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A sharp counterexample to local existence
of low regularity solutions to Einstein

equations in wave coordinates

By Boris Ettinger and Hans Lindblad

Abstract

We give a sharp counterexample to local existence of low regularity

solutions to Einstein equations in wave coordinates. We show that there

are initial data in H2 satisfying the wave coordinate condition such that

there is no solution in H2 to Einstein equations in wave coordinates for

any positive time. This result is sharp since Klainerman-Rodnianski and

Smith-Tataru proved existence for the same equations with slightly more

regular initial data.

1. Introduction

The Einstein vacuum equations Rµν = 0 in wave coordinates become a

system on nonlinear wave equations, called the reduced Einstein equations:

(1.0.1) ‹�ggµν = Fµν(g)[∂g, ∂g].

The metric, in addition, is assumed to satisfy the wave coordinate condition

(1.0.2) ∂α
Ä»
|g|gαβ

ä
= 0, where |g| = | det

Ä
∂g/∂x

ä
|,

which is preserved by the reduced equations if it is satisfied initially and if

the data satisfies the so-called constraint equations. Here Fµν(g)[∂g, ∂g] are

quadratic forms in ∂g with coefficients depending on g, and the reduced wave

operator is given by

(1.0.3) ‹�g = gαβ∂α∂β.

We are considering the initial value problem with low regularity data.

Given initial data in Sobolev spaces Hs,

(1.0.4) g
∣∣∣
t=0

= g0 ∈ Hs, ∂tg
∣∣∣
t=0

= g1 ∈ Hs−1,
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we are asking for which s we can obtain a local solution in Hs, i.e.,

(1.0.5) g(t, ·) ∈ Hs, ∂tg(t, ·) ∈ Hs−1, 0 ≤ t ≤ T

for some T > 0, given that initial data satisfy the constraint equations and the

wave coordinate condition. In 1952 Choquet-Bruhat proved that this is true

for large s. More recently Klainerman-Rodinianski [KR05], respectively Smith-

Tataru [ST05], proved local existence in Hs, for s > 2, for Einstein equations

in wave coordinates. The result in [ST05] is in fact for more general quasilin-

ear equations of the above form. (See also a recent work of Wang [Wan14].)

Moreover, Klainerman-Rodnianski-Szeftel [KRS15] recently proved that one

has local existence of bounded curvature solutions to Einstein equations if the

curvature is bounded initially. However, that does not imply existence in wave

coordinates.

We in fact show that one does not in general have local existence in H2

for Einstein equations in wave coordinates:

Theorem 1.1. For any ε > 0, there is a domain of dependence D and

there is a smooth solution to Einstein equations in wave coordinates in D such

that

(1.0.6) ‖g(0, ·)−m‖H2(D0) + ‖∂tg(0, ·)‖H1(D0) ≤ ε,

where m is the Minkowski metric, but for any t > 0,

(1.0.7) ‖g(t, ·)‖H2(Dt) + ‖∂tg(t, ·)‖H1(Dt) =∞,

where Dt = {x; (t, x) ∈ D}. Moreover, the curvature tensor satisfies

(1.0.8) ‖R(t, ·)‖L2(Dt) ≤ Cε

for any t. (Here domain of dependence is an open subset of the upper half-space

such that the backward light cone from any point in it is also contained in it.)

Remark. By a recent result Czimek [Czi16], data as above can be ex-

tended to data on R3 in H2 satisfying the constraint equations and the wave

coordinate condition.

To put the result in the theorem in context we recall that in Lindblad

[Lin96], [Lin98], counterexamples to local existence in H2 were given for the

semilinear equation

(1.0.9) �φ = (Lφ)2,

respectively, for the quasilinear equation

(1.0.10) �φ = φL2φ,

where L = ∂t − ∂x1 . The counterexample for the semilinear equation is much

stronger, and the quasilinear counterexample is just due to concentration of
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characteristics. On the other hand, it was shown in Klainerman-Machedon

[KM95] that there is local existence Hs, for any s > 3/2, for systems that

satisfy the null condition, in particular, for

(1.0.11) �φ = (∂tφ)2 − |∇xφ|2.

Einstein equations in wave coordinates do not satisfy the null condition. How-

ever, as was shown in Lindblad-Rodnianski [LR05], they satisfy a weak null

condition in a null frame, and the semilinear terms can be modeled by the

system

(1.0.12) �φ2 = −(Lφ1)
2, �φ1 = 0

that satisfies the weak null condition. The same argument used to give a

counterexample for the systems (1.0.9) and (1.0.10) in H2 also gives a counter-

example in H2 for the model problem (1.0.12):

Proposition 1.2. For any ε > 0, there is a smooth solution φ = (φ1, φ2)

to (1.0.12) in D = {(t, x); (x1 − 1)2 + x22 + x23 < (1− t)2} such that

(1.0.13) ‖φ(0, ·)‖H2(D0) + ‖∂tφ(0, ·)‖H1(D0) ≤ ε,

but for any t > 0,

(1.0.14) ‖φ(t, ·)‖H2(Dt) + ‖∂tφ(t, ·)‖H1(Dt) =∞,

where Dt = {x; (t, x) ∈ D}. Moreover, the data can be extended so that

(1.0.15) ‖φ(0, ·)‖H2(R3) + ‖∂tφ(0, ·)‖H1(R3) . ε.

