Abstract
In this paper we prove that no packing of unit balls in Euclidean space $\mathbb R^8$ has density greater than that of the $E_8$-lattice packing.
-
[Abramowitz] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publ., 1964, vol. 55.
@book{Abramowitz,
author={Abramowitz, M. and Stegun, I.},
TITLE={Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables},
SERIES={Appl. Math. Ser.},
VOLUME={55},
ADDRESS={New York},
PUBLISHER={Dover Publ.},
YEAR={1964},
ZBLNUMBER = {0171.38503},
} -
[BRV]
A. Bondarenko, D. Radchenko, and M. Viazovska, "Optimal asymptotic bounds for spherical designs," Ann. of Math., vol. 178, iss. 2, pp. 443-452, 2013.
@ARTICLE{BRV, mrkey = {3071504},
number = {2},
issn = {0003-486X},
author = {Bondarenko, Andriy and Radchenko, Danylo and Viazovska, Maryna},
mrclass = {41A63 (41A55 52C35 65C10)},
doi = {10.4007/annals.2013.178.2.2},
journal = {Ann. of Math.},
zblnumber = {1270.05026},
volume = {178},
mrnumber = {3071504},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {Hiroshi Nozaki},
title = {Optimal asymptotic bounds for spherical designs},
year = {2013},
pages = {443--452},
} -
[Bruinier]
J. H. Bruinier, Borcherds Products on O(2, $l$) and Chern Classes of Heegner Divisors, New York: Springer-Verlag, 2002, vol. 1780.
@BOOK{Bruinier, mrkey = {1903920},
author = {Bruinier, Jan H.},
mrclass = {11F55 (11F23 11F27 11G18)},
series = {Lecture Notes in Math.},
address = {New York},
isbn = {3-540-43320-1},
publisher = {Springer-Verlag},
doi = {10.1007/b83278},
zblnumber = {1004.11021},
volume = {1780},
mrnumber = {1903920},
mrreviewer = {Rainer Schulze-Pillot},
title = {Borcherds Products on {O}(2, {$l$}) and {C}hern Classes of {H}eegner Divisors},
year = {2002},
pages = {viii+152},
} -
[ElkiesCohn]
H. Cohn and N. Elkies, "New upper bounds on sphere packings. I," Ann. of Math., vol. 157, iss. 2, pp. 689-714, 2003.
@ARTICLE{ElkiesCohn, mrkey = {1973059},
number = {2},
issn = {0003-486X},
author = {Cohn, Henry and Elkies, Noam},
mrclass = {11H31 (52C17)},
doi = {10.4007/annals.2003.157.689},
journal = {Ann. of Math.},
zblnumber = {1041.52011},
volume = {157},
mrnumber = {1973059},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {Matthias Beck},
coden = {ANMAAH},
title = {New upper bounds on sphere packings. {I}},
year = {2003},
pages = {689--714},
} -
[CohnKumar]
H. Cohn and A. Kumar, "Universally optimal distribution of points on spheres," J. Amer. Math. Soc., vol. 20, iss. 1, pp. 99-148, 2007.
@ARTICLE{CohnKumar, mrkey = {2257398},
number = {1},
issn = {0894-0347},
author = {Cohn, Henry and Kumar, Abhinav},
mrclass = {52A40 (41A63 52C17)},
doi = {10.1090/S0894-0347-06-00546-7},
journal = {J. Amer. Math. Soc.},
zblnumber = {1198.52009},
volume = {20},
mrnumber = {2257398},
fjournal = {Journal of the American Mathematical Society},
mrreviewer = {P. McMullen},
title = {Universally optimal distribution of points on spheres},
year = {2007},
pages = {99--148},
} -
[ConwaySloan]
J. H. Conway and N. A. Sloane, "What are all the best sphere packings in low dimensions?," Discrete Comput. Geom., vol. 13, iss. 3-4, pp. 383-403, 1995.
@ARTICLE{ConwaySloan, mrkey = {1318784},
number = {3-4},
issn = {0179-5376},
author = {Conway, J. H. and Sloane, NJ A.},
mrclass = {52C17 (05B40 11H31)},
doi = {10.1007/BF02574051},
journal = {Discrete Comput. Geom.},
zblnumber = {0844.52013},
volume = {13},
mrnumber = {1318784},
fjournal = {Discrete \& Computational Geometry. An International Journal of Mathematics and Computer Science},
mrreviewer = {Robert M. Erdahl},
coden = {DCGEER},
title = {What are all the best sphere packings in low dimensions?},
year = {1995},
pages = {383--403},
} -
[Delsarte72] P. Delsarte, "Bounds for unrestricted codes, by linear programming," Philips Res. Rep., vol. 27, pp. 272-289, 1972.
