Disparity in Selmer ranks of quadratic twists of elliptic curves

Abstract

We study the parity of $2$-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve $E$ over an arbitrary number field $K$. We prove that the fraction of twists (of a given elliptic curve over a fixed number field) having even $2$-Selmer rank exists as a stable limit over the family of twists, and we compute this fraction as an explicit product of local factors. We give an example of an elliptic curve $E$ such that as $K$ varies, these fractions are dense in $[0, 1]$. More generally, our results also apply to $p$-Selmer ranks of twists of $2$-dimensional self-dual $\mathbf{F}_p$-representations of the absolute Galois group of $K$ by characters of order $p$.

  • [cassels] Go to document J. W. S. Cassels, "Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer," J. Reine Angew. Math., vol. 217, pp. 180-199, 1965.
    @article {cassels, MRKEY = {0179169},
      AUTHOR = {Cassels, J. W. S.},
      TITLE = {Arithmetic on curves of genus 1. {VIII}. {O}n conjectures of {B}irch and {S}winnerton-{D}yer},
      JOURNAL = {J. Reine Angew. Math.},
      FJOURNAL = {Journal für die Reine und Angewandte Mathematik},
      VOLUME = {217},
      YEAR = {1965},
      PAGES = {180--199},
      ISSN = {0075-4102},
      MRCLASS = {14.48 (14.49)},
      MRNUMBER = {0179169},
      MRREVIEWER = {T. Ono},
      ZBLNUMBER = {0241.14017},
      DOI = {10.1515/crll.1965.217.180},
     }
  • [cremona] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge: Cambridge Univ. Press, 1992.
    @book {cremona, MRKEY = {1201151},
      AUTHOR = {Cremona, J. E.},
      TITLE = {Algorithms for Modular Elliptic Curves},
      PUBLISHER = {Cambridge Univ. Press},
      ADDRESS = {Cambridge},
      YEAR = {1992},
      PAGES = {vi+343},
      ISBN = {0-521-41813-5},
      MRCLASS = {11G40 (11G05 11Y16 11Y35)},
      MRNUMBER = {1201151},
      MRREVIEWER = {Philippe Satg{é}},
      ZBLNUMBER = {0758.14042},
      }
  • [cfoss] Go to document J. E. Cremona, T. A. Fisher, C. O’Neil, D. Simon, and M. Stoll, "Explicit $n$-descent on elliptic curves. I. Algebra," J. Reine Angew. Math., vol. 615, pp. 121-155, 2008.
    @article {cfoss, MRKEY = {2384334},
      AUTHOR = {Cremona, J. E. and Fisher, T. A. and O'Neil, C. and Simon, D. and Stoll, M.},
      TITLE = {Explicit {$n$}-descent on elliptic curves. {I}. {A}lgebra},
      JOURNAL = {J. Reine Angew. Math.},
      FJOURNAL = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      VOLUME = {615},
      YEAR = {2008},
      PAGES = {121--155},
      ISSN = {0075-4102},
      CODEN = {JRMAA8},
      MRCLASS = {11G05 (11R34 11Y50 14G25)},
      MRNUMBER = {2384334},
      MRREVIEWER = {Imin Chen},
      DOI = {10.1515/CRELLE.2008.012},
      ZBLNUMBER = {1242.11039},
     }
  • [dokchitser] Go to document T. Dokchitser and V. Dokchitser, "Elliptic curves with all quadratic twists of positive rank," Acta Arith., vol. 137, iss. 2, pp. 193-197, 2009.
    @article {dokchitser, MRKEY = {2491537},
      AUTHOR = {Dokchitser, Tim and Dokchitser, Vladimir},
      TITLE = {Elliptic curves with all quadratic twists of positive rank},
      JOURNAL = {Acta Arith.},
      FJOURNAL = {Acta Arithmetica},
      VOLUME = {137},
      YEAR = {2009},
      NUMBER = {2},
      PAGES = {193--197},
      ISSN = {0065-1036},
      CODEN = {AARIA9},
      MRCLASS = {11G05 (11G40)},
      MRNUMBER = {2491537},
      MRREVIEWER = {Conjeeveram S. Rajan},
      DOI = {10.4064/aa137-2-7},
      ZBLNUMBER = {05529145},
