Cubic curves and totally geodesic subvarieties of moduli space

Abstract

In this paper we present the first example of a primitive, totally geodesic subvariety $F \subset \mathcal{M}_{g,n}$ with $\mathrm{dim}(F)>1$. The variety we consider is a surface $F \subset \mathcal{M}_{1,3}$ defined using the projective geometry of plane cubic curves. We also obtain a new series of Teichmüller curves in $\mathcal{M}_4$, and new $\mathrm{SL}_2(\mathbb{R})$-invariant varieties in the moduli spaces of quadratic differentials and holomorphic 1-forms.

  • [Antonakoudis:mix] S. M. Antonakoudis, Teichmüller spaces and bounded symmetric domains do not mix isometrically, 2015.
    @MISC{Antonakoudis:mix,
      author = {Antonakoudis, S. M.},
      note = {preprint},
      title = {Teichmüller spaces and bounded symmetric domains do not mix isometrically},
      year = {2015},
      arxiv = {1510.07326},
      }
  • [Arbarello:Cornalba:Griffiths:Harris:book:I] Go to document E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of Algebraic Curves. Vol. I, New York: Springer-Verlag, 1985, vol. 267.
    @BOOK{Arbarello:Cornalba:Griffiths:Harris:book:I, mrkey = {0770932},
      author = {Arbarello, E. and Cornalba, M. and Griffiths, P. A. and Harris, J.},
      mrclass = {14Hxx (14-02)},
      series = {Grundl. Math. Wissen.},
      address = {New York},
      isbn = {0-387-90997-4},
      publisher = {Springer-Verlag},
      doi = {10.1007/978-1-4757-5323-3},
      volume = {267},
      mrnumber = {0770932},
      mrreviewer = {Werner Kleinert},
      title = {Geometry of Algebraic Curves. {V}ol. {I}},
      year = {1985},
      pages = {xvi+386},
      zblnumber = {0559.14017},
      }
  • [Artebani:Dolgachev:cubics] Go to document M. Artebani and I. Dolgachev, "The Hesse pencil of plane cubic curves," Enseign. Math., vol. 55, iss. 3-4, pp. 235-273, 2009.
    @ARTICLE{Artebani:Dolgachev:cubics, mrkey = {2583779},
      number = {3-4},
      issn = {0013-8584},
      author = {Artebani, Michela and Dolgachev, Igor},
      mrclass = {14N20 (14J28)},
      doi = {10.4171/LEM/55-3-3},
      journal = {Enseign. Math.},
      zblnumber = {1192.14024},
      volume = {55},
      mrnumber = {2583779},
      fjournal = {L'Enseignement Mathématique. Revue Internationale. 2e Série},
      mrreviewer = {GÂ!`bor Megyesi},
      title = {The {H}esse pencil of plane cubic curves},
      year = {2009},
      pages = {235--273},
      }
  • [Berteloot:lattes] Go to document F. Berteloot and J. Loeb, "Une caractérisation géométrique des exemples de Lattès de ${\Bbb P}^k$," Bull. Soc. Math. France, vol. 129, iss. 2, pp. 175-188, 2001.
    @ARTICLE{Berteloot:lattes, mrkey = {1871293},
      number = {2},
      issn = {0037-9484},
      author = {Berteloot, François and Loeb, Jean-Jacques},
      mrclass = {32U40 (32H50)},
      journal = {Bull. Soc. Math. France},
      zblnumber = {0994.32026},
      volume = {129},
      mrnumber = {1871293},
      fjournal = {Bulletin de la Société Mathématique de France},
      mrreviewer = {Mattias Jonsson},
      title = {Une caractérisation géométrique des exemples de {L}attès de {${\Bbb P}^k$}},
      year = {2001},
      pages = {175--188},
      URL = {http://www.numdam.org/item?id=BSMF_2001__129_2_175_0},
     }
  • [Bouw:Moeller:tris] Go to document I. I. Bouw and M. Möller, "Teichmüller curves, triangle groups, and Lyapunov exponents," Ann. of Math., vol. 172, iss. 1, pp. 139-185, 2010.
