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A class of superrigid group
von Neumann algebras

By Adrian Ioana(1), Sorin Popa(2), and Stefaan Vaes(3)

Abstract

We prove that for any group G in a fairly large class of generalized

wreath product groups, the associated von Neumann algebra LG com-

pletely “remembers” the group G. More precisely, if LG is isomorphic

to the von Neumann algebra LΛ of an arbitrary countable group Λ, then

Λ must be isomorphic to G. This represents the first superrigidity result

pertaining to group von Neumann algebras.

1. Introduction and statement of main results

A countable discrete group G gives rise to a variety of rings and algebras,

studied in several areas of mathematics, such as algebra, finite group theory,

geometric group theory, representation theory, noncommutative geometry, C∗-

and von Neumann operator algebras. A common underlying theme is the

investigation of how the isomorphism class of the ring/algebra depends on the

group G.

Thus, by letting the (complex) group algebra CG act on the Hilbert space

`2G by (left) convolution and then taking its closure in the operator norm, one

obtains the reduced group C∗-algebra C∗rG, an important object of study in non-

commutative geometry (e.g., related to the Novikov conjecture; see [Con94]).

In turn, by taking the closure of CG in the weak operator topology one obtains

the group von Neumann algebra LG, introduced and studied by Murray and

von Neumann in [MvN36], [MvN43].

When passing from CG to LG, the memory ofG tends to fade away. This is

best seen in the torsion free abelian case, where CG remembers G completely
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(see, e.g., [Hig40]), while all LG are isomorphic (because LG = L∞(Ĝ) ∼=
L∞([0, 1])). Conjecturally, if G is an arbitrary torsion free group, then the only

unitary elements in CG are the multiples of the canonical unitaries (ug)g∈G.

(See [Hig40], [Kap70], where in fact the conjecture was checked for all orderable

groups.) On the other hand, the weak closure CGw = LG entirely wipes

out this structure. The intermediate case C∗rG appears to be closer to CG
than to LG. Indeed, if G is abelian torsion free, then the group of connected

components of U(C∗rG) coincides with G so that C∗rG completely remembers

G. (This is obvious when G = Zn and passes to inductive limits Zn1 ↪→
Zn2 ↪→ · · · .) The noncommutative case is very poorly understood. It seems

not even known whether C∗rG always remembers a torsion free group G. This

question is particularly interesting for free groups, G = Fn, where a result in

[PV82] already shows that C∗rFn are nonisomorphic for different n’s. In fact,

when combined with results in [DHR97], [Rie87], if follows that the group of

connected components of U(C∗rFn) is isomorphic to Zn.

For von Neumann algebras, the really interesting case is when LG has

trivial center, i.e., when LG is a II1 factor, corresponding to G having infi-

nite conjugacy classes (icc); see [MvN43]. Here again, like in the abelian case,

a celebrated result of Connes [Con76] shows that all II1 factors coming from

icc amenable groups are isomorphic to the hyperfinite II1 factor of Murray

and von Neumann. While nonamenable groups G were known since [MvN43],

[Sch63] to produce nonhyperfinite factors LG and an uncountable family of

icc groups with the associated II1 factors nonisomorphic was constructed in

[McD69], very little is known of how LG depends on the group G, especially

when G is a “classical” group like SL(n,Z), or a free group Fn. For instance, it

is a famous open problem whether the factors LFn, n > 2, are nonisomorphic.

In the same vein, a well-known conjecture of Connes [Con82] asks whether

LG ∼= LΛ for icc property (T) groups G,Λ implies G ∼= Λ. This conjecture

remains wide open, notably for G = SL(n,Z), n > 3. Note however that by

[CH89], if G,Λ are lattices in Sp(n, 1), respectively Sp(m, 1), then LG ∼= LΛ

implies n = m. Along these lines, several recent results in deformation rigid-

ity theory provide classes of groups G for which any isomorphism LG ' LΛ,

with G,Λ ∈ G, entails isomorphism of the groups G ' Λ (see, e.g., [Pop06a],

[Pop06d], [IPP08], [PV08], etc.). This is, for instance, the case for the class G
of all wreath product groups Z/2Z o Γ with Γ having property (T) [Pop06d].

At the opposite end, using [Con76] and free probability it has been shown that

L(Γ1 ∗ Γ2 ∗ · · · ∗ Γn) ' LFn for any infinite amenable groups Γi and n > 2; see

[Dyk93]. Other unexpected isomorphisms between group factors can be found

in Section 9.

In fact, more than just distinguishing between property (T) group factors,

a positive answer to Connes’ rigidity conjecture implies that the II1 factor LG
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of an icc property (T) group G uniquely determines the group G. Indeed,

by [CJ85], if LG ' LΛ and G has property (T), then Λ automatically has

this property, showing that in Connes’ conjecture it is sufficient to assume

property (T) only on the group G. This gives its statement a W∗-superrigidity

flavor, in the same spirit as the recent superrigidity results for group measure

space II1 factors ([PV10], [Ioa11]), showing that certain classes of free ergodic

probability measure preserving group actions G y (X,µ) can be completely

recovered from their associated II1 factors L∞(X)oG.

However, the superrigidity question for group factors is much harder, and

all this progress in group measure space factors could not be exploited to

obtain even one single example of a W∗-superrigid icc group G, i.e., for which

LG completely remembers G, in the sense that any isomorphism of LG and an

arbitrary group factor LΛ forces the groups G,Λ to be isomorphic.

In this paper we provide a large class of generalized wreath product groups

G that are W∗-superrigid. For instance, we show that given ANY nonamenable

group Γ, its canonical “augmentation” G = (Z/2Z)(I) o (Γ o Z) is superrigid,

where the set I is the quotient (Γ o Z)/Z on which the group Γ o Z = Γ(Z) o Z
acts by left multiplication. In fact, we show that any isomorphism between

LG and an arbitrary group factor LΛ is implemented by an isomorphism of

the groups. More precisely, we prove the following general result.

Theorem 1.1. Let Γ0 be any nonamenable group, and let S be any infinite

amenable group. Define the wreath product group Γ = Γ
(S)
0 o S, and consider

the action of Γ on I = Γ/S by left multiplication. Let n be a square-free integer,

and define the generalized wreath product group

G =
Ä
Z
nZ

ä(I) o Γ.

If Λ is any countable group and π : LΛ→ L(G)t is a surjective ∗-isomorphism

for some t > 0, then t = 1 and Λ ∼= G.

In the special case where n = 2, 3, the ∗-isomorphism π is necessarily

group-like: there exists an isomorphism of groups δ : Λ → G, a character

ω : Λ→ T and a unitary w ∈ LG such that

π(vs) = ω(s)w uδ(s)w
∗ ∀s ∈ Λ.

Here (vs)s∈Λ and (ug)g∈G denote the canonical generating unitaries of LΛ,

respectively LG.

Theorem 8.3 below provides a much wider class of generalized wreath

product groups G = Z
nZ oI Γ such that the group factor LG remembers the

group G.

The conclusions of Theorem 1.1 do not hold, however, for plain wreath

products G = Z
nZ o Γ. Nevertheless, we will see in Theorem 8.2 that it is still
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possible to describe more or less explicitly all groups Λ with LG ∼= LΛ. But

this description does not allow us to classify these groups Λ up to isomorphism.

The groups Λ with LG ∼= LΛ can be quite different from G, as illustrated by

the following result that we prove in Section 9.

Theorem 1.2. Let Γ be a nontrivial torsion free group, and let H0 be a

nontrivial finite abelian group. Then, there exists a torsion free group Λ with

L(Λ) ∼= L(H0 o Γ). In particular, Λ 6∼= H0 o Γ.

Let n > 2, and let H0 be a nontrivial finite abelian group. There are

infinitely many nonisomorphic groups Λ for which LΛ ∼= L(H0 o PSL(n,Z)).

We mention that in the final Section 10 we show that some of our methods

allow us to extend [Ioa11, Th. A] and prove W∗-superrigidity for Bernoulli

actions Γ y (X0, µ0)Γ of groups Γ that admit an infinite normal subgroup with

nonamenable centralizer. We refer to Theorem 10.1 for a precise statement.

Structure of the article and comments on the proofs. The fact that large

classes of generalized wreath product groups turn out to be W∗-superrigid

should come as no surprise, since such groups have been recognized for some

time to be “exceptionally rigid” in the von Neumann algebra context (cf.

