Abstract
Anabelian geometry with étale homotopy types generalizes in a natural way classical anabelian geometry with étale fundamental groups. We show that, both in the classical and the generalized sense, any point of a smooth variety over a field $k$ that is finitely generated over $\mathbb{Q}$ has a fundamental system of (affine) anabelian Zariski-neighborhoods. This was predicted by Grothendieck in his letter to Faltings.
-
[Art]
M. Artin, "Algebraic approximation of structures over complete local rings," Inst. Hautes Études Sci. Publ. Math., vol. 36, iss. 36, pp. 23-58, 1969.
@ARTICLE{Art, mrkey = {0268188},
number = {36},
issn = {0073-8301},
author = {Artin, M.},
mrclass = {14.05},
url = {http://www.numdam.org/item?id=PMIHES_1969__36__23_0},
journal = {Inst. Hautes Études Sci. Publ. Math.},
volume = {36},
zblnumber = {0181.48802},
mrnumber = {0268188},
fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
mrreviewer = {H. Kurke},
title = {Algebraic approximation of structures over complete local rings},
year = {1969},
pages = {23--58},
} -
@BOOK{AM, mrkey = {0883959},
author = {Artin, M. and Mazur, B.},
mrclass = {14F35 (55P65 55Q70)},
series = {Lecture Notes in Math.},
address = {New York},
isbn = {3-540-04619-4},
publisher = {Springer-Verlag},
zblnumber = {0182.26001},
volume = {100},
mrnumber = {0883959},
title = {Etale Homotopy},
year = {1986},
pages = {iv+169},
doi= {10.1007/BFb0080957},
} -
[BK]
A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, New York: Springer-Verlag, 1972, vol. 304.
@BOOK{BK, mrkey = {0365573},
author = {Bousfield, A. K. and Kan, D. M.},
mrclass = {55J05},
series = {Lecture Notes in Math.},
address = {New York},
publisher = {Springer-Verlag},
zblnumber = {0259.55004},
volume = {304},
mrnumber = {0365573},
mrreviewer = {Harold Hastings},
title = {Homotopy Limits, Completions and Localizations},
year = {1972},
pages = {v+348},
doi= {10.1007/978-3-540-38117-4},
} -
[DM]
P. Deligne and D. Mumford, "The irreducibility of the space of curves of given genus," Inst. Hautes Études Sci. Publ. Math., vol. 36, iss. 36, pp. 75-109, 1969.
@ARTICLE{DM, mrkey = {0262240},
number = {36},
issn = {0073-8301},
author = {Deligne, P. and Mumford, D.},
mrclass = {14.20},
url = {http://www.numdam.org/item?id=PMIHES_1969__36__75_0},
journal = {Inst. Hautes Études Sci. Publ. Math.},
zblnumber = {0181.48803},
mrnumber = {0262240},
fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
volume = {36},
mrreviewer = {Manfred Herrmann},
title = {The irreducibility of the space of curves of given genus},
year = {1969},
pages = {75--109},
} -
[DS]
W. G. Dwyer and J. Spaliński, "Homotopy theories and model categories," in Handbook of Algebraic Topology, Amsterdam: North-Holland, 1995, pp. 73-126.
@INCOLLECTION{DS, mrkey = {1361887},
author = {Dwyer, W. G. and Spali{ń}ski, J.},
mrclass = {55Uxx (18E35)},
address = {Amsterdam},
publisher = {North-Holland},
doi = {10.1016/B978-044481779-2/50003-1},
zblnumber = {0869.55018},
mrnumber = {1361887},
booktitle = {Handbook of Algebraic Topology},
mrreviewer = {Yves F{é}lix},
title = {Homotopy theories and model categories},
pages = {73--126},
year = {1995},
} -
[EGA4]
A. Grothendieck and J. Dieudonné, Étude Locale des Schémas et des Morphismes de Schémas, , 1966, vol. 28.
@BOOK{EGA4, volume = {28},
author = {Grothendieck, Alexander and Dieudonné, J.},
series = {Inst. Hautes \'{E}tudes Sci. Publ. Math.},
title = {Étude Locale des Schémas et des Morphismes de Schémas},
MRNUMBER = {0217086},
ZBLNUMBER = {0144.19904},
DOI = {10.1007/BF02684343},
year = {1966},
} -
[EH]
D. A. Edwards and H. M. Hastings, \v Cech and Steenrod Homotopy Theories with Applications to Geometric Topology, New York: Springer-Verlag, 1976, vol. 542.