      }
  • [dokdok] Go to document T. Dokchitser and V. Dokchitser, "Regulator constants and the parity conjecture," Invent. Math., vol. 178, iss. 1, pp. 23-71, 2009.
    @article {dokdok, MRKEY = {2534092},
      AUTHOR = {Dokchitser, Tim and Dokchitser, Vladimir},
      TITLE = {Regulator constants and the parity conjecture},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {178},
      YEAR = {2009},
      NUMBER = {1},
      PAGES = {23--71},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {11G05 (11G10 11G40 19A22)},
      MRNUMBER = {2534092},
      MRREVIEWER = {Joseph H. Silverman},
      DOI = {10.1007/s00222-009-0193-7},
      ZBLNUMBER = {1219.11083},
      }
  • [goldfeld] Go to document D. Goldfeld, "Conjectures on elliptic curves over quadratic fields," in Number Theory, Carbondale 1979, New York: Springer-Verlag, 1979, vol. 751, pp. 108-118.
    @incollection {goldfeld, MRKEY = {0564926},
      AUTHOR = {Goldfeld, Dorian},
      TITLE = {Conjectures on elliptic curves over quadratic fields},
      BOOKTITLE = {Number Theory, {C}arbondale 1979},
      VENUE={{P}roc. {S}outhern {I}llinois {C}onf., {S}outhern {I}llinois {U}niv., {C}arbondale, {I}ll., 1979},
      SERIES = {Lecture Notes in Math.},
      VOLUME = {751},
      PAGES = {108--118},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1979},
      MRCLASS = {12A70 (14K07)},
      MRNUMBER = {0564926},
      MRREVIEWER = {Kenneth Kramer},
      ZBLNUMBER = {0417.14031},
      DOI = {10.1007/BFb0062705},
     }
  • [heath-brown] Go to document D. R. Heath-Brown, "The size of Selmer groups for the congruent number problem. II," Invent. Math., vol. 118, iss. 2, pp. 331-370, 1994.
    @article {heath-brown, MRKEY = {1292115},
      AUTHOR = {Heath-Brown, D. R.},
      TITLE = {The size of {S}elmer groups for the congruent number problem. {II}},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {118},
      YEAR = {1994},
      NUMBER = {2},
      PAGES = {331--370},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {11G40 (11G05)},
      MRNUMBER = {1292115},
      MRREVIEWER = {Fernando Q. Gouv{ê}a},
      DOI = {10.1007/BF01231536},
      ZBLNUMBER = {0815.11032},
      NOTE={(with an appendix by P. Monsky)},
     }
  • [howard] B. Howard, "The Heegner point Kolyvagin system," Compos. Math., vol. 140, iss. 6, pp. 1439-1472, 2004.
    @article {howard, MRKEY = {2098397},
      AUTHOR = {Howard, Benjamin},
      TITLE = {The {H}eegner point {K}olyvagin system},
      JOURNAL = {Compos. Math.},
      FJOURNAL = {Compositio Mathematica},
      VOLUME = {140},
      YEAR = {2004},
      NUMBER = {6},
      PAGES = {1439--1472},
      ISSN = {0010-437X},
      MRCLASS = {11G05 (11R23)},
      MRNUMBER = {2098397},
      MRREVIEWER = {Henri Darmon},
      ZBLNUMBER = {1139.11316},
      }
  • [kane] D. M. Kane, On the ranks of the $2$-Selmer groups of twists of a given elliptic curve.
    @misc{kane,
      author={Kane, D. M.},
      TITLE={On the ranks of the $2$-{S}elmer groups of twists of a given elliptic curve},
      NOTE={\emph{Algebra Number Theory},
      to appear},
      ARXIV={1009.1365},
     }
  • [kmr2] Z. Klagsbrun, B. Mazur, and K. Rubin, Distribution of Selmer ranks of quadratic twists of elliptic curves.
    @misc{kmr2,
      author={Klagsbrun, Z. and Mazur, B. and Rubin, K.},
      TITLE={Distribution of {S}elmer ranks of quadratic twists of elliptic curves},
      NOTE={to appear},
     }