The proof of this is accomplished by finding explicit solutions of the system

depending on (t, x1) only inside the domain of dependence D that satisfy the

conditions. Its easy to check that for any function χ1,

φ1(t, x) = χ1(x1 − t), φ2(t, x) = −tχ2(x1 − t)

solves the system if

χ2(x1) = 2

∫ x1

0
χ′1(s)

2 ds.

Let

χ1(x1) =

∫ x1

0
ε| log |s/4||α ds, 1/4 < α < 1/2,

in which case

χ2(x1) = 2

∫ x1

0
ε2| log |s/4||2α ds.

We have

(1.0.16) ‖φ1(t, ·)‖H2(Dt) ∼ ‖χ
′′
1‖L2(Dt), ‖φ2(t, ·)‖H2(Dt) ∼ t‖χ

′′
2‖L2(Dt),
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and a calculation shows that

(1.0.17)∫
Dt

χ′′i (t− x1)2 dx ∼
∫ 2−t

t
|χ′′i (x1 − t)|2(x1 − t) dx1

<∞ if i = 1,

=∞ if i = 2,

from which the first part of the proposition follows. The second part of the

proposition is obtained by multiplying with a cutoff χ
Ä
(x22 + x23)/x1

ä
.

Note that in the example, derivatives tangential to the characteristic sur-

faces t− x1 = c are better behaved than transversal derivatives.

Modulo terms that satisfy the null condition or cubic terms that are

smaller because of the smallness in the construction above, we have

(1.0.18) ‹�ggµν ∼ P (∂µg, ∂νg), where P (h, k) =
1

4
hααk

β
β −

1

2
hαβkαβ.

Expressing this in a null frame L = ∂t + ∂x1 , L = ∂t − ∂x1 , A,B = ∂x2 , ∂x3 ,‹�ggTU ∼ 0, T ∈ {L,A,B}, U ∈ {L,L,A,B},(1.0.19) ‹�ggLL ∼ P (∂Lg, ∂Lg).(1.0.20)

The linearized version of the wave coordinate condition reads

(1.0.21) −mµν∂µgνγ +
1

2
mµν ∂γgµν ∼ 0,

which expressed in a null frame becomes

(1.0.22) − 1

2
∂LgLγ −

1

2
∂LgLγ + ∂2g2γ + ∂3g3γ −

1

2
∂γ
Ä
− gLL + g22 + g33

ä
∼ 0.

Modulo tangential derivatives ∂L, ∂2, ∂3 that we expect to be better, the wave

coordinate condition reads

(1.0.23) ∂LgLL ∼ 0, ∂LgL2 ∼ 0, ∂LgL3 ∼ 0, ∂L(g22 + g33) ∼ 0,

which implies that

(1.0.24) P (∂Lg, ∂Lg) ∼ −1

2

Ä
(∂Lg22)

2 + (∂Lg33)
2 + 2(∂Lg23)

2
ä
.

Consistent with this we choose

(1.0.25) g22 = 1 + χ1(x1 − t), g33 = 1− χ1(x1 − t)

and

(1.0.26) g23 = gL2 = gL3 = 0.

These components solve the homogeneous wave equations (1.0.19). In order

to also solve the remaining wave equation (1.0.20) we must have

(1.0.27) gLL = −tχ2(x1 − t).
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In order to satisfy the remaining wave coordinate condition for gLL we must

have

(1.0.28) ∂LgLL − 2δAB∂AgBL = 0.

To satisfy this we finally define

(1.0.29) gBL = −1

4
xBχ2(x1 − t),

which also satisfies the wave equation (1.0.19).

Based on the above linearized approximation, we make the nonlinear

ansatz in the table below, with χ̃2 a modification of χ2:

gY Z L L 2 3

L 0 -2 0 0

L -2 −tχ̃2 −1
4x2(1 + χ1)χ̃2 −1

4(1 + χ1)
−1x3χ̃2

2 0 −1
4x2(1 + χ1)χ̃2 1 + χ1 0

3 0 −1
4x3(1 + χ1)

−1χ̃2 0 (1 + χ1)
−1

This modification is obtained by trying to modify the metric above in

order for it to satisfy the nonlinear wave coordinate condition. The reason

this can be done is that we first choose the metric so that det g = 1, in which

the wave coordinate condition becomes a linear equation for the inverse of the

metric

∂µg
µν = ∂Lg

Lν + ∂Lg
Lν + ∂1g

1ν + ∂2g
2ν = 0,

solved in the same way we solved the linearized equation.

As it turns out, with a metric of the form in the table, the only nonvan-

ishing component of the curvature tensor is RALBL 6= 0. With χ̃2 satisfying

χ̃′2 − 2(χ′1)
2(1 + χ1)

−2 − χ̃2
2/16 = 0,

we have that the Ricci curvature RLL is equal to gABRALBL = 0. In the

quasilinear case the domain has to be opened up slightly away from the char-

acteristic t = x1, x2 = x3 = 0, to make sure the boundary of the domain is

non-timelike and hence a domain of dependence. Since the metric is a small

perturbation of the Minkowski metric in L∞, the light cones are close to those

of Minkowski and we only have to insure that the boundary is non-timelike.