@BOOK{EH, mrkey = {0428322},
author = {Edwards, David A. and Hastings, Harold M.},
mrclass = {55D99 (55B05)},
series = {Lecture Notes in Math.},
address = {New York},
publisher = {Springer-Verlag},
zblnumber = {0334.55001},
volume = {542},
mrnumber = {0428322},
mrreviewer = {Claude Schochet},
title = {\v {C}ech and {S}teenrod Homotopy Theories with Applications to Geometric Topology},
year = {1976},
pages = {vii+296},
doi = {10.1007/BFb0081083},
} -
[FriedJarden:fieldarithmetic] M. D. Fried and M. Jarden, Field Arithmetic, third ed., New York: Springer-Verlag, 2008, vol. 11.
@BOOK{FriedJarden:fieldarithmetic, mrkey = {2445111},
author = {Fried, Michael D. and Jarden, Moshe},
mrclass = {12E30 (03B25 03C10 03C60 03H05)},
series = {Ergeb. Math. Grenzgeb.},
edition = {third},
address = {New York},
isbn = {978-3-540-77269-9},
publisher = {Springer-Verlag},
zblnumber = {1145.12001},
volume = {11},
mrnumber = {2445111},
note = {Revised by Jarden},
title = {Field Arithmetic},
year = {2008},
pages = {xxiv+792},
} -
[Fr] E. M. Friedlander, Étale Homotopy of Simplicial Schemes, Princeton, NJ: Princeton Univ. Press, 1982, vol. 104.
@BOOK{Fr, mrkey = {0676809},
author = {Friedlander, Eric M.},
mrclass = {55P99 (14F35 55-02)},
series = {Ann. of Math. Stud.},
isbn = {0-691-08288-X; 0-691-08317-7},
address = {Princeton, NJ},
publisher = {Princeton Univ. Press},
zblnumber = {0538.55001},
volume = {104},
mrnumber = {0676809},
mrreviewer = {V. P. Snaith},
title = {\'{E}tale Homotopy of Simplicial Schemes},
year = {1982},
pages = {vii+190},
} -
[GZ] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, New York: Springer-Verlag, 1967.
@BOOK{GZ, mrkey = {0210125},
author = {Gabriel, P. and Zisman, M.},
mrclass = {55.40 (18.00)},
series = {Ergeb. Math. Grenzgeb.},
address = {New York},
publisher = {Springer-Verlag},
zblnumber = {0186.56802},
mrnumber = {0210125},
mrreviewer = {A. K. Bousfield},
title = {Calculus of Fractions and Homotopy Theory},
year = {1967},
pages = {x+168},
} -
[grothendieck:letter]
A. Grothendieck, "Brief an G. Faltings (27.6.1983)," in Geometric Galois Actions, 1, Cambridge: Cambridge Univ. Press, 1997, vol. 242, pp. 49-58.
@INCOLLECTION{grothendieck:letter, mrkey = {1483108},
author = {Grothendieck, Alexander},
mrclass = {14E20 (14A15)},
series = {London Math. Soc. Lecture Note Ser.},
address = {Cambridge},
publisher = {Cambridge Univ. Press},
zblnumber = {0901.14002},
volume = {242},
mrnumber = {1483108},
booktitle = {Geometric {G}alois Actions, 1},
mrreviewer = {Helmut V{ö}lklein},
title = {Brief an {G}. {F}altings (27.6.1983)},
pages = {49--58},
year = {1997},
ZBLNUMBER = {0901.14002},
doi = {10.1017/CBO9780511758874}
} -
[Hi] P. S. Hirschhorn, Model Categories and their Localizations, Providence, RI: Amer. Math. Soc., 2003, vol. 99.
@BOOK{Hi, mrkey = {1944041},
author = {Hirschhorn, Philip S.},
mrclass = {18G55 (55P60 55U35)},
series = {Math. Surv. Monogr.},
isbn = {0-8218-3279-4},
address = {Providence, RI},
publisher = {Amer. Math. Soc.},
zblnumber = {1017.55001},
volume = {99},
mrnumber = {1944041},
mrreviewer = {David A. Blanc},
title = {Model Categories and their Localizations},
year = {2003},
pages = {xvi+457},
} -
[hoshi] Y. Hoshi, "The Grothendieck conjecture for hyperbolic polycurves of lower dimension," J. Math. Sci. Univ. Tokyo, vol. 21, iss. 2, pp. 153-219, 2014.
