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Cubic curves and totally geodesic
subvarieties of moduli space

By Curtis T. McMullen, Ronen E. Mukamel, and Alex Wright

Abstract

In this paper we present the first example of a primitive, totally geodesic

subvariety F ⊂ Mg,n with dim(F ) > 1. The variety we consider is a

surface F ⊂ M1,3 defined using the projective geometry of plane cubic

curves. We also obtain a new series of Teichmüller curves inM4, and new

SL2(R)-invariant varieties in the moduli spaces of quadratic differentials

and holomorphic 1-forms.
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1. Introduction

LetMg,n denote the moduli space of compact Riemann surfaces of genus g

with n marked points. A complex geodesic is a holomorphic immersion f :

H → Mg,n that is a local isometry for the Kobayashi metrics on its domain

and range. It is known that Mg,n contains a complex geodesic through every

point and in every possible direction.
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We say a subvariety V ⊂Mg,n is totally geodesic if every complex geodesic

tangent to V is contained in V . It is primitive if it does not arise from a simpler

moduli space via a covering construction.

A Teichmüller curve is a totally geodesic subvariety of Mg,n of dimen-

sion one. These rare and remarkable objects are closely related to billiards

in polygons, Jacobians with real multiplication, and dynamical rigidity. They

are uniformized by Fuchsian groups defined over number fields, but they are

generally not arithmetic.

This paper gives the first example of a primitive, totally geodesic Teich-

müller surface in moduli space. We also obtain a new infinite series of Te-

ichmüller curves in M4, and new SL2(R)-invariant subvarieties in moduli

spaces of quadratic differentials and holomorphic 1-forms.

Our constructions depend in a fundamental way on the classical subject of

cubic curves in the plane (Section 2) and space curves of genus four (Section 4),

giving an unexpected connection between algebraic geometry and Teichmüller

theory.

The flex locus F ⊂ M1,3. A point in M1,3 is specified by a pair (A,P )

consisting of a compact Riemann surface A of genus one, and an unordered set

P ⊂ A with |P | = 3. We can also regard P as an effective divisor of degree

three.

The flex locus F ⊂M1,3 is defined by:

F =

(A,P ) :

∃ a degree three rational map π : A→ P1 such that

(i) the fibers of π are linearly equivalent to P , and

(ii) P is a subset of the cocritical points of π.


Here x′ ∈ A is a cocritical point of π if

(1.1) {x, x′} = (a fiber of π)

for some critical point x of π. (We allow x′ = x.)

We refer to F as the flex locus because, when A is defined by a ho-

mogeneous cubic polynomial f , π is given by projection from a point where

detD2f = 0. See Section 3.

The main result of this paper, proved in Section 5, is:

Theorem 1.1. The flex locus F is a totally geodesic, irreducible complex

surface in M1,3.

Let TF → F denote an irreducible component of the preimage of F in T1,3.
Since TF is totally geodesic, it is homeomorphic to a ball. In Section 6 and

Section 7 we will show:
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Theorem 1.2. The complex manifold TF is not isomorphic to any tradi-

tional Teichmüller space Tg,n.

Corollary 1.3. The Teichmüller surface F ⊂M1,3 is primitive, i.e., it

does not arise from a covering construction.

Strata. The surface F is closely related to an algebraic threefold G⊂M4,

which is abundantly populated by new Teichmüller curves. Our proof of The-

orem 1.1 depends on this relation.

To define G, we first need notation for strata. Let ΩMg →Mg denote the

moduli space of holomorphic 1-forms of genus g. As usual, given ai > 0 with∑n
1 ai = 2g−2, we let ΩMg(a1, . . . , an) ⊂ ΩMg denote the stratum consisting

of 1-forms (X,ω) such that

(ω) =
n∑
1

aipi

for some distinct points p1, . . . , pn ∈ X. We use exponential notation for

repeated indices; for example, ΩMg(2, 2, . . . , 2) = ΩMg(2
g−1).

Within a given stratum, we can impose the additional condition that

there exists an involution J : X → X, with fixed points (p1, . . . , pn), such that

J∗(ω) = −ω. The resulting locus is a Prym stratum

ΩMg(a1, . . . , an)− ⊂ ΩMg.

Note that J is uniquely determined by ω, provided g > 1. We allow ai = 0, to

account for fixed points that are not zeros. Since the number of fixed points

of J is preserved under limits, each Prym stratum is a closed subvariety of

ΩMg.

There is a natural action of SL2(R) on ΩMg that preserves both types of

strata, and whose orbits project to complex geodesics in Mg.

The gothic locus G ⊂ M4. Given a Riemann surface X with a distin-

guished involution J , we say a holomorphic map p : X → B is odd if there

exists an involution j ∈ Aut(B) such that p(J(x)) = j(p(x)) for all x ∈ X. Let

ΩG =

(X,ω) ∈ ΩM4(2
3, 03)− :

∃ a curve B ∈M1 and an odd,

degree three rational map p : X → B

such that |p(Z(ω))| = 1.


Here Z(ω) denotes the zero set of ω. The condition that p sends the three

zeros of ω to a single point implies that p∗(ω) = 0.

We refer to the variety G obtained by projecting ΩG toM4 as the gothic

locus. (The terminology is inspired by Figure 1.)
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The relationship between F and G can be summarized as follows: given

any form (X,ω) ∈ ΩG with involution J , we obtain a point (A,P ) ∈ F by

setting (A, q) = (X,ω2)/J , and marking the poles of q.

Using this natural map ΩG→ F , in Section 4 and Section 5 we will show:

Theorem 1.4. The space ΩG ⊂ ΩM4 is a closed, irreducible variety of

dimension four, locally defined by real linear equations in period coordinates.

In particular, the variety ΩG is locally isomorphic to a finite union of

four-dimensional subspaces of C10.

Corollary 1.5. The locus ΩG is invariant under the natural action of

SL2(R).

The crux of the proof of Theorem 1.4 is a lower bound on dim ΩG coming

from our study of F . The surprise is that a small number of conditions on the

periods of ω produce an elliptic curve B and a map p : X → B.

The fact that F is totally geodesic follows readily from Corollary 1.5, by

transporting SL2(R)-orbits in ΩG to complex geodesics in F .

Teichmüller curves and real multiplication. Let OD ∼= Z[(D +
√
D)/2]

denote the real quadratic order of discriminant D, where D > 0 and D = 0 or

1 mod 4.

Let (X,ω) be a form whose membership in ΩG is ratified by an involution

J and a map p : X → B. Then we also have a natural map φ : X → A = X/J .

Taking the quotient of Jac(X) by divisors pulled back from A and B, we obtain

the polarized Abelian surface

(1.2) C = C(X|A,B) = Jac(X)/ Im(Jac(A)× Jac(B)).

Let ΩGD ⊂ ΩG denote the locus where C admits real–multiplication by OD
with ω as an eigenform. Its projection to M4 will be denoted by GD. In

Section 8 we will show:

Theorem 1.6. For every discriminant D > 0, the locus GD ⊂ M4 is a

finite union of Teichmüller curves.

Theorem 1.7. If D is not a square, then every component of GD is

geometrically primitive.

Theorem 1.8. If the stabilizer of a form in ΩG contains a hyperbolic

element γ, then SL(X,ω) is a lattice and (X,ω) ∈ ΩGD for some D with

Q(
√
D) = Q(tr γ).

Polygon models for gothic forms. To conclude, we will describe an explicit

construction of forms in the locus ΩG.
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Figure 1. The cathedral polygon P (a, b).

Figure 1 illustrates two copies of a polygon P (a, b) ⊂ C. This polygon is

symmetric about the x-axis, and each of its edges has slope 0, ∞ or ±1. Pairs

of parallel edges are glued together by translation to form a compact Riemann

surface X = P (a, b)/ ∼ of genus four. The edge pairings for P (a, b) can be

read off from the condition that regions with the same shade on the right or the

left cover cylinders on X. The form dz|P (a, b) descends to a form ω ∈ Ω(X)

with three double zeros, coming from the vertices of P (a, b).

In Section 9 we will show:

Theorem 1.9. For any a, b > 0, the holomorphic 1-form

(X,ω) = (P (a, b), dz)/ ∼

lies in ΩG.

Theorem 1.10. If, in addition, there are rational numbers x, y and d ≥ 0

such that

(1.3) a = x+ y
√
d, b = −3x− 3/2 + 3y

√
d,

then (X,ω) generates a Teichmüller curve. In fact (X,ω) ∈ GD for some D

with Q(
√
D) = Q(

√
d).

Corollary 1.11. Every real quadratic field K arises as K = Q(
√
D) for

some D with GD 6= ∅.

Outline of the paper.

