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Progression-free sets in Z}
are exponentially small

By ErRNIE CrOOT, VSEvOLOD F. LEV, and PETER PAL PACH

Abstract

We show that for an integer n > 1, any subset A C Z} free of three-
term arithmetic progressions has size |A| < 47", with an absolute constant
v ~ 0.926.

1. Background and motivation

In his influential papers [Rot52], [Rot53], Roth has shown that if a set A C
{1,2,..., N} does not contain three elements in an arithmetic progression, then
|A| = o(N) and indeed, |A| = O(N/loglog N) as N grows. Since then, estimat-
ing the largest possible size of such a set has become one of the central problems
in additive combinatorics. Roth’s original results were improved by Heath-
Brown [HB87], Szemerédi [Sze90], Bourgain [Bou99], Sanders [San12], [Sanll],
and Bloom [Blo16], the current record being |A| = O(N(loglog N)*/log N),
due to Bloom.

It is easily seen that Roth’s problem is essentially equivalent to estimating
the largest possible size of a subset of the cyclic group Zy, free of three-
term arithmetic progressions. This makes it natural to investigate other finite
abelian groups.

We say that a subset A of an (additively written) abelian group G is
progression-free if there do not exist pairwise distinct a, b, c € A with a+b = 2c,
and we denote by r3(G) the largest size of a progression-free subset A C G. For
abelian groups G of odd order, Brown and Buhler [BB82] and independently
Frankl, Graham, and Rodl [FGR87] proved that r3(G) = o(|G]) as |G| grows.
Meshulam [Mes95], following the general lines of Roth’s argument, has shown
that if G is an abelian group of odd order, then r3(G) < 2|G|/rk(G) (where
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we use the standard notation rk(G) for the rank of G); in particular, r3(Z,) <
2m™ /n. Despite many efforts, no further progress was made for over 15 years,
till Bateman and Katz in their ground-breaking paper [BK12] proved that
r3(Z3) = O(3"/n'*¢) with an absolute constant € > 0.

Abelian groups of even order were first considered in [Lev04] where, as
a further elaboration on the Roth-Meshulam proof, it is shown that r3(G) <
2|G|/ rk(2G) for any finite abelian group Gj; here 2G = {2g: g € G'}. For the
homocyclic groups of exponent 4, this result was improved by Sanders [San09],
who proved that r3(Z}) = O(4"/n(logn)¢) with an absolute constant € > 0.
The goal of this paper is to further improve Sanders’s result, as follows.

Let H denote the binary entropy function; that is,

H(z) = —zlogyx — (1 —x)logy(1 —z), =z € (0,1),

where logy  is the base-2 logarithm of x. For the rest of the paper, we set
1
+ := max {i(H(O.S —e)+ H(2)): 0 < <025}~ 0.926.
THEOREM 1. Ifn >1 and A C Z} is progression-free, then |A| < 47™.

The proof of Theorem 1 is presented in the next section. We note that
the exponential reduction in Theorem 1 is the first of its kind for problems of
this sort.

Starting from Roth, the standard way to obtain quantitative estimates for
r3(G) involves a combination of the Fourier analysis and the density increment
technique; the only exception is [Lev12], where for the groups G = Zj with
a prime power ¢, the above-mentioned Meshulam’s result is recovered using
a completely elementary argument. In contrast, in the present paper we use
the polynomial method, without resorting to the familiar Fourier analysis —
density increment strategy:.

For a finite abelian group G = Z,, @ --- ® Zy,, with positive integer
my | --+ | mg, denote by rky(G) the number of indices i € [1,k] with 4 | m;,.
Since, writing n := rks4(G), the group G is a union of 47"|G| cosets of a
subgroup isomorphic to Z}, as a direct consequence of Theorem 1 we get the
following corollary.

COROLLARY 1. If A is a progression-free subset of a finite abelian group
G then, writing n := rky(G), we have |A| < 4~(1=17|q|.

2. Proof of Theorem 1

We recall that the degree of a multivariate polynomial is the largest sum
of the exponents of all of its monomials. The polynomial is multilinear if it is
linear in every individual variable.

The proof of Theorem 1 is based on the following lemma.
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LEMMA 1. Suppose that n > 1 and d > 0 are integers, P is a multilinear
polynomial in n variables of total degree at most d over a field F, and A C F"
is a set with |A] > 23 o<i<qs2 (7). If P(a—b) =0 for all a,b € A with a # b,
then also P(0) = 0.

Proof. Let m := 3 <;<a/2 (), and let K = {Kj, ..., Kn} be the collection
of all sets K C [n] with |K| < d/2. Writing for brevity

!l = Ha:i, = (x1,...,2y) €F", I C[n],
el
there exist coefficients Cr s €F (I, J C[n]) depending only on the polynomial P,
such that for all z,y € F", we have

Plea—y)= Y.  Crsa'y’

I,Jg[n]
INJ=o
11+17]<d
Y Y c,,JyJ+z< 5 cf,mf)gﬂ.
IeK JCn]\I Jek IC[n]\J
\T<d| 1] d/2<[1|<d|J|

The right-hand side can be interpreted as the scalar product of the vectors
u(z),v(y) € F?™ defined by

ui(x) = xKi, Um4i(T) = Z Crk, x!
IC[n\K;
d/2<‘[|§d—|K¢|
and
vily) = Y. Ck.u y?, vmpi(y) =y
JCn\K;
|J|<d—|K;]|

for all 1 <4 < m. Consequently, if we had P(a —b) = 0 for all a,b € A with
a # b, while P(0) # 0, this would imply that the vectors u(a) and v(b) are
orthogonal if and only if a # b. As a result, the vectors u(a) would be linearly
independent. (An equality of the sort > ,c4 Aqu(a) = 0 with the coefficients
Ao € F after a scalar multiplication by v(b) yields A, = 0 for any b € A.)
Finally, the linear independence of {u(a): a € A} C F?>™ implies |A| < 2m,
contrary to the assumptions of the lemma. ([l

