say

a differential form α is in Lp(D) whenever the component functions of α are

in the usual Lp-space. Similarly, α is in the Sobolev space W 1,p(D) whenever

the component functions are in the standard Sobolev space, i.e., αi ∈ Lp(D)
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of functions and αi has weak derivatives in Lp(D) of functions. The pointwise

norm of a differential form α will be denoted by |α| and will refer to the

pointwise L2-norm on the component functions of α. The exponents p and q

will always denote d/l and d/(d − l) respectively, where l is the degree of the

differential form whose norm is being taken. For x ∈ Rd and r > 0, the set

B(x, r) ⊂ Rd denotes the ball of radius r, centered at x.

The spaceM will always be a closed, connected and orientable Riemannian

manifold of dimension d. By Ωl(M), we mean the space of smooth differential

forms on M of degree l. On Ωl(M), there exists an inner product induced

by the Riemannian metric on M . For ω ∈ Ωl(M), we denote by ‖ω‖∞ the

L∞-norm given by this inner product. The de Rham cohomology of M will be

denoted by H l(M).

In the following it suffices to consider l such that 1 ≤ l ≤ d − 1. This is

because Hd(M) ∼= H0(M) ∼= R for the manifolds considered in Theorem 1.1.

In order to select suitable differential forms from the cohomology classes

on M , we use Poincaré duality (see [4, p. 44]).

Theorem 2.1. Let k = dimH l(M). Then there exist closed forms

α1, . . . , αk ∈ Ωl(M)

and β1, . . . , βk ∈ Ωd−l(M) such that the cohomology classes {[αi]}ki=1 form a

basis for H l(M) and

(2.1)

ˆ
M
αi ∧ βj = δij

for 1 ≤ i, j ≤ k.

In estimating integrals of differential forms, the following inequality will

be useful later on. If α ∈ ∧l1(Rd) and β ∈ ∧l2(Rd), then

(2.2) |α ∧ β| ≤ C(d)|α||β|,
where C(d) only depends on the dimension. To prove this note that the bilinear

operator (α, β) 7→ α∧β is defined on two finite-dimensional vector spaces when

x is fixed. Therefore it is bounded and and we arrive at (2.2).

A key tool we use is the pullback of a differential form by a quasiregular

map. If f : Rd →M is quasiregular and ω ∈ Ωl(M), then f∗ω is a well-defined

measurable form in Lploc(R
d) and

(2.3) d(f∗ω) = f∗(dω).

Here, d(f∗ω) is interpreted in the weak sense. For a thorough discussion of

this, see [5, §2].

We also have the following well-known inequality for pullbacks of differ-

ential forms by f :

(2.4) |f∗ω(x)| ≤ C(d)‖ω‖∞‖Df(x)‖l
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for almost every x ∈ Rd, where ‖Df‖ is the operator norm for Df and C(d) > 0

is a constant that depends only on d.

The inequality is a pointwise estimate. To prove it, without loss of gener-

ality, we may assume that ω ∈ Ωl(B(0, 1)). For almost every x ∈ Rd,

f∗ω(x) =
∑
I

(ωI ◦ f(x))df I(x),

where I = {i1, . . . , il} is a multi-index of length l. That is,

df I = dfi1 ∧ · · · ∧ dfil ,

where fi is i-th component function of f and we sum over all multi-indices,

1 ≤ i1 < · · · < il ≤ d. By Hadamard’s inequality,

|dfi1 ∧ · · · ∧ dfil | ≤ |dfi1 | · · · |dfil | ≤ ‖Df‖
l.

Thus,

|f∗ω(x)| ≤ C(d)‖ω‖∞‖Df(x)‖l.

Bojarski and Iwaniec [1, Th. 5.1] showed that a quasiregular mapping

f : Rd → Rd has a Jacobian that satisfies a reverse Hölder inequality; that is,

there exists b > 1 so that if F,Ω ⊂ Rd are sets such that F is compact, Ω is

open and F ⊂ Ω, thenÇˆ
F
Jbf

å1/b

≤ C(d, b,K)
1

dist(F, ∂Ω)d/a

ˆ
Ω
Jf ,(2.5)

where 1
a + 1

b = 1. Crucially, b and C(d, b,K) are independent of f, F and Ω.