1. In Section 2 and Section 3 we describe the surface F from the perspective

of classical projective geometry.

Every pair (A,P ) ∈M1,3 can be presented as a triple of collinear points

on a smooth cubic curve in the plane,

P = L ∩A ⊂ P2.
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Similarly, every degree three rational map πS : A→ P1, with fibers linearly

equivalent to P , is obtained by projection from a point S ∈ P2. We find

that πS has a triple of collinear cocritical points if and only if S itself lies

on a related cubic curve, the Hessian HA ⊂ P2.

Since the moduli space M1 of smooth cubics is one-dimensional, this

shows that F itself is two-dimensional. In fact, F is naturally swept out

by an open subset ‹F of the universal Cayleyan, a smooth surface discussed

in Section 3.

2. In Section 4 we use the fact that dimF = 2 to show dim ΩG = 4; while in

Section 5, we show that in period coordinates, ΩG is contained in a finite

union of four-dimensional linear spaces defined over R. It follows that ΩG

is SL2(R)-invariant and that F is totally geodesic.

The algebraic formula for G given in equation (4.7) below also provides

a direct proof that dim ΩG ≥ 4.

3. In Section 6 we review the theory of covering constructions, and exhibit

another totally geodesic surface S11 ⊂ M1,3 which arises in this way. We

then give a topological proof that F is primitive.

4. In Section 7 we show, via an analysis of the Kobayashi metric, that TF is

not isomorphic to any traditional Teichmüller space Tg,n. This result gives

a geometric proof that F is primitive, and suggest that one might regard

TF itself as a new type of Teichmüller space, on an equal footing with Tg,n.

5. In Section 8 we show that the loci GD ⊂ M4 are finite unions of Teich-

müller curves; the proof is similar to the case of the Weierstrass curves

in M2 [McM03a]. Finally, in Section 9 we show that Figure 1 defines

1-forms in ΩG and, for suitable parameters, these forms generate Teich-

müller curves in
⋃
GD.

Notes and references. The components of GD with
√
D irrational give a

new, infinite series of geometrically primitive Teichmüller curves.

The previously known examples consist of four infinite series and two spo-

radic cases. The first three series come from the Weierstrass curves WD ⊂Mg,

defined for g = 2, 3 and 4 [Cal04], [McM03a], [McM06]. The fourth is the

Bouw–Möller series, which gives finitely many more examples in Mg for ev-

ery g > 1 [BM10]; see also [Vee89], [Hoo13], [Wri13]. Finally, there are two

sporadic examples associated to the Coxeter diagrams E7 and E8; see [KS00],

[Vor96] and [Lei04].

The locus ΩG itself has many interesting properties. For example, it is

the first known primitive, SL2(R)-invariant subvariety of ΩMg defined over Q
(in period coordinates), aside from the obvious examples like strata. It is also

an example of an affine invariant manifold of rank 2. For more on general

properties of affine invariant manifolds, see [Wri14] and [Wri15].
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A program provided by A. Eskin led us to focus on the cathedral forms

and provided evidence that they should lie in a new invariant subvariety of

ΩM4. A special case of Theorem 1.10 was first proved using the algorithm

described in [Muk17a], which showed directly that SL(X,ω) is a lattice for

(x, y, d) = (0, 1/2, 2).

Further results and useful background can be found in the surveys [Mas06],

[M0̈9] and [Zor06].

Acknowledgements. We would like to thank I. Dolgachev, A. Eskin,

M. Mirzakhani and A. Patel for useful discussions.

2. Cubic curves

In this section we recall some classical constructions from projective geom-

etry. These constructions associate, to any smooth plane cubic curve A ⊂ P2,

three other curves: the Hessian HA ⊂ P2, the Cayleyan CA, and the satellite

Cayleyan SA. The last two reside in the dual projective plane P̌2. In the next

section, we will see that the points in the flex locus lying over A are naturally

parametrized by SA.

Useful references for this material include [Cay57], [Cre62], [Sal79] and

[Dol12].

Plane cubics. Let A be a plane cubic curve, given as the zero set

A = Z(f) ⊂ P2

of a homogeneous polynomial f : C3 → C of degree three. We say A is a

triangle if it is projectively equivalent to the cubic Z(XY Z), and a Fermat

cubic if it is equivalent to Z(X3 + Y 3 + Z3). We will be mostly interested in

the case where f is irreducible and A is smooth.

Polars, satellites and projections. Let S = [s] denote the point in P2

determined by a nonzero vector s = (s0, s1, s2) ∈ C3. The polar conic of A

with respect to S is defined by

(2.1) Pol(A,S) = Z (〈s,∇f(x)〉) = Z

Å∑
si
df

dxi

ã
.

The satellite conic of A (cf. [Sal79, p. 62]) is defined by

(2.2) Sat(A,S) = Z
Ä
〈x,∇f(s)〉2 − 4f(s)〈s,∇f(x)〉

ä
.

Projection from S defines a rational map

πS : A→ P1.

(Intrinsically, the target is the linear system of hyperplanes through S.) If A

is smooth and S 6∈ A, then projection from S to P1 is a rational map of degree
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three, and one can readily check that

(2.3) A ∩ Pol(A,S) = {critical points of πS}.

Moreover, the cocritical points of πS (defined by equation (1.1)) come from its

satellite: we have

(2.4) A ∩ Sat(A,S) = {cocritical points of πS}.

Note. Relation (2.3) holds, more generally, for any smooth hypersurface

A ⊂ Pn, and relation (2.4) holds whenever A is cubic, as does the alternative

formula:

(2.5) Pol(A,S) = Z(〈D2f(s)x, x〉).

Lattès maps. For the remainder of this section, we assume that the cubic

curve A = Z(f) is smooth. The tangent line to A at x will be denoted by

TxA ⊂ P2. The space of tangent lines forms the dual sextic

Ǎ = {TxA : x ∈ A} ⊂ P̌2

in the dual projective plane. Let {x, x′} denote the points where TxA meets A.

If a line L meets A at (a, b, c), then the three points (a′, b′, c′) also lie on a line

L′ = δA(L). This construction defines the holomorphic Lattès map

(2.6) δA : P̌2 → P̌2

associated to A, of interest in complex dynamics (see, e.g., [DJ10], [Ron10],

[BL01]). Its algebraic degree is four. The critical values of A coincide with the

dual sextic Ǎ.

The Hessian. The Hessian of A is the cubic curve defined by HA =

Z(detD2f). The nine flexes of A are given by HA ∩A.

The Hessian can be described geometrically in terms of the polars and

satellites of A; namely,

(2.7) HA = {S ∈ P2 : the polar conic Pol(A,S) is singular},

and

(2.8) A ∪HA = {S ∈ P2 : the satellite conic Sat(A,S) is singular}.

These statements follow directly from equations (2.5) and (2.2), using the fact

that a conic Z(
∑
aijxixj) is singular if and only if det(aij) = 0. When the

conic is singular, it becomes a pair of lines; thus (2.8) implies:

(2.9)
For S 6∈ A, the projection πS : A→ P1 has three collinear

cocritical points ⇐⇒ S ∈ HA.
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From cocritical to critical. Since it plays an important role in the sequel,

we sketch a more geometric proof of (2.9). Suppose S 6∈ A and πS : A → P1

has three collinear cocritical points Pi, i = 1, 2, 3, with corresponding critical

points Qi ∈ A. Let L be the line through {P1, P2, P3}, and let Ri be the line

joining S to Pi, i = 1, 2, 3. Then
∑3

1 Pi+2Qi forms the base locus of the pencil

of cubics |A+ λR1R2R3|. Within this pencil one can find a reducible cubic of

the form L+C. Since the conic C has three tangent lines Ri that pass through

a single point, it is singular; and since C∩A =
∑

2Qi, there is a line M through

{Q1, Q2, Q3} such that C = 2M . We then have M ⊂ Pol(A,S), so S ∈ HA
by (2.7). The converse is immediate, as we will see below.

The Cayleyan. For each S ∈ HA, we have a pair of distinct lines such

that

Pol(A,S) = L1 ∪ L2.

The Cayleyan CA ⊂ P̌2 is the set of all lines that arise in this way; that is,

CA = {L ∈ P̌2 : L ⊂ Pol(A,S) for some S ∈ HA}.

The point S is uniquely determined by L, since it lies on TxA for all x ∈ L∩A.

Thus we have a natural degree two covering map, CA→ HA. The curve CA

is also cubic; see equation (2.14) below.

The satellite Cayleyan. Note that if S 6∈ A and x ∈ A is a critical

point of πS , then x′ is a cocritical point. As a consequence, if S ∈ HA and

Pol(A,S) = L1 ∪ L2, then

Sat(A,S) = L′1 ∪ L′2.