[Pop06b], [Pop06c], [Pop06d], [Pop08], [PV08], [PV10], [Ioa07], [CI10], [Ioa11]).

This is due to the Bernoulli type crossed-product decomposition that a wreath

product group has, G = H oI Γ = H(I)oΓ, a feature that makes its associated

von Neumann algebra M = LG “distinctly soft” on the side of LH(I) ⊂ M ,

once H is assumed amenable. Such softness is a consequence of the malleable

deformations that II1 factors arising from Bernoulli actions were shown to have

([Pop06b], [Pop06c]). This property allows the recovery of all “rigid parts” of

LΓ, such as subalgebras generated by subgroups Γ0 ⊂ Γ having either relative

property (T), or nonamenable centralizer. Playing rigidity against deforma-

bility properties of an algebra in this manner became a paradigm of defor-

mation/rigidity theory (see [Pop06b], [Pop06c], [Pop06d], [Pop08], [Pop07]).

Then in [PV08] it was realized that if Γ y I is of the form Γ y Γ/Γ0, with

Γ0 a “malnormal” subgroup of Γ, the overall rigidity of M can be considerably

enhanced, while the discovery in [Ioa07] of a new malleable deformation for

generalized Bernoulli actions and wreath product groups unraveled more of

their rigidity properties. The recent work in [PV10], [Ioa11] pushed the defor-

mation/rigidity analysis of such group actions even deeper, notably through

the systematic usage of “comultiplication”-type embeddings ∆ : M ↪→M⊗M
in [Ioa11] (cf. also [PV10]).

In order to prove Theorem 1.1 we use the entire arsenal of ideas and tech-

niques developed in these previous papers. Yet recovering the discrete structure

G = H oI Γ (rather than the action Γ y LH(I), as in [Pop06d], [PV10], [Ioa11])
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inside the algebra LG requires more intricate deformation/rigidity arguments

and a lot of technical effort. This work, which takes the entire Sections 4

through 8, leads us to a crucial correlation between G and any other group

implementing the same von Neumann algebra. More precisely, we show that

the comultiplication on LG induced by an arbitrary group Λ ⊂ LG satisfying

LΛ = LG is unitarily conjugate to the initial comultiplication induced by G,

with the corresponding unitary satisfying a “dual” 2-cocycle relation.1 One of

the big novelties in this paper is how we derive an isomorphism of the groups

G,Λ out of this 2-cocycle. We do this in Theorem 3.3, which is essentially a

vanishing of 2-cohomology result.

One should mention that a particular case of this result, which we em-

phasize separately as Theorem 3.1, provides a surprising characterization for

the unitary conjugacy of arbitrary icc groups Λ, G giving the same II1 factor,

LΛ = LG. To state it, we use the (asymmetric) Hausdorff distance between

subgroups U and V of the unitary group U(M) of a II1 factor, defined by

dist‖·‖2(U ,V) := sup
u∈U

(
inf
v∈V
‖u− v‖2

)
.

Denote by TU the group of unitaries λu, λ ∈ T, u ∈ U and notice that

dist‖·‖2(TU ,TV) 6
√

2 for any subgroups U ,V ⊂ U(M). We prove in Theo-

rem 3.1 that if M = LG = LΛ are two group von Neumann algebra decompo-

sitions of the same II1 factor M then dist‖·‖2(TG,TΛ) <
√

2 if and only if TΛ

and TG are conjugate by a unitary in M .

To describe the content of Sections 4–8 in more detail, let G=H0 oI Γ

be a generalized wreath product group as in Theorem 1.1 (or the more gen-

eral Theorem 8.3). Write M := LG, and assume that M = LΛ is another

group von Neumann algebra decomposition. Denote by ∆ : M → M ⊗M :

∆(vs) = vs ⊗ vs, s ∈ Λ, the comultiplication corresponding to the decompo-

sition M = LΛ. Observe that M = LG can be viewed as the group measure

space construction M = L∞(XI
0 ) o Γ, where X0 = ”H0 is the Pontryagin dual

of H0 equipped with the Haar probability measure and where Γ y XI
0 is the

generalized Bernoulli action.

In [Ioa11], a classification result for embeddings ∆ : M → M ⊗M was

obtained in the case where M = L∞(XΓ
0 ) o Γ is the group measure space II1

factor given by the plain Bernoulli action of an icc property (T) group Γ, or

more generally an icc group Γ that admits an infinite normal subgroup with

the relative property (T). We extend these results to generalized Bernoulli

actions. This generalization is technically painful, but unavoidable in light of

Theorem 1.2.

1To be more precise, we only find a unitary Ω satisfying the formulas (1.1) on page 236,

but this suffices to deduce that Ω is a dual 2-cocycle.
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We analyze the embedding ∆ : M → M ⊗ M in three different steps,

corresponding to Sections 4, 5 and 6. In this analysis we use much of the

ideas and techniques developed in deformation/rigidity theory over the last

years. Nevertheless, apart from the preliminary Section 2, where we also recall

the notion of intertwining bimodules [Pop06c], our article is essentially self-

contained and Sections 4, 5 and 6 contain independent results, each having an

interest of its own.

We write A = L∞(XI
0 ) and denote by (ug)g∈Γ the canonical unitaries in

the crossed product M = Ao Γ.

In Section 4 we elaborate results from [Pop06c], [Ioa07] implying that un-

der the right assumptions, rigid subalgebras of generalized Bernoulli crossed

products M = L∞(XI
0 )oΓ have an intertwining bimodule into LΓ; see Corol-

lary 4.3. Following [Ioa07] we consider the “tensor length deformation” θρ :

M → M , which is roughly defined as θρ(Fug) = ρnFug when g ∈ Γ and

F ∈ L∞(XI
0 ) only depends on n variables in I. In Theorem 4.2 we describe

which subalgebras Q ⊂ M have the property that θρ converges uniformly to

the identity on the unit ball of Q. This result readily applies when Q ⊂ M

has the relative property (T), but also when Q has a nonamenable relative

commutant, by the spectral gap argument from [Pop08].

Applied to the above comultiplication ∆ : M → M ⊗M , we will be able

to assume that after a unitary conjugacy, ∆(LΓ) ⊂ L(Γ× Γ).

In Section 5 we prove the following. Assume that M = L∞(XI
0 ) o Γ

is a generalized Bernoulli crossed product, and write A = L∞(XI
0 ). If D ⊂

M ⊗M is an abelian von Neumann subalgebra that is normalized by many

unitaries in L(Γ × Γ) and if a number of conditions are satisfied, then the

relative commutant D′ ∩M ⊗M can be essentially unitarily conjugated into

A ⊗ A. This result and its proof are very similar to [Ioa11, Th. 6.1] and very

much inspired by the clustering sequences techniques from [Pop06d, §§1–4].

Applied to the above comultiplication ∆ : M →M⊗M we may essentially

assume that after a unitary conjugacy, ∆(A)′ ∩M ⊗M = A⊗A.

In Section 6 we provide a very general conjugacy criterion for actions. Let

N = B o Λ and M = Ao Γ be group measure space II1 factors. Assume that

N ⊂ M in such a way that there exist intertwining bimodules from B into A

and from LΛ into LΓ. Under a few extra conditions, we conclude that there

exists a unitary Ω ∈ M such that Ad Ω maps B into A and TΛ into TΓ. We

refer to Theorem 6.1 for a precise statement.

Applied to the above comultiplication ∆ : M → M ⊗M , it ultimately

follows that there exists a unitary Ω ∈M ⊗M such that

(1.1) Ω∗∆(ug)Ω = ω(g)uδ1(g) ⊗ uδ2(g) ∀g ∈ Γ and Ω∗∆(A)Ω ⊂ A⊗A

for some group homomorphisms δi : Γ→ Γ, ω : Γ→ T.
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Once (1.1) above is established, we conclude that Ω ∈ LΛ ⊗ LΛ satisfies

a 2-cocycle and a symmetry relation. By the above mentioned vanishing of

2-cohomology Theorem 3.3, the main Theorems 1.1 and 8.3 will follow.

We finally refer to the lecture notes [Vae11] for an introduction to the

results and techniques of this paper and [Ioa11].

2. Preliminaries

2.1. Intertwining-by-bimodules. We recall from [Pop06c, Th. 2.1, Cor. 2.3]

the theory of intertwining-by-bimodules, summarized in the following defini-

tion.