@ARTICLE{Delsarte72, mrkey = {0314545},
issn = {0165-5817},
author = {Delsarte, P.},
mrclass = {94A10},
journal = {Philips Res. Rep.},
zblnumber = {0348.94016},
volume = {27},
mrnumber = {0314545},
fjournal = {Philips Journal of Research},
mrreviewer = {R. J. McEliece},
title = {Bounds for unrestricted codes, by linear programming},
year = {1972},
pages = {272--289},
} -
[Delsarte77]
P. Delsarte, J. M. Goethals, and J. J. Seidel, "Spherical codes and designs," Geometriae Dedicata, vol. 6, iss. 3, pp. 363-388, 1977.
@ARTICLE{Delsarte77, mrkey = {0485471},
number = {3},
issn = {0046-5755},
author = {Delsarte, P. and Goethals, J. M. and Seidel, J. J.},
mrclass = {05B99},
journal = {Geometriae Dedicata},
zblnumber = {0376.05015},
volume = {6},
mrnumber = {0485471},
fjournal = {Geometriae Dedicata},
mrreviewer = {Mikhail Deza},
title = {Spherical codes and designs},
year = {1977},
pages = {363--388},
doi = {10.1007/BF03187604},
} -
[firstcourse] F. Diamond and J. Shurman, A First Course in Modular Forms, New York: Springer-Verlag, 2005, vol. 228.
@BOOK{firstcourse, mrkey = {2112196},
author = {Diamond, Fred and Shurman, Jerry},
mrclass = {11Fxx},
series = {Graduate Texts in Math.},
address = {New York},
isbn = {0-387-23229-X},
publisher = {Springer-Verlag},
zblnumber = {1062.11022},
volume = {228},
mrnumber = {2112196},
mrreviewer = {Henri Darmon},
title = {A First Course in Modular Forms},
year = {2005},
pages = {xvi+436},
} -
@ARTICLE{Toth, mrkey = {0009129},
issn = {0025-5874},
author = {Fejes, L.},
mrclass = {52.0X},
doi = {10.1007/BF01180035},
journal = {Math. Z.},
zblnumber = {0027.34102},
volume = {48},
mrnumber = {0009129},
fjournal = {Mathematische Zeitschrift},
title = {Über die dichteste {K}ugellagerung},
year = {1943},
pages = {676--684},
} -
[Hales]
T. C. Hales, "A proof of the Kepler conjecture," Ann. of Math., vol. 162, iss. 3, pp. 1065-1185, 2005.
@ARTICLE{Hales, mrkey = {2179728},
number = {3},
issn = {0003-486X},
author = {Hales, Thomas C.},
mrclass = {52C17},
doi = {10.4007/annals.2005.162.1065},
journal = {Ann. of Math.},
zblnumber = {1096.52010},
volume = {162},
mrnumber = {2179728},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {G{é}za T{ó}th},
coden = {ANMAAH},
title = {A proof of the {K}epler conjecture},
year = {2005},
pages = {1065--1185},
} -
[Hejhal]
D. A. Hejhal, The Selberg Trace Formula for ${ PSL}(2,\,{\bf R})$. Vol. 2, New York: Springer-Verlag, 1983, vol. 1001.
@BOOK{Hejhal, mrkey = {0711197},
author = {Hejhal, Dennis A.},
mrclass = {11F72 (58G25)},
series = {Lecture Notes in Math.},
address = {New York},
isbn = {3-540-12323-7},
publisher = {Springer-Verlag},
doi = {10.1007/BFb0061302},
volume = {1001},
mrnumber = {0711197},
mrreviewer = {Audrey A. Terras},
title = {The {S}elberg Trace Formula for {${\rm PSL}(2,\,{\bf R})$}. {V}ol. 2},
year = {1983},
pages = {viii+806},
zblnumber = {0543.10020},
} -
[KabLev] V. I. Levenshtein, "Bounds for codes ensuring error correction and synchronization," Problemy Peredači Informacii, vol. 5, iss. 2, pp. 3-13, 1969.
