Abstract
We study the parity of $2$-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve $E$ over an arbitrary number field $K$. We prove that the fraction of twists (of a given elliptic curve over a fixed number field) having even $2$-Selmer rank exists as a stable limit over the family of twists, and we compute this fraction as an explicit product of local factors. We give an example of an elliptic curve $E$ such that as $K$ varies, these fractions are dense in $[0, 1]$. More generally, our results also apply to $p$-Selmer ranks of twists of $2$-dimensional self-dual $\mathbf{F}_p$-representations of the absolute Galois group of $K$ by characters of order $p$.
-
[cassels]
J. W. S. Cassels, "Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer," J. Reine Angew. Math., vol. 217, pp. 180-199, 1965.
@article {cassels, MRKEY = {0179169},
AUTHOR = {Cassels, J. W. S.},
TITLE = {Arithmetic on curves of genus 1. {VIII}. {O}n conjectures of {B}irch and {S}winnerton-{D}yer},
JOURNAL = {J. Reine Angew. Math.},
FJOURNAL = {Journal für die Reine und Angewandte Mathematik},
VOLUME = {217},
YEAR = {1965},
PAGES = {180--199},
ISSN = {0075-4102},
MRCLASS = {14.48 (14.49)},
MRNUMBER = {0179169},
MRREVIEWER = {T. Ono},
ZBLNUMBER = {0241.14017},
DOI = {10.1515/crll.1965.217.180},
} -
[cremona] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge: Cambridge Univ. Press, 1992.
@book {cremona, MRKEY = {1201151},
AUTHOR = {Cremona, J. E.},
TITLE = {Algorithms for Modular Elliptic Curves},
PUBLISHER = {Cambridge Univ. Press},
ADDRESS = {Cambridge},
YEAR = {1992},
PAGES = {vi+343},
ISBN = {0-521-41813-5},
MRCLASS = {11G40 (11G05 11Y16 11Y35)},
MRNUMBER = {1201151},
MRREVIEWER = {Philippe Satg{é}},
ZBLNUMBER = {0758.14042},
} -
[cfoss]
J. E. Cremona, T. A. Fisher, C. O’Neil, D. Simon, and M. Stoll, "Explicit $n$-descent on elliptic curves. I. Algebra," J. Reine Angew. Math., vol. 615, pp. 121-155, 2008.
@article {cfoss, MRKEY = {2384334},
AUTHOR = {Cremona, J. E. and Fisher, T. A. and O'Neil, C. and Simon, D. and Stoll, M.},
TITLE = {Explicit {$n$}-descent on elliptic curves. {I}. {A}lgebra},
JOURNAL = {J. Reine Angew. Math.},
FJOURNAL = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
VOLUME = {615},
YEAR = {2008},
PAGES = {121--155},
ISSN = {0075-4102},
CODEN = {JRMAA8},
MRCLASS = {11G05 (11R34 11Y50 14G25)},
MRNUMBER = {2384334},
MRREVIEWER = {Imin Chen},
DOI = {10.1515/CRELLE.2008.012},
ZBLNUMBER = {1242.11039},
} -
[dokchitser]
T. Dokchitser and V. Dokchitser, "Elliptic curves with all quadratic twists of positive rank," Acta Arith., vol. 137, iss. 2, pp. 193-197, 2009.
@article {dokchitser, MRKEY = {2491537},
AUTHOR = {Dokchitser, Tim and Dokchitser, Vladimir},
TITLE = {Elliptic curves with all quadratic twists of positive rank},
JOURNAL = {Acta Arith.},
FJOURNAL = {Acta Arithmetica},
VOLUME = {137},
YEAR = {2009},
NUMBER = {2},
PAGES = {193--197},
ISSN = {0065-1036},
CODEN = {AARIA9},
MRCLASS = {11G05 (11G40)},
MRNUMBER = {2491537},
MRREVIEWER = {Conjeeveram S. Rajan},
DOI = {10.4064/aa137-2-7},
ZBLNUMBER = {05529145},
} -
[dokdok]
T. Dokchitser and V. Dokchitser, "Regulator constants and the parity conjecture," Invent. Math., vol. 178, iss. 1, pp. 23-71, 2009.