They prove this by showing a weaker reverse Hölder inequality, where the

exponents are 1 and 1/2. They then use Gehring’s lemma to upgrade to the

above inequality. We would like to have such a statement for f : Rd → M . If

H l(M) = 0 for 1 ≤ l ≤ d − 1, then the Jacobian of f does not necessarily

satisfy a reverse Hölder inequality. An example of such a map is f(z) = ez as a

map from C→ “C, as mentioned in the introduction. Note that, in the setting

of Theorem 1.1, there exists an index 1 ≤ l ≤ d − 1 such that H l(M) 6= 0,

otherwise Theorem 1.1 is trivially true.

Proposition 2.2. Let M be a closed Riemannian manifold, and let f : Rd
→ M be K-quasiregular. If there exists an integer 1 ≤ l ≤ d − 1 such that

H l(M) 6= 0, then the Jacobian of f satisfies the weak reverse Hölder inequality,

1

|12B|

ˆ
1
2
B
Jf ≤ C(d,K,M)

Ç
1

|B|

ˆ
B
J
d/(d+1)
f

å(d+1)/d

,

where B ⊂ Rd is an arbitrary ball.
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In order to prove the proposition we will need two lemmas. In general, a

top-dimensional product that integrates to the volume of M can be expressed

as α ∧ β = V + dτ , where τ ∈ Ωd−1(M). In order to prove the revere Hölder

inequality of Proposition 2.2, we would like to write V as solely the sum of

products of differential forms. The following lemma describes how to absorb

the dτ term into the product term.

Lemma 2.3. If there exists a pair of differential forms α ∈ Ωl(M) and

β ∈ Ωn−l(M) that are closed and satisfyˆ
M
α ∧ β =

ˆ
M
V,

where V is the volume form on M , then there exists a partition of unity {λν}mν=1

such that V can be expressed as

V = c
m∑
ν=1

λναν ∧ βν ,

where αν ∈ Ωl(M), βν ∈ Ωd−l(M) and c ∈ C∞(M).

Proof. Without loss of generality, we may assume that the volume of M

is 1. Since α ∧ β is a top-dimensional form, we have that

α ∧ β = gV,

where V is the volume form on M and g ∈ C∞(M). Let a ∈M be a point for

which g(a) > 0.

Let x ∈M . By the Isotopy lemma [11, p. 142], there exists an orientation

preserving diffeomorphism Φx : M → M such that Φx(x) = a. Let U be

an open set containing a such that g is positive on U . Then {Φ−1
x (U)}x∈M

is an open cover of M and there exists a finite subcover, U1, . . . , Um. By

the construction, g ◦ Φx is positive on Ux. Let Φν be the diffeomorphism

corresponding to Uν , and let {λν}mν=1 be a partition of unity subordinate to

{Uν}mν=1. Define

ω :=
m∑
ν=1

λνΦ∗ν(α ∧ β).

From this definition we get that for any x ∈M ,

ω|x =
m∑
ν=1

λν(x)(g ◦ Φν(x))Φ∗ν(V )|x

=
m∑
ν=1

λν(x)(g ◦ Φν(x))JΦν (x)V |Φν(x),

where JΦν is the Jacobian of Φν . The diffeomorphism Φν is orientation preserv-

ing, so JΦν (x) > 0. The functions λν are non-negative and non-zero only on Uν .

On the set Uν , g ◦ Φν(x) is also positive. So ω is a positive top-dimensional

form and thus V = cω, where c : M → (0,∞) is a positive, smooth function

on M . �
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The following lemma is well known to experts.

Lemma 2.4. Let f : Rd → M be a K-quasiregular mapping, and let α ∈
Ωl(M) and β ∈ Ωd−l(M) be closed forms. If B is a ball in Rd such that, in B,

f∗(α ∧ β) = gdx1 ∧ · · · ∧ dxd for a non-negative g : B → R, then

1

|12B|

ˆ
1
2
B
f∗(α ∧ β) ≤ C(d,K)‖α‖∞‖β‖∞

Ç
1

|B|

ˆ
B
J
d/(d+1)
f

å(d+1)/d

,

where C(d,K) depends only on d and K .