    @ARTICLE{Bouw:Moeller:tris, mrkey = {2680418},
      number = {1},
      issn = {0003-486X},
      author = {Bouw, Irene I. and Möller, Martin},
      mrclass = {32G15 (14H10 30F35 32G20 37F30)},
      doi = {10.4007/annals.2010.172.139},
      journal = {Ann. of Math.},
      zblnumber = {1203.37049},
      volume = {172},
      mrnumber = {2680418},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Rachel J. Pries},
      title = {Teichmüller curves, triangle groups, and {L}yapunov exponents},
      year = {2010},
      pages = {139--185},
      }
  • [Calta:genus2] Go to document K. Calta, "Veech surfaces and complete periodicity in genus two," J. Amer. Math. Soc., vol. 17, iss. 4, pp. 871-908, 2004.
    @ARTICLE{Calta:genus2, mrkey = {2083470},
      number = {4},
      issn = {0894-0347},
      author = {Calta, Kariane},
      mrclass = {37D40 (30F60 32G15 37E05 37E15)},
      doi = {10.1090/S0894-0347-04-00461-8},
      journal = {J. Amer. Math. Soc.},
      zblnumber = {1073.37032},
      volume = {17},
      mrnumber = {2083470},
      fjournal = {Journal of the American Mathematical Society},
      mrreviewer = {Christopher M. Judge},
      title = {Veech surfaces and complete periodicity in genus two},
      year = {2004},
      pages = {871--908},
      }
  • [Cayley:Pippian] A. Cayley, "A memoir on curves of the third order," Philos. Trans. Roy. Soc. London, vol. 147, pp. 415-446, 1857.
    @ARTICLE{Cayley:Pippian, volume = {147},
      author = {Cayley, A.},
      title = {A memoir on curves of the third order},
      pages = {415--446},
      year = {1857},
      journal = {Philos. Trans. Roy. Soc. London},
      }
  • [Cremona:intro] L. Cremona, "Introduzione ad una theoria geometrica delle curve piane," Mem. Accad. Sci. Inst. Bologna, vol. 12, pp. 305-436, 1862.
    @ARTICLE{Cremona:intro, volume = {12},
      author = {Cremona, L.},
      title = {Introduzione ad una theoria geometrica delle curve piane},
      pages = {305--436},
      year = {1862},
      journal = {Mem. Accad. Sci. Inst. Bologna},
      }
  • [Jonsson:Dabija:webs] Go to document M. Dabija and M. Jonsson, "Algebraic webs invariant under endomorphisms," Publ. Mat., vol. 54, iss. 1, pp. 137-148, 2010.
    @ARTICLE{Jonsson:Dabija:webs, mrkey = {2603592},
      number = {1},
      issn = {0214-1493},
      author = {Dabija, Marius and Jonsson, Mattias},
      mrclass = {32H50 (14C21 37F75 53A60)},
      doi = {10.5565/PUBLMAT_54110_07},
      journal = {Publ. Mat.},
      zblnumber = {1180.37057},
      volume = {54},
      mrnumber = {2603592},
      fjournal = {Publicacions Matemàtiques},
      mrreviewer = {Marco Abate},
      title = {Algebraic webs invariant under endomorphisms},
      year = {2010},
      pages = {137--148},
      }
  • [Dolgachev:book:classical] Go to document I. V. Dolgachev, Classical Algebraic Geometry. A Modern View, Cambridge: Cambridge Univ. Press, 2012.
    @BOOK{Dolgachev:book:classical, mrkey = {2964027},
      author = {Dolgachev, Igor V.},
      mrclass = {14-02 (14-01)},
      isbn = {978-1-107-01765-8},
      address = {Cambridge},
      publisher = {Cambridge Univ. Press},
      doi = {10.1017/CBO9781139084437},
      zblnumber = {1252.14001},
      mrnumber = {2964027},
      mrreviewer = {Arnaud Beauville},
      title = {Classical Algebraic Geometry. A Modern View},
      year = {2012},
      pages = {xii+639},
      }
  • [Eskin:Mirzakhani:Mohammadi:orbit] Go to document A. Eskin, M. Mirzakhani, and A. Mohammadi, "Isolation, equidistribution, and orbit closures for the ${ SL}(2,\Bbb R)$ action on moduli space," Ann. of Math., vol. 182, iss. 2, pp. 673-721, 2015.