@article {dokdok, MRKEY = {2534092},
AUTHOR = {Dokchitser, Tim and Dokchitser, Vladimir},
TITLE = {Regulator constants and the parity conjecture},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {178},
YEAR = {2009},
NUMBER = {1},
PAGES = {23--71},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {11G05 (11G10 11G40 19A22)},
MRNUMBER = {2534092},
MRREVIEWER = {Joseph H. Silverman},
DOI = {10.1007/s00222-009-0193-7},
ZBLNUMBER = {1219.11083},
} -
[goldfeld]
D. Goldfeld, "Conjectures on elliptic curves over quadratic fields," in Number Theory, Carbondale 1979, New York: Springer-Verlag, 1979, vol. 751, pp. 108-118.
@incollection {goldfeld, MRKEY = {0564926},
AUTHOR = {Goldfeld, Dorian},
TITLE = {Conjectures on elliptic curves over quadratic fields},
BOOKTITLE = {Number Theory, {C}arbondale 1979},
VENUE={{P}roc. {S}outhern {I}llinois {C}onf., {S}outhern {I}llinois {U}niv., {C}arbondale, {I}ll., 1979},
SERIES = {Lecture Notes in Math.},
VOLUME = {751},
PAGES = {108--118},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1979},
MRCLASS = {12A70 (14K07)},
MRNUMBER = {0564926},
MRREVIEWER = {Kenneth Kramer},
ZBLNUMBER = {0417.14031},
DOI = {10.1007/BFb0062705},
} -
[heath-brown]
D. R. Heath-Brown, "The size of Selmer groups for the congruent number problem. II," Invent. Math., vol. 118, iss. 2, pp. 331-370, 1994.
@article {heath-brown, MRKEY = {1292115},
AUTHOR = {Heath-Brown, D. R.},
TITLE = {The size of {S}elmer groups for the congruent number problem. {II}},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {118},
YEAR = {1994},
NUMBER = {2},
PAGES = {331--370},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {11G40 (11G05)},
MRNUMBER = {1292115},
MRREVIEWER = {Fernando Q. Gouv{ê}a},
DOI = {10.1007/BF01231536},
ZBLNUMBER = {0815.11032},
NOTE={(with an appendix by P. Monsky)},
} -
[howard] B. Howard, "The Heegner point Kolyvagin system," Compos. Math., vol. 140, iss. 6, pp. 1439-1472, 2004.
@article {howard, MRKEY = {2098397},
AUTHOR = {Howard, Benjamin},
TITLE = {The {H}eegner point {K}olyvagin system},
JOURNAL = {Compos. Math.},
FJOURNAL = {Compositio Mathematica},
VOLUME = {140},
YEAR = {2004},
NUMBER = {6},
PAGES = {1439--1472},
ISSN = {0010-437X},
MRCLASS = {11G05 (11R23)},
MRNUMBER = {2098397},
MRREVIEWER = {Henri Darmon},
ZBLNUMBER = {1139.11316},
} -
[kane] D. M. Kane, On the ranks of the $2$-Selmer groups of twists of a given elliptic curve.
@misc{kane,
author={Kane, D. M.},
TITLE={On the ranks of the $2$-{S}elmer groups of twists of a given elliptic curve},
NOTE={\emph{Algebra Number Theory},
to appear},
ARXIV={1009.1365},
} -
[kmr2] Z. Klagsbrun, B. Mazur, and K. Rubin, Distribution of Selmer ranks of quadratic twists of elliptic curves.
@misc{kmr2,
author={Klagsbrun, Z. and Mazur, B. and Rubin, K.},
TITLE={Distribution of {S}elmer ranks of quadratic twists of elliptic curves},
NOTE={to appear},
} -
[kramer]
K. Kramer, "Arithmetic of elliptic curves upon quadratic extension," Trans. Amer. Math. Soc., vol. 264, iss. 1, pp. 121-135, 1981.