Let D be the domain

(1.0.30) D = {(t, x); (x1 − 1)2H(x1 − 1) + x22/4 + x23/4 < (1− t)2},
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where H(x1 − 1) = 1 when x1 < 1, and H(x1 − 1) = 1/4 when x1 > 1. The

boundary consists of two parts C = C1 ∪ C2, where

(1.0.31) C1 = {(t, x); x1 < 1, (x1 − 1)2 + x22/4 + x23/4 = (1− t)2}

and

(1.0.32) C2 = {(t, x); x1 ≥ 1, (x1 − 1)2/4 + x22/4 + x23/4 = (1− t)2}.

C2 is clearly non-timelike as is C1 when x22 + x23 ≥ c > 0 since this is true for

the Minkowski metric with some room. In null coordinates u = (t − x1)/2,

v = (t+ x1)/2, C1 is given by

4(1− v)u+ x22/4 + x23/4 = 0.

The conormal is given by

n = 2(1− t)dt− 2(1− x1)dx1 + x2dx2/2 + x3dx3/2.

Now it is easy to see that the inverse of the metric takes the following

form:

gY Z L L 2 3

L gLL −1
2 −1

8x2χ̃2 −1
8x3χ̃2

L -12 0 0 0

2 −1
8x2χ̃2 0 (1 + χ1)

−1 0

3 −1
8x3χ̃2 0 0 1 + χ1

It follows that

|gαβnαnβ −mαβnαnβ| . (|χ1|+ |χ̃2|)(x22 + x23) + |gLL|u2,

where |u| . x22 + x23 on C1 and

mαβnαnβ = −(x22 + x23).

Hence if N is the normal to C1, then

gαβN
αNβ ≤ 0,

so C1 is non-timelike.
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2. The heuristic argument and illposedness for the model system

2.1. The reduced Einstein equations. Let g be a solution of Einstein equa-

tions

(2.1.1) Rµν = 0,

in harmonic coordinates

(2.1.2) ∂α(
»
|g| gαβ) = 0, β = 0, . . . , 3.

Denote the reduced wave operator by‹� = gαβ∂α∂β.

Let hαβ = gαβ−mαβ, where m is the Minkowski metric. Then by [LR05] we

have

(2.1.3) ‹�ghµν = Fµν(h)(∂h, ∂h),

where F is a quadratic form in ∂h with coefficients depending on h:

Fµν(h)(∂h, ∂h) = P (∂µh, ∂νh) +Qµν(∂h, ∂h) +Gµν(h)(∂h, ∂h).

Here

P (h, k) =
1

4
hααk

β
β −

1

2
hαβkαβ,

where the indices are raised with respect to the Minkowski metric, Qµν are lin-

ear combinations of the standard null forms and Gµν contains only cubic terms.

We want to construct a counterexample to local existence in H2. First, by

[KM95], semilinear equations satisfying the classical null condition have local

existence in H2, so we can neglect these terms in a heuristic argument. The

counterexamples we construct below will be singular along a light ray in such

a way that h vanishes exactly at the light cone, and therefore |Gµν | . |h| |∂h|2
will actually be more regular than |∂h|2 so also this term can be neglected in the

heuristic argument. Inside a light cone, the counterexample we construct will

be a function of (t, x1) only with a singularity along t−x1 = 0, but more regular

in the t+x1 direction. We therefore expect the derivatives in the t−x1 direction

to be worse than derivatives in other directions, so expanding the metric in a

null frame L = ∂t + ∂1, L = ∂t− ∂1, A,B = ∂2, ∂3, we see that ∂µ is to leading

order 1
2Lµ∂L. We have gαβ = mαβ − hαβ + O(h2), where hαβ = maµmβνhµν

and hαβ∂α∂β is to leading order hLL∂
2
L, where hLL = hαβL

αLβ. Similarly,

P (∂µh, ∂µh) is to leading order given by LµLνP (∂Lh, ∂Lh)/4. Hence expanding

h in a null frame hUV = hµνU
µUν , the reduced Einstein equations become to

highest order Ä
�− hLL∂2L)hTU ∼ 0,(2.1.4) Ä
�− hLL∂2L)hLL ∼ P (∂Lh, ∂Lh),(2.1.5)
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where T is any tangential frame component T ∈ {L,A,B} and U is any frame

component U ∈ {L,L,A,B}. By [LR05],

P (p, k) =
1

4
δAB
Ä
2pALkBL + 2pALkBL − pABkLL − pLLkAB

ä
− 1

8

Ä
pLLkLL + pLLkLL

ä
− 1

4
δABδA

′B′
Ä
2pAA′kBB′ − pABkA′B′

ä
.