    @ARTICLE{Eskin:Mirzakhani:Mohammadi:orbit, mrkey = {3418528},
      number = {2},
      issn = {0003-486X},
      author = {Eskin, Alex and Mirzakhani, Maryam and Mohammadi, Amir},
      mrclass = {58D27 (22F10 32G15 37C85 37D40 60B15)},
      doi = {10.4007/annals.2015.182.2.7},
      journal = {Ann. of Math.},
      zblnumber = {06487150},
      volume = {182},
      mrnumber = {3418528},
      fjournal = {Annals of Mathematics. Second Series},
      mrreviewer = {Boris Hasselblatt},
      title = {Isolation, equidistribution, and orbit closures for the {${\rm SL}(2,\Bbb R)$} action on moduli space},
      year = {2015},
      pages = {673--721},
      }
  • [Gardiner:book] F. P. Gardiner, Teichmüller Theory and Quadratic Differentials, New York: John Wiley & Sons, New York, 1987.
    @BOOK{Gardiner:book, mrkey = {0903027},
      author = {Gardiner, Frederick P.},
      mrclass = {32G15 (30C60 30F10)},
      series = {Pure Appl. Math.},
      isbn = {0-471-84539-6},
      address = {New York},
      publisher = {John Wiley \& Sons, New York},
      zblnumber = {0629.30002},
      mrnumber = {0903027},
      mrreviewer = {I. Kra},
      title = {Teichmüller Theory and Quadratic Differentials},
      year = {1987},
      pages = {xviii+236},
      }
  • [vanderGeer:book:HMS] Go to document G. van der Geer, Hilbert Modular Surfaces, New York: Springer-Verlag, 1988, vol. 16.
    @BOOK{vanderGeer:book:HMS, mrkey = {0930101},
      author = {van der Geer, Gerard},
      mrclass = {11F41 (11G10 11G15 14J20)},
      series = {Ergeb. Math. Grenzgeb.},
      address = {New York},
      isbn = {3-540-17601-2},
      publisher = {Springer-Verlag},
      doi = {10.1007/978-3-642-61553-5},
      zblnumber = {0634.14022},
      volume = {16},
      mrnumber = {0930101},
      mrreviewer = {O. V. Shvartsman},
      title = {Hilbert Modular Surfaces},
      year = {1988},
      pages = {x+291},
      }
  • [Gendron:strata] Q. Gendron, The Deligne–Mumford and the incidence variety compactifications of the strata of $\Omega \mathcal{M}_g$, 2015.
    @MISC{Gendron:strata,
      author = {Gendron, Q.},
      note = {preprint},
      title = {The {D}eligne--{M}umford and the incidence variety compactifications of the strata of {$\Omega \mathcal{M}_g$}},
      year = {2015},
      arxiv = {1503.03338},
      }
  • [Griffiths:Harris:book] P. Griffiths and J. Harris, Principles of Algebraic Geometry, New York: Wiley-Interscience [John Wiley & Sons], 1978.
    @BOOK{Griffiths:Harris:book, mrkey = {0507725},
      author = {Griffiths, Phillip and Harris, Joseph},
      mrclass = {14-01},
      series = {Pure Appl. Math.},
      isbn = {0-471-32792-1},
      address = {New York},
      publisher = {Wiley-Interscience [John Wiley \& Sons]},
      zblnumber = {0836.14001},
      mrnumber = {0507725},
      mrreviewer = {Gerhard Pfister},
      title = {Principles of Algebraic Geometry},
      year = {1978},
      pages = {xii+813},
      }
  • [Hooper:grids] P. W. Hooper, "Grid graphs and lattice surfaces," Int. Math. Res. Not., vol. 2013, iss. 12, pp. 2657-2698, 2013.
    @ARTICLE{Hooper:grids, mrkey = {3071661},
      number = {12},
      issn = {1073-7928},
      author = {Hooper, W. Patrick},
      mrclass = {37F30 (14H55 20F05 30F40)},
      journal = {Int. Math. Res. Not.},
      zblnumber = {1333.37047},
      volume = {2013},
      mrnumber = {3071661},
      fjournal = {International Mathematics Research Notices. IMRN},
      title = {Grid graphs and lattice surfaces},
      year = {2013},
      pages = {2657--2698},
      }
  • [Teixidor:theta] Go to document M. Teixidor i Bigas, "The divisor of curves with a vanishing theta-null," Compositio Math., vol. 66, iss. 1, pp. 15-22, 1988.