We refer to the set of lines that arise in this way as the satellite Cayleyan,

SA = δA(CA) = {L ∈ P̌2 : L ⊂ Sat(A,S) for some S ∈ HA}.

Since CA is irreducible, so is SA. It is generically a curve of degree 12 and

genus one, with interesting singularities.

Normal form. Here is an explicit description of the polar and satellite

lines for an arbitrary smooth cubic A ⊂ P2 as seen from a point S ∈ HA−A.

Let Pol(A,S) = L1 ∪ L2 and Sat(A,S) = L′1 ∪ L′2. It is easy to see that

S 6∈ L1. Choose affine coordinates (x, y) on C2 ⊂ P2 so that S = [0 : 1 : 0] is

the vertical point at infinity, and L1 is the x-axis. Then, it is readily verified

that A is defined by a cubic equation of the form

(2.10) f(x, y) = y3 + b(x)y2 + c(x) = 0,

where b, c ∈ C[x] are polynomials of degrees (at most) one and three respec-

tively; and that the polar and satellite lines for any such cubic are defined by
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⇡ S

Figure 2. We have L1 ⊂ Pol(A,S) and L′1 ⊂ Sat(A,S).

the vanishing of the linear forms:

(2.11)
L1(x, y) = y;

L′1(x, y) = y + b(x);

L2(x, y) = y + (2/3)b(x); and

L′2(x, y) = y − (1/3)b(x).

In particular, all four lines pass through a single point in P2.

Figure 2 shows the lines L1 and L′1 for the cubic defined by equation (2.10)

with b(x) = x− 1 and c(x) = x(x+ 1)(x− 2).

The Hesse pencil. We conclude with a discussion of the Hesse family of

cubics, which will be used in our description of the flex locus. A useful reference

for this topic is [AD09].

The Hesse pencil is the family of cubic curves At ⊂ P2, defined for t ∈ P1

by

(2.12) X3 + Y 3 + Z3 − 3tXY Z = 0.

The curve A0 is a Fermat cubic, while A∞ is the triangle defined by XY Z = 0.

The cubic At is smooth over the points

(2.13) ›M1 = {t ∈ C : t3 6= 1} ⊂ P1;

otherwise it is a triangle.

The base locus E = A0 ∩ A∞ of the Hesse pencil coincides with the nine

flexes of A0, as well as the flexes of every other smooth curve in the family.

Thus, we can regard an element of the Hesse pencil as an elliptic curve with
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marked 3-torsion. More precisely, we have a natural isomorphism›M1
∼= H/Γ(3);

the modular j-invariant of At is given by

j(t) =
27(t4 + 8t)3

(t3 − 1)3
;

and j defines a covering map of orbifolds

j : ›M1 →M1 = H/SL2(Z) ∼= C,

with deck group PSL2(F3) ∼= A4. Note that At is a Fermat cubic if and only if

j(t) = 0, which gives t = 0, −2 or 1±
√
−3.

When A belongs to the Hesse pencil, so do the cubics HA and CA (using

the natural dual basis to identify P2 and P̌2). In fact, HAt = Ah and CAt = Ac
for the values

(2.14) h(t) =
4− t3

3t2
and c(t) =

2 + t3

3t

(see [AD09, §3]). Using these formulas one can verify that, for a smooth cubic

curve A:

Either A is a Fermat cubic and HA and CA are triangles, or HA

and CA are also smooth cubics.

3. The flex locus

In this section we discuss the flex locus from the perspective of plane

cubics. We begin by establishing an alternative definition of F , using the

language of Section 2.

Theorem 3.1. A point (A,P ) ∈ M1,3 lies in F if and only if there is a

plane cubic model for A and a line L in the satellite Cayleyan SA such that

P = A ∩ L.

Using the universal Cayleyan, we then show:

Theorem 3.2. The flex locus F ⊂ M1,3 is the image of a smooth, irre-

ducible surface under a proper immersion.

Finally we define a four-dimensional bundle of quadratic differentials

QF → F , analogous to ΩG→ G, and show:

Theorem 3.3. The locus QF ⊂ QM1,3 is a closed, irreducible subvariety

of dimension four.
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Markings. To prove Theorems 3.2 and 3.3 we will explicitly construct a

smooth, irreducible surface ‹F , a finite manifold cover of moduli space

u : ›M1,3 →M1,3,

and a proper immersion

δ : ‹F → ›M1,3,

such that u ◦ δ sends ‹F to F .

The smooth surface ‹F is of interest in its own right. A point in ‹F cor-

responds to triple (A,P, πS), with S ∈ HA, satisfying the definition of F in

Section 1, together with a marking of the 3-torsion of A. The surface F itself

is not smooth, and these choices serve to separate its sheets and resolve its

orbifold points.

Cubic models. To make the connection to Section 2, recall that any Rie-

mann surface A ∈M1 can be presented as a smooth cubic curve A ⊂ P2. This

plane cubic model for A is unique up to automorphisms of A and P2.

Proof of Theorem 3.1. Suppose (A,P ) ∈ F . Let A ⊂ P2 be the plane

cubic model determined by the complete linear system |P |. Then P = A ∩ L
for some line L ∈ P̌2. Since (A,P ) ∈ F , there is a degree three rational map

π : A→ P1 such that (i) the fibers of π are linearly equivalent to P , and (ii) P

is contained in the cocritical points of π. Property (i) implies that π is given

by projection from some point S ∈ P2−A; and (ii) implies that P is contained

in the satellite conic Sat(A,S) (see assertion (2.4)). Since P consists of three

distinct points, this implies we have L ⊂ Sat(A,S); hence the satellite conic is

singular, and we have L ∈ SA. The converse is similar. �

Cubics and lines. We now turn to the proof of Theorem 3.2. For concrete-

ness, we will work with the family of Hesse cubics At ⊂ P2 defined by (2.12).

Consider the Zariski open subset of P1 × P̌2 defined by›M1,3 = {(t, L) : At is smooth and |L ∩At| = 3}.

Since every cubic occurs, up to isomorphism, in the Hesse family, we have a

natural covering map of orbifolds u : ›M1,3 →M1,3 given by

u(t, L) = (At, L ∩At).

We remark that the deck group Γ of ›M1,3/M1,3 has order 216; it satisfies

(3.1) Γ ∼= Aut(P2)E ∼= F2
3 n SL2(F3),

where Aut(P2)E denotes the group of projective transformations stabilizing

nine basepoints E = A0 ∩ A∞ of the Hesse pencil [AD09]. The fibers of u

correspond to different markings of the flexes of A.
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The universal Cayleyan. Next we define the universal Cayleyan over the

Hesse family by

CAP1 = {(t, L) ∈ P1 × P̌2 : L ∈ CAt}.

The locus CAP1 → P1 is a smooth elliptic surface, even though some of its

fibers, such as CA0, are triangles. In particular, CAP1 is irreducible. Smooth-

ness follows from the fact that c(t) has a simple pole in equation (2.14), so

that near a triangular fiber CAP1 is locally isomorphic to the surface xy = t.

Lattès maps. Recall from equation (2.13) that A = At is smooth if and

only if t ∈ ›M1 ⊂ P1. Let

(3.2) δ : ›M1 × P̌2 → ›M1 × P̌2

be the proper map defined by δ(t, L) = (t, δAt(L)) using the Lattès construc-

tion (2.6).

Normalization of a cover of F . Finally we define a Zariski open subset of

the universal Cayleyan by ‹F = CAP1 ∩ δ−1(›M1,3).

It is easy to see, e.g., from the example in Figure 2, that ‹F is nonempty; and

since CAP1 is a smooth, irreducible surface, so is ‹F .

Proof of Theorem 3.2. Since the map δ in equation (3.2) is proper, so is

its restriction δ|‹F . It is also an immersion, since the critical values of δA
correspond to lines with |L ∩ A| < 3, and these configurations are excluded

from ›M1,3. Since u is a covering map of orbifolds, the composition u ◦ δ is a

proper immersion; and since SA = δA(CA), its image is F by Theorem 3.1. �

Corollary 3.4. The surface F is birational to P2.

Proof. The hyperelliptic involution −I ∈ SL2(F3) belongs to the group Γ

in equation (3.1), so the map u◦ δ : ‹F → F factors through a rational quotient

of the elliptic surface CAP1 . Thus F itself is rational. �

One can also check that in the example of Figure 2, S is uniquely deter-

mined by L′1 ∈ SA, and hence:

The map δ : ‹F → ›M1,3 is generically 1-to-1.

The space of quadratic differentials QF → F . We conclude by defin-

ing a bundle of quadratic differentials to record the directions of Teichmüller

geodesics in F .