(2.1.6)

The system simplifies further because, as we shall see next, the wave coordinate

condition implies that

(2.1.7) ∂LhLL ∼ 0, ∂LhL2 ∼ 0, ∂LhL3 ∼ 0, ∂L(h22 + h33) ∼ 0,

which implies that

(2.1.8) P (∂Lh, ∂Lh) ∼ −1

2

Ä
(∂Lh22)

2 + (∂Lh33)
2 + 2(∂Lh23)

2
ä

and that after a possible change of variables, we can also neglect the term

hLL∂
2
L.

2.2. Illposedness for the model problem. Consider the following semilinear

system:

(2.2.1) �φ2 = −
Ä
Lφ1
ä2
, �φ1 = 0, where L = ∂t − ∂x1 .

Our first result using the techniques from [Lin96] is illposedness for this

system:

Lemma 2.1. Let ε > 0, and set

χ1(x1) =

∫ x1

0
ε| log |s/4||α ds, 0 < α < 1/2.

There is Ψ1 ∈ H2(R3) such that

Ψ1(x) = χ(x1) in B0 = {x ∈ R3; (x1 − 1)2 + x22 + x23 < 1}

and

‖Ψ1‖Ḣ2 ≤ Cαε,
supp Ψ1 ⊂ {x; |x| ≤ 2} and singsupp Ψ1 = {0}.

Let

χ2(x1) = 2

∫ x1

0
χ′1(s)

2 ds = 2

∫ x1

0
ε2| log |s/4||2α ds, 1/4 < α < 1/2.

There is Ψ2t ∈ Ḣ1(R3) such that

Ψ2t(x) = χ2(x1 − t) in Bt = {x ∈ R3; (x1 − 1)2 + x22 + x23 < (1− t)2}.

For 0 ≤ t < 1, we have

‖Ψ2t‖Ḣ2(Bt)
=∞.
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Proof. We have∫
B0

|χ′′1(x1)|2 dx =

∫ 2

0
|χ′′1(x1)|2

Ç ∫
x22+x

2
3≤2x1−x

2
1

dx2dx3

å
dx1

=

∫ 2

0
|χ′′1(x1)|2π(2x1 − x21) dx1

≤
∫ 2

0

2ε2πα2 x1dx1
x21| log |x1/4||2(1−α)

<∞.

Thus ‖Ψ1‖Ḣ2(B0)
≤ Cαε, and it follows from extension theorems in Stein [Ste70]

(see page 181), that it can be extended to a function inH2(R3) with comparable

norm. Moreover, the extension can be chosen to satisfy the above support and

singular support properties.

Moreover, if 0 ≤ t < 1, then∫
Bt

|χ′′2(x1 − t)|2 dx

=

∫ 2−t

t
|χ′′2(x1 − t)|2

Ç ∫
x22+x

2
3≤(2−(x1+t))(x1−t)

dx2dx3

å
dx1

=

∫ 2−t

t
|χ′′2(x1 − t)|2π(2− (x1 + t))(x1 − t) dx1

≥ 2

∫ 1−t

0

ε4(1− t)π(2α)2 x1dx1
x21| log |x1/4||2(1−2α)

=∞. �

The data we will choose for (2.2.1) are

φ1(0, x) = Ψ1(x), ∂tφ1(0, x) = −∂x1Ψ1(x).

Note now that by a domain of dependency argument, the solution of (2.2.1)

inside the cone Λ = {(t, x); |x − (1, 0, 0)| ≤ 1 − t, t ≥ 0} only depends on the

data inside the ball B0. Since data inside the ball B0 only depends on x1, the

solution φ1 inside Λ satisfies

(∂x1 − ∂t)(∂t + ∂x1)φ1(t, x1) = 0.

It follows that (∂t + ∂x1)φ1 = 0 in Λ and hence

φ1(t, x1) = χ1(x1 − t), (t, x) ∈ Λ.

Hence

(∂x1 − ∂t)(∂t + ∂x1)φ2(t, x1) = −
(
(∂x1 − ∂t)φ1(t, x1)

)2
= −4χ′1(x1 − t)2.

We now choose data

φ2(0, x) = 0, ∂tφ2(0, x) = −Ψ20(x).

It then follows that in Λ,

φ2(t, x) = −tχ2(x1 − t).
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Hence by the estimate in the lemma,

‖φ2(t, ·)‖H2 =∞ if 0 < t < 1.

On the other hand, it easily follows from standard Strichartz estimates that

‖φ2(t, ·)‖H2−δ <∞ if δ > 0.

2.3. The wave coordinate condition. We prefer to work with lower indices

since the nonlinearity is more transparent in this case. We collect two standard

linear algebra results about the derivative of the determinant of a matrix and

the inverse of a matrix:

Lemma 2.2. Let |g| = | det g |. We have

∂α|g| = |g| gµν ∂αgµν ,(2.3.1)

∂αg
µν = −gµµ1 gνν1 ∂αgν1µ1 .(2.3.2)

We convert the constraint equations

∂α(
»
|g| gαβ) = 0, β = 0, . . . , 3,

using the lemma above. We get

−
»
|g| gαα1gββ1∂αgα1β1 +

1

2
gαβ
»
|g| gµν∂αgµν = 0.