    @ARTICLE{Teixidor:theta, mrkey = {0937985},
      number = {1},
      issn = {0010-437X},
      author = {Teixidor i Bigas, Montserrat},
      mrclass = {14H10 (14H45)},
      url = {http://www.numdam.org/item?id=CM_1988__66_1_15_0},
      journal = {Compositio Math.},
      zblnumber = {0663.14017},
      volume = {66},
      mrnumber = {0937985},
      fjournal = {Compositio Mathematica},
      mrreviewer = {Olivier Debarre},
      title = {The divisor of curves with a vanishing theta-null},
      year = {1988},
      pages = {15--22},
      }
  • [Kenyon:Smillie:billiards] Go to document R. Kenyon and J. Smillie, "Billiards on rational-angled triangles," Comment. Math. Helv., vol. 75, iss. 1, pp. 65-108, 2000.
    @ARTICLE{Kenyon:Smillie:billiards, mrkey = {1760496},
      number = {1},
      issn = {0010-2571},
      author = {Kenyon, Richard and Smillie, John},
      mrclass = {37D50 (37J99)},
      doi = {10.1007/s000140050113},
      journal = {Comment. Math. Helv.},
      zblnumber = {0967.37019},
      volume = {75},
      mrnumber = {1760496},
      fjournal = {Commentarii Mathematici Helvetici},
      mrreviewer = {Serge L. Tabachnikov},
      title = {Billiards on rational-angled triangles},
      year = {2000},
      pages = {65--108},
      }
  • [Leininger:Dehn] Go to document C. J. Leininger, "On groups generated by two positive multi-twists: Teichmüller curves and Lehmer’s number," Geom. Topol., vol. 8, pp. 1301-1359, 2004.
    @ARTICLE{Leininger:Dehn, mrkey = {2119298},
      issn = {1465-3060},
      author = {Leininger, Christopher J.},
      mrclass = {57M07 (57M15 57M25)},
      doi = {10.2140/gt.2004.8.1301},
      journal = {Geom. Topol.},
      zblnumber = {1088.57002},
      volume = {8},
      mrnumber = {2119298},
      fjournal = {Geometry and Topology},
      mrreviewer = {Serge L. Tabachnikov},
      title = {On groups generated by two positive multi-twists: {T}eichmüller curves and {L}ehmer's number},
      year = {2004},
      pages = {1301--1359},
      }
  • [Masur:survey] Go to document H. Masur, "Ergodic theory of translation surfaces," in Handbook of Dynamical Systems. Vol. 1B, Amsterdam: Elsevier B. V., 2006, pp. 527-547.
    @INCOLLECTION{Masur:survey, mrkey = {2186247},
      author = {Masur, Howard},
      mrclass = {37A25 (28D15 37D40 37E35)},
      address = {Amsterdam},
      publisher = {Elsevier B. V.},
      doi = {10.1016/S1874-575X(06)80032-9},
      zblnumber = {1130.37313},
      mrnumber = {2186247},
      booktitle = {Handbook of Dynamical Systems. {V}ol. 1{B}},
      mrreviewer = {Richard Kenyon},
      title = {Ergodic theory of translation surfaces},
      pages = {527--547},
      year = {2006},
      }
  • [McMullen:bild] Go to document C. T. McMullen, "Billiards and Teichmüller curves on Hilbert modular surfaces," J. Amer. Math. Soc., vol. 16, iss. 4, pp. 857-885, 2003.
    @ARTICLE{McMullen:bild, mrkey = {1992827},
      number = {4},
      issn = {0894-0347},
      author = {McMullen, Curtis T.},
      mrclass = {32G15 (37D50)},
      doi = {10.1090/S0894-0347-03-00432-6},
      journal = {J. Amer. Math. Soc.},
      zblnumber = {1030.32012},
      volume = {16},
      mrnumber = {1992827},
      fjournal = {Journal of the American Mathematical Society},
      mrreviewer = {Richard Kenyon},
      title = {Billiards and {T}eichmüller curves on {H}ilbert modular surfaces},
      year = {2003},
      pages = {857--885},
      }
  • [McMullen:flux] Go to document C. T. McMullen, "Teichmüller geodesics of infinite complexity," Acta Math., vol. 191, iss. 2, pp. 191-223, 2003.