@article {kramer, MRKEY = {0597871},
AUTHOR = {Kramer, Kenneth},
TITLE = {Arithmetic of elliptic curves upon quadratic extension},
JOURNAL = {Trans. Amer. Math. Soc.},
FJOURNAL = {Transactions of the American Mathematical Society},
VOLUME = {264},
YEAR = {1981},
NUMBER = {1},
PAGES = {121--135},
ISSN = {0002-9947},
CODEN = {TAMTAM},
MRCLASS = {14G25 (10B10 14K07)},
MRNUMBER = {0597871},
MRREVIEWER = {Andrew Bremner},
DOI = {10.2307/1998414},
ZBLNUMBER = {0471.14020},
} -
[MRvisibility]
B. Mazur and K. Rubin, "Finding large Selmer rank via an arithmetic theory of local constants," Ann. of Math., vol. 166, iss. 2, pp. 579-612, 2007.
@article {MRvisibility, MRKEY = {2373150},
AUTHOR = {Mazur, B. and Rubin, K.},
TITLE = {Finding large {S}elmer rank via an arithmetic theory of local constants},
JOURNAL = {Ann. of Math.},
FJOURNAL = {Annals of Mathematics. Second Series},
VOLUME = {166},
YEAR = {2007},
NUMBER = {2},
PAGES = {579--612},
ISSN = {0003-486X},
CODEN = {ANMAAH},
MRCLASS = {11G05 (11G40 11R23)},
MRNUMBER = {2373150},
MRREVIEWER = {Benjamin V. Howard},
DOI = {10.4007/annals.2007.166.579},
ZBLNUMBER = {1219.11084},
} -
[MRstablerank]
B. Mazur and K. Rubin, "Ranks of twists of elliptic curves and Hilbert’s tenth problem," Invent. Math., vol. 181, iss. 3, pp. 541-575, 2010.
@article {MRstablerank, MRKEY = {2660452},
AUTHOR = {Mazur, B. and Rubin, K.},
TITLE = {Ranks of twists of elliptic curves and {H}ilbert's tenth problem},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {181},
YEAR = {2010},
NUMBER = {3},
PAGES = {541--575},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {11G05 (11G40)},
MRNUMBER = {2660452},
MRREVIEWER = {Pete L. Clark},
DOI = {10.1007/s00222-010-0252-0},
ZBLNUMBER = {1227.11075},
} -
[mrs]
B. Mazur, K. Rubin, and A. Silverberg, "Twisting commutative algebraic groups," J. Algebra, vol. 314, iss. 1, pp. 419-438, 2007.
@article {mrs, MRKEY = {2331769},
AUTHOR = {Mazur, B. and Rubin, K. and Silverberg, A.},
TITLE = {Twisting commutative algebraic groups},
JOURNAL = {J. Algebra},
FJOURNAL = {Journal of Algebra},
VOLUME = {314},
YEAR = {2007},
NUMBER = {1},
PAGES = {419--438},
ISSN = {0021-8693},
CODEN = {JALGA4},
MRCLASS = {14L15},
MRNUMBER = {2331769},
MRREVIEWER = {Andy R. Magid},
DOI = {10.1016/j.jalgebra.2007.02.052},
ZBLNUMBER = {1128.14034},
} -
[milne] J. S. Milne, Arithmetic Duality Theorems, Boston, MA: Academic Press, 1986, vol. 1.
@book {milne, MRKEY = {0881804},
AUTHOR = {Milne, J. S.},
TITLE = {Arithmetic Duality Theorems},
SERIES = {Perspect. Math.},
VOLUME = {1},
PUBLISHER = {Academic Press},
ADDRESS = {Boston, MA},
YEAR = {1986},
PAGES = {x+421},
ISBN = {0-12-498040-6},
MRCLASS = {14F20 (11G99 11R34 12G10)},
MRNUMBER = {0881804},
MRREVIEWER = {Gerd Faltings},
ZBLNUMBER = {0613.14019},
} -
[monsky]