Proof. Let ψ ∈ C∞c (Rd) be a non-negative function that is 1 on 1
2B and

0 on the complement of B. Note that we can choose ψ so that |dψ| ≤ r−1,

where r is the radius of B. By the non-negativity of f∗(α ∧ β),ˆ
1
2
B
f∗(α ∧ β) ≤

ˆ
B
ψf∗(α ∧ β).

On M , α is closed. By (2.3), f∗α = du on B. We can choose u so that

u satisfies a Poincaré-Sobolev inequality. For a precise formulation of this,

see [12, Cor. 4.2]. Integration by parts gives that∣∣∣∣∣
ˆ
B
ψf∗α ∧ f∗β

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
B
dψ ∧ u ∧ f∗β

∣∣∣∣∣.
By (2.2), Hölder’s inequality and because |dψ| ≤ r−1,∣∣∣∣∣

ˆ
B
dψ ∧ u ∧ f∗β

∣∣∣∣∣ ≤ C(d)

r
‖u‖d2/(l(d+1)−d)‖f∗β‖d2/((d+1)(d−l)).

Since du = f∗α, we have, by the Poincaré-Sobolev inequality, that

C(d)

r
‖u‖d2/(l(d+1)−d)‖f∗β‖d2/((d+1)(d−l))

≤ C(d)

r
‖f∗α‖d2/(l(d+1))‖f∗β‖d2/((d+1)(d−l)).

We remark that the Poincaré-Sobolev inequality is only valid here because

1 ≤ l ≤ d−1. The forms α and β are smooth on M and therefore are bounded

independently of f . So by (2.2),

C(d)

r
‖f∗α‖d2/(l(d+1))‖f∗β‖d2/((d+1)(d−l))

≤ C(d,K)

r
‖α‖∞‖β‖∞‖Jf‖

l/d
d/(d+1)‖Jf‖

(d−l)/d
d/(d+1)

=
C(d,K)

r
‖α‖∞‖β‖∞

Çˆ
B
J
d/(d+1)
f

å(d+1)/d

.

By taking averages, we arrive at the lemma. �

We can now proceed in showing the proposition.
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Proof of Proposition 2.2. Since H l(M) 6= 0, there exists a Poincaré pair,

α and β, given in Theorem 2.1, withˆ
M
α ∧ β = 1.

Let ψ ∈ C∞c (Rd) be a function such that 0 ≤ ψ ≤ 1, ψ ≡ 1 on 1
2B and

ψ ≡ 0 on the complement of B. The Jacobian of f satisfies

Jfdx
1 ∧ · · · ∧ dxd = f∗V.

So, by Lemma 2.3,ˆ
1
2
B
Jf ≤

ˆ
B
ψJf

=

ˆ
B
ψf∗V

=
m∑
ν=1

ˆ
B
ψ(c ◦ f)(λν ◦ f)f∗(αν ∧ βν).

We also know that c and λν are positive and bounded above by constants

depending only on M . So by Lemma 2.4,

1

|12B|

ˆ
1
2
B
Jf ≤ C(d,K)

m∑
ν=1

‖αν‖∞‖βν‖∞
Ç

1

|B|

ˆ
B
J
d/(d+1)
f

å(d+1)/d

.

The number m and the L∞-norms of αν and βν depend only on M and can

be absorbed into the constant. Therefore

1

|12B|

ˆ
1
2
B
Jf ≤ C(d,K,M)

Ç
1

|B|

ˆ
B
J
d/(d+1)
f

å(d+1)/d

. �

Proposition 2.2 and [1, Th. 4.2] together imply the following statement.

Proposition 2.5. There exists b > 1 such that for any ball B ⊂ Rd,Ç
1

|12B|

ˆ
1
2
B
Jbf

å1/b

≤ C(d,M,K, b)
1

|B|

ˆ
B
Jf .