Apply gβγ , divide by
»
|g| and relabel the indices (α→ µ, α1 → ν) to arrive at

(2.3.3) − gµν∂µgνγ +
1

2
gµν ∂γgµν = 0,

which is the form that we will use.

Write down the linearization of the wave coordinate condition (2.3.3) that

for small h is good approximation of the wave coordinate condition:

(2.3.4) −mµν∂µhνγ +
1

2
mµν ∂γhµν = 0.

Define the basis (null frame) by

(2.3.5) L = ∂t + ∂x1 , L = ∂t − ∂x1 , ∂A = ∂xA , A = 2, 3.

We use the basis from (2.3.5) in (2.3.4). For γ = L, we have

1

2
∂LhLL +

1

2
∂LhLL − δAB∂AhBL +

1

2
∂L
Ä
−hLL + δABhAB

ä
= 0.

For γ = L,

1

2
∂LhLL +

1

2
∂LhLL − δAB∂AhBL +

1

2
∂L
Ä
−hLL + δABhAB

ä
= 0.

For γ = C ∈ {2, 3},
1

2
∂LhLC +

1

2
∂LhLC − δAB∂AhBC +

1

2
∂C
Ä
−hLL + δABhAB

ä
= 0.
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In the first two equations, the hLL coefficient cancels and, therefore, we can

write the linearized wave coordinate condition as follows:

∂LhLL − 2δAB∂AhBL + ∂L
Ä
δABhAB

ä
= 0,(2.3.6a)

∂LhLL − 2δAB∂AhBL + ∂L
Ä
δABhAB

ä
= 0,(2.3.6b)

∂LhLC + ∂LhLC − 2δAB∂AhBC + ∂C
Ä
−hLL + δABhAB

ä
= 0.(2.3.6c)

Recall that our solution is

hAB ∼ φ1,
hLL ∼ φ2,

where φ1 ∼ χ1(x1 − t) and φ2 ∼ −tχ2(x1 − t) inside the cone |x| ≤ 1− t with

φ1 ∈ H2 while φ2 ∈ H2−δ \H2.

2.3.1. Eliminating truly bad parts. We would like to eliminate the compo-

nents that are differentiated by L in (2.3.6a)–(2.3.6c) as they would not have

the same regularity as derivatives of L,A. Therefore, identifying these terms

in (2.3.6a)–(2.3.6c), respectively, we set

hLL = 0,(2.3.7)

δABhAB = h22 + h33 = 0,(2.3.8)

hLC = 0.(2.3.9)

We cannot set hAB = 0, but it is enough to have

h22 = −h33 = φ1,

h23 = 0.
(2.3.10)

2.3.2. Satisfying the first linearized wave coordinate condition (2.3.6a).

With (2.3.7), (2.3.8), and (2.3.9), the first constraint is satisfied automatically.

2.3.3. Satisfying the second linearized wave coordinate condition (2.3.6b).

With the choice hAB as in (2.3.10), the constraint (2.3.6b) becomes

∂LhLL − 2δAB∂AhBL = 0.

Since ∂LhLL = −tχ2 inside the cone, this suggests we define

(2.3.11) hBL = −1

4
xBχ2.

Observe that xBφ2 ∈ H2 since near the singular point x1 = t of φ2, inside

the cone, we have |xB| . (t − x1)
1
2 , which makes the appropriate expression

integrable and prevents the singularity.
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2.3.4. Satisfying the third linearized wave coordinate condition (2.3.6c).

We have

∂AhBC = 0

by (2.3.10). Also,

∂LhBL = 0

by (2.3.11). Combining this with (2.3.7) and (2.3.9), we see that the last

constraint (2.3.6c) is reduced to

∂ChLL = 0,

which suggests

hLL = 0.

To summarize, in the L,L, ∂2, ∂3 basis and in that order, hαβ is

hY Z |{|x|<1−t} =

á
0 0 0 0

0 −t χ2 −1
4x2 χ2 −1

4x3χ2

0 −1
4x2 χ2 χ1 0

0 −1
4x3χ2 0 −χ1

ë
.

3. The solution inside the cone

The goal of this section is to build on the ideas of Section 2 to obtain a

solution of the Einstein equations inside the cone and wave coordinates for it,

such that the metric in these coordinates has a finite H2 norm at time zero

and is infinite at all other times. For this end, let D be the domain

(3.0.1) D = {(t, x); (x1 − 1)2H(x1 − 1) + x22/4 + x23/4 < (1− t)2},

where H(x1 − 1) = 1 when x1 < 1, and H(x1 − 1) = 1/4 when x1 > 1. Set

Dt = {x; (t, x) ∈ D}. Our goal is to prove the following statement:

Theorem 3.1.There exist a spacetime (D, g) and coordinates xα : D→R,

α = 0, 1, 2, 3 such that

• the metric g satisfies the Einstein vacuum equation

Ric(g) = 0 on D;

• the coordinates xα are wave coordinates

∂α(
»
|g|gαβ) = 0 on D β = 0, 1, 2, 3;

• the metric g has finite initial data in H2(D0)×H1(D0):

‖gαβ‖H2(D0) + ‖∂tgαβ‖H1(D0) <∞, α, β ∈ {0, 1, 2, 3};

• the H2(Dt) norm of g00 at any other time t is infinite:

‖g00‖H2(Dt) =∞, ∀t ∈ (−1, 1) \ {0}.