P. Monsky, "Generalizing the Birch-Stephens theorem. I. Modular curves," Math. Z., vol. 221, iss. 3, pp. 415-420, 1996.
@article {monsky, MRKEY = {1381589},
AUTHOR = {Monsky, P.},
TITLE = {Generalizing the {B}irch-{S}tephens theorem. {I}. {M}odular curves},
JOURNAL = {Math. Z.},
FJOURNAL = {Mathematische Zeitschrift},
VOLUME = {221},
YEAR = {1996},
NUMBER = {3},
PAGES = {415--420},
ISSN = {0025-5874},
CODEN = {MAZEAX},
MRCLASS = {11G40 (11G05)},
MRNUMBER = {1381589},
MRREVIEWER = {M. Ram Murty},
DOI = {10.1007/PL00004518},
ZBLNUMBER={0853.11048},
} -
[poonenrains]
B. Poonen and E. Rains, "Random maximal isotropic subspaces and Selmer groups," J. Amer. Math. Soc., vol. 25, iss. 1, pp. 245-269, 2012.
@article {poonenrains, MRKEY = {2833483},
AUTHOR = {Poonen, Bjorn and Rains, Eric},
TITLE = {Random maximal isotropic subspaces and {S}elmer groups},
JOURNAL = {J. Amer. Math. Soc.},
FJOURNAL = {Journal of the American Mathematical Society},
VOLUME = {25},
YEAR = {2012},
NUMBER = {1},
PAGES = {245--269},
ISSN = {0894-0347},
MRCLASS = {11G10 (11G05 11G30 14G25 14K15)},
MRNUMBER = {2833483},
MRREVIEWER = {Philipp Habegger},
DOI = {10.1090/S0894-0347-2011-00710-8},
ZBLNUMBER = {06005475},
} -
[rohrlich]
D. E. Rohrlich, "Galois theory, elliptic curves, and root numbers," Compositio Math., vol. 100, iss. 3, pp. 311-349, 1996.
@article {rohrlich, MRKEY = {1387669},
AUTHOR = {Rohrlich, David E.},
TITLE = {Galois theory, elliptic curves, and root numbers},
JOURNAL = {Compositio Math.},
FJOURNAL = {Compositio Mathematica},
VOLUME = {100},
YEAR = {1996},
NUMBER = {3},
PAGES = {311--349},
ISSN = {0010-437X},
CODEN = {CMPMAF},
MRCLASS = {11G05 (11F80 11G07 11G40 11R32)},
MRNUMBER = {1387669},
MRREVIEWER = {Kenneth Kramer},
URL = {http://www.numdam.org/item?id=CM_1996__100_3_311_0},
ZBLNUMBER = {0860.11033},
} -
[rubinES] K. Rubin, Euler Systems, Princeton, NJ: Princeton Univ. Press, 2000, vol. 147.
@book {rubinES, MRKEY = {1749177},
AUTHOR = {Rubin, Karl},
TITLE = {Euler Systems},
SERIES = {Ann. of Math. Studies},
VOLUME = {147},
NOTE = {Hermann Weyl Lectures. The Institute for Advanced Study},
PUBLISHER = {Princeton Univ. Press},
ADDRESS = {Princeton, NJ},
YEAR = {2000},
PAGES = {xii+227},
ISBN = {0-691-05075-9; 0-691-05076-7},
MRCLASS = {11R23 (11G40 11R34 11R42)},
MRNUMBER = {1749177},
MRREVIEWER = {Jan Nekov{á}{\v{r}}},
ZBLNUMBER = {0977.11001},
} -
[modpreps] K. Rubin and A. Silverberg, "Families of elliptic curves with constant mod $p$ representations," in Elliptic Curves, Modular Forms, & Fermat’s Last Theorem, Int. Press, Cambridge, MA, 1995, vol. I, pp. 148-161.
@incollection {modpreps, MRKEY = {1363500},
AUTHOR = {Rubin, Karl and Silverberg, A.},
TITLE = {Families of elliptic curves with constant mod {$p$} representations},
BOOKTITLE = {Elliptic Curves, Modular Forms, \& {F}ermat's Last Theorem},
VENUE={{H}ong {K}ong, 1993},
SERIES = {Ser. Number Theory},
VOLUME={I},
PAGES = {148--161},
PUBLISHER = {Int. Press, Cambridge, MA},
YEAR = {1995},
MRCLASS = {11G05},
MRNUMBER = {1363500},
MRREVIEWER = {Andrea Mori},
ZBLNUMBER = {0856.11027},
} -
[serrecg] . J-P. Serre, Cohomologie Galoisienne, Fifth ed., New York: Springer-Verlag, 1994, vol. 5.