3. Equidistribution

In this section we provide equidistribution results for a quasiregular map-

ping f : Rd → M . These results will help show that the limits of our rescaled

forms, which will be constructed in Section 4, are non-zero. Define

A(B) :=

ˆ
B
Jf
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for a Borel set B ⊂ Rd to be the averaged counting function for f (see [22,

Ch. IV]). The following theorem [2, Th. 1.11] shows that A(B(0, r)) is un-

bounded.

Theorem 3.1. Let f : Rd → M be a quasiregular mapping. If H l(M) 6=
{0} for some l ∈ {1, . . . , d− 1}, then there exists a constant α > 0 such that

lim inf
r→∞

A(B(0, r))

rα
> 0.

In particular, A(Rd) =∞.

We also record a lemma due to Rickman; for the proof, see [20, Lemma 5.1].

Lemma 3.2 (Rickman’s Hunting Lemma). Let µ be a Borel measure on Rd
that is absolutely continuous with respect to Lebesgue measure. If µ(Rd) =∞,

then, for all M > 0, there exist a point a ∈ Rd and a radius r > 0 such that

µ(B(a, r)) ≥M and µ(B(a, r)) ≤ D(d)µ(B(a, r/2)),

where D(d) is a constant that depends only on the dimension d.

We remark that this lemma has been used in most proofs of the Rickman-

Picard theorem. For a recent paper by Bonk and Poggi-Corradini that proves

the Rickman-Picard theorem, see [3].

The next proposition is the key equidistribution result for the quasiregular

mapping f . Equidistribution results for quasiregular mappings were first shown

by Mattila and Rickman in [18]. The following result also bears some similarity

to an equidistribution result due to Pankka [19, Th. 4]. The proof also uses

some methods developed there.

Proposition 3.3. Let f : Rd → M be a quasiregular mapping, and let

{Bn}n∈N be a sequence of balls such that

lim
n→∞

A(Bn) =∞.

Suppose ψ ∈ C∞c (B(0, 1)) is a non-negative function that satisfies

A(Bn) ≤ C(d,K)

ˆ
Bn

(ψ ◦ T−1
n )dJf ,(3.1)

where Tn(x) = an + rnx, Bn = B(an, rn). If ω ∈ Ωd(M) satisfiesˆ
M
ω =

ˆ
M
V,

where V is the volume form on M , then

lim
n→∞

∣∣∣∣∣ 1´
Bn

(ψ ◦ T−1
n )dJf

ˆ
Bn

(ψ ◦ T−1
n )df∗ω − 1

∣∣∣∣∣ = 0.
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Proof. Let ψn(x) = ψ ◦ T−1
n . Consider the following difference:∣∣∣∣∣

ˆ
Bn

ψdnηi ∧ θi −
ˆ
Bn

ψdnJf

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
Bn

ψdnf
∗(ω − V )

∣∣∣∣∣.
Since

´
M ω =

´
M V , the d-form ω − V integrates to 0 on M . By de Rham’s

theorem, it is exact and ω−V = dτ , where τ ∈ Ωd−1(M). We apply integration

by parts,∣∣∣∣∣
ˆ
Bn

ψdnf
∗(ω − V )

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
Bn

ψdnd(f∗τ)

∣∣∣∣∣ =

∣∣∣∣∣d
ˆ
Bn

ψd−1
n dψn ∧ f∗τ

∣∣∣∣∣.
By (2.2) and Hölder’s inequality,∣∣∣∣∣

ˆ
Bn

ψdnf
∗(ω − V )

∣∣∣∣∣ ≤ C(d)‖dψn‖d,Bn
Çˆ

Bn

ψdn|f∗τ |d/(d−1)

å(d−1)/d

.

By (2.4) and quasiregularity of f ,∣∣∣∣∣
ˆ
Bn

ψdnf
∗(ω − V )

∣∣∣∣∣ ≤ C(d)K(d−1)/d‖τ‖∞‖dψn‖d,Bn
Çˆ

Bn

ψdnJf

å(d−1)/d

.

Thus,∣∣∣∣∣ 1

(
´
Bn
ψdnJf )

ˆ
Bn

ψdnω − 1

∣∣∣∣∣ ≤ C(K, d,M)‖dψn‖d,Bn
Çˆ

Bn

ψdnJf

å−1/d

.

