Progression-free sets in \mathbb{Z}_4^n are exponentially small

By ERNIE CROOT, VSEVOLOD F. LEV, and PÉTER PÁL PACH

Abstract

We show that for an integer $n \geq 1$, any subset $A \subseteq \mathbb{Z}_4^n$ free of threeterm arithmetic progressions has size $|A| \leq 4^{\gamma n}$, with an absolute constant $\gamma \approx 0.926$.

1. Background and motivation

In his influential papers [Rot52], [Rot53], Roth has shown that if a set $A \subseteq \{1, 2, \ldots, N\}$ does not contain three elements in an arithmetic progression, then |A| = o(N) and indeed, $|A| = O(N/\log \log N)$ as N grows. Since then, estimating the largest possible size of such a set has become one of the central problems in additive combinatorics. Roth's original results were improved by Heath-Brown [HB87], Szemerédi [Sze90], Bourgain [Bou99], Sanders [San12], [San11], and Bloom [Blo16], the current record being $|A| = O(N(\log \log N)^4/\log N)$, due to Bloom.

It is easily seen that Roth's problem is essentially equivalent to estimating the largest possible size of a subset of the cyclic group \mathbb{Z}_N , free of threeterm arithmetic progressions. This makes it natural to investigate other finite abelian groups.

We say that a subset A of an (additively written) abelian group G is progression-free if there do not exist pairwise distinct $a, b, c \in A$ with a+b=2c, and we denote by $r_3(G)$ the largest size of a progression-free subset $A \subseteq G$. For abelian groups G of odd order, Brown and Buhler [BB82] and independently Frankl, Graham, and Rödl [FGR87] proved that $r_3(G) = o(|G|)$ as |G| grows. Meshulam [Mes95], following the general lines of Roth's argument, has shown that if G is an abelian group of odd order, then $r_3(G) \leq 2|G|/\operatorname{rk}(G)$ (where

P. P. was supported by the Hungarian Scientific Research Funds (OTKA PD115978 and OTKA K108947) and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

^{© 2017} Department of Mathematics, Princeton University.

we use the standard notation $\operatorname{rk}(G)$ for the rank of G); in particular, $r_3(\mathbb{Z}_m^n) \leq 2m^n/n$. Despite many efforts, no further progress was made for over 15 years, till Bateman and Katz in their ground-breaking paper [BK12] proved that $r_3(\mathbb{Z}_3^n) = O(3^n/n^{1+\varepsilon})$ with an absolute constant $\varepsilon > 0$.

Abelian groups of even order were first considered in [Lev04] where, as a further elaboration on the Roth-Meshulam proof, it is shown that $r_3(G) < 2|G|/\operatorname{rk}(2G)$ for any finite abelian group G; here $2G = \{2g : g \in G\}$. For the homocyclic groups of exponent 4, this result was improved by Sanders [San09], who proved that $r_3(\mathbb{Z}_4^n) = O(4^n/n(\log n)^{\varepsilon})$ with an absolute constant $\varepsilon > 0$. The goal of this paper is to further improve Sanders's result, as follows.

Let H denote the binary entropy function; that is,

 $H(x) = -x \log_2 x - (1 - x) \log_2(1 - x), \quad x \in (0, 1),$

where $\log_2 x$ is the base-2 logarithm of x. For the rest of the paper, we set

$$\gamma := \max\left\{\frac{1}{2} \left(H(0.5 - \varepsilon) + H(2\varepsilon)\right) \colon 0 < \varepsilon < 0.25\right\} \approx 0.926.$$

THEOREM 1. If $n \ge 1$ and $A \subseteq \mathbb{Z}_4^n$ is progression-free, then $|A| \le 4^{\gamma n}$.

The proof of Theorem 1 is presented in the next section. We note that the exponential reduction in Theorem 1 is the first of its kind for problems of this sort.

Starting from Roth, the standard way to obtain quantitative estimates for $r_3(G)$ involves a combination of the Fourier analysis and the density increment technique; the only exception is [Lev12], where for the groups $G \cong \mathbb{Z}_q^n$ with a prime power q, the above-mentioned Meshulam's result is recovered using a completely elementary argument. In contrast, in the present paper we use the polynomial method, without resorting to the familiar Fourier analysis — density increment strategy.