Definition 2.1. Let (M, τ) be a tracial von Neumann algebra with separa-

ble predual and P,Q ⊂ M possibly nonunital von Neumann subalgebras. We

write P ≺M Q (or P ≺ Q if there is no risk of confusion) when one of the

following equivalent conditions is satisfied:

• There exist projections p ∈ P , q ∈ Q, a ∗-homomorphism ϕ : pPp→ qQq

and a nonzero partial isometry v ∈ pMq such that xv = vϕ(x) for all

x ∈ pPp.

• There exist a projection q ∈ Mn(C) ⊗ Q, a ∗-homomorphism ϕ : P →
q(Mn(C) ⊗ Q)q and a nonzero partial isometry v ∈ (M1,n(C) ⊗ 1PM)q

such that xv = vϕ(x) for all x ∈ P .

• It is impossible to find a sequence un∈U(P ) satisfying ‖EQ(xuny
∗)‖2→0

for all x, y ∈ 1QM1P .

• There exists a subgroup U ⊂ U(P ) generating P as a von Neumann

algebra for which it is impossible to find a sequence un ∈ U satisfying

‖EQ(xuny
∗)‖2 → 0 for all x, y ∈ 1QM1P .

Remark 2.2. We freely use the following facts about the embedding prop-

erty ≺. If Qk ⊂M is a sequence of von Neumann subalgebras and P 6≺ Qk for

all k, considering the diagonal inclusion of P into matrices over M together

with the subalgebra Q1 ⊕ · · · ⊕Ql, we find a sequence of unitaries un ∈ U(P )

such that for all k and all x, y ∈ 1Qk
M1P , we have ‖EQk

(xuny
∗)‖2 → 0 (see,

e.g., [Vae08, Rem. 3.3] for details).

If p ∈ P is a nonzero projection and pPp ≺ Q, then P ≺ Q (see, e.g.,

[Vae08, Lemma 3.4]). Also, if P ≺ Q and B ⊂ Q has finite index, then

P ≺ B (see, e.g., [Vae08, Lemma 3.9]). Finally, although ≺ is not transitive,

the following holds for von Neumann subalgebras P and B ⊂ Q. If P ≺ Q

and P 6≺ B, the ∗-homomorphism ϕ in Definition 2.1 can be chosen in such

a way that the subalgebra ϕ(P ) ⊂ Q satisfies ϕ(P ) 6≺Q B (see, e.g., [Vae08,

Rem. 3.8]).
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2.2. Bimodules and weak containment. Let M,N be tracial von Neumann

algebras. An M -N -bimodule MHN is a Hilbert space H equipped with a nor-

mal unital ∗-homomorphism π : M → B(H) and a normal unital ∗-anti-

homomorphism π′ : N → B(H) such that π(M) and π′(N) commute. We

write xξy instead of π(x)π′(y)ξ. The bimodule ML2(M)M is called the trivial

bimodule, and (M ⊗ 1)L
2(M ⊗M)(1⊗M) is called the coarse bimodule. Given

the bimodules MHN and NKP , one can define the M -P -bimodule H ⊗N K,

which is called the Connes tensor product ; see [Con94, V.App. B].

Every M -N -bimodule MHN gives rise to a ∗-homomorphism πH : M ⊗alg

Nop → B(H) given by πH(x⊗y)ξ = xξy. We say that MHN is weakly contained

in MKN, and write H ⊂weak K, if ‖πH(T )‖ 6 ‖πK(T )‖ for all T ∈M ⊗alg N
op.

Recall that H ⊂weak K if and only if MHN lies in the closure (for the Fell

topology) of all finite direct sums of copies of MKN.

For later use we record the following easy lemma and give a proof for the

convenience of the reader.

Lemma 2.3. Let (M, τ) be a tracial von Neumann algebra, and let P ⊂
pMp be a von Neumann subalgebra. Let PHM be a P -M -bimodule, and let

κ > 0. Assume that ξn ∈ H satisfies

‖aξn−ξna‖ → 0 ∀a ∈ P, ‖ξnx‖ 6 κ‖x‖2 ∀n ∈ N, x ∈M, lim sup
n
‖ξnp‖ > 0.

Then there is a nonzero projection p1 ∈ P ′ ∩ pMp such that PL2(p1M)M is

weakly contained in PHM .

Proof. Replacing ξn by ξnp, we may assume that ξnp = ξn for all n. Since

‖ξnx‖ 6 κ‖x‖2 for all x ∈ M , define Tn ∈ pM+p satisfying ‖Tn‖ 6 κ and

〈ξn, ξnx〉 = τ(Tnx) for all x ∈M . We have ‖[a, Tn]‖1 → 0 for all a ∈ P . Since

τ(Tn) = ‖ξn‖2 and ‖Tn‖ is bounded, we can pass to a subsequence and assume

that Tn → T weakly with T ∈ pM+p, τ(T ) > 0. Note that T ∈ P ′ ∩ pM+p.

Take S ∈ P ′ ∩ pM+p such that T 1/2S is a nonzero projection p1. Define

ηn = ξnS. It follows that 〈ηn, aηnx〉 → τ(p1ax) for all a ∈ P , x ∈ M . Hence,

PL2(p1M)M is weakly contained in PHM. �

2.3. Relative property (T). Let (M, τ) be a tracial von Neumann algebra,

and let P ⊂M be a von Neumann subalgebra. Following [Pop06a, Prop. 4.1],

we say that P ⊂M has the relative property (T) if every sequence ϕn : M →M

of normal completely positive maps that are sub-unital (ϕn(1) 6 1), subtracial

(τ ◦ ϕn 6 τ) and satisfy ‖ϕn(x) − x‖2 → 0 for all x ∈ M , converges to the

identity uniformly on the unit ball of P ; i.e.,

sup
x∈P,‖x‖61

‖ϕn(x)− x‖2 → 0.



A CLASS OF SUPERRIGID GROUP VON NEUMANN ALGEBRAS 239

If Γ0 < Γ1 are countable groups, by [Pop06a, Proposition 5.1] the inclusion

LΓ0 ⊂ LΓ1 has the relative property (T) if and only if Γ0 < Γ1 has the relative

property (T) in the usual group theoretic sense.

2.4. Relative amenability. Recall that a tracial von Neumann algebra (M,τ)

is called amenable if the trivial M -M -bimodule is weakly contained in the

coarse M -M -bimodule.

Fix a tracial von Neumann algebra (M, τ) and a von Neumann subalgebra

Q ⊂ M . Jones’ basic construction 〈M, eQ〉 is defined as the von Neumann

subalgebra of B(L2(M)) generated byM (acting on the left) and the orthogonal

projection eQ of L2(M) onto L2(Q). Note that 〈M, eQ〉 equals the commutant

of the right Q-action on L2(M). The basic construction 〈M, eQ〉 comes with a

semi-finite faithful trace Tr satisfying Tr(aeQb) = τ(ab) for all a, b ∈ M . We

denote, for p = 1, 2, by Lp(〈M, eQ〉) the corresponding Lp-spaces.

Following [OP10, Def. 2.2], a von Neumann subalgebra P ⊂ pMp is said

to be amenable relative to Q if PL2(p〈M, eQ〉)M weakly contains PL2(pM)M.

By [OP10, Th. 2.1], P is amenable relative to Q if and only if there exists a

sequence Tn ∈ pL1(〈M, eQ〉)+p satisfying

‖aTn − Tna‖1 → 0 ∀a ∈ P and Tr(Tnx)→ τ(x) ∀x ∈ pMp.

We say that a von Neumann subalgebra P ⊂ pMp is strongly nonamenable

relative to Q if for all nonzero projections p1 ∈ P ′ ∩ pMp, the von Neumann

algebra Pp1 is nonamenable relative to Q. Equivalently, none of the bimodules

PL2(p1M)M with p1 a nonzero projection in P ′ ∩ pMp is weakly contained in

PL2(p〈M, eQ〉)M.

If P ⊂ pMp is amenable relative to Q and if A ⊂ eMe is a von Neumann

subalgebra satisfying A ≺M P , then there exists a nonzero projection f ∈
A′ ∩ eMe such that Af is amenable relative to Q.

Note that ML2(〈M, eQ〉)M ∼= M

Ä
L2(M)⊗Q L2(M)

ä
M. In particular, a

von Neumann subalgebra P ⊂ p(N ⊗M)p is amenable relative to N ⊗ 1 if and

only if PL2(p(N ⊗M))(N ⊗M) is weakly contained in

(P ⊗ 1)L
2(p(N ⊗M)⊗M)(N ⊗ 1⊗M).