  • [kramer] Go to document K. Kramer, "Arithmetic of elliptic curves upon quadratic extension," Trans. Amer. Math. Soc., vol. 264, iss. 1, pp. 121-135, 1981.
    @article {kramer, MRKEY = {0597871},
      AUTHOR = {Kramer, Kenneth},
      TITLE = {Arithmetic of elliptic curves upon quadratic extension},
      JOURNAL = {Trans. Amer. Math. Soc.},
      FJOURNAL = {Transactions of the American Mathematical Society},
      VOLUME = {264},
      YEAR = {1981},
      NUMBER = {1},
      PAGES = {121--135},
      ISSN = {0002-9947},
      CODEN = {TAMTAM},
      MRCLASS = {14G25 (10B10 14K07)},
      MRNUMBER = {0597871},
      MRREVIEWER = {Andrew Bremner},
      DOI = {10.2307/1998414},
      ZBLNUMBER = {0471.14020},
      }
  • [MRvisibility] Go to document B. Mazur and K. Rubin, "Finding large Selmer rank via an arithmetic theory of local constants," Ann. of Math., vol. 166, iss. 2, pp. 579-612, 2007.
    @article {MRvisibility, MRKEY = {2373150},
      AUTHOR = {Mazur, B. and Rubin, K.},
      TITLE = {Finding large {S}elmer rank via an arithmetic theory of local constants},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {166},
      YEAR = {2007},
      NUMBER = {2},
      PAGES = {579--612},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {11G05 (11G40 11R23)},
      MRNUMBER = {2373150},
      MRREVIEWER = {Benjamin V. Howard},
      DOI = {10.4007/annals.2007.166.579},
      ZBLNUMBER = {1219.11084},
      }
  • [MRstablerank] Go to document B. Mazur and K. Rubin, "Ranks of twists of elliptic curves and Hilbert’s tenth problem," Invent. Math., vol. 181, iss. 3, pp. 541-575, 2010.
    @article {MRstablerank, MRKEY = {2660452},
      AUTHOR = {Mazur, B. and Rubin, K.},
      TITLE = {Ranks of twists of elliptic curves and {H}ilbert's tenth problem},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {181},
      YEAR = {2010},
      NUMBER = {3},
      PAGES = {541--575},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {11G05 (11G40)},
      MRNUMBER = {2660452},
      MRREVIEWER = {Pete L. Clark},
      DOI = {10.1007/s00222-010-0252-0},
      ZBLNUMBER = {1227.11075},
      }
  • [mrs] Go to document B. Mazur, K. Rubin, and A. Silverberg, "Twisting commutative algebraic groups," J. Algebra, vol. 314, iss. 1, pp. 419-438, 2007.
    @article {mrs, MRKEY = {2331769},
      AUTHOR = {Mazur, B. and Rubin, K. and Silverberg, A.},
      TITLE = {Twisting commutative algebraic groups},
      JOURNAL = {J. Algebra},
      FJOURNAL = {Journal of Algebra},
      VOLUME = {314},
      YEAR = {2007},
      NUMBER = {1},
      PAGES = {419--438},
      ISSN = {0021-8693},
      CODEN = {JALGA4},
      MRCLASS = {14L15},
      MRNUMBER = {2331769},
      MRREVIEWER = {Andy R. Magid},
      DOI = {10.1016/j.jalgebra.2007.02.052},
      ZBLNUMBER = {1128.14034},
      }
  • [milne] J. S. Milne, Arithmetic Duality Theorems, Boston, MA: Academic Press, 1986, vol. 1.
    @book {milne, MRKEY = {0881804},
      AUTHOR = {Milne, J. S.},
      TITLE = {Arithmetic Duality Theorems},
      SERIES = {Perspect. Math.},
      VOLUME = {1},
      PUBLISHER = {Academic Press},
      ADDRESS = {Boston, MA},
      YEAR = {1986},
      PAGES = {x+421},
      ISBN = {0-12-498040-6},
      MRCLASS = {14F20 (11G99 11R34 12G10)},
      MRNUMBER = {0881804},
      MRREVIEWER = {Gerd Faltings},
      ZBLNUMBER = {0613.14019},
      }
  • [monsky] Go to document P. Monsky, "Generalizing the Birch-Stephens theorem. I. Modular curves," Math. Z., vol. 221, iss. 3, pp. 415-420, 1996.
    @article {monsky, MRKEY = {1381589},
      AUTHOR = {Monsky, P.},