    @ARTICLE{McMullen:flux, mrkey = {2051398},
      number = {2},
      issn = {0001-5962},
      author = {McMullen, Curtis T.},
      mrclass = {32G15 (30F60 37D40 37F99 57M07)},
      doi = {10.1007/BF02392964},
      journal = {Acta Math.},
      zblnumber = {1131.37052},
      volume = {191},
      mrnumber = {2051398},
      fjournal = {Acta Mathematica},
      mrreviewer = {Thomas A. Schmidt},
      title = {Teichmüller geodesics of infinite complexity},
      year = {2003},
      pages = {191--223},
      }
  • [McMullen:prym] Go to document C. T. McMullen, "Prym varieties and Teichmüller curves," Duke Math. J., vol. 133, iss. 3, pp. 569-590, 2006.
    @ARTICLE{McMullen:prym, mrkey = {2228463},
      number = {3},
      issn = {0012-7094},
      author = {McMullen, Curtis T.},
      mrclass = {32G15 (14H40 37D50 57M50)},
      doi = {10.1215/S0012-7094-06-13335-5},
      journal = {Duke Math. J.},
      zblnumber = {1099.14018},
      volume = {133},
      mrnumber = {2228463},
      fjournal = {Duke Mathematical Journal},
      mrreviewer = {Thomas A. Schmidt},
      title = {Prym varieties and {T}eichmüller curves},
      year = {2006},
      pages = {569--590},
      }
  • [Moeller:tor] Go to document M. Möller, "Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve," Invent. Math., vol. 165, iss. 3, pp. 633-649, 2006.
    @ARTICLE{Moeller:tor, mrkey = {2242629},
      number = {3},
      issn = {0020-9910},
      author = {Möller, Martin},
      mrclass = {14D07 (32G15)},
      doi = {10.1007/s00222-006-0510-3},
      journal = {Invent. Math.},
      zblnumber = {1111.14019},
      volume = {165},
      mrnumber = {2242629},
      fjournal = {Inventiones Mathematicae},
      mrreviewer = {Thomas A. Schmidt},
      title = {Periodic points on {V}eech surfaces and the {M}ordell-{W}eil group over a {T}eichmüller curve},
      year = {2006},
      pages = {633--649},
      }
  • [Moeller:linear] Go to document M. Möller, "Linear manifolds in the moduli space of one-forms," Duke Math. J., vol. 144, iss. 3, pp. 447-487, 2008.
    @ARTICLE{Moeller:linear, mrkey = {2444303},
      number = {3},
      issn = {0012-7094},
      author = {Möller, Martin},
      mrclass = {32G15 (14D07 32G20)},
      doi = {10.1215/00127094-2008-041},
      journal = {Duke Math. J.},
      zblnumber = {1148.32007},
      volume = {144},
      mrnumber = {2444303},
      fjournal = {Duke Mathematical Journal},
      mrreviewer = {Thomas A. Schmidt},
      title = {Linear manifolds in the moduli space of one-forms},
      year = {2008},
      pages = {447--487},
      }
  • [Moeller:survey:affine] M. Möller, "Affine groups of flat surfaces," in Handbook of Teichmüller Theory. Volume II, Zürich: European Math. Soc. (EMS), 2009, pp. 369-387.
    @incollection{Moeller:survey:affine, mrkey = {2497782},
      zblnumber = {1179.30047},
      author = {Möller, Martin},
      title = {Affine groups of flat surfaces},
      booktitle = {Handbook of {T}eichmüller {T}heory. {V}olume II},
      pages = {369--387},
      publisher = {European Math. Soc. (EMS)},
      address = {Zürich},
      year = {2009},
      mrnumber = {2497782},
      }
  • [Mukamel:algorithm] Go to document R. Mukamel, "Fundamental domains and generators for lattice Veech groups," Commentarii Mathematici Helvetici, vol. 9, p. 57, 2017.