3. Symmetric dual 2-cocycles and isomorphism of group

von Neumann algebras

The main aim of this section is to prove the following result. Whenever

Λ is a countable group and (vs)s∈Λ are the canonical unitaries generating LΛ,

we denote by TΛ the group of unitaries in LΛ of the form λvs for λ ∈ T and

s ∈ Λ.
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Theorem 3.1. Let Γ and Λ be icc groups, and let LΓ = LΛ. Denote by

(ug)g∈Γ and (vs)s∈Λ the respective canonical unitaries. Denote by

dist‖·‖2(TΓ,TΛ) = sup
u∈TΓ

(
inf
v∈TΛ

‖u− v‖2
)

the (asymmetric) upper Hausdorff distance. Then the following two statements

are equivalent :

• dist‖·‖2(TΓ,TΛ) <
√

2.

• There exist a unitary w ∈ LΛ, a character γ : Γ→ T and an isomorphism

of groups δ : Γ→ Λ such that

wugw
∗ = γ(g)vδ(g) ∀g ∈ Γ.

Defining the height of an element x ∈ LΛ as

(3.1) hΛ(x) := max{|τ(xv∗s)| | s ∈ Λ},

it is an easy exercise to check that

dist‖·‖2(x,TΛ) =
»

1 + ‖x‖22 − 2hΛ(x).

In particular, the assumption dist‖·‖2(TΓ,TΛ) <
√

2 in Theorem 3.1 is equiv-

alent to the existence of a δ > 0 such that hΛ(ug) > δ for all g ∈ Γ.

Remark 3.2. Assume that Γ and Λ are countable groups and that LΓ is

a von Neumann subalgebra of LΛ. Assume that dist‖·‖2(TΓ,TΛ) <
√

2. We

do not know whether it is still true that there exist a unitary w ∈ LΛ, a

character γ : Γ → T and an injective group homomorphism δ : Γ → Λ such

that wugw
∗ = γ(g)vδ(g) for all g ∈ Γ.

We will not be able to prove our main Theorem 8.3 by a direct applica-

tion of Theorem 3.1. Rather, we need the following vanishing of cohomology

theorem, which at the same time will lead to a proof of Theorem 3.1.

Recall that every group von Neumann algebra LΛ is equipped with a

natural normal unital ∗-homomorphism, called comultiplication, ∆ : LΛ →
LΛ ⊗ LΛ given by ∆(vs) = vs ⊗ vs for all s ∈ Λ. Observe that (∆ ⊗ id)∆ =

(id⊗∆)∆ and that σ◦∆ = ∆, where σ(x⊗y) = y⊗x is the flip automorphism.

We also use the tensor leg numbering notation for operators in tensor products.

In this manner, X21 = σ(X), X23 = 1⊗X, X13 = (σ ⊗ id)(1⊗X), etc.

Theorem 3.3. Let Λ be a countable group, and let ∆ : LΛ → LΛ ⊗ LΛ

be the comultiplication. Suppose that Ω ∈ LΛ⊗ LΛ is a unitary satisfying

Ω21 = µΩ and (∆⊗ id)(Ω)(Ω⊗ 1) = η(id⊗∆)(Ω)(1⊗ Ω)
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for some µ, η ∈ T. Then, µ = η = 1 and there exists a unitary w ∈ LΛ such

that

Ω = ∆(w∗)(w ⊗ w).

Proof. Put M = LΛ and H = `2(Λ). Define the unitary operators λh, ρh,

h ∈ Λ by the formulae λhδk=δhk and ρhδk=δkh−1 . Realize M :={ρh | h∈Λ}′′.
We view `∞(Λ) acting on H by multiplication operators. We define the

unitary

W ∈ `∞(Λ)⊗M given by W (δg ⊗ δh) = δg ⊗ ρgδh = δg ⊗ δhg−1 .

Define the unitary

X ∈ B(H)⊗M : X = WΩ.

It is easy to check that ∆(x) = W ∗(x⊗ 1)W for all x ∈M . Also,

(3.2) (id⊗∆)(X)(1⊗ Ω) = ηX13X12.

Whenever V ⊂ B(H), we denote by [V] the norm closed linear span of V
inside B(H). Define

A := [(id⊗ ω)(X) | ω ∈M∗].

Step 1. The norm closed linear subspace A⊂B(H) is actually a C∗-algebra

acting nondegenerately on H (i.e., [A H] = H). Moreover, λgAλ
∗
g = A for all

g ∈ Λ. Applying id⊗ ω1 ⊗ ω2 to (3.2), we get

[AA] = [(id⊗ ω1 ⊗ ω2)
Ä
(id⊗∆)(X)(1⊗ Ω)

ä
| ω1, ω2 ∈M∗]

= [(id⊗ Ωω)(id⊗∆)(X) | ω ∈ (M ⊗M)∗]

= [(id⊗ ω∆)(X) | ω ∈ (M ⊗M)∗] = A.

Since ∆(x) = W ∗(x⊗ 1)W , we can rewrite (3.2) in the form

(3.3) ηX12X
∗
23 = X∗13W

∗
23X12.

Applying id⊗ ω1 ⊗ ω2, ω1, ω2 ∈ B(H)∗, we get

A = [(id⊗ ω1 ⊗ ω2)(X∗13W
∗
23X12) | ω1, ω2 ∈ B(H)∗].

Denote by Pg ∈ `∞(Λ) the natural minimal projections. Then B(H)∗ = [ωPg |
ω ∈ B(H)∗, g ∈ Λ]. Hence,

A = [(id⊗ ω1Pg ⊗ ω2)(X∗13W
∗
23X12) | ω1, ω2 ∈ B(H)∗, g ∈ Λ]

= [(id⊗ ω1 ⊗ ω2)(X∗13(1⊗ Pg ⊗ 1)W ∗23X12) | ω1, ω2 ∈ B(H)∗, g ∈ Λ].

Since (Pg ⊗ 1)W ∗ = Pg ⊗ ρ∗g, we get

A = [(id⊗ ω1Pg ⊗ ρ∗gω2)(X∗13X12) | ω1, ω2 ∈ B(H)∗, g ∈ Λ]

= [(id⊗ ω1 ⊗ ω2)(X∗13X12) | ω1, ω2 ∈ B(H)∗] = [A∗A].
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Since A = [AA] and A = [A∗A], it follows that A is a C∗-algebra. Also,

[AH] = [(id⊗ ω)(X)H | ω ∈M∗] = [(1⊗ ξ∗1)X(H ⊗ ξ2) | ξ1, ξ2 ∈ H] = H

since X is a unitary operator. So, the C∗-algebra A acts nondegenerately on H.

Since X(λg ⊗ 1)X∗ = λg ⊗ ρg, also

λ∗g(id⊗ ω)(X)λg = (id⊗ ωρg)(X).

Hence, λg normalizes A.

Step 2. We have µ = 1, and A is an abelian C∗-algebra. Applying id⊗ σ
to (3.2) and using the fact that ∆ = σ ◦ ∆, one gets X12X13 = µX13X12.

Applying id ⊗ ω1 ⊗ ω2 to this formula, we get that ab = µba for all a, b ∈ A.

So, this formula also holds when a and b belong to A′′, which contains 1. But

then, µ = 1 and A follows abelian.

Step 3. The closed linear span B := [Aλg | g ∈ Λ] is a C∗-algebra that is

ultraweakly dense in B(H). Since the unitaries λg normalize A, it follows that

B is a C∗-algebra. Also, A ⊂ B and hence, B acts nondegenerately on H. It

suffices to prove that B′ = C1. Since the commutant of {λg | g ∈ Λ} equals

M , we have to prove that M ∩ A′ = C1. Take x ∈ M ∩ A′. Denote A = A′′,

and note that X ∈ A ⊗M . Since A is abelian, we have X12X13 = X13X12.

Combining with (3.3), we have

W ∗23X12X23 = ηX12X13.

Hence,

W ∗23X12X23(1⊗ x⊗ 1)X∗23X
∗
12W23 = X12X13(1⊗ x⊗ 1)X∗13X

∗
12.

