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Progression-free sets in Zn
4

are exponentially small

By Ernie Croot, Vsevolod F. Lev, and Péter Pál Pach

Abstract

We show that for an integer n ≥ 1, any subset A ⊆ Zn4 free of three-

term arithmetic progressions has size |A| ≤ 4γn, with an absolute constant

γ ≈ 0.926.

1. Background and motivation

In his influential papers [Rot52], [Rot53], Roth has shown that if a set A ⊆
{1, 2, . . . , N} does not contain three elements in an arithmetic progression, then

|A| = o(N) and indeed, |A| = O(N/ log logN) asN grows. Since then, estimat-

ing the largest possible size of such a set has become one of the central problems

in additive combinatorics. Roth’s original results were improved by Heath-

Brown [HB87], Szemerédi [Sze90], Bourgain [Bou99], Sanders [San12], [San11],

and Bloom [Blo16], the current record being |A| = O(N(log logN)4/ logN),

due to Bloom.

It is easily seen that Roth’s problem is essentially equivalent to estimating

the largest possible size of a subset of the cyclic group ZN , free of three-

term arithmetic progressions. This makes it natural to investigate other finite

abelian groups.

We say that a subset A of an (additively written) abelian group G is

progression-free if there do not exist pairwise distinct a, b, c ∈ A with a+b = 2c,

and we denote by r3(G) the largest size of a progression-free subset A ⊆ G. For

abelian groups G of odd order, Brown and Buhler [BB82] and independently

Frankl, Graham, and Rödl [FGR87] proved that r3(G) = o(|G|) as |G| grows.

Meshulam [Mes95], following the general lines of Roth’s argument, has shown

that if G is an abelian group of odd order, then r3(G) ≤ 2|G|/ rk(G) (where
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we use the standard notation rk(G) for the rank of G); in particular, r3(Znm) ≤
2mn/n. Despite many efforts, no further progress was made for over 15 years,

till Bateman and Katz in their ground-breaking paper [BK12] proved that

r3(Zn3 ) = O(3n/n1+ε) with an absolute constant ε > 0.

Abelian groups of even order were first considered in [Lev04] where, as

a further elaboration on the Roth-Meshulam proof, it is shown that r3(G) <

2|G|/ rk(2G) for any finite abelian group G; here 2G = {2g : g ∈ G}. For the

homocyclic groups of exponent 4, this result was improved by Sanders [San09],

who proved that r3(Zn4 ) = O(4n/n(log n)ε) with an absolute constant ε > 0.

The goal of this paper is to further improve Sanders’s result, as follows.

Let H denote the binary entropy function; that is,

H(x) = −x log2 x− (1− x) log2(1− x), x ∈ (0, 1),

where log2 x is the base-2 logarithm of x. For the rest of the paper, we set

γ := max
{1

2

Ä
H(0.5− ε) +H(2ε)

ä
: 0 < ε < 0.25

}
≈ 0.926.

Theorem 1. If n ≥ 1 and A ⊆ Zn4 is progression-free, then |A| ≤ 4γn.

The proof of Theorem 1 is presented in the next section. We note that

the exponential reduction in Theorem 1 is the first of its kind for problems of

this sort.

Starting from Roth, the standard way to obtain quantitative estimates for

r3(G) involves a combination of the Fourier analysis and the density increment

technique; the only exception is [Lev12], where for the groups G ∼= Znq with

a prime power q, the above-mentioned Meshulam’s result is recovered using

a completely elementary argument. In contrast, in the present paper we use

the polynomial method, without resorting to the familiar Fourier analysis —

density increment strategy.

For a finite abelian group G ∼= Zm1 ⊕ · · · ⊕ Zmk with positive integer

m1 | · · · | mk, denote by rk4(G) the number of indices i ∈ [1, k] with 4 | mi.

Since, writing n := rk4(G), the group G is a union of 4−n|G| cosets of a

subgroup isomorphic to Zn4 , as a direct consequence of Theorem 1 we get the

following corollary.

Corollary 1. If A is a progression-free subset of a finite abelian group

G then, writing n := rk4(G), we have |A| ≤ 4−(1−γ)n|G|.

2. Proof of Theorem 1

We recall that the degree of a multivariate polynomial is the largest sum

of the exponents of all of its monomials. The polynomial is multilinear if it is

linear in every individual variable.