Note that

‖dψn‖d,Bn = ‖dψ‖d,B(0,1),

by the conformal invariance of the d-energy. In other words, the term with ψn
is independent of n. This and (3.1) give that∣∣∣∣∣ 1

(
´
Bn
ψdnJf )

ˆ
Bn

ψdnω − 1

∣∣∣∣∣ ≤ C(K, d,M)‖dψ‖d,B(0,1)A(Bn)−1/d → 0

as n→∞. �

4. Rescaling principle

In this section we construct rescaled forms on B(0, 1). By Theorem 2.1,

there exist closed differential forms α1, . . . , αk ∈ Ωl(M) and β1, . . . , βk ∈
Ωd−l(M) such that the cohomology classes [α1], . . . , [αk] form a basis forH l(M).

In addition, they satisfy the orthogonality relationˆ
M
αi ∧ βj = δij

for 1 ≤ i, j ≤ k.
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By Theorem 3.1 and Lemma 3.2, there exist balls Bn ⊂ Rd such that

lim
n→∞

A(Bn) =∞ and

A(Bn) ≤ D(d)A(1
2Bn).(4.1)

In the following, {Bn}n∈N will always refer to a sequence of balls satisfying

these conditions.

We can now rescale the pullbacks ηi = f∗αi and θi = f∗βi on the sequence

of balls, {Bn}n∈N. Let Tn : B(0, 1)→ Bn = B(an, rn) be the map x 7→ an+rnx.

The rescaled forms are defined as

ηni :=
1

A(Bn)1/p
T ∗nηi(4.2)

and

θni :=
1

A(Bn)1/q
T ∗nθi.(4.3)

Note that by (2.3), ηni and θni are closed. By quasiregularity of f , we have that

f ∈ W 1,d
loc (Rd,M). By (2.4), ηni ∈ L

p
loc(R

d) and θni ∈ L
q
loc(R

d), where p = d/l

and q = d/(d− l).
The following lemma provides a convergence result for the sequences of

forms {ηni }n∈N and {θni }n∈N.

Lemma 4.1. For each n ∈ N, there exists a (d − l − 1)-form uni ∈
W 1,q(B(0, 1)), where q = d/(d− l), such that

duni = θni .

Furthermore, we can pass to a subsequence so that the following convergence

results hold :

(i) There exist an l-form η̃i ∈ Lp(B(0, 1)) and a (d− l)-form θ̃i ∈ Lq(B(0, 1))

such that

lim
n→∞

ηni = η̃i and lim
n→∞

θni = θ̃i,

where the convergence of ηni is in the weak topology on Lp(B(0, 1)) and

the convergence of θni is in the weak topology on Lq(B(0, 1)).

(ii) There exists a (d− l − 1)-form ũi ∈W 1,q(B(0, 1)) such that

lim
n→∞

uni = ũi

in Lq(B(0, 1)).

(iii) On B(0, 1),

dũi = θ̃i,

in the weak sense.
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Proof. In this proof we will construct several subsequences of the sequences

mentioned in the lemma. It is understood that the subsequences should be

taken simultaneously for all the forms mentioned in the lemma.

For the proof of (i), we compute the Lp-norm of ηni . Indeed, by equa-

tion (4.2),

ˆ
B(0,1)

|ηni |p =
rdn

A(Bn)

ˆ
B(0,1)

|ηi(an + rnx)|pdx =
1

A(Bn)

ˆ
Bn

|ηi|p.

By quasiregularity of f and (2.4),

1

A(Bn)

ˆ
Bn

|ηi|p ≤ KC(d)
‖αi‖p∞
A(Bn)

ˆ
Bn

Jf ≤ KC(d)‖αi‖p∞.

Hence, the Lp-norm of ηni is uniformly bounded. By the Banach-Alaoglu the-

orem, we can pass to a subsequence so that

lim
n→∞

ηni = η̃i

weakly in Lp(B(0, 1)).

The proof for θni is very similar. By (4.3),

ˆ
B(0,1)

|θni |q =
rdn

A(Bn)

ˆ
B(0,1)

|θi(an + rnx)|q

=
1

A(Bn)

ˆ
Bn

|θi|q

≤ KC(d)
‖βi‖q∞
A(Bn)

ˆ
Bn

Jf

≤ KC(d)‖βi‖q∞.