@ARTICLE{hoshi, mrkey = {3288808},
number = {2},
issn = {1340-5705},
author = {Hoshi, Yuichiro},
mrclass = {14G32 (14H30 20E18)},
journal = {J. Math. Sci. Univ. Tokyo},
zblnumber = {06537527},
volume = {21},
mrnumber = {3288808},
fjournal = {The University of Tokyo. Journal of Mathematical Sciences},
mrreviewer = {Benjamin Collas},
title = {The {G}rothendieck conjecture for hyperbolic polycurves of lower dimension},
year = {2014},
pages = {153--219},
} -
[workofgabber] L. Illusie, Y. Laszlo, and F. Orgogozo, "Introduction," Astérisque, vol. 363-364, p. xiii-xix, 2014.
@ARTICLE{workofgabber, mrkey = {3329769},
issn = {0303-1179},
author = {Illusie, Luc and Laszlo, Yves and Orgogozo, Fabrice},
mrclass = {14-06},
journal = {Astérisque},
isbn = {978-2-85629-790-2},
zblnumber = {1320.14002},
volume = {363-364},
mrnumber = {3329769},
booktitle = {Travaux de Gabber sur L'uniformisation Locale et la Cohomologie {É}tale des Sch{é}mas Quasi-excellents},
title = {Introduction},
year = {2014},
pages = {xiii--xix},
} -
[Is]
D. C. Isaksen, "A model structure on the category of pro-simplicial sets," Trans. Amer. Math. Soc., vol. 353, iss. 7, pp. 2805-2841, 2001.
@ARTICLE{Is, mrkey = {1828474},
number = {7},
issn = {0002-9947},
author = {Isaksen, Daniel C.},
mrclass = {18G55 (55P55 55U35)},
doi = {10.1090/S0002-9947-01-02722-2},
journal = {Trans. Amer. Math. Soc.},
zblnumber = {0978.55014},
volume = {353},
mrnumber = {1828474},
fjournal = {Transactions of the American Mathematical Society},
mrreviewer = {Donald M. Davis},
coden = {TAMTAM},
title = {A model structure on the category of pro-simplicial sets},
year = {2001},
pages = {2805--2841},
} -
[Is3] D. C. Isaksen, "Strict model structures for pro-categories," in Categorical Decomposition Techniques in Algebraic Topology, Basel: Birkhäuser, 2004, vol. 215, pp. 179-198.
@INCOLLECTION{Is3, mrkey = {2039766},
author = {Isaksen, Daniel C.},
mrclass = {18G55 (55U35)},
series = {Progr. Math.},
address = {Basel},
publisher = {Birkhäuser},
zblnumber = {1049.18008},
volume = {215},
mrnumber = {2039766},
booktitle = {Categorical Decomposition Techniques in Algebraic Topology},
mrreviewer = {David Chataur},
venue = {{I}sle of {S}kye, 2001},
title = {Strict model structures for pro-categories},
pages = {179--198},
year = {2004},
} -
[Is2]
D. C. Isaksen, "Etale realization on the $\Bbb A^1$-homotopy theory of schemes," Adv. Math., vol. 184, iss. 1, pp. 37-63, 2004.
@ARTICLE{Is2, mrkey = {2047848},
number = {1},
issn = {0001-8708},
author = {Isaksen, Daniel C.},
mrclass = {14F35 (14F42 55P65)},
doi = {10.1016/S0001-8708(03)00094-X},
journal = {Adv. Math.},
zblnumber = {1073.14028},
volume = {184},
mrnumber = {2047848},
fjournal = {Advances in Mathematics},
mrreviewer = {J. F. Jardine},
coden = {ADMTA4},
title = {Etale realization on the {$\Bbb A\sp 1$}-homotopy theory of schemes},
year = {2004},
pages = {37--63},
} -
[mochizuki:localpro-p]
S. Mochizuki, "The local pro-$p$ anabelian geometry of curves," Invent. Math., vol. 138, iss. 2, pp. 319-423, 1999.
@ARTICLE{mochizuki:localpro-p, mrkey = {1720187},
number = {2},
issn = {0020-9910},
author = {Mochizuki, Shinichi},
mrclass = {14G32 (11G20 14E20 14F30 14H30)},
doi = {10.1007/s002220050381},
journal = {Invent. Math.},
zblnumber = {0935.14019},
volume = {138},
mrnumber = {1720187},
fjournal = {Inventiones Mathematicae},
mrreviewer = {Hiroaki Nakamura},
coden = {INVMBH},
title = {The local pro-{$p$} anabelian geometry of curves},
year = {1999},
pages = {319--423},
} -
[MV]
F. Morel and V. Voevodsky, "${\bf A}^1$-homotopy theory of schemes," Inst. Hautes Études Sci. Publ. Math., iss. 90, pp. 45-143 (2001), 1999.