Recall that the cotangent space to a point (Y, P ) ∈ Mg,n is naturally

identified with the vector space Q(Y, P ) of meromorphic quadratic differentials
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q on Y with (q)+P ≥ 0. A point in the moduli space of quadratic differentials,

QMg,n →Mg,n, is specified by a triple (Y, P, q) as above with q 6= 0.

Now let (A,P ) ∈ M1,3 be an elliptic curve with marked points whose

membership in F is ratified by a rational map π : A→ P1 of degree three. Let

QF (A,P, π) = {q ∈ Q(A,P ) : (q) = Z − P for some fiber Z of π}.

To take into account of the possibility that π is not unique, let QF (A,P ) =⋃
π Q(A,P, π). Finally, let QF → F denote the subspace of QM1,3 → M1,3

whose fiber over (A,P ) ∈ F is QF (A,P ).

Proof of Theorem 3.3. Recall that for (t, L) ∈ ‹F , there is a unique S ∈ P2

such that L ⊂ Pol(At, S), and a unique L′ ⊂ Sat(At, S) such that L′ = δAt(L).

Define a bundle Q‹F → ‹F with fibers

Q‹F (t, L) = QF (At, L
′ ∩At, πS) ∼= C2 − {0}.

We then have a natural proper map immersion Qδ : Q‹F → QM1,3 covering

the map δ : ‹F →M1,3, and its image is QF . Since ‹F is irreducible, so is QF

and clearly dimQF = dimQ‹F = 4. �

Sheets of F . The proof shows that, given (A,P ) ∈ F , there are only

finitely many possibilities for the associated map π : A → P1, and the differ-

ent choices of π index the different sheets of the immersed surface F passing

through (A,P ).

4. The gothic locus

In this section we discuss the correspondence between quadratic differen-

tials and Prym forms, and use it to relate the flex locus F to the threefold

G ⊂M4 defined in Section 1. We will show:

Theorem 4.1. The squaring map gives a natural algebraic isomorphism

sq : ΩG→ QF (−13, 13).

Here QF (−13, 13) denotes the intersection of QF with the principal stra-

tum of QM1,3.

Corollary 4.2. The locus ΩG is a closed, irreducible four-dimensional

subvariety of ΩM4.

Strata. We begin by reviewing notation for strata of quadratic differentials

with marked points. Recall that a point of QMg,n is specified by a triple

(Y, P, q). The stratum

QMg,n(a1, . . . , as) ⊂ QMg,n
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is defined by the requirement that there exist distinct points (p1, . . . , ps) in Y

such that P = {p1, . . . , pn} and the divisor of q satisfies

(q) =
s∑
1

aipi.

Here
∑
ai = 4g − 4, ai ≥ −1 for all i, and ai ≥ 1 if i > n.

Genus 4. Now consider a 1-form (X,ω) ∈ ΩM4(2
3, 03)−, with associated

involution J . Since |Fix(J)| = 6 = |χ(X)|, the quotient Riemann surface

A = X/J has genus one. Moreover, the form ω2 is J-invariant, so it descends

to a meromorphic quadratic differential q on X, with three simple poles and

three simple zeros. Marking the poles by P , we obtain a form (A,P, q) ∈
QM1,3(−13, 13). Conversely, given a quadratic differential in this stratum,

passage to the Riemann surface X where ω =
√
q becomes single-valued defines

a point (X,ω) ∈ ΩM4(2
3, 03)−.

Summing up, we have a natural algebraic isomorphism

(4.1) sq : ΩM4(2
3, 03)− ∼= QM1,3(−13, 13),

respecting the action of SL2(R).

Proof of Theorem 4.1. Let (X,ω) be a form in ΩM4(2
3, 03)−, with

sq(X,ω) = (A,P, q).

Let J be the unique involution such that J∗(ω) = −ω, and let Fix(J) = Z ′∪P ′
where |Z ′| = |P ′| = 3 and Z ′ = Z(ω). We have a natural degree two map

φ : X → A, injective on Fix(J), such that

(4.2) (q) = Z − P = φ(Z ′)− φ(P ′).

We will show that (X,ω) ∈ ΩG ⇐⇒ (A,P, q) ∈ QF .

From gothic to flex. First assume that (X,ω) ∈ ΩG. We then have a de-

gree three map to an elliptic curve, p : X → B, and an involution j ∈ Aut(B),

such that

(4.3) p(J(x)) = j(p(x)).

By the definition of ΩG, Z ′ is a fiber of p.

Choose the origin in B so that j(x) = −x, and let r : B → B/j ∼= P1 be

the quotient map. Then r ◦ p : X → P1 is a J-invariant map of degree six.

Consequently we have a unique degree three rational map π : A→ P1 making
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the diagram:

(4.4) X
φ

~~}}
}}
}}
}} p

3   A
AA

AA
AA

A

A

π

3

  @
@@

@@
@@

B

r~~~~
~~
~~
~~

P1

commute. We will show that:

(i) the fibers of π are linearly equivalent to P , and

(ii) P is contained in the cocritical points of π.

To see (i), simply note that Z is a fiber of π since Z ′ is a fiber of r ◦p, and

equation (4.2) shows that Z is linearly equivalent to P because the canonical

bundle of A is trivial.

To prove (ii), note that p maps Fix(J) into Fix(j) by (4.3), and that

Fix(j) = B[2] coincides with the set of 2-torsion points in B. Let us denote

the points of B[2] by {e′1, e′2, e′3, e′4}, with p(Z ′) = (e′4). Since p−1(e′i) is also

J-invariant for i = 1, 2, 3, we can find P ′i , Q
′
i ∈ X such that, as divisors, we have

p−1(e′i) = P ′i +Q′i + J(Q′i)

and Pi = φ(P ′i ) ∈ P . Let Qi = φ(Q′i), and let ei = r(e′i). Then again as

divisors, we have

(4.5) π−1(ei) = Pi + 2Qi

for i = 1, 2, 3, and hence Pi is a cocritical point of π. This proves (ii) and

shows that (A,P, q) ∈ QF .

From flex to gothic. Now suppose (A,P, q)∈QF (−13, 13). Let π : A→P1

be a rational map of degree three verifying conditions (i) and (ii) above. Let

P = {P1, P2, P3}, let π(Pi) = ei for i = 1, 2, 3, and let π(Z) = e4. Then we

can find Qi ∈ A such that (4.5) holds. Let Q = Q1 +Q2 +Q3.

By the definition of the flex locus (Section 3), there is a plane cubic model

for A and a pair of lines L ∈ CA and L′ ∈ SA such that P = A ∩ L′ and

Q = A ∩ L.

Let r : B → P1 be an elliptic curve, presented as a 2-fold covering of P1

branched over E = {e1, e2, e3, e4}. One can also regard B/P1 as the Riemann

surface of the function
√
f , where

(f) = e1 + e2 + e3 − 3e4.

Now note that, because the divisors Z,P and Q are all linearly equivalent,

D = (f ◦ π)− (q) = (P + 2Q− 3Z)− (Z − P ) = 2Q+ 2P − 4Z
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is the divisor of the square of a rational function on A. Thus
√
q and

√
f ◦ π

define the same Riemann surface X/A, and hence the map π : A→ P1 lifts to

a map p : X → B making diagram (4.4) commute. This lift intertwines the

Z/2 Galois groups of X/A and B/P1, so p is odd. Then, since Z ′ is a fiber

of p, the form (X,ω) belongs to ΩG. �

Proof of Corollary 4.2. By Theorem 3.3, QF is a closed, irreducible sub-

variety of QM1,3 dimension four. Thus ΩG ⊂ ΩM4 inherits these properties

from QF , by Theorem 4.1 and the fact (see Section 1) that the Prym stratum

ΩM4(2
3, 03)− is closed in ΩM4. �

-4 -2 0 2 4

-4

-2

0

2

4

Q

H
A

P

Z

↵

Figure 3. The canonical model for X ⊂ P3 gives six distinguished points

Z ∪ P on the cubic curve A.

Remarks on the canonical model. The canonical embedding gives an illu-

minating geometric picture of the relationship between X and A.

Let (X,ω) be a 1-form in ΩM4(2
3, 03)− with involution J and quotient

curve A = X/J of genus one. The eigenspaces of J determine a splitting

(4.6) Ω(X) = Ω(A)⊕ Ω(A)⊥,

where we have identified Ω(A) = Cα with the span of a J-invariant form

α ∈ Ω(X).

Let Fix(J) = Z ∪ P , where Z = Z(ω). We have |Z| = |P | = 3. An

involution of a hyperelliptic curve has at most four fixed points, provided it is

not the hyperelliptic involution itself. Since |Fix(J)| = 6, the curve X is not

hyperelliptic. Thus its canonical linear system provides an embedding

X ⊂ PΩ(X)∗ ∼= P3.