Since x ∈ A′, the left-hand side equals (id⊗∆)(X(1⊗ x)X∗), while the right-

hand side equals X(1⊗ x)X∗ ⊗ 1. Denote by τ the natural trace on M = LΛ.

Then, (id ⊗ τ)∆(y) = τ(y)1 for all y ∈ M . Applying id ⊗ id ⊗ τ to the

equality (id ⊗ ∆)(X(1 ⊗ x)X∗) = X(1 ⊗ x)X∗ ⊗ 1, we find y ∈ A such that

X(1⊗ x)X∗ = y ⊗ 1. But then,

1⊗ x = X∗(y ⊗ 1)X = y ⊗ 1.

We finally conclude that x is a scalar multiple of 1.

Step 4. The formula E(x) = (id ⊗ τ)(X(x ⊗ 1)X∗) provides a normal

conditional expectation of B(H) onto A. Since A is abelian, we have E(x) = x

for all x ∈ A. So, it remains to prove that E(x) ∈ A for all x ∈ B(H). By

Step 3 it suffices to check this for x = aλg, a ∈ A, g ∈ Λ. Since a ⊗ 1 and X

commute, we have

E(aλg) = a(id⊗ τ)(X(λg ⊗ 1)X∗) = a(id⊗ τ)(λg ⊗ ρg) =

a if g = e,

0 if g 6= e.
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End of the proof. Step 4 implies that A is a discrete von Neumann algebra.

Let p ∈ A be a nonzero minimal projection. Since A is abelian, define the

unitary w ∈M such that X(p⊗ 1) = ηp⊗w. Multiplying (3.2) with p⊗ 1⊗ 1,

we get that ∆(w)Ω=w⊗w. So, Ω=∆(w∗)(w⊗w). Then also (∆⊗id)(Ω)(Ω⊗1)

= (id⊗∆)(Ω)(1⊗ Ω), implying that η = 1. �

Before proving Theorem 3.1, we state and prove the following lemma

which has some interest of its own. Recall that a unitary representation of

a countable group is called weakly mixing if {0} is the only finite dimensional

invariant subspace.

Lemma 3.4. Let Γ,Λ be countable groups, and assume that LΓ ⊂ LΛ.

Denote by (ug)g∈Γ the canonical unitaries in LΓ. Denote M = LΛ, and let

(vs)s∈Λ be the canonical unitaries in Λ. Let ∆ : LΛ→ LΛ⊗ LΛ be the comul-

tiplication. Assume that the unitary representation Adug of Γ on L2(M)	C1

is weakly mixing.

If Ω ∈M ⊗M is a unitary satisfying Ω(ug⊗ug)Ω∗ ∈ ∆(M) for all g ∈ Γ,

there exist unitaries w, v ∈ M , a character γ : Γ → T and an injective group

homomorphism ρ : Γ→ Λ such that

wugw
∗ = γ(g)vρ(g) ∀g ∈ Γ and Ω = ∆(v∗)(w ⊗ w).

Proof. Define π : Γ → U(M) such that ∆(π(g))Ω = Ω(ug ⊗ ug) for all

g ∈ Γ. Write X = (∆⊗ id)(Ω∗)(id⊗∆)(Ω). Then, X ∈M ⊗M ⊗M is unitary

and satisfies

(3.4) (∆(ug)⊗ ug)X = X(ug ⊗∆(ug))

for all g ∈ Γ. Define Y = (X⊗1)(1⊗X), which is a unitary in M⊗M⊗M⊗M
satisfying

(∆(ug)⊗ ug ⊗ ug)Y = Y (ug ⊗ ug ⊗∆(ug))

for all g ∈ Γ. It follows that the unitary representation ξ 7→ (ug⊗ug)ξ∆(ug)
∗ of

Γ on L2(M⊗M) is not weakly mixing. This yields a finite dimensional unitary

representation η : Γ → U(Cn) and a nonzero vector ξ ∈ Cn ⊗ L2(M ⊗M)

satisfying

(η(g)⊗ ug ⊗ ug)ξ = ξ∆(ug)

for all g ∈ Γ. We may assume that η is irreducible. Since Ad(ug⊗ug) is weakly

mixing on L2(M ⊗M)	 C1 and since η is irreducible, it follows that ξξ∗ is a

multiple of 1. Hence, n = 1 and we have found a unitary Z ∈ M ⊗M and a

character γ : Γ→ T satisfying γ(g)∆(ug)Z = Z(ug ⊗ ug) for all g ∈ Γ.

Since σ ◦∆ = ∆, it follows that Z∗21Z commutes with ug ⊗ ug, g ∈ Γ and

hence, is a scalar multiple of 1. Since (∆ ⊗ id)∆ = (id ⊗∆)∆, it also follows

that (1⊗Z)∗(id⊗∆)(Z)∗(∆⊗ id)(Z)(Z⊗1) commutes with ug⊗ug⊗ug for all
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g ∈ Γ and hence, is a scalar multiple of 1. By Theorem 3.3, we find a unitary

w ∈M such that Z = ∆(w∗)(w ⊗ w).

It follows that γ(g)∆(wugw
∗) = wugw

∗⊗wugw∗ for all g ∈ Γ. This means

that wugw
∗ = γ(g)vρ(g) for an injective group homomorphism ρ : Γ→ Λ. (See

Lemma 7.1 below for this well-known fact.) Put Λ0 = ρ(Γ). Since Adug
is a weakly mixing representation of Γ on L2(M), also (Ad vs)s∈Λ0 is weakly

mixing, meaning that Λ0 ⊂ Λ has the relative icc property: {sts−1 | s ∈ Λ0}
is infinite for all t ∈ Λ− {e}.

Since Ω(ug ⊗ ug)Ω∗ ∈ ∆(M) for all g ∈ Γ, it follows that

(3.5) Ω(w∗ ⊗ w∗) (vs ⊗ vs) (w ⊗ w)Ω∗ ∈ ∆(M)

for all s ∈ Λ0. Since Λ0 ⊂ Λ has the relative icc property, we can take a

sequence sn ∈ Λ0 such that snts
−1
n →∞ for all t ∈ Λ− {e}. It follows that

‖E∆(M)(a(vsn ⊗ vsn)b)− E∆(M)(a) ∆(vsn)E∆(M)(b)‖2 → 0

for all a, b ∈ M ⊗M . Indeed, it suffices to check this for a and b of the form

vr⊗vt, r, t ∈ Λ. Together with (3.5), it follows that ‖E∆(M)(Ω(w∗⊗w∗))‖2 = 1,

meaning that Ω(w∗⊗w∗) ∈ ∆(M). We have found the required unitary v ∈M
such that Ω = ∆(v∗)(w ⊗ w). �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Denote by ∆ : LΛ→ LΛ⊗LΛ the canonical comul-

tiplication. Put LΓ = M = LΛ, and denote by τ the trace on M . Whenever

x ∈M , we denote by xs, s ∈ Λ the Fourier coefficient xs := τ(xv∗s). As above,

we define for all x ∈M the height hΛ(x) = max{|(x)s| | s ∈ Λ}.
First assume that dist‖·‖2(TΓ,TΛ) <

√
2. By the discussion after the

formulation of Theorem 3.1, we find a δ > 0 such that hΛ(ug) > δ for all g ∈ Γ.

A straightforward computation then gives

(τ ⊗ τ)((∆(ug)⊗ ug)(ug ⊗∆(ug))
∗) =

∑
s∈Λ

|(ug)s|4 > δ4

for all g ∈ Γ. So, there exists a nonzero X ∈M ⊗M ⊗M satisfying

(∆(ug)⊗ ug)X = X(ug ⊗∆(ug))

for all g ∈ Γ.

We also have M = LΓ. So, Γ is an icc group and (Adug)g∈Γ is a weakly

mixing representation of Γ on L2(M) 	 C1. Since XX∗ commutes with all

∆(ug) ⊗ ug, g ∈ Γ, it follows that XX∗ ∈ (∆(M)′ ∩M ⊗M) ⊗ 1. Since Λ is

an icc group, ∆(M) has trivial relative commutant in M ⊗M . Hence, XX∗

is a nonzero multiple of 1 and we may assume that X is a unitary element of

M ⊗M ⊗M .
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We can now start reading the proof of Lemma 3.4 at formula (3.4) and

find a unitary w ∈M , a character γ : Γ→ T and an injective group morphism

δ : Γ→ Λ such that

wugw
∗ = γ(g)uδ(g) ∀g ∈ Γ.