The proof of Theorem 1 is based on the following lemma.
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Lemma 1. Suppose that n ≥ 1 and d ≥ 0 are integers, P is a multilinear

polynomial in n variables of total degree at most d over a field F, and A ⊆ Fn
is a set with |A| > 2

∑
0≤i≤d/2

(n
i

)
. If P (a− b) = 0 for all a, b ∈ A with a 6= b,

then also P (0) = 0.

Proof. Let m :=
∑

0≤i≤d/2
(n
i

)
, and let K = {K1, . . . ,Km} be the collection

of all sets K ⊆ [n] with |K| ≤ d/2. Writing for brevity

xI :=
∏
i∈I

xi, x = (x1, . . . , xn) ∈ Fn, I ⊆ [n],

there exist coefficients CI,J ∈F (I, J⊆ [n]) depending only on the polynomial P ,

such that for all x, y ∈ Fn, we have

P (x− y) =
∑

I,J⊆[n]
I∩J=∅
|I|+|J |≤d

CI,J x
IyJ

=
∑
I∈K

xI
∑

J⊆[n]\I
|J |≤d−|I|

CI,J y
J +

∑
J∈K

( ∑
I⊆[n]\J

d/2<|I|≤d−|J |

CI,J x
I

)
yJ .

The right-hand side can be interpreted as the scalar product of the vectors

u(x), v(y) ∈ F2m defined by

ui(x) = xKi , um+i(x) =
∑

I⊆[n]\Ki
d/2<|I|≤d−|Ki|

CI,Ki x
I

and

vi(y) =
∑

J⊆[n]\Ki
|J |≤d−|Ki|

CKi,J y
J , vm+i(y) = yKi

for all 1 ≤ i ≤ m. Consequently, if we had P (a − b) = 0 for all a, b ∈ A with

a 6= b, while P (0) 6= 0, this would imply that the vectors u(a) and v(b) are

orthogonal if and only if a 6= b. As a result, the vectors u(a) would be linearly

independent. (An equality of the sort
∑
a∈A λau(a) = 0 with the coefficients

λa ∈ F after a scalar multiplication by v(b) yields λb = 0 for any b ∈ A.)

Finally, the linear independence of {u(a) : a ∈ A} ⊆ F2m implies |A| ≤ 2m,

contrary to the assumptions of the lemma. �

Remark. It is easy to extend the lemma relaxing the multilinearity as-

sumption to the assumption that P has bounded degree in each individual

variable. Specifically, denoting by fδ(n, d) the number of monomials xi11 . . . x
in
n

with 0 ≤ i1, . . . , in ≤ δ and i1 + · · · + in ≤ d, if P has all individual degrees

not exceeding δ, and the total degree not exceeding d, then |A| > 2fδ(n, bd/2c)
along with P (a − b) = 0 (a, b ∈ A, a 6= b) imply P (0) = 0. Moreover, taking
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δ = d, or δ = |F|−1 for F finite, one can drop the individual degree assumption

altogether.

We will use the estimate

(1)
∑

0≤i≤z

Ç
n

i

å
< 2nH(z/n),

valid for all integer n ≥ 1 and real 0 < z ≤ n/2; see, for instance, [MS77,

Ch. 10, §11, Lemma 8].

Recall that for integers n ≥ d ≥ 0, the sum
∑d
i=0

(n
i

)
is the dimension of

the vector space of all multilinear polynomials in n variables of total degree

at most d over the two-element field F2. In particular, the dimension of the

vector space of all multilinear polynomials in n variables over F2 is equal to the

dimension of the vector space of all F2-valued functions on Fn2 , and it follows

that any nonzero multilinear polynomial represents a nonzero function. These

basic facts are used in the proof of Proposition 1 below.

For an integer n ≥ 1, denote by Fn the subgroup of the group Zn4 generated

by its involutions; thus, Fn is both the image and the kernel of the doubling

endomorphism of Zn4 defined by g 7→ 2g (g ∈ Zn4 ), and we have Fn ∼= Zn2 .

Proposition 1. Suppose that n ≥ 1 and A ⊆ Zn4 is progression-free.

Then for every 0 < ε < 0.25, the number of Fn-cosets containing at least

2nH(0.5−ε)+1 elements of A is less than 2nH(2ε).