      TITLE = {Generalizing the {B}irch-{S}tephens theorem. {I}. {M}odular curves},
      JOURNAL = {Math. Z.},
      FJOURNAL = {Mathematische Zeitschrift},
      VOLUME = {221},
      YEAR = {1996},
      NUMBER = {3},
      PAGES = {415--420},
      ISSN = {0025-5874},
      CODEN = {MAZEAX},
      MRCLASS = {11G40 (11G05)},
      MRNUMBER = {1381589},
      MRREVIEWER = {M. Ram Murty},
      DOI = {10.1007/PL00004518},
      ZBLNUMBER={0853.11048},
     }
  • [poonenrains] Go to document B. Poonen and E. Rains, "Random maximal isotropic subspaces and Selmer groups," J. Amer. Math. Soc., vol. 25, iss. 1, pp. 245-269, 2012.
    @article {poonenrains, MRKEY = {2833483},
      AUTHOR = {Poonen, Bjorn and Rains, Eric},
      TITLE = {Random maximal isotropic subspaces and {S}elmer groups},
      JOURNAL = {J. Amer. Math. Soc.},
      FJOURNAL = {Journal of the American Mathematical Society},
      VOLUME = {25},
      YEAR = {2012},
      NUMBER = {1},
      PAGES = {245--269},
      ISSN = {0894-0347},
      MRCLASS = {11G10 (11G05 11G30 14G25 14K15)},
      MRNUMBER = {2833483},
      MRREVIEWER = {Philipp Habegger},
      DOI = {10.1090/S0894-0347-2011-00710-8},
      ZBLNUMBER = {06005475},
      }
  • [rohrlich] Go to document D. E. Rohrlich, "Galois theory, elliptic curves, and root numbers," Compositio Math., vol. 100, iss. 3, pp. 311-349, 1996.
    @article {rohrlich, MRKEY = {1387669},
      AUTHOR = {Rohrlich, David E.},
      TITLE = {Galois theory, elliptic curves, and root numbers},
      JOURNAL = {Compositio Math.},
      FJOURNAL = {Compositio Mathematica},
      VOLUME = {100},
      YEAR = {1996},
      NUMBER = {3},
      PAGES = {311--349},
      ISSN = {0010-437X},
      CODEN = {CMPMAF},
      MRCLASS = {11G05 (11F80 11G07 11G40 11R32)},
      MRNUMBER = {1387669},
      MRREVIEWER = {Kenneth Kramer},
      URL = {http://www.numdam.org/item?id=CM_1996__100_3_311_0},
      ZBLNUMBER = {0860.11033},
      }
  • [rubinES] K. Rubin, Euler Systems, Princeton, NJ: Princeton Univ. Press, 2000, vol. 147.
    @book {rubinES, MRKEY = {1749177},
      AUTHOR = {Rubin, Karl},
      TITLE = {Euler Systems},
      SERIES = {Ann. of Math. Studies},
      VOLUME = {147},
      NOTE = {Hermann Weyl Lectures. The Institute for Advanced Study},
      PUBLISHER = {Princeton Univ. Press},
      ADDRESS = {Princeton, NJ},
      YEAR = {2000},
      PAGES = {xii+227},
      ISBN = {0-691-05075-9; 0-691-05076-7},
      MRCLASS = {11R23 (11G40 11R34 11R42)},
      MRNUMBER = {1749177},
      MRREVIEWER = {Jan Nekov{á}{\v{r}}},
      ZBLNUMBER = {0977.11001},
      }
  • [modpreps] K. Rubin and A. Silverberg, "Families of elliptic curves with constant mod $p$ representations," in Elliptic Curves, Modular Forms, & Fermat’s Last Theorem, Int. Press, Cambridge, MA, 1995, vol. I, pp. 148-161.
    @incollection {modpreps, MRKEY = {1363500},
      AUTHOR = {Rubin, Karl and Silverberg, A.},
      TITLE = {Families of elliptic curves with constant mod {$p$} representations},
      BOOKTITLE = {Elliptic Curves, Modular Forms, \& {F}ermat's Last Theorem},
      VENUE={{H}ong {K}ong, 1993},
      SERIES = {Ser. Number Theory},
      VOLUME={I},
      PAGES = {148--161},
      PUBLISHER = {Int. Press, Cambridge, MA},
      YEAR = {1995},
      MRCLASS = {11G05},
      MRNUMBER = {1363500},
      MRREVIEWER = {Andrea Mori},
      ZBLNUMBER = {0856.11027},
      }
  • [serrecg] . J-P. Serre, Cohomologie Galoisienne, Fifth ed., New York: Springer-Verlag, 1994, vol. 5.