But then, δ follows onto as well.

Conversely assume that dist‖·‖2(TΓ,TΛ) =
√

2. So we can take a sequence

gn ∈ Γ such that hΛ(ugn)→ 0. We claim that hΛ(augnb)→ 0 for all a, b ∈M .

The claim is trivial if a and b are finite linear combinations of vs, s ∈ Λ and

follows in general by approximating in ‖ · ‖2 arbitrary a, b ∈M by such finite

linear combinations a0, b0 satisfying ‖a0‖ 6 ‖a‖ and ‖b0‖ 6 ‖b‖. If w ∈ M

would be a unitary satisfying wugw
∗ ∈ TΛ for all g ∈ Γ, we would arrive at

the contradiction that 1 = hΛ(wugnw
∗)→ 0. �

Out of Connes’ rigidity paper [Con80] grew a series of rigidity results “up

to countable classes” (see, e.g., [Pop06b, Th 5.3(2)],[Pop06a, Th. 4.4], [Oza04,

Th. 2], etc.). In particular, it was pointed out in [Pop07, §4] that Connes’

rigidity conjecture ([Con82]) does hold true up to countable classes. More pre-

cisely, given an icc property (T) group Γ, there are at most countably many

nonisomorphic groups Λi satisfying LΓ ∼= LΛi. Besides “separability argu-

ments,” the proof in [Pop07] makes crucial use of a result in [Sha00, theorem,

p. 5], which shows that every property (T) group is the quotient of a finitely

presented property (T) group and thus us allows to assume (when arguing by

contradiction) that all Λi are a quotient of one and the same property (T)

group. As a corollary of Theorem 3.3 we can give an alternative proof, not

relying on Shalom’s theorem.

Proposition 3.5. Let Γ be an icc property (T ) group. There are at most

countably many nonisomorphic groups Λi satisfying LΓ ∼= LΛi.

Proof. Put M = LΓ with corresponding canonical unitaries (ug)g∈Γ. As-

sume that (Λi)i∈I is an uncountable family of groups such that M = LΛi. De-

note by (uig)g∈Λi the corresponding canonical unitaries. We need to find i 6= j

such that Λi ∼= Λj . Note that all Λi are icc groups. Denote by ∆i : M →M⊗M
the comultiplication that corresponds to the group von Neumann algebra de-

composition M = LΛi.

Since Γ has property (T), take a finite subset K ⊂ Γ and ε > 0 such that

every unitary representation of Γ that admits a (K, ε)-invariant unit vector ac-

tually admits a nonzero invariant vector. Here, given a unitary representation

π : Γ → U(H), a unit vector ξ is called (K, ε)-invariant if ‖π(g)ξ − ξ‖ 6 ε for

all g ∈ K.

Since the Hilbert space L2(M ⊗M) = `2(Γ×Γ) is separable, we can take

i 6= j such that ‖∆i(ug) − ∆j(ug)‖2 6 ε for all g ∈ K. Define the unitary
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representation π : Γ→ U(`2(Γ× Γ)) given by π(g)x = ∆i(ug)x∆j(ug)
∗ for all

x ∈ M ⊗M . By construction, the vector 1 ⊗ 1 is (K, ε) invariant. Hence, π

admits a nonzero invariant vector Ω ∈ L2(M ⊗M). So, ∆i(a)Ω = Ω∆j(a) for

all a ∈M . Since Λi is an icc group, the relative commutant of ∆i(LΛi) inside

L(Λi × Λi) equals C1. It follows that Ω is a nonzero multiple of a unitary

element in M ⊗M . Hence, we may assume that Ω ∈ U(M ⊗M).

Since ∆j = Ad Ω∗ ◦∆i, one deduces, as in the proof of Lemma 3.4, that

Ω ∈ L(Λi)⊗L(Λi) satisfies the 2-cocycle and symmetry relation of Theorem 3.3.

So, by Theorem 3.3, we find a unitary w ∈ M such that Ω = ∆i(w
∗)(w ⊗ w).

Hence, for all g ∈ Λj ,

wujgw
∗ ⊗ wujgw∗ = (w ⊗ w)∆j(u

j
g)(w

∗ ⊗ w∗) = ∆i(wu
j
gw
∗).

So, by Lemma 7.1 below, we find for every g ∈ Λj an element δ(g) ∈ Λi such

that wujgw
∗ = uiδ(g). It follows that δ is an isomorphism of groups and hence

Λi ∼= Λj . �

4. Support length deformation and intertwining of rigid

subalgebras

Let Γ y I be an action of a countable group Γ on a countable set I, and let

(A0, τ) be a tracial von Neumann algebra. We denote (AI0, τ) :=
⊗

i∈I(A0, τ).

Put (A, τ) = (AI0, τ) and M = Ao Γ.

The following tensor length deformation of M = AI0 o Γ was introduced

in [Ioa07]. For 0 < ρ < 1, we define

θρ : M →M : θρ(aug) = ρnaug

whenever

g ∈ Γ, a ∈ (A0 	 C1)J and J ⊂ I, |J | = n.

By [Ioa07, §2] there is an embedding M ↪→ M̃ and a 1-parameter group of

automorphisms (αt)t∈R of M̃ such that

(4.1) EM (αt(x)) = θρt(x) ∀x ∈M.

We will recall this construction in the proof of Theorem 4.2. It follows, in

particular, that θρ is a well defined normal completely positive map on M .

Also note that ρt → 1 when t→ 0.

The length deformation θρ is a variant of the malleable deformation that

was discovered in [Pop06c]. Both the length deformation and the malleable

deformation allow us to prove, under certain conditions, that rigid subalgebras

of M can be conjugated into LΓ ⊂M . Theorem 4.2 below is an adaptation of

[Pop06c, Th. 4.1] and [Ioa11, Th. 2.1]. We first need a technical lemma and

some terminology.
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Recall that ifQ⊂M is a von Neumann subalgebra, we define QNM (Q)⊂M
consisting of the elements x ∈ M for which there exist x1, . . . , xn, y1, . . . , ym
satisfying

xQ ⊂
n∑
i=1

Qxi and Qx ⊂
m∑
j=1

yjQ.

Then, QNM (Q) is a ∗-subalgebra of M containing Q. Its weak closure is called

the quasi-normalizer of Q inside M . By construction, both Q and Q′ ∩M are

subalgebras of QNM (Q).

If Γ y I and F ⊂ I, we denote by StabF the subgroup of Γ given by

StabF := {g ∈ Γ | g · i = i ∀i ∈ F}. We also write NormF := {g ∈ Γ | g ·F =

F}. If F is finite, StabF is a finite index subgroup of NormF .

Lemma 4.1. Let Γ y I be an action. Let A0 ⊂ B0 and N be tracial

von Neumann algebras. Consider M := N ⊗ (AI0oΓ) and ›M = N ⊗ (BI
0 oΓ).

Note that M⊂ ›M.

(1) If P ⊂ pMp is a von Neumann subalgebra such that P 6≺M N ⊗ (AI0 o
Stab i) for all i ∈ I , then the quasi-normalizer of P inside p›Mp is con-

tained in pMp.

(2) If F ⊂ I is a finite subset and Q ⊂ q(N ⊗ AF0 )q is a von Neumann

subalgebra such that for all proper subsets G ⊂ F we have Q 6≺N⊗AF0
N⊗AG0 , then the quasi-normalizer of Q inside qMq is contained in q(N⊗
(AoNormF))q.

(3) If G ⊂ I is a finite subset and Q ⊂ q(N ⊗ (Ao StabG))q is a von Neu-

mann subalgebra such that for all strictly larger subsets G ⊂ G′ we have

Q 6≺N⊗(AoStabG) N ⊗ (AoStabG′), then the quasi-normalizer of Q inside

qMq is contained in q(N ⊗ (AoNormG))q.

Proof. Analogous to the proof of [Vae08, Lemma 4.2]. �

Theorem 4.2. Let Γ y I be an action, and let (A0, τ) be a tracial

von Neumann algebra. Assume that κ ∈ N such that Stab J is finite when-

ever J ⊂ I and |J | > κ. Put M = AI0 o Γ as above.

Let (N, τ) be a tracial von Neumann algebra, and let Q ⊂ p(N ⊗M)p be

a von Neumann subalgebra. Denote by P ⊂ p(N ⊗M)p the quasi-normalizer

of Q. If for some 0 < ρ < 1 and δ > 0 we have

(4.2) τ(b∗(id⊗ θρ)(b)) > δ ∀b ∈ U(Q),

then at least one of the following statements is true:

• Q ≺ N ⊗ 1.

