Abstract
We show that for an integer $n\ge 1$, any subset $A\subseteq \mathbb{Z}_4^n$ free of three-term arithmetic progressions has size $|A|\le 4^{\gamma n}$, with an absolute constant $\gamma\approx 0.926$.
We show that for an integer $n\ge 1$, any subset $A\subseteq \mathbb{Z}_4^n$ free of three-term arithmetic progressions has size $|A|\le 4^{\gamma n}$, with an absolute constant $\gamma\approx 0.926$.