Every nonzero 1-form η on X determines a plane Hη ⊂ P3.
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It is classical that the space curve X, of degree six, is the transverse

intersection Q ∩ C of an irreducible quadric and a cubic surface in P3 [GH78,

p. 258]. The surface Q is uniquely determined by X, but C is not.

The automorphism J acts naturally on Ω(X), and hence on P3. Its fixed-

point set in P3 is the union of the plane Hα and the point H⊥α dual to Ω(A)⊥.

Projection from this point yields a J-invariant map

Φ : X → Hα.

The fibers of Φ consist of pairs of points that are interchanged by J . Hence

A = Φ(X) ⊂ Hα is a cubic plane curve, naturally isomorphic to X/J ; and the

fixed-points of J |X are given simply by

Fix(J) = Z ∪ P = X ∩Hα = A ∩Q.
We can now make the cubic surface defining X canonical, by letting C be the

cone over A with vertex H⊥α .

The conic Q∩Hα is singular, since its intersection with the line Hω ∩Hα

consists of the three points Z. Since J(Q) = Q, this implies that Q itself is

singular. Thus Q∩Hα is a pair of lines through the singular point of Q — one

of the form Hω ∩ Hα, containing Z = Z(ω) — and the other containing the

remaining fixed-points P . See Figure 3.

We remark that the fact that Q is singular implies:

X lies on the θ-null divisor M′4 ⊂M4.

See [TiB88], [Gen15, Th. 1.3] and [ACGH85, Ex. A–3, p.196] for more details.

Equations for X ∈ G. We can now give an explicit formula for the canon-

ical model of any curve X in the gothic locus G ⊂M4. Namely, we find that

X = C ∩Q can be defined in affine coordinates by the two equations

(4.7) y3 + b(x)y2 + c(x) = 0 and z2 = (y + b(x))(x+ a).

Here a ∈ C, deg(b) ≤ 1, deg(c) ≤ 3, and Hω = Z(x+ a).

To see this, recall that Theorem 4.1 associates to any form (X,ω) ∈ ΩG

a point (A,P ) in the flex locus and a quadratic differential q ∈ Q(A,P ). As

we saw in Section 2 (see equations (2.10) and (2.11)), we can choose affine

coordinates on P2 ∼= Hα so that A is given by the first equation in (4.7), and

P = A ∩ L′1, where L′1 is the satellite line defined by y + b(x) = 0. In these

coordinates πS(x, y) = x, so the zeros Z(q) ⊂ A are cut out by the equation

x+ a = 0 for some a ∈ C. The zeros of q become the zeros of ω after passing

to the double cover X → A. Since the quadric Q is characterized by the fact

that it is symmetric under J and passes through P ∪ Z(ω), it is given by the

second equation in (4.7) above. Moreover, the associated elliptic curve B is

defined in coordinates (t, x) by

t2 + c(x)(x+ a) = 0,

and the degree three map p : X → B is given by the substitution t = yz.
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One can also use equation (4.7) to show directly that dimG ≥ 3. Namely,

if we fix c(x) = x3 − 1 and vary a and b, then equation (4.7) determines a

rational map Φ : C3 99K G; and one can verify that Φ is finite-to-one by

considering the seven critical values of f : X → B → P1.

Linear systems and rational maps. We conclude by describing some of the

previously considered maps and spaces more intrinsically.

Let (X,ω) be a form in ΩG, with associated genus one quotients A and B.

Let (A,P, q) be the corresponding point inQF , with associated map π : A→P1.

Let (α, β, ω, ω′) be an orthogonal basis for Ω(X), where α and β are pulled

back from A and B respectively. Then:

1. the degree six map f : X → P1, factoring through A or B as in the

commutative diagram (4.4), can be presented in the form f = ω/ω′;

2. a basis for QF (A,P, π) is given by the J-invariant quadratic differentials

q = ω2 and q′ = ω′ω;

3. the degree three map π : A→ P1 can be expressed as π = q′/q; and

4. the tangent space to the sheet of F defined by π is the kernel of the

cotangent vector βω ∈ Q(A,P ).

To see (1), note that the fibers of f as originally defined are divisors of canonical

forms that push forward to 0 on A and B. Points (2) and (3) follow easily.

For (4), to show, e.g., that∫
A
βω

q′

|q′|
=

1

2

∫
X
βω′|f | = 0,

observe that β|f | is pulled back from B, while the pushforward of ω′ to B is

zero.

Note that (βω) = W − P only depends on π: the zeros W of βω are the

three critical points of π satisfying π(W ) ∩ π(P ) = ∅.

5. F is totally geodesic

In this section we will prove our main results:

(I) The locus ΩG is locally defined by real linear equations in period coor-

dinates;

(II) The loci ΩG and QF are SL2(R)-invariant; and

(III) The flex locus F ⊂M1,3 is a totally geodesic surface.

These assertions correspond to Theorem 1.4, Corollary 1.5 and Theorem 1.1

respectively.

Here and in the sequel, cohomology is taken with complex coefficients

unless otherwise specified.
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Invariant varieties and period coordinates. We first remark that (I) implies

(II) by general principles.

Recall that for any point (X0, ω0) ∈ ΩMg, there exists a neighborhood U

of (X0, ω0) (or an orbifold chart) in its stratum and a natural open analytic

embedding

ι : U ↪→ H1(X0, Z(ω0)) ∼= C2g+|Z(ω0)|−1,

called the period map, that sends (X,ω) to the unique relative cohomology

class [ω] such that 〈[ω], γ〉 =
∫
γ ω. Using this map, we implicitly identify U

with an open subset of the vector space on the right.

A closed subset M ⊂ ΩMg(a1, . . . , an) is locally defined by real linear

equations if, for each point (X0 ω0) ∈ M and U as above, there exists a finite

set of complex subspaces Si ⊂ H1(X0, Z(ω0)), each invariant under v 7→ v,

such that

U ∩M = U ∩ (S1 ∪ · · · ∪ Sk).
The conclusion of (I) means that ΩG has this form.

There is a natural action of the connected group GL+
2 (R) on any complex

vector space V with a real structure, defined byÑ
a b

c d

é
· v =

(
1 i

)Ña b

c d

éÑ
Re v

Im v

é
.

The action of SL2(R) on ΩMg has this form in period coordinates (see, e.g.,

[McM03a, §3]). Evidently any subspace of V defined over R is SL2(R)-invariant,

and so:

Any closed set M ⊂ ΩMg locally defined by

real linear equations is SL2(R) invariant.
(5.1)

(The assumption that M is closed is used to prove the group action is global.)

Thus (I) implies (II) for ΩG, and invariance is inherited by QF via Theo-

rem 4.1, using the fact that the squaring map in equation (4.1) respects the

action of SL2(R).

A criterion for linearity. For the proof of (I) we will use the following

general result.

Theorem 5.1. Let M ⊂ ΩMg(a1, . . . , an) be an algebraic variety whose

irreducible components have dimension ≥d. Suppose that for every (X,ω)∈M ,

there is a d-dimensional subspace S, defined over a real number field, such that

[ω] ∈ S ⊂ H1(X,Z(ω)).

Then M is locally defined by real linear equations in period coordinates, and

dim(M) = d.
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Proof. Fix a point (X,ω) ∈M . Let S be the collection of all d-dimensional

subspaces S as above. Then there exists a ball U about (X,ω) in period

coordinates such that M ∩U is an analytic variety of dimension ≥ d, contained

in
⋃S. Since each S ∈ S is defined over a number field, the collection S is

countable. Consequently dim(M ∩ U) = d.

By Noetherian properties of analytic sets, S ∩M ∩ U has nonempty in-

terior in S for only finitely many subspaces {S1, . . . , Sn} ⊂ S. Since Si ∩ U
is connected, it is contained in M for all i. By the Baire category theorem,⋃n

1 (Si ∩ U) is dense in M ∩ U . Since
⋃n

1 Si is also closed, this implies that

M ∩ U =
⋃n

1 Si ∩ U . �

The Abelian surface C(X|A,B). Recall from equation (1.2) that any (X,ω)

∈ ΩG, with associated maps X → A and X → B of degrees two and three

respectively, determines a polarized Abelian surface

C = C(X|A,B) = Jac(X)/ Im(Jac(A)× Jac(B)).

The submersion Jac(X)→ C determines an orthogonal splitting,

Ω(X)∼= Ω(A)⊕ Ω(B)⊕ Ω(C),

with ω ∈ Ω(C). Similarly, on the level of relative cohomology, we obtain an

exact sequence

H0(Z(ω))→ H1(X,Z(ω))→ H1(A)⊕H1(B)⊕H1(C)→ 0.