• P ≺ N ⊗ (Ao Stab i) for some i ∈ I .
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• There exists a nonzero partial isometry v ∈ p(N ⊗M) with vv∗ ∈ P and

v∗Pv ⊂ N ⊗ LΓ. If Γ is icc and N is a factor, we may assume that

vv∗ ∈ Z(P ).

Proof. We recall from [Ioa07, §2] the following construction. Put B0 =

A0 ∗ LZ, with respect to the natural traces. Denote by v ∈ LZ the canonical

unitary generator, and choose a self-adjoint element h ∈ LZ with spectrum

[−π, π] such that v = exp(ih). Denote by α0
t ∈ Aut(B0) the inner automor-

phism given by α0
t = Ad exp(ith). Put B = BI

0 and αt =
⊗

i∈I α
0
t . Since αt

commutes with the generalized Bernoulli action, we extend αt to an automor-

phism of M̃ := B o Γ satisfying αt(ug) = ug for all g ∈ Γ. Then (4.1) above

holds with ρt =
∣∣∣ sin(πt)

πt

∣∣∣2.

Denote by β0 ∈ Aut(B0) the automorphism given by β0(a) = a for all

a ∈ A0 and β0(v) = v∗. Define β =
⊗
i∈I β0, and extend β0 to M̃ by acting

trivially on LΓ. By construction, β2 = id and β ◦ αt ◦ β = α−t. We continue

writing αt, β instead of id⊗β and id⊗αt on N ⊗ M̃ . WriteM := N ⊗M and›M := N ⊗ M̃ . By (4.1), for all x ∈M, we have EM(αt(x)) = (id⊗ θρt)(x).

Assume now that Q and P are as in the formulation of the theorem and

that (4.2) holds. Assume that for all i ∈ I, we have P 6≺ N⊗(AoStab i). Given

von Neumann subalgebras Q1, Q2 ⊂ ›M, we say that x ∈ ›M is Q1-Q2-finite if

there exist x1, . . . , xn, y1, . . . , ym ∈ ›M such that

xQ2 ⊂
n∑
i=1

Q1xi and Q1x ⊂
m∑
j=1

yjQ2.

Note that by definition QNpMp(Q) equals the set ofQ-Q-finite elements in pMp.

We follow the lines of [Vae08, proof of Lemma 5.2] to prove the following

claim: there exists a nonzero Q-α1(Q)-finite element in p›Mα1(p). Combin-

ing (4.2) and (4.1), we find an n ∈ N such that writing t = 2−n, we have

τ(b∗αt(b)) > δ for all unitaries b ∈ Q. Define v ∈ ›M as the element of minimal

2-norm in the ‖ · ‖2-closed convex hull of {b∗αt(b) | b ∈ U(Q)}. Then, τ(v) > δ
and hence, v 6= 0. By construction, v ∈ p›Mαt(p) and bv = vαt(b) for all b ∈ Q.

Hence, v is Q-αt(Q)-finite.

To conclude the proof of the claim, it suffices to show the following state-

ment: if there exists a nonzero Q-αt(Q)-finite element v ∈ p›Mαt(p), then

the same is true for 2t instead of t. For all d ∈ QNpMp(Q), we have that

αt(β(v∗)dv) is a Q-α2t(Q)-finite element in p›Mα2t(p). So, we have to prove

that there exists a d ∈ QNpMp(Q) such that β(v∗)dv 6= 0. If this is not the

case and if we denote by q ∈ p›Mp the projection onto the closed linear span

of all {Im(dv) | d ∈ QNpMp(Q)}, it follows that q and β(q) are orthogonal.

By construction, q commutes with P . By Lemma 4.1(1), q ∈ pMp. Hence,
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q = β(q) and it follows that q = 0. But then, v = 0, a contradiction. Hence,

the claim is proven.

Since there is a nonzero Q-α1(Q)-finite element in ›M we have, in partic-

ular, that α1(Q) ≺M̃M.

For every finite subset F ⊂ I, define M(F) := N ⊗ (AF0 o StabF). By

convention,M(∅) = N ⊗LΓ. We now prove that there exists a finite, possibly

empty, subset F ⊂ I such that Q ≺MM(F). Assume the contrary, and take

a sequence of unitaries vn ∈ Q such that

(4.3) ‖EM(F)(avnb
∗)‖2 → 0 ∀a, b ∈M and all finite subsets F ⊂ I.

We will deduce from this that

(4.4) ‖EM(xα1(vn)y∗)‖2 → 0 ∀x, y ∈ ›M.

Formula (4.4) implies that α1(Q) 6≺M̃M, contradicting the statement α1(Q)

≺M̃M proven above.

We now deduce (4.4) from (4.3). Let F ⊂ I be a finite subset, and let

xi ∈ B0 	 A0α1(A0) for all i ∈ F . Put xi = 1 when i ∈ I − F , and define

x = 1N ⊗
⊗

i∈I xi. The linear span of all Mx(1N ⊗ α1(A)) forms a dense

∗-subalgebra of ›M. So it suffices to prove (4.4) for x, y having such a special

form: x as above and y = 1 ⊗⊗j∈I yj , where yj ∈ B0 	 A0α1(A0) when j

belongs to a finite subset G ⊂ I and yj = 1 when j 6∈ G.

Denote vn =
∑
g∈Γ(vn)g(1⊗ ug), where (vn)g ∈ N ⊗A, and observe that

EM(xα1(vn)y∗) =
∑
g∈Γ

EN⊗A
Ä
xα1((vn)g)σg(y

∗)
ä
(1⊗ ug).

If g · G 6= F , we have EN⊗A
Ä
xα1((vn)g)σg(y

∗)
ä

= 0. If g · G = F , we have

EN⊗A
Ä
xα1((vn)g)σg(y

∗)
ä

= EN⊗A
Ä
x α1

Ä
EN⊗AF0

((vn)g)
ä
σg(y

∗)
ä
.

Take finitely many g1, . . . , gk ∈ Γ such that gi · G = F for all i ∈ {1, . . . , k} and

such that {g ∈ Γ | g·G = F} is the disjoint union of (StabF)g1, . . . , (StabF)gk.

Put

zn =
k∑
i=1

EN⊗(AF0 oStabF)

Ä
vn(1⊗ u∗gi)

ä
(1⊗ ugi).

We have shown that

EM(xα1(vn)y∗) = EM(xα1(zn)y∗).

Since by (4.3), ‖zn‖2 → 0, we get (4.4).

So, take a finite subset F ⊂ I such that Q ≺ N ⊗ (AF0 o StabF). We

already assumed that for all i ∈ I we have P 6≺ N ⊗ (AoStab i). We now also

assume that Q 6≺ N ⊗1, and we prove that the third statement of the theorem

holds.

Take a larger finite subset G ⊃ F such that Q ≺ N ⊗ (AF0 oStabG) where

G satisfies one of two alternatives: StabG is finite or Q 6≺ N ⊗ (AF0 o StabG′)
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whenever G′ is strictly larger than G. We claim that the first alternative does

not occur. If it would, we would get that Q ≺ N ⊗ AF0 . Since Q 6≺ N ⊗ 1, we

have F 6= ∅ and we can make F smaller, but still nonempty, until for all proper

subsets F ′ ⊂ F we have Q 6≺ N ⊗ AF ′0 . So we can take projections p0 ∈ Q,

q ∈ N⊗AF0 , a ∗-homomorphism ϕ : p0Qp0 → q(N⊗AF0 )q and a nonzero partial

isometry v ∈ p0Mq such that bv = vϕ(b) for all b ∈ p0Qp0 and such that

ϕ(p0Qp0) 6≺N⊗AF0 N ⊗AF ′0

whenever F ′ ⊂ F is a proper subset. Lemma 4.1(2) implies that v∗Pv ⊂
N ⊗ (A o NormF) and hence P ≺ N ⊗ (A o NormF). Since F is finite

and nonempty, StabF has finite index in NormF and we reach the con-

tradiction that P ≺ N ⊗ (A o Stab i) for some i ∈ I. This contradiction

proves the claim above. We conclude that Q ≺ N ⊗ (AF0 o StabG) and that

Q 6≺ N ⊗ (AF0 o StabG′) whenever G′ is strictly larger than G.