For a finite abelian group $G \cong \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_k}$ with positive integer $m_1 | \cdots | m_k$, denote by $\operatorname{rk}_4(G)$ the number of indices $i \in [1, k]$ with $4 | m_i$. Since, writing $n := \operatorname{rk}_4(G)$, the group G is a union of $4^{-n}|G|$ cosets of a subgroup isomorphic to \mathbb{Z}_4^n , as a direct consequence of Theorem 1 we get the following corollary.

COROLLARY 1. If A is a progression-free subset of a finite abelian group G then, writing $n := \operatorname{rk}_4(G)$, we have $|A| \leq 4^{-(1-\gamma)n}|G|$.

2. Proof of Theorem 1

We recall that the degree of a multivariate polynomial is the largest sum of the exponents of all of its monomials. The polynomial is *multilinear* if it is linear in every individual variable.

The proof of Theorem 1 is based on the following lemma.

LEMMA 1. Suppose that $n \ge 1$ and $d \ge 0$ are integers, P is a multilinear polynomial in n variables of total degree at most d over a field \mathbb{F} , and $A \subseteq \mathbb{F}^n$ is a set with $|A| > 2 \sum_{0 \le i \le d/2} {n \choose i}$. If P(a - b) = 0 for all $a, b \in A$ with $a \ne b$, then also P(0) = 0.

Proof. Let $m := \sum_{0 \le i \le d/2} {n \choose i}$, and let $\mathcal{K} = \{K_1, \ldots, K_m\}$ be the collection of all sets $K \subseteq [n]$ with $|K| \le d/2$. Writing for brevity

$$x^I := \prod_{i \in I} x_i, \quad x = (x_1, \dots, x_n) \in \mathbb{F}^n, \ I \subseteq [n],$$

there exist coefficients $C_{I,J} \in \mathbb{F}$ $(I, J \subseteq [n])$ depending only on the polynomial P, such that for all $x, y \in \mathbb{F}^n$, we have

$$P(x-y) = \sum_{\substack{I,J\subseteq[n]\\I\cap J=\varnothing\\|I|+|J|\leq d}} C_{I,J} x^{I} y^{J}$$
$$= \sum_{I\in\mathcal{K}} x^{I} \sum_{\substack{J\subseteq[n]\setminus I\\|J|\leq d-|I|}} C_{I,J} y^{J} + \sum_{J\in\mathcal{K}} \left(\sum_{\substack{I\subseteq[n]\setminus J\\d/2<|I|\leq d-|J|}} C_{I,J} x^{I}\right) y^{J}$$

The right-hand side can be interpreted as the scalar product of the vectors $u(x), v(y) \in \mathbb{F}^{2m}$ defined by

$$u_i(x) = x^{K_i}, \quad u_{m+i}(x) = \sum_{\substack{I \subseteq [n] \setminus K_i \\ d/2 < |I| \le d - |K_i|}} C_{I,K_i} x^I$$

and

$$v_i(y) = \sum_{\substack{J \subseteq [n] \setminus K_i \\ |J| \le d - |K_i|}} C_{K_i, J} y^J, \quad v_{m+i}(y) = y^{K_i}$$

for all $1 \leq i \leq m$. Consequently, if we had P(a - b) = 0 for all $a, b \in A$ with $a \neq b$, while $P(0) \neq 0$, this would imply that the vectors u(a) and v(b) are orthogonal if and only if $a \neq b$. As a result, the vectors u(a) would be linearly independent. (An equality of the sort $\sum_{a \in A} \lambda_a u(a) = 0$ with the coefficients $\lambda_a \in \mathbb{F}$ after a scalar multiplication by v(b) yields $\lambda_b = 0$ for any $b \in A$.) Finally, the linear independence of $\{u(a): a \in A\} \subseteq \mathbb{F}^{2m}$ implies $|A| \leq 2m$, contrary to the assumptions of the lemma.