@ARTICLE{KabLev, mrkey = {0305908},
number = {2},
author = {Levenshtein, V. I.},
mrclass = {94A10},
journal = {Problemy Peredači Informacii},
zblnumber = {0261.94016},
volume = {5},
mrnumber = {0305908},
fjournal = {Problemy Peredači Informacii},
title = {Bounds for codes ensuring error correction and synchronization},
year = {1969},
pages = {3--13},
} -
@BOOK{Mumford, mrkey = {0688651},
author = {Mumford, David},
mrclass = {14K25 (11E45 11G10 14C30)},
series = {Progr. Math.},
isbn = {3-7643-3109-7},
address = {Boston},
publisher = {Birkhäuser},
doi = {10.1007/978-1-4899-2843-6},
volume = {28},
mrnumber = {0688651},
mrreviewer = {M. Kh. Gizatullin},
title = {Tata Lectures on Theta. {I}},
year = {1983},
pages = {xiii+235},
zblnumber = {0509.14049},
} -
[Petersson32]
H. Petersson, "Über die Entwicklungskoeffizienten der automorphen Formen," Acta Math., vol. 58, iss. 1, pp. 169-215, 1932.
@ARTICLE{Petersson32, mrkey = {1555346},
number = {1},
issn = {0001-5962},
author = {Petersson, Hans},
mrclass = {Contributed Item},
doi = {10.1007/BF02547776},
journal = {Acta Math.},
zblnumber = {0003.35002},
volume = {58},
mrnumber = {1555346},
fjournal = {Acta Mathematica},
coden = {ACMAA8},
title = {Über die {E}ntwicklungskoeffizienten der automorphen {F}ormen},
year = {1932},
pages = {169--215},
} -
[PfenderZiegler] F. Pfender and G. M. Ziegler, "Kissing numbers, sphere packings, and some unexpected proofs," Notices Amer. Math. Soc., vol. 51, iss. 8, pp. 873-883, 2004.
@ARTICLE{PfenderZiegler, mrkey = {2145821},
number = {8},
issn = {0002-9920},
author = {Pfender, Florian and Ziegler, G{ü}nter M.},
mrclass = {52C17 (05B40 11H31)},
journal = {Notices Amer. Math. Soc.},
zblnumber = {1168.52305},
volume = {51},
mrnumber = {2145821},
fjournal = {Notices of the American Mathematical Society},
mrreviewer = {A. Florian},
coden = {AMNOAN},
title = {Kissing numbers, sphere packings, and some unexpected proofs},
year = {2004},
pages = {873--883},
} -
[Rademacher38]
H. Rademacher and H. S. Zuckerman, "On the Fourier coefficients of certain modular forms of positive dimension," Ann. of Math., vol. 39, iss. 2, pp. 433-462, 1938.
@ARTICLE{Rademacher38, mrkey = {1503417},
number = {2},
issn = {0003-486X},
author = {Rademacher, Hans and Zuckerman, Herbert S.},
mrclass = {Contributed Item},
doi = {10.2307/1968796},
journal = {Ann. of Math.},
zblnumber = {0019.02201},
volume = {39},
mrnumber = {1503417},
fjournal = {Annals of Mathematics. Second Series},
coden = {ANMAAH},
title = {On the {F}ourier coefficients of certain modular forms of positive dimension},
year = {1938},
pages = {433--462},
} -
[Thue] A. Thue, "Über die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene," Norske Vid. Selsk. Skr., vol. 1, pp. 1-9, 1910.
@ARTICLE{Thue, volume = {1},
author = {Thue, A.},
title = {{Ü}ber die dichteste \hbox{Z}usammenstellung von kongruenten \hbox{K}reisen in einer \hbox{E}bene},
pages = {1--9},
year = {1910},
journal = {Norske Vid. Selsk. Skr.},
jfmnumber = {41.0594.19},
} -
[1-2-3]
D. Zagier, "Elliptic modular forms and their applications," in The 1-2-3 of Modular Forms, New York: Springer-Verlag, 2008, pp. 1-103.
@INCOLLECTION{1-2-3, mrkey = {2409678},
author = {Zagier, Don},
mrclass = {11F11 (11-02 11E45 11F20 11F25 11F27 11F67)},
series = {Universitext},
address = {New York},
publisher = {Springer-Verlag},
doi = {10.1007/978-3-540-74119-0_1},
zblnumber = {1259.11042},
mrnumber = {2409678},
booktitle = {The 1-2-3 of Modular Forms},
mrreviewer = {Rainer Schulze-Pillot},
title = {Elliptic modular forms and their applications},
pages = {1--103},
year = {2008},
}