    @article{Mukamel:algorithm,
      author = {Mukamel, R.},
      title = {Fundamental domains and generators for lattice {V}eech groups},
      journal = {Commentarii Mathematici Helvetici},
      fjournal = {Comment. Math. Helv.},
      volume = {9},
      year = {2017},
      issue = {1},
      pages = {57Ð83},
      doi = {10.4171/CMH/406}
    }
  • [Mukamel:norm] Go to document R. E. Mukamel, "Visualizing the Unit Ball for the Teichmüller Metric," Exp. Math., vol. 26, iss. 1, pp. 93-97, 2017.
    @ARTICLE{Mukamel:norm, mrkey = {3599009},
      number = {1},
      issn = {1058-6458},
      author = {Mukamel, Ronen E.},
      mrclass = {32G15 (30F30 30F60)},
      doi = {10.1080/10586458.2015.1125819},
      journal = {Exp. Math.},
      volume = {26},
      mrnumber = {3599009},
      fjournal = {Experimental Mathematics},
      title = {Visualizing the {U}nit {B}all for the {T}eichmüller {M}etric},
      year = {2017},
      pages = {93--97},
      }
  • [Rong:lattes] Go to document F. Rong, "Lattès maps on $\mathbf{P}^2$," J. Math. Pures Appl., vol. 93, iss. 6, pp. 636-650, 2010.
    @ARTICLE{Rong:lattes, mrkey = {2651985},
      number = {6},
      issn = {0021-7824},
      author = {Rong, Feng},
      mrclass = {37F10 (14C21 20H10 32H50 33E05)},
      doi = {10.1016/j.matpur.2009.10.002},
      journal = {J. Math. Pures Appl.},
      zblnumber = {1193.37062},
      volume = {93},
      mrnumber = {2651985},
      fjournal = {Journal de Mathématiques Pures et Appliquées. Neuvième Série},
      mrreviewer = {Mattias Jonsson},
      title = {Lattès maps on {$\mathbf{P}^2$}},
      year = {2010},
      pages = {636--650},
      }
  • [Royden:metric] H. L. Royden, "Automorphisms and isometries of Teichmüller space," in Advances in the Theory of Riemann Surfaces, Princeton, N.J.: Princeton Univ. Press, 1971, vol. 66, pp. 369-383.
    @INCOLLECTION{Royden:metric, mrkey = {0288254},
      author = {Royden, H. L.},
      mrclass = {30.45},
      series = {Ann. of Math. Stud.},
      address = {Princeton, N.J.},
      publisher = {Princeton Univ. Press},
      volume = {66},
      mrnumber = {0288254},
      booktitle = {Advances in the {T}heory of {R}iemann {S}urfaces},
      mrreviewer = {H. Wu},
      venue = {{P}roc. {C}onf., {S}tony {B}rook, {N}.{Y}., 1969},
      title = {Automorphisms and isometries of {T}eichmüller space},
      pages = {369--383},
      year = {1971},
      }
  • [Salmon:book:curves] G. Salmon, Higher Plane Curves, Hodges, Foster and Figgis, 1879.
    @BOOK{Salmon:book:curves, zblnumber = {05.0341.01},
      author = {Salmon, G.},
      title = {Higher Plane Curves},
      publisher = {Hodges, Foster and Figgis},
      year = {1879},
      }
  • [Veech:triangles] Go to document W. A. Veech, "Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards," Invent. Math., vol. 97, iss. 3, pp. 553-583, 1989.
    @ARTICLE{Veech:triangles, mrkey = {1005006},
      number = {3},
      issn = {0020-9910},
      author = {Veech, W. A.},
      mrclass = {58F17 (11F11 32G15)},
      doi = {10.1007/BF01388890},
      journal = {Invent. Math.},
      zblnumber = {0676.32006},
      volume = {97},
      mrnumber = {1005006},
      fjournal = {Inventiones Mathematicae},
      title = {Teichmüller curves in moduli space, {E}isenstein series and an application to triangular billiards},
      year = {1989},
      pages = {553--583},
      }
  • [Vorobets:billiards] Go to document Y. B. Vorobets, "Plane structures and billiards in rational polygons: the Veech alternative," Uspekhi Mat. Nauk, vol. 51, iss. 5(311), pp. 3-42, 1996.