Remark. It is easy to extend the lemma relaxing the multilinearity assumption to the assumption that P has bounded degree in each individual variable. Specifically, denoting by $f_{\delta}(n, d)$ the number of monomials $x_1^{i_1} \dots x_n^{i_n}$ with $0 \leq i_1, \dots, i_n \leq \delta$ and $i_1 + \dots + i_n \leq d$, if P has all individual degrees not exceeding δ , and the total degree not exceeding d, then $|A| > 2f_{\delta}(n, \lfloor d/2 \rfloor)$ along with P(a - b) = 0 $(a, b \in A, a \neq b)$ imply P(0) = 0. Moreover, taking $\delta = d$, or $\delta = |\mathbb{F}| - 1$ for \mathbb{F} finite, one can drop the individual degree assumption altogether.

We will use the estimate

(1)
$$\sum_{0 \le i \le z} \binom{n}{i} < 2^{nH(z/n)}$$

valid for all integer $n \ge 1$ and real $0 < z \le n/2$; see, for instance, [MS77, Ch. 10, §11, Lemma 8].

Recall that for integers $n \ge d \ge 0$, the sum $\sum_{i=0}^{d} {n \choose i}$ is the dimension of the vector space of all multilinear polynomials in n variables of total degree at most d over the two-element field \mathbb{F}_2 . In particular, the dimension of the vector space of *all* multilinear polynomials in n variables over \mathbb{F}_2 is equal to the dimension of the vector space of all \mathbb{F}_2 -valued functions on \mathbb{F}_2^n , and it follows that any nonzero multilinear polynomial represents a nonzero function. These basic facts are used in the proof of Proposition 1 below.

For an integer $n \ge 1$, denote by F_n the subgroup of the group \mathbb{Z}_4^n generated by its involutions; thus, F_n is both the image and the kernel of the doubling endomorphism of \mathbb{Z}_4^n defined by $g \mapsto 2g$ $(g \in \mathbb{Z}_4^n)$, and we have $F_n \cong \mathbb{Z}_2^n$.

PROPOSITION 1. Suppose that $n \geq 1$ and $A \subseteq \mathbb{Z}_4^n$ is progression-free. Then for every $0 < \varepsilon < 0.25$, the number of F_n -cosets containing at least $2^{nH(0.5-\varepsilon)+1}$ elements of A is less than $2^{nH(2\varepsilon)}$.

Proof. Let \mathcal{R} be the set of those F_n -cosets containing at least $2^{nH(0.5-\varepsilon)+1}$ elements of A, and for each coset $R \in \mathcal{R}$, let $A_R := A \cap R$; thus, $\bigcup_{R \in \mathcal{R}} A_R \subseteq A$ (where the union is disjoint), and

(2)
$$|A_R| \ge 2^{nH(0.5-\varepsilon)+1}, \quad R \in \mathcal{R}.$$

For a subset $S \subseteq \mathbb{Z}_4^n$, write

$$2 \cdot S := \{s' + s'' \colon (s', s'') \in S \times S, \ s' \neq s''\} \text{ and } 2 * S := \{2s \colon s \in S\}.$$

The assumption that A is progression-free implies that the sets

$$B := \bigcup_{R \in \mathcal{R}} (2 \cdot A_R) \subseteq F_n$$
 and $C := \bigcup_{R \in \mathcal{R}} (2 * R) \subseteq F_n$

are disjoint: this follows by observing that if $2r \in 2 \cdot A$ with some $r \in R$, then for each $a \in r + F_n$, we have $2a = 2r \in 2 \cdot A$. Furthermore, the sets 2 * R are in fact pairwise distinct singletons (for $2r_1 = 2r_2$ is equivalent to $r_1 - r_2 \in F_n$ and thus to $r_1 + F_n = r_2 + F_n$), whence $|C| = |\mathcal{R}|$.