Since J |Z(ω) = Id and H1(X)J = H1(A), we have a natural isomorphism

H1(B)⊕H1(C) ∼= Ker(J + Id) ⊂ H1(X,Z(ω))

defined over Q.

The class [ω] lies in the H1(C) factor above, since J∗ω = −ω and ω pushes

forward to zero on B.

Proof of (I). By Theorems 3.3 and 4.1, ΩG is an irreducible four-dimen-

sional algebraic subvariety of ΩM4(2, 2, 2). As we have just seen, the relative

periods of any form (X,ω) ∈ ΩG lie in a four-dimensional subspace H1(C) ⊂
H1(X,Z(ω)) defined over Q. By Theorem 5.1, these two facts imply that ΩG

is locally defined by real linear equations in period coordinates. �

Proof of (III). Recall that the Teichmüller norm on the cotangent space

Q(A,P ) is given by ‖q‖ =
∫
X |q|, and that the Beltrami coefficient q/|q| repre-

sents a unit vector tangent to the Teichmüller geodesic generated by q, which

is itself the projection to M1,3 of the orbit SL2(R) · q.
By Theorem 3.2, F is an immersed smooth surface. Let (A,P ) be a point

on a sheet of F with associated degree three map π : A → P1. Let T1 be

the unit tangent space to this sheet at (A,P ), and let Q1 be the unit ball in

QF (A,P, π). Note that T1 and Q1 are both homeomorphic to S3.
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By (II), we have a continuous map µ : Q1 → T1 given by

µ : q 7→ q

|q|
·

By uniqueness of the Teichmüller mapping, µ is injective, so by invariance of

domain, it is a homeomorphism. Thus every complex geodesic tangent to F

at (A,P ) is contained in F , because it is the projection of an SL2(R)-orbit

in QF . �

Defining equations for ΩG. The proof of (I) also yields the following more

precise result:

Theorem 5.2. Given (X,ω) ∈ ΩG with associated Abelian surface C =

C(X|A,B), there exists a neighborhood U of [ω] in period coordinates such that

[ω] ∈ U ∩H1(C) ⊂ ΩG.

Proof. Use the bundle Q‹F → ‹F from the proof of Theorem 3.3, along

with Theorem 4.1, to construct a four-dimensional sheet of ΩG through (X,ω)

along which H1(C) is constant, and use local injectivity of the period map. �

Remarks on linear and totally geodesic varieties.

1. Statement (5.1) has a converse [M0̈8, Prop. 1.2]: any GL+
2 (R)-invariant an-

alytic subvariety V ⊂ ΩMg is locally defined by real linear equations. Re-

markably, the closure of any GL+
2 (R) orbit is also locally linear [EMM15].

2. In contrast to the case of Teichmüller curves, whenever V ⊂ Mg,n is

a totally geodesic variety of dimension two or more, a typical complex

geodesic in V is generated by a truly quadratic differential q. That is, q is

not the square of a 1-form. Thus it is useful to work directly with QMg,n

when studying such V .

3. There are also interesting higher-dimensional SL2(R)-invariant varieties

M ⊂ ΩMg which, unlike ΩG, are unrelated to totally geodesic varieties.

The prime examples are the eigenform loci in genus g = 2, 3 and 4 [McM06].

4. It is known that the only complex symmetric space that can occur as an

immersed totally geodesic submanifold of Tg,n is the unit disk [Ant15].

6. F is primitive

A holomorphic 1-form (X,ω) ∈ ΩMg is primitive unless there is a form

(Y, η) ∈ ΩMh, h < g, and a holomorphic map p : X → Y such that ω = p∗(η).

A similar definition applies to quadratic differentials.

In this section we will show:

(I) a typical form in QF or ΩG is primitive; and therefore

(II) the surface F does not arise via a covering construction.

Another proof of primitivity appears in the next section.
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Covering constructions. Let (Σg,Πn) denote a smooth, oriented topolog-

ical surface of genus g, with a set of n marked points Πn ⊂ Σg. Consider a

branched covering map

π : (Σg,Πn)→ (Σh,Πm)

whose critical points C(π) satisfy

(6.1) C(π) ∪Πn = π−1(Πm).

Condition (6.1) can be weakened to C(π) ⊂ π−1(Πm) if (h,m) = (1, 1).

By pulling back complex structures, we then have an induced map

Fπ : Th,m →Mg,n.

Let M′h,m = Th,m/Γ be the quotient of Teichmüller space by the subgroup

of finite index in Modh,m consisting of mapping classes that lift to (Σg,Πn).

Then Fπ descends to give a holomorphic map

fπ :M′h,m →Mg,n.

Condition (6.1) insures that the lift of a Teichmüller mapping remains a Teich-

müller mapping, and thus fπ is a local isometry. The same condition implies

that all the cocritical points of π are marked.

Let V be a proper subvariety of Mg,n that is totally geodesic. We say

V arises via a covering construction if there exists a map π as above, with

dimMh,m < dimMg,n, and a totally geodesic variety V0 ⊂M′h,m, such that

V = fπ(V0) ⊂Mg,n.

(We allow V0 =M′h,m.)

We say V is primitive if it does not arise via a covering construction.

Example. Given integers a, b > 0, consider the surface Sab ⊂M1,3 defined

by

Sab =

{
(A,P ) :

for some ordering of the points of P ,

we have [aP1 + bP2] = [(a+ b)P3] ∈ Pic(A)

}
·

We claim that:

S11 ⊂ M1,3 is a totally geodesic surface defined by a covering

construction.

In fact, every (A,P ) ∈ S11 admits an involution swapping P1 and P2. The

degree two quotient map π : (A,P ) → (P1, Q) gives a sphere with 5 marked

points — the critical values of π, and the common image of P1 and P2. Ap-

plying the covering construction, we obtain a totally geodesic immersion

M′0,5 →M1,3

with image S11.

Proof of (I) for QF . Since dimQM0,4 = 2 < dimQF = 4, the following

statement makes precise the fact that most forms in QF are primitive.
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Lemma 6.1. Every form in QM1,3(−13, 13) is either primitive or the pull-

back of a form in QM0,4 via a covering construction.

Proof. Let (A,P, q) be a form in QM1,3(−13, 13). Suppose q = p∗(q′) with

q′ ∈ Q(A′, P ′) and deg(p) > 1. If A′ has genus one, then p must be a covering

map of degree three; but then q′ has just one pole, which is impossible. Thus

A′ ∼= P1. Any zero of q′ must be simple, and have deg(p) simple pre-images;

thus in the presence of a zero, we must have deg(p) ≤ 3 and q′ must have at

least five poles. This contradicts the fact that q only has three poles. Thus q′

has four poles and no zeros, i.e., q′ ∈ QM0,4; and since q only has simple zeros,

p can only be branched over the poles of q′. �

Proof of (II). Suppose that F ⊂ M1,3 arises via a covering construction

fπ :M′h,m →M1,3. Then every complex geodesic contained in F is generated

by the lift of a quadratic differential in QMh,m. Thus QF contains no primitive

form, contrary to statement (I) above. �

Proof of (I) for ΩG. For later applications to Teichmüller curves, we con-

clude by proving a similar primitivity theorem for forms in ΩG.

Lemma 6.2. Every form in ΩM4(2
3, 03)− is either primitive or the pull-

back of a form in ΩM1.

Proof. Let (X,ω) be a form in ΩM4(2
3, 03)−. Suppose ω = p∗(η), with

(Y, η) ∈ ΩMg, 1 < g < 4. By the Riemann–Hurwitz formula, we must have

g = 2 and deg(p) = 2 or 3. But if deg(p) = 2, then p has two simple critical

points, contradicting the fact that ω has no simple zeros. Thus p is a covering

map of degree three, and η has a single zero of multiplicity two.

Let J be the unique involution of X fixing Z(ω), and let j be the hyperel-

liptic involution of Y ; it is the unique involution fixing Z(η). Since J∗(ω) = −ω,

and j∗(η) = −η, the map p is odd; that is, p(J(x)) = j(p(x)) for all x ∈ X.

Thus (X,ω2)/J is the pullback of the quadratic differential (Y, η2)/j. Since

the latter is not in QM0,4, this contradicts Lemma 6.1. �

7. The Kobayashi metric on F

In this section we give a more geometric proof that F is primitive, by

showing that TF is not isomorphic to any traditional Teichmüller space. The

proof is a variation on a theme of Royden; it is based on an analysis of the

Kobayashi metric.