    @ARTICLE{Vorobets:billiards, mrkey = {1436653},
      number = {5(311)},
      issn = {0042-1316},
      author = {Vorobets, Ya. B.},
      mrclass = {58F11 (58F05 58F17)},
      doi = {10.1070/RM1996v051n05ABEH002993},
      journal = {Uspekhi Mat. Nauk},
      zblnumber = {0897.58029},
      volume = {51},
      mrnumber = {1436653},
      fjournal = {Rossiĭskaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},
      mrreviewer = {Serge E. Troubetzkoy},
      title = {Plane structures and billiards in rational polygons: the {V}eech alternative},
      year = {1996},
      pages = {3--42},
      }
  • [Wright:BM] Go to document A. Wright, "Schwarz triangle mappings and Teichmüller curves: the Veech-Ward-Bouw-Möller curves," Geom. Funct. Anal., vol. 23, iss. 2, pp. 776-809, 2013.
    @ARTICLE{Wright:BM, mrkey = {3053761},
      number = {2},
      issn = {1016-443X},
      author = {Wright, Alex},
      mrclass = {32G15},
      doi = {10.1007/s00039-013-0221-z},
      journal = {Geom. Funct. Anal.},
      zblnumber = {1267.30099},
      volume = {23},
      mrnumber = {3053761},
      fjournal = {Geometric and Functional Analysis},
      mrreviewer = {Ioannis D. Platis},
      title = {Schwarz triangle mappings and {T}eichmüller curves: the {V}eech-{W}ard-{B}ouw-{M}öller curves},
      year = {2013},
      pages = {776--809},
      }
  • [Wright:fields] Go to document A. Wright, "The field of definition of affine invariant submanifolds of the moduli space of abelian differentials," Geom. Topol., vol. 18, iss. 3, pp. 1323-1341, 2014.
    @ARTICLE{Wright:fields, mrkey = {3254934},
      number = {3},
      issn = {1465-3060},
      author = {Wright, Alex},
      mrclass = {32G15 (30F60 37D40)},
      doi = {10.2140/gt.2014.18.1323},
      journal = {Geom. Topol.},
      zblnumber = {1320.32019},
      volume = {18},
      mrnumber = {3254934},
      fjournal = {Geometry \& Topology},
      mrreviewer = {Jayadev S. Athreya},
      title = {The field of definition of affine invariant submanifolds of the moduli space of abelian differentials},
      year = {2014},
      pages = {1323--1341},
      }
  • [Wright:cylinders] Go to document A. Wright, "Cylinder deformations in orbit closures of translation surfaces," Geom. Topol., vol. 19, iss. 1, pp. 413-438, 2015.
    @ARTICLE{Wright:cylinders, mrkey = {3318755},
      number = {1},
      issn = {1465-3060},
      author = {Wright, Alex},
      mrclass = {32G15 (37D40)},
      doi = {10.2140/gt.2015.19.413},
      journal = {Geom. Topol.},
      zblnumber = {1318.32021},
      volume = {19},
      mrnumber = {3318755},
      fjournal = {Geometry \& Topology},
      mrreviewer = {Jayadev S. Athreya},
      title = {Cylinder deformations in orbit closures of translation surfaces},
      year = {2015},
      pages = {413--438},
      }
  • [Zorich:survey] Go to document A. Zorich, "Flat surfaces," in Frontiers in Number Theory, Physics, and Geometry. I, New York: Springer-Verlag, 2006, pp. 437-583.
    @INCOLLECTION{Zorich:survey, mrkey = {2261104},
      author = {Zorich, Anton},
      mrclass = {37D40 (30F30 32G15 37D50 57M50)},
      address = {New York},
      publisher = {Springer-Verlag},
      doi = {10.1007/978-3-540-31347-2_13},
      zblnumber = {1129.32012},
      mrnumber = {2261104},
      booktitle = {Frontiers in Number Theory, Physics, and Geometry. {I}},
      mrreviewer = {Thomas A. Schmidt},
      title = {Flat surfaces},
      pages = {437--583},
      year = {2006},
      }

Authors

Curtis T. McMullen

Harvard University, Cambridge, MA

Ronen E. Mukamel

Rice University, Houston, TX

Alex Wright

Stanford University, Stanford, CA