Let $d = n - \lceil 2\varepsilon n \rceil$ so that, in view of (2) and (1),

(3)
$$2\sum_{0\leq i\leq d/2} \binom{n}{i} < 2^{nH(0.5-\varepsilon)+1} \leq |A_R|, \quad R \in \mathcal{R}$$

Denoting by \overline{C} the complement of C in F_n , and assuming, contrary to what we want to prove, that $|\mathcal{R}| \geq 2^{nH(2\varepsilon)}$, from (1) we get

$$\sum_{i=0}^{d} \binom{n}{i} = 2^{n} - \sum_{i=0}^{\lceil 2\varepsilon n \rceil - 1} \binom{n}{i} > 2^{n} - 2^{nH(2\varepsilon)} \ge 2^{n} - |\mathcal{R}| = 2^{n} - |C| = |\overline{C}|.$$

(This is the computation where the assumption $\varepsilon < 0.25$ is used.) Consequently, identifying F_n with the additive group of the vector space \mathbb{F}_2^n , and accordingly considering B and C as subsets of \mathbb{F}_2^n , we conclude that the dimension of the vector space of all multilinear n-variate polynomials over the field \mathbb{F}_2 exceeds the dimension of the vector space of all \mathbb{F}_2 -valued functions on C. Thus, the evaluation map, associating with every polynomial the corresponding function is degenerate. As a result, there exists a nonzero multilinear polynomial $P \in \mathbb{F}_2[x_1, \ldots, x_n]$ of total degree deg $P \leq d$ such that P vanishes on \overline{C} . In particular, P vanishes on $B \subseteq \overline{C}$, and therefore on each set $2 \cdot A_R$ for all $R \in \mathcal{R}$. Fixing arbitrarily an element $r \in R$, the polynomial P(2r+x)thus vanishes whenever $x \in 2 \cdot (A_R - r)$. Hence, also P(2r) = 0 by Lemma 1 (which is applicable in view of (3)); that is, P also vanishes on each singleton set $2 * A_R$, for all $R \in \mathcal{R}$. It follows that P vanishes on C. However, P was chosen to vanish on \overline{C} . Therefore, P vanishes on all of \mathbb{F}_2^n , and it follows that P is the zero polynomial. This is a contradiction showing that $|\mathcal{R}| < 2^{nH(2\varepsilon)}$, thus completing the proof.

Proof of Theorem 1. For $x \ge 0$, let N(x) denote the number of F_n -cosets containing at least x elements of A; thus N(x) = 0 for $x > 2^n$, and we can write

(4)
$$|A| = \int_0^{2^{n+1}} N(x) \, dx.$$

Trivially, we have $N(x) \leq 2^n$ for all $x \geq 0$, so that

(5)
$$\int_{0}^{2^{nH(1/4)+1}} N(x) \, dx \le 2^{(H(1/4)+1)n+1} < 2 \cdot 4^{\gamma n}.$$

On the other hand, the substitution $x = 2^{nH(0.5-\varepsilon)+1}$ gives

(6)
$$\int_{2^{nH(1/4)+1}}^{2^{n+1}} N(x) \, dx = n \int_{0}^{1/4} 2^{nH(0.5-\varepsilon)+1} N(2^{nH(0.5-\varepsilon)+1}) \log \frac{0.5+\varepsilon}{0.5-\varepsilon} \, d\varepsilon,$$

and applying Proposition 1, the integral in the right-hand side can be estimated as

(7)
$$2n \int_0^{1/4} 2^{n(H(0.5-\varepsilon)+H(2\varepsilon))} \log \frac{0.5+\varepsilon}{0.5-\varepsilon} \, d\varepsilon < 3n \int_0^{1/4} 2^{n(H(0.5-\varepsilon)+H(2\varepsilon))} \, d\varepsilon < n \cdot 4^{\gamma n}.$$

From (4)–(7) we get $|A| < (n+2) \cdot 4^{\gamma n}$, and to conclude the proof we use the tensor power trick: for an integer $k \ge 1$, the set $A \times \cdots \times A \subseteq \mathbb{Z}_4^{kn}$ is progression-free, and therefore

$$|A|^k < (kn+2) \cdot 4^{\gamma kn}$$

by what we have just shown. This readily implies the result.