COUNTEREXAMPLE TO LOCAL EXISTENCE FOR EINSTEIN EQUATIONS 323

We prove the theorem by describing an explicit example for such a metric g

and coordinates xα. The coordinates xα are the standard coordinates on R1+3:

xα((y0, y1, y2, y3)) = δβαyβ.

We will also write t = x0. We use the rest of this section to specify g and verify

that the hypotheses of Theorem 3.1 are satisfied. We define the following vector

fields:

L = ∂t + ∂x1 ,

L = ∂t − ∂x1 .
(3.0.2)

We complete {L,L} to a basis by adding ∂A = ∂xA , A = 2, 3. In what follows

we will use A,B to denote an index from a set {2, 3}. Since L,L are constant

coefficient vector fields, we will abuse the notation and treat L,L as fictitious

indices as well. For example, ∂Lf = ∂tf + ∂x1f or gLL = 〈L,L〉g.

Remark. Since {L,L, ∂A|A = 2, 3} form a basis and have constant coeffi-

cients, we use this basis instead of the standard one in all subsequent deriva-

tions.

We can now specify the metric.

Definition 3.2. The nonzero coefficients of the metric g in the basis above

are as follows:

gLL = −2,(3.0.3)

gLL = −tχ̃2(x1 − t),(3.0.4)

gAB = δABχ1A(x1 − t),(3.0.5)

and

gAL = −1

4
xAχ2A(x1 − t),(3.0.6)

where

χ12 = 1 + χ1 =
1

χ13
.

Here χ1 was defined in Lemma 2.1, χ̃2 is a slight modification of χ2 that will

be defined in Lemma 3.3 below and

χ2A = χ1Aχ̃2.

The rest of the coefficients are given by symmetry.

Remark. Unless we specify otherwise, the argument of the χ-functions will

be x1 − t.
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The coefficients of g are summarized in Table 1.

gY Z L L 2 3

L 0 -2 0 0

L -2 −tχ̃2 −1
4x2(1 + χ1)χ̃2 −1

4(1 + χ1)
−1x3χ̃2

2 0 −1
4x2(1 + χ1)χ̃2 1 + χ1 0

3 0 −1
4x3(1 + χ1)

−1χ̃2 0 (1 + χ1)
−1

Table 1. The coefficients gY Z of the metric.

Thus we reduce the proof of Theorem 3.1 to the following three lemmas:

Lemma 3.3. Let χ̃2 satisfy

χ̃′2 − 2(χ′1)
2(1 + χ1)

−2 − 1

16
χ̃2
2 = 0.

Then the metric g defined in Definition 3.2 satisfies Ric(g) = 0.

Lemma 3.4. Let g be the metric defined in Definition 3.2. Then the

standard coordinates satisfy the wave coordinate condition (2.1.2).

Lemma 3.5. The metric g in Definition 3.2 satisfies

‖gαβ‖H2(D0) + ‖∂tgαβ‖H1(D0) <∞, α, β ∈ {0, 1, 2, 3},
‖g00‖H2(Dδ′ )

=∞, ∀δ′ ∈ (−δ, δ) \ {0}.

Lemmas 3.3 and 3.4 are given by direct computation for which we will

provide some intermediate steps. The following statement is a straightforward

observation:

Claim 3.6. We have the following equalities :

(1)
»
|g| = 2;

(2) the nonzero coefficients of the inverse metric gY Z are as follows :

gLL =
1

4
tχ̃2 +

1

64

(
x22(1 + χ1) + x23(1 + χ1)

−1
)
χ̃2
2,

gLA = −1

8
xAχ2A(χ1A)−1,

gLL = −1

2
,

gAB = δAB(χ1A)−1

and their symmetric counterparts.
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gY Z L L 2 3

L 1
4 tχ̃2 + 1

64

Ä
x22(1 + χ1) + x23(1 + χ1)

−1
ä
χ̃2
2 −1

2 −1
8x2χ̃2 −1

8x3χ̃2

L -12 0 0 0

2 −1
8x2χ̃2 0 (1 + χ1)

−1 0

3 −1
8x3χ̃2 0 0 1 + χ1

Table 2. The coefficients gY Z of the metric.

We summarize gY Z in Table 2.

Proof of Lemma 3.3. We use the slightly nonstandard definition of Chris-

toffel symbols from [LR05, (3.1)]:

Γα
β
γ =

1

2
gβδ (∂αgδγ + ∂γgδα − ∂δgαγ) ,

Γαβγ = gβδΓα
δ
γ =

1

2
(∂αgβγ + ∂γgβα − ∂βgαγ) .

(3.0.7)

The following Christoffel symbols are not zero:

ΓLLL = ΓLLL = −ΓLLL =− χ̃2

2
,

ΓLLL =− χ̃2

2
+ tχ̃′2,

ΓLAL =
1

2
xaχ

′
2A,

ΓLBA = ΓABL =− δABχ′1A,

ΓALB =δAB

Å
−1

4
χ2A + χ′1A

ã
,

whereas ΓLLL = ΓLLL = ΓLLL = 0 and

ΓALL = ΓALL = ΓLAL = ΓALL = ΓLAL = ΓALB = ΓABL = ΓABC = 0.