Remark. It is easy to extend the lemma relaxing the multilinearity as-
sumption to the assumption that P has bounded degree in each individual
variable. Specifically, denoting by f5(n,d) the number of monomials xlf ool
with 0 < 4y,...,4, < d and 41 + --- + i, < d, if P has all individual degrees
not exceeding §, and the total degree not exceeding d, then |A| > 2fs(n, |d/2])

along with P(a —b) =0 (a,b € A, a # b) imply P(0) = 0. Moreover, taking
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d =d, or § = |F|—1 for F finite, one can drop the individual degree assumption
altogether.

We will use the estimate

) > ¢
valid for all integer n > 1 and real 0 < z < n/2; see, for instance, [MS77,
Ch. 10, §11, Lemma 8§].

Recall that for integers n > d > 0, the sum % (%) is the dimension of
the vector space of all multilinear polynomials in n variables of total degree
at most d over the two-element field Fo. In particular, the dimension of the
vector space of all multilinear polynomials in n variables over 5 is equal to the
dimension of the vector space of all Fo-valued functions on F3, and it follows
that any nonzero multilinear polynomial represents a nonzero function. These
basic facts are used in the proof of Proposition 1 below.

For an integer n > 1, denote by F}, the subgroup of the group Z} generated
by its involutions; thus, F;, is both the image and the kernel of the doubling
endomorphism of Z} defined by g — 2g (g € Z}), and we have F,, = Z3.

PROPOSITION 1. Suppose that n > 1 and A C ZJ is progression-free.

Then for every 0 < € < 0.25, the number of F,-cosets containing at least

onH(05-€)+1 elements of A is less than 27(29)
Proof. Let R be the set of those F,-cosets containing at least 27 (0-5—¢)+1
elements of A, and for each coset R € R, let Ag := ANR; thus, UrcrAr C A

(where the union is disjoint), and
(2) |Ap| > gnH(05-)+1  p e R
For a subset S C Z}, write
2.-8:={s+5":(s,8)e xS, s#5"} and 2x5:={2s5:s5€ 5}
The assumption that A is progression-free implies that the sets
B :=Uper(2-Ar) CF, and C:=Uper(2xR)CF,

are disjoint: this follows by observing that if 2r € 2 - A with some r € R, then
for each a € r + F,,, we have 2a = 2r € 2 - A. Furthermore, the sets 2 x R are
in fact pairwise distinct singletons (for 2r; = 2r9 is equivalent to r| —ro € F),
and thus to r; + F,, = ro + F,), whence |C| = |R|.

Let d = n — [2en] so that, in view of (2) and (1),

(3) 2 Y (”) < nHO5=)+ < | 4|, ReR.

o<i<d/2 \"
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Denoting by C the complement of C' in F,,, and assuming, contrary to what
we want to prove, that |R| > 2"7(29) from (1) we get

d [2en]—1
2:(7)::2"- > (7):>?1—2"H@@;32”—\R4::Tl—]0|:|cw
i=0 \" i=0 \!
(This is the computation where the assumption € < 0.25 is used.) Conse-
quently, identifying F),, with the additive group of the vector space F5, and
accordingly considering B and C as subsets of Fy, we conclude that the di-
mension of the vector space of all multilinear n-variate polynomials over the
field Fy exceeds the dimension of the vector space of all Fy-valued functions
on C. Thus, the evaluation map, associating with every polynomial the corre-
sponding function is degenerate. As a result, there exists a nonzero multilinear
polynomial P € Fa[x1,...,x,] of total degree deg P < d such that P vanishes
on C. In particular, P vanishes on B C C, and therefore on each set 2 - Ap
for all R € R. Fixing arbitrarily an element r € R, the polynomial P(2r + x)
thus vanishes whenever x € 2- (Ar — r). Hence, also P(2r) = 0 by Lemma 1
(which is applicable in view of (3)); that is, P also vanishes on each singleton
set 2 x Ag, for all R € R. It follows that P vanishes on C'. However, P was
chosen to vanish on C. Therefore, P vanishes on all of F}, and it follows that
P is the zero polynomial. This is a contradiction showing that |R| < 27 (2),
thus completing the proof. O

Proof of Theorem 1. For x > 0, let N(x) denote the number of F,-cosets
containing at least x elements of A; thus N(z) = 0 for x > 2", and we can

write
2n+1

(4) A = / N() dz.
0
Trivially, we have N(z) < 2" for all > 0, so that
onH(1/4)+1
(5) ,/ N(z)de < 2HA/M+n+l o yom
0
On the other hand, the substitution = 2H(0-5=€)+1 giyeg

2 /4 0.5+ ¢
6 N dr = 2nH(0.5—E)+1N 2nH(0.5—£)+1 1 : d
© AMWMI () do "A ( ) log g5 — 4=

and applying Proposition 1, the integral in the right-hand side can be estimated

(7)

4 4
2n/1/ gn(H(05-)+H(29)) |5 8? TE g < 3n/1/ gn(H(0.5-2)+H(2€)) go < p.d ™.
0 D —€ 0

From (4)-(7) we get |A| < (n+ 2) - 47", and to conclude the proof we use
the tensor power trick: for an integer & > 1, the set A x --- x A C Zk" is
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progression-free, and therefore

|A|F < (kn +2) - 47%n

by what we have just shown. This readily implies the result. O
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