Again, by the Banach-Alaoglu theorem, we can pass to a subsequence so that

lim
n→∞

θni = θ̃i

weakly in Lq(B(0, 1)).

We next prove (ii). By part (i), the Lq-norm of θni is uniformly bounded.

The forms θni are closed by (2.3). By the Sobolev embedding theorem, there

exist (d−l−1)-forms uni ∈W 1,q(B(0, 1)) such that duni = θni and ‖uni ‖d/(d−l−1)

≤ C‖θni ‖q, where C does not depend on n, uni or θni ; see [12, Cor. 4.2] for

the formulation of the Sobolev embedding theorem and the Sobolev-Poincaré

inequality for differential forms. Thus there exists a subsequence of uni that

converges to ũi strongly in Lq(B(0, 1)). We will also denote this subsequence

as uni .

Finally, we show (iii). We demonstrate that dũi = θ̃i in the weak sense. By

duality, we can consider test forms φ ∈ Ωl+1(B(0, 1)) with compact support.
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We pair ũi with dφ, ˆ
Rd
ũi ∧ dφ = lim

n→∞

ˆ
Rd
uni ∧ dφ

= lim
n→∞

(−1)d−l
ˆ
Rd
θni ∧ φ

= (−1)d−l
ˆ
Rd
θ̃i ∧ φ.

This proves the claims in the lemma. �

The following convergence result is a key tool in proving the main result.

Lemma 4.2. Let ψ ∈ C∞c (B(0, 1)). Then

lim
n→∞

ˆ
B(0,1)

ψηni ∧ θnj =

ˆ
B(0,1)

ψη̃i ∧ θ̃j

for 1 ≤ i, j ≤ k.

Proof. Consider the difference,∣∣∣∣∣
ˆ
B(0,1)

ψηni ∧ θnj −
ˆ
B(0,1)

ψη̃i ∧ θ̃j

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
B(0,1)

ψηni ∧ (θnj − θ̃j)
∣∣∣∣∣

+

∣∣∣∣∣
ˆ
B(0,1)

ψ(ηni − η̃i) ∧ θ̃j

∣∣∣∣∣
= I + II.

Lemma 4.1 gives that

I =

∣∣∣∣∣
ˆ
B(0,1)

ψηni ∧ (dunj − dũj)
∣∣∣∣∣.

By integration by parts and the compactness of the support of ψ,ˆ
B(0,1)

ψηni ∧ d(unj − ũj) = (−1)l+1

ˆ
B(0,1)

d(ψηni ) ∧ (unj − ũj)

= (−1)l+1

ˆ
B(0,1)

dψ ∧ ηni ∧ (unj − ũj)

because ηni is weakly closed and ψ(unj − ũj) ∈W 1,q(Rd). By (2.2),

|dψ ∧ ηni ∧ (unj − ũj)| ≤ C(d)|dψ ∧ ηni ||unj − ũj |,

where C(d) only depends on d. By Hölder’s inequality,

I ≤ C(d)‖dψ ∧ ηni ‖p‖unj − ũj‖q.

By Lemma 4.1, the term ‖dψ∧ηni ‖p is bounded independently of n and uni → ũi
in Lq(B(0, 1)). So limn→∞ |I| = 0.
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For the term II, we observe first that, by Lemma 4.1, ηni → η̃i in Lp(B(0, 1))

in the weak sense. Since ψθ̃j ∈ Lq(B(0, 1)), it follows that

lim
n→∞

II = lim
n→∞

∣∣∣∣∣
ˆ
B(0,1)

(ηni − η̃i) ∧ (ψθ̃j)

∣∣∣∣∣ = 0. �

We show that, as a result of the rescaling, condition (2.1) transfers to a

pointwise property of the forms η̃i and θ̃j .

Lemma 4.3. For almost every x ∈ B(0, 1),

η̃i ∧ θ̃j(x) = 0(4.4)

when i 6= j.