    @book {serrecg, MRKEY = {1324577},
      AUTHOR = {Serre, {\relax J-P}},
      TITLE = {Cohomologie Galoisienne},
      SERIES = {Lecture Notes in Math.},
      VOLUME = {5},
      EDITION = {Fifth},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1994},
      PAGES = {x+181},
      ISBN = {3-540-58002-6},
      MRCLASS = {12G05 (11R34)},
      MRNUMBER = {1324577},
      ZBLNUMBER = {0812.12002},
      }
  • [serre1972] . J-P. Serre, "Propriétés galoisiennes des points d’ordre fini des courbes elliptiques," Invent. Math., vol. 15, iss. 4, pp. 259-331, 1972.
    @article {serre1972, MRKEY = {0387283},
      AUTHOR = {Serre, {\relax J-P}},
      TITLE = {Propriétés galoisiennes des points d'ordre fini des courbes elliptiques},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {15},
      YEAR = {1972},
      NUMBER = {4},
      PAGES = {259--331},
      ISSN = {0020-9910},
      MRCLASS = {14G25 (14K15)},
      MRNUMBER = {0387283},
      MRREVIEWER = {J. W. S. Cassels},
      ZBLNUMBER = {0235.14012},
      }
  • [sw-d] Go to document P. Swinnerton-Dyer, "The effect of twisting on the 2-Selmer group," Math. Proc. Cambridge Philos. Soc., vol. 145, iss. 3, pp. 513-526, 2008.
    @article {sw-d, MRKEY = {2464773},
      AUTHOR = {Swinnerton-Dyer, Peter},
      TITLE = {The effect of twisting on the 2-{S}elmer group},
      JOURNAL = {Math. Proc. Cambridge Philos. Soc.},
      FJOURNAL = {Mathematical Proceedings of the Cambridge Philosophical Society},
      VOLUME = {145},
      YEAR = {2008},
      NUMBER = {3},
      PAGES = {513--526},
      ISSN = {0305-0041},
      CODEN = {MPCPCO},
      MRCLASS = {11G05},
      MRNUMBER = {2464773},
      MRREVIEWER = {Pete L. Clark},
      DOI = {10.1017/S0305004108001588},
      ZBLNUMBER = {1242.11041},
      }
  • [tate] J. Tate, "Duality theorems in Galois cohomology over number fields," in Proc. Internat. Congr. Mathematicians, Djursholm: Inst. Mittag-Leffler, 1963, pp. 288-295.
    @incollection {tate, MRKEY = {0175892},
      AUTHOR = {Tate, John},
      TITLE = {Duality theorems in {G}alois cohomology over number fields},
      BOOKTITLE = {Proc. {I}nternat. {C}ongr. {M}athematicians},
      VENUE={{S}tockholm, 1962},
      PAGES = {288--295},
      PUBLISHER = {Inst. Mittag-Leffler},
      ADDRESS = {Djursholm},
      YEAR = {1963},
      MRCLASS = {10.66},
      MRNUMBER = {0175892},
      ZBLNUMBER = {0126.07002},
      }
  • [tatealg] J. Tate, "Algorithm for determining the type of a singular fiber in an elliptic pencil," in Modular Functions of One Variable, IV, New York: Springer-Verlag, 1975, vol. 476, pp. 33-52.
    @incollection {tatealg, MRKEY = {0393039},
      AUTHOR = {Tate, John},
      TITLE = {Algorithm for determining the type of a singular fiber in an elliptic pencil},
      BOOKTITLE = {Modular Functions of One Variable, {IV}},
      VENUE={{P}roc. {I}nternat. {S}ummer {S}chool, {U}niv. {A}ntwerp, {A}ntwerp, 1972},
      PAGES = {33--52},
      SERIES={Lecture Notes in Math.},
      VOLUME={476},
      PUBLISHER = {Springer-Verlag},
      ADDRESS = {New York},
      YEAR = {1975},
      MRCLASS = {14G25 (14K15)},
      MRNUMBER = {0393039},
      MRREVIEWER = {J. S. Milne},
      ZBLNUMBER = {1214.14020},
      }

Authors

Zev Klagsbrun

Department of Mathematics, University of Wisconsin - Madison, 480 Lincoln Dr., Madison, WI 53706

Barry Mazur

Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138-2901

Karl Rubin

Department of Mathematics, University of California Irvine, Irvine, CA 92697-3875