Abstract
We prove that for any group $G$ in a fairly large class of generalized wreath product groups, the associated von Neumann algebra $\mathrm{L} G$ completely “remembers” the group $G$. More precisely, if $\mathrm{L} G$ is isomorphic to the von Neumann algebra $\mathrm{L} \Lambda$ of an arbitrary countable group $\Lambda$, then $\Lambda$ must be isomorphic to $G$. This represents the first superrigidity result pertaining to group von Neumann algebras.