@book {serrecg, MRKEY = {1324577},
AUTHOR = {Serre, {\relax J-P}},
TITLE = {Cohomologie Galoisienne},
SERIES = {Lecture Notes in Math.},
VOLUME = {5},
EDITION = {Fifth},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1994},
PAGES = {x+181},
ISBN = {3-540-58002-6},
MRCLASS = {12G05 (11R34)},
MRNUMBER = {1324577},
ZBLNUMBER = {0812.12002},
} -
[serre1972] . J-P. Serre, "Propriétés galoisiennes des points d’ordre fini des courbes elliptiques," Invent. Math., vol. 15, iss. 4, pp. 259-331, 1972.
@article {serre1972, MRKEY = {0387283},
AUTHOR = {Serre, {\relax J-P}},
TITLE = {Propriétés galoisiennes des points d'ordre fini des courbes elliptiques},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {15},
YEAR = {1972},
NUMBER = {4},
PAGES = {259--331},
ISSN = {0020-9910},
MRCLASS = {14G25 (14K15)},
MRNUMBER = {0387283},
MRREVIEWER = {J. W. S. Cassels},
ZBLNUMBER = {0235.14012},
} -
[sw-d]
P. Swinnerton-Dyer, "The effect of twisting on the 2-Selmer group," Math. Proc. Cambridge Philos. Soc., vol. 145, iss. 3, pp. 513-526, 2008.
@article {sw-d, MRKEY = {2464773},
AUTHOR = {Swinnerton-Dyer, Peter},
TITLE = {The effect of twisting on the 2-{S}elmer group},
JOURNAL = {Math. Proc. Cambridge Philos. Soc.},
FJOURNAL = {Mathematical Proceedings of the Cambridge Philosophical Society},
VOLUME = {145},
YEAR = {2008},
NUMBER = {3},
PAGES = {513--526},
ISSN = {0305-0041},
CODEN = {MPCPCO},
MRCLASS = {11G05},
MRNUMBER = {2464773},
MRREVIEWER = {Pete L. Clark},
DOI = {10.1017/S0305004108001588},
ZBLNUMBER = {1242.11041},
} -
[tate] J. Tate, "Duality theorems in Galois cohomology over number fields," in Proc. Internat. Congr. Mathematicians, Djursholm: Inst. Mittag-Leffler, 1963, pp. 288-295.
@incollection {tate, MRKEY = {0175892},
AUTHOR = {Tate, John},
TITLE = {Duality theorems in {G}alois cohomology over number fields},
BOOKTITLE = {Proc. {I}nternat. {C}ongr. {M}athematicians},
VENUE={{S}tockholm, 1962},
PAGES = {288--295},
PUBLISHER = {Inst. Mittag-Leffler},
ADDRESS = {Djursholm},
YEAR = {1963},
MRCLASS = {10.66},
MRNUMBER = {0175892},
ZBLNUMBER = {0126.07002},
} -
[tatealg] J. Tate, "Algorithm for determining the type of a singular fiber in an elliptic pencil," in Modular Functions of One Variable, IV, New York: Springer-Verlag, 1975, vol. 476, pp. 33-52.
@incollection {tatealg, MRKEY = {0393039},
AUTHOR = {Tate, John},
TITLE = {Algorithm for determining the type of a singular fiber in an elliptic pencil},
BOOKTITLE = {Modular Functions of One Variable, {IV}},
VENUE={{P}roc. {I}nternat. {S}ummer {S}chool, {U}niv. {A}ntwerp, {A}ntwerp, 1972},
PAGES = {33--52},
SERIES={Lecture Notes in Math.},
VOLUME={476},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1975},
MRCLASS = {14G25 (14K15)},
MRNUMBER = {0393039},
MRREVIEWER = {J. S. Milne},
ZBLNUMBER = {1214.14020},
}