References

- [BK12] M. BATEMAN and N. H. KATZ, New bounds on cap sets, J. Amer. Math. Soc. 25 (2012), 585–613. MR 2869028. Zbl 1262.11010. http://dx.doi.org/ 10.1090/S0894-0347-2011-00725-X.
- [Blo16] T. F. BLOOM, A quantitative improvement for Roth's theorem on arithmetic progressions, J. Lond. Math. Soc. 93 (2016), 643–663. MR 3509957. Zbl 06618266. http://dx.doi.org/10.1112/jlms/jdw010.
- [Bou99] J. BOURGAIN, On triples in arithmetic progression, Geom. Funct. Anal. 9 (1999), 968–984. MR 1726234. Zbl 0959.11004. http://dx.doi.org/10.1007/ s000390050105.
- [BB82] T. C. BROWN and J. P. BUHLER, A density version of a geometric Ramsey theorem, J. Combin. Theory Ser. A 32 (1982), 20-34. MR 0640624.
 Zbl 0476.51008. http://dx.doi.org/10.1016/0097-3165(82)90062-0.
- [FGR87] P. FRANKL, R. L. GRAHAM, and V. RÖDL, On subsets of abelian groups with no 3-term arithmetic progression, J. Combin. Theory Ser. A 45 (1987), 157–161. MR 0883900. Zbl 0613.10043. http://dx.doi.org/10.1016/ 0097-3165(87)90053-7.
- [HB87] D. R. HEATH-BROWN, Integer sets containing no arithmetic progressions, J. London Math. Soc. 35 (1987), 385–394. MR 0889362. Zbl 0589.10062. http://dx.doi.org/10.1112/jlms/s2-35.3.385.
- [Lev04] V. F. LEV, Progression-free sets in finite abelian groups, J. Number Theory 104 (2004), 162–169. MR 2021632. Zbl 1043.11022. http://dx.doi.org/10. 1016/S0022-314X(03)00148-3.
- [Lev12] V. F. LEV, Character-free approach to progression-free sets, *Finite Fields Appl.* 18 (2012), 378–383. MR 2890558. Zbl 1284.11020. http://dx.doi.org/10.1016/j.ffa.2011.09.006.
- [MS77] F. J. MACWILLIAMS and N. J. A. SLOANE, The Theory of Error-Correcting Codes, North-Holland Publ. Co., Amsterdam, 1977. MR 0465509. Zbl 0369. 94008.
- [Mes95] R. MESHULAM, On subsets of finite abelian groups with no 3-term arithmetic progressions, J. Combin. Theory Ser. A 71 (1995), 168–172. MR 1335785.
 Zbl 0832.11006. http://dx.doi.org/10.1016/0097-3165(95)90024-1.
- [Rot52] K. ROTH, Sur quelques ensembles d'entiers, C. R. Acad. Sci. Paris 234 (1952), 388–390. MR 0046374. Zbl 0046.04302.
- [Rot53] K. ROTH, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109. MR 0051853. Zbl 0050.04002. http://dx.doi.org/10.1112/jlms/s1-28.
 1.104.
- [San09] T. SANDERS, Roth's theorem in \mathbb{Z}_4^n , Anal. PDE **2** (2009), 211–234. MR 2560257. Zbl 1197.11017. http://dx.doi.org/10.2140/apde.2009.2.211.

336

- [San11] T. SANDERS, On Roth's theorem on progressions, Ann. of Math. 174 (2011), 619–636. MR 2811612. Zbl 1264.11004. http://dx.doi.org/10.4007/annals. 2011.174.1.20.
- [San12] T. SANDERS, On certain other sets of integers, J. Anal. Math. 116 (2012), 53–82. MR 2892617. Zbl 1280.11009. http://dx.doi.org/10.1007/ s11854-012-0003-9.
- [Sze90] E. SZEMERÉDI, Integer sets containing no arithmetic progressions, Acta Math. Hungar. 56 (1990), 155–158. MR 1100788. Zbl 0721.11007. http: //dx.doi.org/10.1007/BF01903717.

(Received: May 5, 2016)

GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GAE-mail:ecroot@math.gatech.edu

THE UNIVERSITY OF HAIFA AT ORANIM, TIVON, ISRAEL *E-mail*: seva@math.haifa.ac.il

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS, BUDAPEST, HUNGARY *E-mail*: ppp@cs.bme.hu