Proof. When i 6= j, ˆ
M
αi ∧ βj = 0,

by (2.1). By de Rham’s theorem [4, Cor. 5.8], there exists τ ∈ Ωd−1(M) such

that dτ = αi ∧ βj . Let ψ ∈ C∞c (B(0, 1)), using integration by parts and the

compactness of the support of ψ,
ˆ
B(0,1)

ψηni ∧ θnj =
1

A(Bn)

ˆ
Bn

ψ

Ç
x− an
rn

å
d(f∗τ)(x)

=
−1

A(Bn)

ˆ
Bn

d

Ç
ψ

Ç
x− an
rn

åå
∧ f∗τ(x).

By (2.2) and Hölder’s inequality,∣∣∣∣∣
ˆ
B(0,1)

ψηni ∧ θnj

∣∣∣∣∣ ≤ C(d)

A(Bn)
‖dψ‖d,B(0,1)

Çˆ
Bn

|f∗τ |d/(d−1)

å(d−1)/d

.

By (2.4) and quasiregularity of f ,∣∣∣∣∣
ˆ
B(0,1)

ψηni ∧ θnj

∣∣∣∣∣ ≤ C(d)K(d−1)/d ‖dψ‖d,B(0,1)‖τ‖∞
A(Bn)

Çˆ
Bn

Jf

å(d−1)/d

→ 0

as n→∞. By Lemma 4.2, ˆ
B(0,1)

ψη̃i ∧ θ̃j = 0.

Since ψ was an arbitrary test function, η̃i ∧ θ̃j(x) = 0 for almost every x ∈
B(0, 1). �

We finish this section with a corollary of the lemma.
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Corollary 4.4. Suppose η̃i, θ̃i are forms satisfying the conclusion of

Lemma 4.4 for each index i ∈ {1, . . . , k}. If k >
(d
l

)
, then for almost every

x ∈ B(0, 1), there exists an i ∈ {1, . . . , k} such that

η̃i ∧ θ̃i(x) = 0.

Proof. Fix x ∈ B(0, 1) such that (4.4) holds for all pairs i 6= j. Let

{η̃i1(x), . . . , η̃im(x)} be a basis for span({η̃i(x)}ki=1) ⊂ ∧l Rd. Since the dimen-

sion of
∧l Rd is

(n
l

)
, we have that m ≤

(n
l

)
. By our assumption k >

(d
l

)
, there

exists a form η̃j /∈ {η̃i1 , . . . , η̃im}. It follows that, by (4.4),

η̃j ∧ θ̃j(x) =
m∑
a=1

λia η̃ia ∧ θ̃j(x) = 0. �

5. Proof of Theorem 1.1

In this section we complete the proof of the main result. Recall that η̃i
and θ̃i, for i ∈ {1, . . . , k}, are the rescalings of f∗αi and f∗βi, which were

constructed in Lemma 4.1. For each i = 1, . . . , k, let

Di = {x ∈ B(0, 1) : η̃i ∧ θ̃i(x) = 0}

and define Dn
i = an + rnDi.

We will prove Theorem 1.1 by contradiction; assume k >
(d
l

)
. By Corol-

lary 4.4, |Bn| = |
⋃k
i=1D

n
i | and

A(1
2Bn) ≤

k∑
i=1

ˆ
Dni ∩

1
2
Bn

Jf .

So for each n ∈ N, there exists by (4.1) an index 1 ≤ in ≤ k so that
ˆ
Dnin∩

1
2
Bn

Jf ≥
1

k
A(1

2Bn) ≥ A(Bn)

kD(d)
.

We may assume, by passing to a subsequence, that the index in is always the

same.

Lemma 5.1. For all ε > 0, there exist a compact set Ci ⊂ Di ∩ B(0, 1
2)

and an open set Ui containing Di ∩B(0, 1
2) such that

ˆ
Cni

Jf ≥
A(Bn)

2kD(d)
,(5.1)

where Cni = an + rnCi and ˆ
Ui

|η̃i ∧ θ̃i| < ε.(5.2)
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Proof. Fix ε > 0. Since
´
Di
|η̃i ∧ θ̃i| = 0, there exists an open set Ui

containing Di ∩B(0, 1
2) such that (5.2) is satisfied.