The Kobayashi metric. Recall that TF denotes an irreducible component

of the preimage of F in T1,3. Since TF is totally geodesic, it is a smooth,

contractible complex manifold; in fact TF is homeomorphic, via the exponential



CUBIC CURVES AND TOTALLY GEODESIC SUBVARIETIES OF MODULI SPACE 981

map, to its tangent space at any point. We can regard TF as the universal cover

of the surface ‹F introduced in Section 3.

It is well known that the Kobayashi and Teichmüller metrics agree on Tg,n
[Gar87, §7]. Similarly:

The Kobayashi and Teichmüller metrics agree on TF , and the

inclusion TF ⊂ T1,3 is an isometry.

In fact, any two distinct points x, y ∈ TF lie on a unique complex geodesic

D ⊂ T1,3; since TF is totally geodesic, we have D ⊂ TF ⊂ T1,3; and since

inclusions are contractions, D is also a Kobayashi geodesic in TF .

The vertices of a norm. Let V be a two-dimensional normed complex

vector space. We say V has n vertices if the set of v ∈ V where the function

‖v‖ is real-analytic is the complement of n distinct lines through the origin.

To distinguish TF from Tg,n, we will show:

Theorem 7.1. The cotangent space at any point in T0,5 has five vertices

in the Teichmüller norm, while the cotangent space at a typical point in TF
has six.

Pairs of quadratic differentials. The following general result describes

points where the Teichmüller norm is not smooth. Consider quadratic differen-

tials q0, q1 ∈ Q(X,P ), where (X,P ) ∈Mg,n. Fix x ∈ X, and let mi = ordx(qi)

denote the order of vanishing of qi at x (or −1 if qi has a simple pole there).

Lemma 7.2. If m1 < (m0 − 1)/2, then f(t) = ‖q0 + tq1‖ is not C2 at

t = 0.

Proof. Note that |q0 + tq1| is a convex function of t ∈ R, and if a sum

of convex functions is C2, then each function has a bounded (distributional)

second derivative. Thus it suffices to show that
∫
U |q0 + tq1| has an unbounded

second derivative in some neighborhood U of x; this is done in [Roy71, §2] and,

allowing simple poles, in [Gar87, §9.4]. �

Proof of Theorem 7.1. First note that the function ‖q‖ is real-analytic on

any stratum ofQMg,n, since it can be expressed as a polynomial in the absolute

periods of
√
q and their complex conjugates. In particular, ‖q‖ is real-analytic

on the generic stratum QM0,5(−15, 1). Thus for any (X,P ) ∈M0,5, the norm

is real-analytic except possibly on the five lines Vi ⊂ Q(X,P ) where q = q0
has only four poles. For any such q0, we can find an x ∈ P and a q1 ∈ Q(X,P )

such that q1 has a simple pole at x, but q0 does not. Applying Lemma 7.2

with (m0,m1) = (0,−1), we find that ‖q‖ is not C2 at q0 and hence Q(X,P )

has five vertices.

Now consider the cotangent space QF (A,P, π) to a point (A,P ) ∈ TF .

Note that for S ∈ HA, the projection πS : A → P1 has six simple critical
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values except in the finitely many cases where S lies on the tangent line to a

flex of A. Thus π also has six critical values for a typical point in TF .

Since TF is totally geodesic, the Teichmüller norm on its cotangent space

at (A,P ) is the restriction of the Teichmüller norm on Q(A,P ). Recall that for

any q 6= 0 in Q(A,P, π), we have (q) = Z −P where Z is a fiber of π, and that

the generic stratum here is QM1,3(−13, 13). Thus the norm is real-analytic

except possibly along the six lines Vi ⊂ QF (A,P, π) where (q0) = Z − P

and the support of Z contains a simple critical point x of π. In this case

x 6∈ P , and hence m0 = ordx(q0) = 2, while m1 = ordx(q1) = 0 for most other

q1 ∈ QF (A,P, π); thus ‖q‖ fails to be C2 at q0 by Lemma 7.2. Therefore the

normed cotangent space to TF typically has six vertices. �

Proof of Theorem 1.2. Suppose TF is isomorphic to a traditional Teich-

müller space. Then we have TF ∼= T0,5 ∼= T1,2 as a complex manifold, since there

is only one two-dimensional Teichmüller space up to isomorphism. Since the

Kobayashi metric on a space depends only on its complex structure, and agrees

with the Teichmüller metric in these cases, this implies that the cotangent

bundles of T0,5 and TF are isomorphic as bundles of normed vector spaces,

contradicting Theorem 7.1. �

Proof of Corollary 1.3. Since F has codimension one, if it arises from a

totally geodesic surface V0 ⊂M′h,m via a covering construction, then we must

have V0 =M′h,m and hence TF ∼= Th,m, contrary to Theorem 1.2. �

Remark. For a visualization of the Teichmüller norm on the cotangent

space to M0,5, see [Muk17b].

8. Teichmüller curves in M4

A Teichmüller curve is geometrically primitive if it is generated by a prim-

itive 1-form (in the sense of Section 6). Every Teichmüller curve arises from a

unique geometrically primitive Teichmüller curve via a covering construction

[M0̈6, Th. 2.5]. It is useful to work with 1-forms, rather than quadratic differ-

entials, so the class [ω] ∈ H1,0(X) can be discussed from the point of view of

Hodge theory.

In this section we will show:

(I) the locus GD ⊂M4 is a finite union of Teichmüller curves;

(II) if D is not a square, then every component of GD is geometrically primi-

tive;

(III) if the stabilizer of a form in ΩG contains a hyperbolic element γ, then

SL(X,ω) is a lattice and (X,ω) ∈ ΩGD for someD with Q(tr γ) = Q(
√
D).

These assertions are restatements of Theorems 1.6, 1.7 and 1.8. Aside from (II),

the proofs follow the same lines as the proofs in genus two given in [McM03a].
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We remark that the curves GD ⊂ M4 also descend to give isometrically im-

mersed curves FD ⊂ F .

Eigenforms. As in Section 1, given a discriminant D > 0, we let ΩGD
denote the set of (X,ω) ∈ ΩG with associated A and B such that:

1. there exists a proper, self-adjoint action of OD by endomorphisms of

C(X|A,B); and

2. T ∗ω ∈ Cω for all T ∈ OD.

(Here proper means OD is a maximal quadratic subring of End(C).) In brief,

(X,ω) is an eigenform for real multiplication by OD. The projection of ΩGD
to M4 is denoted by GD.

Proof of (I). We refine the discussion of Section 5. By the theory of

Hilbert modular surfaces (cf. [vdG88]), the eigenforms for real multiplication

by OD form an algebraic subvariety of ΩG of codimension ≤ 2. Thus every

irreducible component of ΩGD has dimension ≥ 2. On the other hand, for any

(X,ω) ∈ ΩGD, we have an endomorphism T ∈ End(C) and a λ ∈ K = Q(
√
D)

such that [ω] belongs to the two-dimensional subspace

S = Ker(T − λI) ⊂ H1(C) ⊂ H1(X,Z(ω)).

Applying Theorem 5.1 we find that ΩGD is SL2(R)-invariant, and therefore

GD is finite union of irreducible curves, each of which is totally geodesic. �

Proof of (II). By Lemma 6.2, if (X,ω) ∈ ΩGD is not primitive, then it is

the pullback of a form of genus h = 1. But then the OD-invariant subspace

of H1(X,R) spanned by [Re(ω)] and [Im(ω)] is defined over Q, so D is a

square. �

Proof of (III). Let Aff(X,ω) denote the group of affine automorphisms of

(X,ω). The derivative Dψ ∈ SL2(R) of any affine automorphism is constant

in charts on X − Z(ω) where ω = dz. The map ψ 7→ Dψ sends Aff(X,ω) to

SL(X,ω), the stabilizer of (X,ω) in SL2(R).

Suppose we have a hyperbolic element γ ∈ SL(X,ω). Replacing γ with γ2,

we can assume that tr(γ) > 0. Choose a element ψ ∈ Aff(X,ω) with Dψ = γ.

Let C = C(X|A,B) as above. Given X, there are only finitely many

choices for A and B, and they are locally preserved along an SL2(R)-orbit, so

after replacing ψ with an iterate we can assume it stabilizes H1(C) ⊂ H1(X).

Since ψ∗|H1(C;R) preserves a symplectic form, its eigenvalues come in

reciprocal pairs, and its action is unitary for the Hermitian form 〈α, β〉 =

(i/2)
∫
X α ∧ β on H1(C). Thus the map

T = ψ∗ + (ψ−1)∗|H1(C)

is self-adjoint, its eigenspaces are orthogonal and their dimensions are even.
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After replacing (X,ω) by another point in its SL2(R) orbit, we can assume

that

Dψ =

Ñ
λ 0

0 λ−1

é
.