@ARTICLE{MV, mrkey = {1813224},
number = {90},
issn = {0073-8301},
author = {Morel, Fabien and Voevodsky, Vladimir},
mrclass = {14F35 (19E08)},
url = {http://www.numdam.org/item?id=PMIHES_1999__90__45_0},
journal = {Inst. Hautes Études Sci. Publ. Math.},
zblnumber = {0983.14007},
mrnumber = {1813224},
fjournal = {Institut des Hautes Études Scientifiques. Publications Mathématiques},
mrreviewer = {Marc Levine},
coden = {PMIHA6},
title = {{${\bf A}\sp 1$}-homotopy theory of schemes},
year = {1999},
pages = {45--143 (2001)},
} -
[pop:birational]
F. Pop, "On Grothendieck’s conjecture of birational anabelian geometry," Ann. of Math., vol. 139, iss. 1, pp. 145-182, 1994.
@ARTICLE{pop:birational, mrkey = {1259367},
number = {1},
issn = {0003-486X},
author = {Pop, Florian},
mrclass = {12F20},
doi = {10.2307/2946630},
journal = {Ann. of Math.},
zblnumber = {0814.14027},
volume = {139},
mrnumber = {1259367},
fjournal = {Annals of Mathematics. Second Series},
mrreviewer = {James K. Deveney},
coden = {ANMAAH},
title = {On {G}rothendieck's conjecture of birational anabelian geometry},
year = {1994},
pages = {145--182},
} -
[pop:alterations] F. Pop, "Alterations and birational anabelian geometry," in Resolution of Singularities, Basel: Birkhäuser, 2000, vol. 181, pp. 519-532.
@INCOLLECTION{pop:alterations, mrkey = {1748633},
author = {Pop, Florian},
mrclass = {11R32 (11R58 11S20 14E15)},
series = {Progr. Math.},
address = {Basel},
publisher = {Birkhäuser},
zblnumber = {1022.14006},
volume = {181},
mrnumber = {1748633},
booktitle = {Resolution of Singularities},
mrreviewer = {Dan Abramovich},
title = {Alterations and birational anabelian geometry},
pages = {519--532},
year = {2000},
} -
[sga1]
A. Grothendieck, Revêtements étales et Groupe Fondamental, New York: Springer-Verlag, 1971, vol. 224.
@BOOK{sga1, mrkey = {0354651},
volume = {224},
mrnumber = {0354651},
mrclass = {14-06 (14E20)},
series = {Lecture Notes in Math.},
note = {S{é}minaire de G{é}om{é}trie Alg{é}brique du Bois Marie 1960--1961 (SGA 1), augment{é} de deux expos{é}s de M. Raynaud},
author={Grothendieck, Alexander},
address = {New York},
title = {Revêtements étales et Groupe Fondamental},
publisher = {Springer-Verlag},
pages = {xxii+447},
year = {1971},
zblnumber = {0234.14002},
doi = {10.1007/BFb0058656},
} -
[sga3] M. Demazure and A. Grothendieck, Schémas en Groupes. II: Groupes de Type Multiplicatif, et Structure des Schémas en Groupes Généraux, New York: Springer-Verlag, 1970, vol. 152.
@BOOK{sga3, mrkey = {0274459},
author = {Demazure, M. and Grothendieck, Alexandre},
mrclass = {14.50},
series = {Lecture Notes in Math.},
address = {New York},
publisher = {Springer-Verlag},
zblnumber = {0209.24201},
volume = {152},
mrnumber = {0274459},
note = {Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3)},
title = {Schémas en Groupes. {II}: {G}roupes de Type Multiplicatif, et Structure des Schémas en Groupes Généraux},
year = {1970},
pages = {ix+654},
} -
[sga4]
M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des Topos et Cohomologie Étale des Schémas (SGA 4-3), New York: Springer-Verlag, 1972/1973, vol. 305.