With the convention (3.0.7), we have the following formula for the curvature

(see also [LR05, 3.10]):

Rµανβ = ∂βΓµαν − ∂νΓµαβ + ΓνλαΓµ
λ
β − ΓαλβΓµ

λ
ν .
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We will split the curvatures into two nontensors, which represent the linear

and the quadratic parts:

Rµανβ = Rlin
µανβ +Rquad

µανβ ,

Rlin
µανβ = ∂βΓµαν − ∂νΓµαβ,

Rquad
µανβ = gλγΓνλαΓµγβ − gλγΓαλβΓµγν .

We claim that the only nontrivial components of the nontensors Rlin, Rquad

are Rlin
ALBL and Rquad

ALBL. In fact, this follows from the symmetries if we can

show that they vanish if at least one index is L or at least three indices are

A,B,C. For Rlin
ALBL, the first follows since the only components of ∂βΓµαν

with at least one L are ∂LΓLLL, ∂LΓLLL = ∂LΓLLL and ∂LΓLLL, but they are

seen to cancel each other when appearing in Rlin. Secondly, ΓABC = 0 and

∂AΓBCL = ∂AΓLCB = 0 and ∂AΓBLC = 0, which concludes the proof of the

statement for Rlin. For Rquad, the first follows since the only combination of

gλγΓνλαΓµγβ with one index L, say ν = L, is gLLΓLLLΓLLL, which will cancel

when appearing in Rquad. Secondly, if three of the indices of gλγΓνλαΓµγβ are

A,B,C, say ν = A and α = B and β = C, then in fact gLLΓALBΓµLC = 0,

which concludes the proof of the claim.

We have

Rlin
ALBL = δAB

Å
1

2
χ′2A − 2χ′′1A

ã
,

Rquad
ALBL = δAB

ï
χ−11A(χ′1A)2 +

1

4
χ̃2(−

1

4
χ2A + χ′1A)

ò
.

The last follows since

Rquad
ALBL = ΓBCLΓ C

A L − ΓLLLΓ L
A B − ΓLLLΓ

L
A B(3.0.8)

= gCDΓBCLΓADL − gLLΓLLLΓALB.

With this we compute1

gABRlin
ALBL = χ̃′2 − 4

(χ′1)
2

(1 + χ1)2
,

gABRquad
ALBL = (χ′1)

2

ñ
2

(1 + χ1)2

ô
− 1

16
χ̃2
2.

1We assume the summation convention on A,B.
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We use this to compute the only nonzero component of the Ricci curva-

ture RicLL:

RicLL = gABRlin
ALBL + gABRquad

ALBL

= χ̃′2 − 2
(χ′1)

2

(1 + χ1)2
− 1

16
χ̃2
2. �

Proof of Lemma 3.4. Since
»
|g| is constant by item (1) of Claim 3.6, we

use some elementary linear algebra to rewrite the wave coordinate condition

(2.1.2) as

(3.0.9) gµν∂µgνγ = 0, γ = 0, . . . , 3.

Denote

dγ = gµν∂µgµγ .

Our goal is to show dγ = 0 for γ = 0, . . . , 3. Instead, we will show dL = dL =

dA = 0 for A = 2, 3, which is equivalent since L,L,A form a basis of constant

coefficient vector fields. The fact that dL = 0 is obvious, since the metric

coefficients of the form gXL are constant. For dL, we write

dL = gLL∂LgLL + gLL∂LgLL + gLA∂LgAL

+ gLL∂LgLL + gAL∂AgLL + gAB∂AgBL.

Since coefficients gXL are constant, we drop their derivatives

dL = gLL∂LgLL + gLA∂LgAL + gAB∂AgBL.

Observe that ∂LgAL = 1
4∂L(xAχ2A(x1 − t)) = 0. Therefore,

dL = gLL∂LgLL + gAB∂AgBL

= gLL∂LgLL + g22∂2g2L + g33∂3g3L

= −1

2
∂L(−tχ̃2)−

1

4
(1 + χ1)

−1∂2(x2(1 + χ1)χ̃2)

− 1

4
(1 + χ1)∂3(x3(1 + χ1)

−1χ̃2)

= 0,

since ∂L(tχ̃2(x1 − t)) = χ̃2(x1 − t). Lastly,

dA =gLL∂LgLA + gLL∂LgLA + gLB∂LgAB

+ gLL∂LgLA + gBL∂BgLA + gBC∂BgCA.

We drop derivatives of the constant coefficients gXL:

dA = gLL∂LgLA + gLB∂LgAB + gBC∂BgCA.

Next, observe that gLA depends only on x1 − t and xA, thus ∂LgLA = 0.

Similarly, gAB depends only on x1 − t, therefore ∂LgAB = 0. Similarly, gCA
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depends only on t − x1, and therefore ∂BgCA = 0. Thus we arrive at the

conclusion

dA = 0,

which completes the proof. �

Proof of Lemma 3.5. The function χ1 has been analyzed in Lemma 2.1.