Then ψ is a pseudo-Anosov mapping, with invariant foliations defined by the

harmonic forms Re(ω) and Im(ω). These forms give a ψ∗-eigenbasis for a

two-dimensional subspace V ⊂ H1(C), with eigenvalues λ and λ−1. By the

theory of pseudo-Anosov mappings, these eigenvalues are simple and all other

eigenvalues of ψ∗|H1(C) have modulus less than λ.

In particular, the eigenvalues of T |H1(C) are given by t and t′, where

t = λ + λ−1 and |t′| < t; The corresponding eigenspaces V and V ′ satisfy

V ′ = V ⊥.

Extend {ω} to an orthogonal basis {ω, ω′} for Ω(C). Then the cohomology

classes [ω], [ω′] give a basis for H1,0(C) consisting of eigenvectors for T . Con-

sequently T preserves H1,0(C). Since T also preserves H1(C,Q), by replacing

T with nT for some n > 0, we can insure that T ∈ End(C).

The ring Z[T ] is quadratic since T has exactly two eigenvalues. Let D

be the discriminant of the maximal quadratic order in End(C) containing

Z[T ]. Then (X,ω) ∈ ΩGD, and hence SL(X,ω) is a lattice by (I). The field

K = Q(tr γ) is the same as the field generated by the eigenvalues of T , so

K = Q(
√
D). �

9. Explicit polygonal constructions

In this section we will prove Theorems 1.9 and 1.10. The latter gives new

examples of Teichmüller curves in M4. In the course of the proof we will give

explicit equations for ΩG in period coordinates.

Cylinder deformations. We begin with some notation. We write the usual

action of γ ∈ GL+
2 (R) on ΩMg by

(X,ω) 7→ γ · (X,ω).

Let C ⊂ X be a collection of parallel cylinders, and let φ : (X,ω) → (X ′, ω′)

be a PL (piecewise linear) map for the flat metrics |ω| and |ω′|. We say (X ′, ω′)

is a cylinder deformation of (X,ω), and write

(9.1) (X ′, ω′) = γC · (X,ω),

if Dφ = γ on C and Dφ = Id on the rest of X (cf. [Wri15]).

Note that we must have γ(v) = v on vectors v parallel to ∂C; in particular,

if det(γ) = 1, then γ is a shear. Conversely, any linear map γ that fixes vectors

parallel to ∂C determines a new form γC · (X,ω) ∈ ΩMg.
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Figure 4. Hexagon form (X0, ω0) in ΩG, and parallel cylinders C ⊂ X0.

A symmetric form in ΩG. Now consider the holomorphic 1-form (X0, ω0)

∈ ΩM4(2, 2, 2) obtained by gluing together three regular hexagons along par-

allel edges as indicated in Figure 4. The three zeros of ω are indicated by white,

black and gray dots. The edges are oriented to run counter-clockwise around

the right and left hexagons, in the complex directions vi, wi ∈ C. We claim:

The form (X0, ω0) lies in the gothic locus ΩG.

In fact, rotation of each hexagon by 60◦ preserves the gluing pattern, and thus

descends to an automorphism T : X0 → X0 that cyclically permutes the three

zeros of ω0. If we let J = T 3 and define an elliptic curve by B = X0/〈T 2〉,
then J∗ω0 = −ω0 and the degree three quotient map π : X0 → B sends Z(ω0)

to a single point. Thus (X0, ω0) belongs to ΩG by the definition in Section 1.

Period coordinates. We can regard vi and wi as linear coordinates on the

cohomology group H1(X0, Z(ω0)), since each oriented edge connects two zeros

of ω0.

In fact, these 12 vectors span H1(X0;Z(ω0)) ∼= C10, and are subject to

the two relations
∑
vi =

∑
wi = 0. For the picture at hand, we have vi(ω0) =

wi(ω0) = ζi−1, where ζ = exp(πi/3).

In these coordinates, a sheet of ΩG is locally defined by the linear relations:

(9.2)
vi+3 = −vi and wi+3 = −wi, i = 1, 2, 3; and

v1 + v3 + v5 = w1 + w3 + w5 = 0.

The first set of equations insures that J∗(ω) = ω, while the second insures

that ω ∈ H1(B)⊥. To see that the second condition is correct, just note that

v1 + v3 + v5 and w1 +w3 +w5 span the T 2-invariant subspace of H1(X0), and

hence represent a basis for H1(B). These equations define an open subset of a

sheet of ΩG by Theorem 5.2.

Cylinders and H1(B). The shaded region in Figure 4 covers a collection

of three parallel cylinders, C = C1 ∪ C2 ∪ C3 ⊂ X. We claim:
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Any cylinder deformation of the form (X,ω) = γC · (X0, ω0) also

lies in ΩG.

To see this, it suffices to show that shearing C preserves the period conditions

in (9.2). The first set is preserved because J(C) = C. As for the second

set, by examining the left hexagon in Figure 4, we see that the relative cycle

v = 2v1− (v1 +v2 +v6) can be represented by two arcs lying entirely in C. But

modulo the first set of equations, we have v = v1 + v3 + v5; thus v(ω0) = 0,

and hence v(ω) = 0. Similarly, the cycle w1 + w3 + w5 can be represented by

arcs outside of C, so its vanishing is also preserved by γC .Step 2

Figure 5. Preparation for cut and paste.Step 3

Figure 6. Result of cut and paste is a new polygon P ′.

PL maps. Figure 5 gives another presentation of the surface (X0, ω0), in

which the dark shaded regions cover two more parallel cylinders D = D1∪D2 ⊂
X0. Since J(D) = D, and the cycles v1 + v3 + v5 and w1 + w3 + w5 can be

represented by arcs outside of D, deformations of the form γ′D · (X0, ω0) also

lie in ΩG. In fact, by combining γC , γ′D and the action of GL+
2 (R), we can

conclude:

(9.3)
If there exists a PL map φ : (X0, ω0)→ (X,ω) such that Dφ is

constant on C , D and their complement, then (X,ω) ∈ ΩG.
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Figure 7. Linear image γ(P ′), followed by shearing.

With this information in hand, we may complete the:

Proof of Theorem 1.9. We first show that (X,ω) = P (a, b)/ ∼ is in ΩG for

any a, b > 0. Start with (X0, ω0) ∈ ΩG as presented in Figure 5. Cutting along

the dotted lines and reassembling, we obtain a new polygon P ′ representing

the same 1-form, shown in Figure 6. Every dotted edge is now part of the

boundary of P ′.

Let γ ∈ GL+
2 (R) be the unique linear map that sends the pair of symmetric

white triangles in Figure 6 to isosceles right triangles with horizontal bases of

unit length. The result is a new 1-form (X1, ω1) = γ · (X0, ω0), which is the

quotient of the polygon γ(P ′) shown in Figure 7 at the left. (In fact, if we

allow complex values of a, b, then P ′ = P ((1− i)/2, (3 + i)/2)).

Finally, by applying cylinder deformations, we can transform the light

and dark regions into rectangles (as shown at the right) to produce the form

(X2, ω2) = P (a, b)/ ∼ for any a, b > 0. By observation (9.3), the resulting

form is still in ΩG. �

Proof of Theorem 1.10. Now suppose a, b ∈ K = Q(
√
d) satisfy equa-

tion (1.3). We may assume that
√
d is irrational, since (X,ω) is square-

tiled in the rational case. Note that the horizontal cylinders in (X,ω) have

moduli (m1,m2) = (b, (4a + 2)−1), while the vertical cylinders have moduli

(m′1,m
′
2) = (a, (4b + 6)−1). As is easily verified, equation (1.3) is exactly the

condition needed to insure that m1/m2 and m′1/m
′
2 are rational.

This rationality implies that Aff+(X,ω) contains a vertical and a horizon-

tal Dehn twist, whose product produces a hyperbolic element γ ∈ SL(X,ω) (cf.

[McM06, §4]). The relative periods Per(ω) ⊗ Q form a vector space of rank 2
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over K ′ = Q(tr γ) [McM03b, Th. 9.5], and thus K ′ = K. By Theorem 1.8,

this implies there is a D > 0 with Q(
√
D) = Q(

√
d) such that (X,ω) ∈ GD.

In particular, (X,ω) generates a Teichmüller curve. �

Remark : An open subset of ΩG. Since ΩG is linear in period coordinates,

Theorem 1.9 also holds for the open set of complex parameters (a, b) that

determine embedded polygons. In fact, if we apply the action of GL+
2 (R) to

the resulting forms, then we obtain a dense open subset of ΩG. Figures 6 and 7

show cathedral polygons of this more general type.
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