@BOOK{sga4, volume = {305},
author = {Artin, M. and Grothendieck, A. and Verdier, J. L.},
series = { Lecture Notes in Math.},
address = {New York},
title = {Théorie des Topos et Cohomologie \'{E}tale des Schémas (SGA 4-3)},
publisher = {Springer-Verlag},
year = {1972/1973},
MRNUMBER = {0354654},
ZBLNUMBER = {0245.00002},
DOI = {10.1007/BFb0070714},
} -
@BOOK{sga4h, mrkey = {0463174},
author = {Deligne, P.},
mrclass = {14F20},
series = {Lecture Notes in Math.},
address = {New York},
publisher = {Springer-Verlag},
volume = {569},
mrnumber = {0463174},
note = {S{é}minaire de G{é}om{é}trie Alg{é}brique du Bois-Marie SGA 4${\frac{1}{2}}$; avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier},
mrreviewer = {J. S. Milne},
title = {Cohomologie Étale},
year = {1977},
pages = {iv+312pp},
zblnumber = {0345.00010},
doi = {10.1007/BFb0091516},
} -
[sga7]
Groupes de monodromie en géométrie algébrique. I, Grothendieck, A., Ed., New York: Springer-Verlag, 1972, vol. 288.
@BOOK{sga7, mrkey = {0354656},
editor = {Grothendieck, Alexander},
mrclass = {14-06},
series = {Lecture Notes in Math.},
address = {New York},
publisher = {Springer-Verlag},
volume = {288},
mrnumber = {0354656},
note = {S{é}minaire de G{é}om{é}trie Alg{é}brique du Bois-Marie 1967--1969 (SGA 7 I); avec la collaboration de M. Raynaud et D. S. Rim},
title = {Groupes de monodromie en géométrie algébrique. {I}},
year = {1972},
pages = {viii+523},
zblnumber = {0237.00013},
doi = {10.1007/BFb0068688},
} -
[schmidt96]
A. Schmidt, "Extensions with restricted ramification and duality for arithmetic schemes," Compositio Math., vol. 100, iss. 2, pp. 233-245, 1996.
@ARTICLE{schmidt96, mrkey = {1383466},
number = {2},
issn = {0010-437X},
author = {Schmidt, Alexander},
mrclass = {14G40 (14F20)},
url = {http://www.numdam.org/item?id=CM_1996__100_2_233_0},
journal = {Compositio Math.},
zblnumber = {0873.14027},
volume = {100},
mrnumber = {1383466},
fjournal = {Compositio Mathematica},
mrreviewer = {Yuichiro Takeda},
coden = {CMPMAF},
title = {Extensions with restricted ramification and duality for arithmetic schemes},
year = {1996},
pages = {233--245},
} -
[Ser] . J-P. Serre, "Zeta and $L$ functions," in Arithmetical Algebraic Geometry, New York: Harper & Row, 1965, pp. 82-92.
@INCOLLECTION{Ser, mrkey = {0194396},
author = {Serre, {\relax J-P}},
mrclass = {14.48},
address = {New York},
publisher = {Harper \& Row},
zblnumber = {0171.19602},
mrnumber = {0194396},
booktitle = {Arithmetical {A}lgebraic {G}eometry},
venue = {{P}roc. {C}onf. {P}urdue {U}niv., 1963},
mrreviewer = {J. W. S. Cassels},
title = {Zeta and {$L$} functions},
pages = {82--92},
year = {1965},
} -
[Ta]
A. Tamagawa, "The Grothendieck conjecture for affine curves," Compositio Math., vol. 109, iss. 2, pp. 135-194, 1997.
@ARTICLE{Ta, mrkey = {1478817},
number = {2},
issn = {0010-437X},
author = {Tamagawa, Akio},
mrclass = {14H30 (11G20 14E20)},
doi = {10.1023/A:1000114400142},
journal = {Compositio Math.},
zblnumber = {0899.14007},
volume = {109},
mrnumber = {1478817},
fjournal = {Compositio Mathematica},
mrreviewer = {Hiroaki Nakamura},
coden = {CMPMAF},
title = {The {G}rothendieck conjecture for affine curves},
year = {1997},
pages = {135--194},
} -
[Whitehead] G. W. Whitehead, Elements of Homotopy Theory, New York: Springer-Verlag, 1978.
@BOOK{Whitehead, mrkey = {0516508},
number = {61},
author = {Whitehead, George W.},
mrclass = {55-02},
series = {Grad. Texts in Math.},
address = {New York},
isbn = {0-387-90336-4},
publisher = {Springer-Verlag},
zblnumber = {0406.55001},
mrnumber = {0516508},
mrreviewer = {Brayton Gray},
title = {Elements of Homotopy Theory},
year = {1978},
pages = {xxi+744},
}