To construct Ci, first note that, for each δ > 0, there exist compact sets

Ci(δ) ⊂ Di ∩B(0, 1
2) satisfying

|(Di ∩B(0, 1
2)) \ Ci(δ)| < δ.

Let Cni (δ) = an + rnCi(δ) and Dn
i = an + rnDi. To simplify notation, denote

1
2Di := Di ∩B(0, 1

2) and 1
2D

n
i := an + rn

1
2Di. Then, by Hölder’s inequality,

ˆ
1
2
Dni \C

n
i (δ)

Jf ≤ |12D
n
i \ Cni (δ)|1/a

Çˆ
1
2
Dni \C

n
i (δ)

Jbf

å1/b

,

where 1
a + 1

b = 1 and b > 1 can be chosen arbitrarily close to 1. Continuing

the calculation, we get

ˆ
1
2
Dni \C

n
i (δ)

Jf ≤ rd/an |12Di \ Ci(δ)|1/a
Çˆ

1
2
Dni \C

n
i (δ)

Jbf

å1/b

≤ rd/an |12Di \ Ci(δ)|1/a
Çˆ

1
2
Bn

Jbf

å1/b

.

We now use the higher integrability for Jacobians of quasiregular mappings

given in Proposition 2.5,

rd/an |12Di \ Ci(δ)|1/a
Çˆ

1
2
Bn

Jbf

å1/b

≤ C(K,M, d, b)|12Di \ Ci(δ)|1/ard/an r−d/an

ˆ
Bn

Jf

= C(K,M, d, b)|12Di \ Ci(δ)|1/aA(Bn).

We now choose δ > to be so small that |12Di \ Ci(δ)|1/a < 1
2C(K,M,d,b)kD(d) .

This proves the lemma. �

We now have all of the ingredients to finish the proof of the main theorem.

Proof of Theorem 1.1. Recall that we proceed by contradiction and as-

sume that k >
(d
l

)
. We may assume that vol(M) = 1. Let Ci, Ui be the sets

given in Lemma 5.1. Define Cni , U
n
i as in Lemma 5.1. Choose ψ̃ ∈ C∞c (B(0, 1))

so that 0 ≤ ψ̃ ≤ 1, ψ̃ ≡ 1 on Ci and ψ̃ ≡ 0 on the complement of Ui. Next we

define ψn(x) = ψ̃ ◦ T−1
n . By Proposition 3.3 and Lemma 5.1,

lim
n→∞

∣∣∣∣∣ 1

(
´
Bn
ψdnJf )

ˆ
Bn

ψdnηi ∧ θi − 1

∣∣∣∣∣ = 0.(5.3)
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By Lemma 4.2,

lim
n→∞

∣∣∣∣∣ 1

A(Bn)

ˆ
Bn

ψdηni ∧ θni

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
B(0,1)

ψ̃dη̃i ∧ θ̃i

∣∣∣∣∣ ≤
ˆ
B(0,1)

ψ̃d|η̃i ∧ θ̃i|.

Since the support of ψ̃ is contained in Ui,ˆ
B(0,1)

ψ̃d|η̃i ∧ θ̃i| ≤
ˆ
Ui

|η̃i ∧ θ̃i| < ε,

by (5.2). So, for n sufficiently large, we have that∣∣∣∣∣ 1

A(Bn)

ˆ
Bn

ψdηi ∧ θi

∣∣∣∣∣ ≤ 2ε.(5.4)

Therefore, by (5.1) and (5.4),

1

(
´
Bn
ψdJf )

∣∣∣∣∣
ˆ
Bn

ψdηi ∧ θi

∣∣∣∣∣ =
A(Bn)

(
´
Bn
ψdJf )

∣∣∣∣∣ 1

A(Bn)

ˆ
Bn

ψdηi ∧ θi

∣∣∣∣∣ ≤ 4kD(d)ε.

This bound is independent of n and contradicts (5.3) for small ε and large n.

Therefore |⋃Di| 6= |B(0, 1)| and k ≤
(d
l

)
. This proves Theorem 1.1. �
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