Proof. Let R be the set of those Fn-cosets containing at least 2nH(0.5−ε)+1

elements of A, and for each coset R ∈ R, let AR := A∩R; thus, ∪R∈RAR ⊆ A
(where the union is disjoint), and

(2) |AR| ≥ 2nH(0.5−ε)+1, R ∈ R.

For a subset S ⊆ Zn4 , write

2 · S := {s′ + s′′ : (s′, s′′) ∈ S × S, s′ 6= s′′} and 2 ∗ S := {2s : s ∈ S}.

The assumption that A is progression-free implies that the sets

B := ∪R∈R(2 ·AR) ⊆ Fn and C := ∪R∈R(2 ∗R) ⊆ Fn

are disjoint: this follows by observing that if 2r ∈ 2 ·A with some r ∈ R, then

for each a ∈ r + Fn, we have 2a = 2r ∈ 2 · A. Furthermore, the sets 2 ∗ R are

in fact pairwise distinct singletons (for 2r1 = 2r2 is equivalent to r1 − r2 ∈ Fn
and thus to r1 + Fn = r2 + Fn), whence |C| = |R|.

Let d = n− d2εne so that, in view of (2) and (1),

(3) 2
∑

0≤i≤d/2

Ç
n

i

å
< 2nH(0.5−ε)+1 ≤ |AR|, R ∈ R.
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Denoting by C the complement of C in Fn, and assuming, contrary to what

we want to prove, that |R| ≥ 2nH(2ε), from (1) we get

d∑
i=0

Ç
n

i

å
= 2n −

d2εne−1∑
i=0

Ç
n

i

å
> 2n − 2nH(2ε) ≥ 2n − |R| = 2n − |C| = |C|.

(This is the computation where the assumption ε < 0.25 is used.) Conse-

quently, identifying Fn with the additive group of the vector space Fn2 , and

accordingly considering B and C as subsets of Fn2 , we conclude that the di-

mension of the vector space of all multilinear n-variate polynomials over the

field F2 exceeds the dimension of the vector space of all F2-valued functions

on C. Thus, the evaluation map, associating with every polynomial the corre-

sponding function is degenerate. As a result, there exists a nonzero multilinear

polynomial P ∈ F2[x1, . . . , xn] of total degree degP ≤ d such that P vanishes

on C. In particular, P vanishes on B ⊆ C, and therefore on each set 2 · AR
for all R ∈ R. Fixing arbitrarily an element r ∈ R, the polynomial P (2r + x)

thus vanishes whenever x ∈ 2 · (AR − r). Hence, also P (2r) = 0 by Lemma 1

(which is applicable in view of (3)); that is, P also vanishes on each singleton

set 2 ∗ AR, for all R ∈ R. It follows that P vanishes on C. However, P was

chosen to vanish on C. Therefore, P vanishes on all of Fn2 , and it follows that

P is the zero polynomial. This is a contradiction showing that |R| < 2nH(2ε),

thus completing the proof. �

Proof of Theorem 1. For x ≥ 0, let N(x) denote the number of Fn-cosets

containing at least x elements of A; thus N(x) = 0 for x > 2n, and we can

write

(4) |A| =
∫ 2n+1

0
N(x) dx.

Trivially, we have N(x) ≤ 2n for all x ≥ 0, so that

(5)

∫ 2nH(1/4)+1

0
N(x) dx ≤ 2(H(1/4)+1)n+1 < 2 · 4γn.

On the other hand, the substitution x = 2nH(0.5−ε)+1 gives

(6)

∫ 2n+1

2nH(1/4)+1
N(x) dx = n

∫ 1/4

0
2nH(0.5−ε)+1N(2nH(0.5−ε)+1) log

0.5 + ε

0.5− ε
dε,

and applying Proposition 1, the integral in the right-hand side can be estimated

as

(7)

2n

∫ 1/4

0
2n(H(0.5−ε)+H(2ε)) log

0.5 + ε

0.5− ε
dε < 3n

∫ 1/4

0
2n(H(0.5−ε)+H(2ε)) dε < n·4γn.

From (4)–(7) we get |A| < (n + 2) · 4γn, and to conclude the proof we use

the tensor power trick: for an integer k ≥ 1, the set A × · · · × A ⊆ Zkn4 is
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progression-free, and therefore

|A|k < (kn+ 2) · 4γkn

by what we have just shown. This readily implies the result. �
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