Abstract
We give a sharp counterexample to local existence of low regularity solutions to Einstein equations in wave coordinates. We show that there are initial data in $H^2$ satisfying the wave coordinate condition such that there is no solution in $H^2$ to Einstein equations in wave coordinates for any positive time. This result is sharp since Klainerman-Rodnianski and Smith-Tataru proved existence for the same equations with slightly more regular initial data.
-
[C] S. Czimek, Extensions of vacuum initial data in weak regularity, 2016.
@MISC{C,
author = {Czimek, S.},
ARXIV={1609.08814},
title = {Extensions of vacuum initial data in weak regularity},
year = {2016},
} -
[KM]
S. Klainerman and M. Machedon, "Smoothing estimates for null forms and applications. A celebration of John F. Nash, Jr.," Duke Math. J., vol. 81, iss. 1, pp. 99-133, 1995.
@ARTICLE{KM, mrkey = {1381973},
AUTHOR = {Klainerman, S. and Machedon, M.},
TITLE = {Smoothing estimates for null forms and applications. {A} celebration of {J}ohn {F}. {N}ash, {J}r.},
JOURNAL = {Duke Math. J.},
FJOURNAL = {Duke Mathematical Journal},
VOLUME = {81},
YEAR = {1995},
NUMBER = {1},
PAGES = {99--133},
ISSN = {0012-7094},
CODEN = {DUMJAO},
MRCLASS = {35B65 (35L05 35L70 35Q53)},
MRNUMBER = {1381973},
MRREVIEWER = {Vladimir Georgiev},
DOI = {10.1215/S0012-7094-95-08109-5},
zblnumber = {0909.35094},
} -
[KR]
S. Klainerman and I. Rodnianski, "Rough solutions of the Einstein-vacuum equations," Ann. of Math., vol. 161, iss. 3, pp. 1143-1193, 2005.
@ARTICLE{KR, mrkey = {2180400},
number = {3},
issn = {0003-486X},
author = {Klainerman, Sergiu and Rodnianski, Igor},
mrclass = {58J45 (35Q75)},
doi = {10.4007/annals.2005.161.1143},
journal = {Ann. of Math.},
zblnumber = {1089.83006},
volume = {161},
mrnumber = {2180400},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {Lars {\AA}ke Andersson},
coden = {ANMAAH},
title = {Rough solutions of the {E}instein-vacuum equations},
year = {2005},
pages = {1143--1193},
} -
[KRS]
S. Klainerman, I. Rodnianski, and J. Szeftel, "The bounded $L^2$ curvature conjecture," Invent. Math., vol. 202, iss. 1, pp. 91-216, 2015.
@ARTICLE{KRS, mrkey = {3402797},
number = {1},
issn = {0020-9910},
author = {Klainerman, Sergiu and Rodnianski, Igor and Szeftel, Jeremie},
mrclass = {83C05 (35A01 35A09 35Q76 58J45)},
doi = {10.1007/s00222-014-0567-3},
journal = {Invent. Math.},
zblnumber = {1330.53089},
volume = {202},
mrnumber = {3402797},
fjournal = {Inventiones Mathematicae},
mrreviewer = {Piotr T. Chru{\'s}ciel},
title = {The bounded {$L\sp 2$} curvature conjecture},
year = {2015},
pages = {91--216},
} -
[L1]
H. Lindblad, "Counterexamples to local existence for semi-linear wave equations," Amer. J. Math., vol. 118, iss. 1, pp. 1-16, 1996.
@ARTICLE{L1, mrkey = {1375301},
number = {1},
issn = {0002-9327},
author = {Lindblad, Hans},
mrclass = {35L70 (35A07 35B65)},
journal = {Amer. J. Math.},
zblnumber = {0855.35080},
volume = {118},
mrnumber = {1375301},
fjournal = {American Journal of Mathematics},
mrreviewer = {Hiroyuki Takamura},
coden = {AJMAAN},
title = {Counterexamples to local existence for semi-linear wave equations},
year = {1996},
pages = {1--16},
doi = {10.1353/ajm.1996.0002},
} -
[L2]
H. Lindblad, "Counterexamples to local existence for quasilinear wave equations," Math. Res. Lett., vol. 5, iss. 5, pp. 605-622, 1998.
@ARTICLE{L2, mrkey = {1666844},
number = {5},
issn = {1073-2780},
author = {Lindblad, Hans},
mrclass = {35L70 (35A05)},
doi = {10.4310/MRL.1998.v5.n5.a5},
journal = {Math. Res. Lett.},
zblnumber = {0932.35149},
volume = {5},
mrnumber = {1666844},
fjournal = {Mathematical Research Letters},
mrreviewer = {Nickolai A. Lar{\cprime}kin},
title = {Counterexamples to local existence for quasilinear wave equations},
year = {1998},
pages = {605--622},
} -
[LR]
H. Lindblad and I. Rodnianski, "Global existence for the Einstein vacuum equations in wave coordinates," Comm. Math. Phys., vol. 256, iss. 1, pp. 43-110, 2005.
@ARTICLE{LR, mrkey = {2134337},
number = {1},
issn = {0010-3616},
author = {Lindblad, Hans and Rodnianski, Igor},
mrclass = {83C05 (35Q75 58J45)},
doi = {10.1007/s00220-004-1281-6},
journal = {Comm. Math. Phys.},
zblnumber = {1081.83003},
volume = {256},
mrnumber = {2134337},
fjournal = {Communications in Mathematical Physics},
mrreviewer = {Marcel Dossa},
coden = {CMPHAY},
title = {Global existence for the {E}instein vacuum equations in wave coordinates},
year = {2005},
pages = {43--110},
} -
[ST]
H. F. Smith and D. Tataru, "Sharp local well-posedness results for the nonlinear wave equation," Ann. of Math., vol. 162, iss. 1, pp. 291-366, 2005.
@ARTICLE{ST, mrkey = {2178963},
number = {1},
issn = {0003-486X},
author = {Smith, Hart F. and Tataru, Daniel},
mrclass = {35L70 (35A07 35B30)},
doi = {10.4007/annals.2005.162.291},
journal = {Ann. of Math.},
zblnumber = {1098.35113},
volume = {162},
mrnumber = {2178963},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {Satyanad Kichenassamy},
coden = {ANMAAH},
title = {Sharp local well-posedness results for the nonlinear wave equation},
year = {2005},
pages = {291--366},
} -
[S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, N.J.: Princeton Univ. Press, 1970, vol. 30.
@BOOK{S, mrkey = {0290095},
author = {Stein, Elias M.},
mrclass = {46.38 (26.00)},
series = {Princeton Math. Ser.},
address = {Princeton, N.J.},
publisher = {Princeton Univ. Press},
volume = {30},
mrnumber = {0290095},
mrreviewer = {R. E. Edwards},
title = {Singular Integrals and Differentiability Properties of Functions},
year = {1970},
pages = {xiv+290},
zblnumber = {0207.13501},
} -
[W] Q. Wang, A geometric approach for sharp local well-posedness of quasilinear wave equations, 2014.
@MISC{W,
author = {Wang, Q.},
title = {A geometric approach for sharp local well-posedness of quasilinear wave equations},
year = {2014},
arxiv = {1408.3780},
}