Thus, to prove the lemma, it is enough to establish the following:

χ̃2 ∈ H1(Dt) \H2(Dt), t ∈ [0, 1],

xAχ̃2 ∈ H2(D0), A = 2, 3.

Recall that χ̃2 satisfies

(3.0.10)
d

dx
χ̃2 = 2(χ′1(x))2(1 + χ1(x))−2 +

1

16
χ̃2(x)2.

We choose χ̃2(0) = 0. Then by integrating (3.0.10), we can show that χ̃2

is bounded by 2 for |y| ≤ 1 if we adjust ε in the definition of χ1, so that∫ 1
0 (χ′1)

2 ≤ 1, and apply the bootstrap assumption χ̃2 ≤ 4 for the integral∫ 1
0 χ̃

2
2. The same argument works to show that χ̃′2 ∈ L2(D0). To show that

χ̃′′2 /∈ L2, we differentiate (3.0.10). We will have

(3.0.11) χ̃′′2 = 2(χ′1(y))2(1 + χ2
1)
−2 + F (χ1, χ

′
1, χ̃2, χ̃

′
2),

where F will have a smooth dependance on χ1, χ̃2 and a polynomial in χ′1, χ̃
′
2.

Since χ′1, χ̃
′
2 ∈ Lp for any p <∞, we conclude that

‖F (χ1, χ
′
1, χ̃2, χ̃

′
2)‖L2 ≤ C <∞.

Also since χ1 is bounded, we can bound (1 + χ1(y))−2 ≥ c > 0. Therefore,

applying the same logic as in Lemma 2.1, we will arrive at∫
Dt

χ̃′′2(x1 − t)2 ≥ c
∫ 1−t

0

ε4(1− t)π(2α)2 x1dx1
x21| log |x1/4||2(1−2α)

− 1

2
C2 =∞.

Thus it remains to show that xAχ̃2 ∈ H2(B0). Without loss of generality, put

A = 2. The only estimate that is not addressed above is x2χ̃
′′
2 ∈ L2, since we

have already shown ∂
∂x2

(x2χ̃2) ∈ H1. We use (3.0.11) to obtain the following

estimate, which concludes the proof of the lemma:∫
Dt

x22|χ̃′′2(x1 − t)|2 dx

.
∫ 2−t

t
|χ̃′′2(x1 − t)|2

Ç ∫
x22+x

2
3≤(2−(x1+t))(x1−t)

x22 dx2dx3

å
dx1

.
∫ 2−t

t
|χ̃′′2(x1 − t)|2π(2− (x1 + t))2(x1 − t)2 dx1

. 2

∫ 1−t

0

ε4(1− t)2π(2α)2 dx1
| log |x1/4||2(1−2α)

<∞. �
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4. Taking into account the bending of the light cones

To take into account the bending of the light cones in the metric we need to

open up our domain slightly to ensure it is spacelike or null. We will therefore

replace our domain. Let D be the domain

(4.0.1) D = {(t, x); (x1 − 1)2H(x1 − 1) + x22/4 + x23/4 < (1− t)2},

where H(x1 − 1) = 1 when x1 < 1, and H(x1 − 1) = 1/4 when x1 > 1. The

boundary consist of two parts C = C1 ∪ C2, where

(4.0.2) C1 = {(t, x); x1 < 1, (x1 − 1)2 + x22/4 + x23/4 = (1− t)2}

and

(4.0.3) C2 = {(t, x); x1 ≥ 1, (x1 − 1)2/4 + x22/4 + x23/4 = (1− t)2}.

A conormal to C1 is given by

n = 2(1− t)dt− 2(1− x1)dx1 + x2dx2/2 + x3dx3/2,

or expressed in the L,L,A,B coordinates u = (t− x1)/2 and v = (t+ x1)/2,

n = 4(1− v)du− 4udv + x2dx2/2 + x3dx3/2.

Hence,

gαβN
αNβ = gαβnαnβ

= guununu + gvvnvnv + 2guvnunv + 2guAnunA + gABnAnB

= 16(1− v)u+
(1

4
(u+ v) +

1

64

(
x22(1 + χ1) + x23(1 + χ1)

−1
)
χ̃2

)
χ̃216u2

− (x22 + x23)(1− v)χ̃2 + (1 + χ1)
−1x22

1

4
+ (1 + χ1)x

2
3

1

4

= 16(1− v)u+
1

4
(x22 + x23) +

1

4

Ä
x23 − (1 + χ1)

−1x22
ä
χ1 − (x22 + x23)(1− v)χ̃2

+
(1

4
(u+ v) +

1

64

(
x22(1 + χ1) + x23(1 + χ1)

−1
)
χ̃2

)
χ̃216u2.

The surface is in the uv coordinates given by

4(1− v)u+ x22/4 + x23/4 = 0.

Therefore it is clear that if N is the normal to C1, then

gαβN
αNβ ≤ 0,

with equality only if u = 0. This proves that C1 is spacelike apart from when

u = 0, where it is null.
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