Take projections p0 ∈ Q, q ∈ N ⊗ (AF0 o StabG), a ∗-homomorphism

ϕ : p0Qp0 → q(N ⊗ (AF0 o StabG))q and a nonzero partial isometry v ∈ p0Mq

such that bv = vϕ(b) for all b ∈ p0Qp0 and such that

(4.5) ϕ(Q) 6≺N⊗(AF0 oStabG) N ⊗ (AF0 o StabG′)

whenever G′ is strictly larger than G.

We claim that G = ∅ (and hence also F = ∅). Assume the contrary. Then

(4.5) implies, in particular, that

ϕ(Q) 6≺N⊗(AoStabG) N ⊗ (Ao StabG′)

whenever G′ is strictly larger than G. Then Lemma 4.1(3) implies that v∗Pv ⊂
N⊗(AoNormG) and hence P ≺ N⊗(AoNormG), which leads as above to the

contradiction that P ≺ N ⊗ (AoStab i) for some i ∈ I. This proves the claim.

By the claim above, F = G = ∅. Note that vv∗ commutes with p0Qp0

and hence belongs to P . Also, by (4.5) and Lemma 4.1(1) we get that v∗Pv ⊂
N ⊗ LΓ. Finally, assume that N is a II1 factor and that Γ is icc. Take par-

tial isometries v1, . . . , vn ∈ P with v∗i vi 6 p and such that
∑n
i=1 viv

∗
i is a

central projection in P . Since N ⊗ LΓ is a II1 factor, take partial isometries

w1, . . . , wn ∈ N ⊗ LΓ such that wiw
∗
i = v∗v∗i viv and such that the projections

w∗iwi are orthogonal. Define x =
∑n
i=1 vivwi. Then, x is a partial isometry

satisfying xx∗ ∈ Z(P ) and x∗Px ⊂ N ⊗ LΓ. �

Recall from Sections 2.3 and 2.4 the concepts of relative property (T) and

relative amenability of von Neumann subalgebras.

Corollary 4.3. Let Γ be an icc group, and let Γ y I be an action.

Assume that κ ∈ N such that Stab J is finite whenever J ⊂ I and |J | > κ.

Assume that Stab i is amenable for all i ∈ I . Put A = AI0 and M = Ao Γ as
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above. Let (N, τ) be a II1 factor, and let Q ⊂ p(N ⊗M)p be a von Neumann

subalgebra satisfying at least one of the following rigidity properties :

• Q ⊂ p(N ⊗M)p has the relative property (T ).

• Q′ ∩ p(N ⊗M)p is strongly nonamenable relative to N ⊗ 1.

Denote by P ⊂ p(N ⊗M)p the quasi-normalizer of Q inside p(N ⊗M). Then,

at least one of the following statements is true:

• Q ≺ N ⊗ 1.

• P ≺ N ⊗ (Ao Stab i) for some i ∈ I .

• There exists v ∈ N ⊗M with vv∗ = p and v∗Pv ⊂ N ⊗ LΓ.

Proof. Assume that Q 6≺ N ⊗ 1 and that for all i ∈ I, we have P 6≺
N ⊗ (A o Stab i). It is sufficient to prove the following statement: for every

nonzero central projection p0 ∈ Z(P ), there exists a 0 < ρ < 1 and a δ > 0

such that

(4.6) τ(b∗(id⊗ θρ)(b)) > δ ∀b ∈ U(Qp0).

Indeed, in these circumstances Theorem 4.2 provides a nonzero partial isometry

v such that vv∗ ∈ Z(P )p0 and v∗Pv ⊂ N ⊗ LΓ. Moreover, since N ⊗ LΓ is a

II1 factor, we can make sure that v∗v is any projection with the same trace as

vv∗. As a result, a maximality argument allows us to put together several v’s

and find a partial isometry v ∈ N ⊗M such that vv∗ = p and v∗Pv ⊂ N ⊗LΓ.

Choose a nonzero central projection p0 ∈ Z(P ).

If Q ⊂ p(N ⊗ M)p has the relative property (T), the same is true for

Qp0 ⊂ p0(N ⊗ M)p0. When ρ → 1, the completely positive maps θρ tend

pointwise to the identity. The relative property (T) yields the existence of

0 < ρ < 1 and δ > 0 such that (4.6) holds for all b ∈ U(Qp0).

If Q′ ∩ p(N ⊗M)p is strongly nonamenable relative to N ⊗ 1, the same is

true for (Qp0)′ ∩ p0(N ⊗M)p0.

Consider the von Neumann algebra M̃ as in the proof of Theorem 4.2.

Recall that M ⊂ M̃ = B o Γ where B = BI
0 and B0 = A0 ∗ LZ. Also,

θρt(x) = EM (αt(x)) for all x ∈M .

As explained in Section 2.2, we denote by ⊂weak the weak containment of

bimodules. We claim that

(4.7) ML2(M̃ 	M)M ⊂weak (M ⊗ 1)L
2(M ⊗M)(1⊗M).

In the case of plain Bernoulli actions, this claim has been proven in [CI10,

Lemma 5]. For the convenience of the reader we include a proof in our gener-

alized Bernoulli case, using the amenability of all Stab i, i ∈ I.

Denote by u the canonical unitary generator of LZ ⊂ B0. Choose a subset

A0 ⊂ A0	C1 such that A0 forms an orthonormal basis of L2(A0)	C1. Define
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the subset B0 ⊂ B0 given by

B0 := {un1a1u
n2 · · · ak−1u

nk | k > 1, n1, . . . , nk ∈ Z−{0}, a1, . . . , ak−1 ∈ A0}.

By construction, we have a decomposition

L2(B0) = L2(A0)⊕
⊕
b∈B0

A0bA0

of L2(B0) into orthogonal A0-A0-subbimodules.

Whenever F ⊂ I is a nonempty finite subset and (bi)i∈F are elements in

B0, we define the element b ∈ B as

(4.8) b =
(⊗
i∈F

bi
)
⊗
( ⊗
i∈I−F

1
)
.

Define the subgroup S < Γ given by

S := {g ∈ Γ | g · F = F and bg·i = bi ∀i ∈ F}.

Define M0 = AI−F0 o S. One checks that the map x ⊗ y → xby defines an

M -M -bimodular unitary operator

L2(M)⊗M0 L2(M)→MbM.

Since F is finite, S ∩ Stab i < S has finite index for all i ∈ F and so, S is

amenable. It follows that M0 is amenable and hence,

M

Ä
L2(M)⊗M0 L2(M)

ä
M ⊂weak (M ⊗ 1)L

2(M ⊗M)(1⊗M).

Since the MbM , b as above, form an orthogonal decomposition of L2(M̃ 	M)

into M -M -subbimodules, the claim (4.7) follows.

As in the proof of Theorem 4.2, denote M := N ⊗M and ›M := N ⊗ M̃ .

By claim (4.7), we have

ML2(›M	M)M ⊂weak M12L
2(N ⊗M ⊗M)M13.

Write T := (Qp0)′ ∩ p0Mp0. Since T is strongly nonamenable relative to

N⊗1, it follows that for all nonzero projections p1 ∈ T ′∩p0Mp0, the bimodule

TL2(p1M)M is not weakly contained in TL2(p0(›M	M))M. By Lemma 2.3,

we get a finite number of elements a1, . . . , an ∈ T and ε > 0 such that

if x ∈ p0
›Mp0, ‖x‖ 6 1 and ‖aix− xai‖2 6 ε ∀i = 1, . . . , n,(4.9)

then ‖x− EM(x)‖2 6
1

4
‖p0‖2.

Taking t close enough to 0, we can make ‖ai − αt(ai)‖2 and ‖p0 − αt(p0)‖2 so

small that, using the commutation of Qp0 with a1, . . . , an, we get

‖ai p0αt(b)p0 − p0αt(b)p0 ai‖2 6 ε

and ‖αt(b)− p0αt(b)p0‖2 6
1

4
‖p0‖2 ∀b ∈ U(Qp0).
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Applying (4.9) to x = p0αt(b)p0, we conclude that ‖x − EM(x)‖2 6 1
4‖p0‖2

and hence,

‖αt(b)− EM(αt(b))‖2 6
3

4
‖p0‖2 ∀b ∈ U(Qp0).

Put ρ = ρ2
t . For all b ∈ U(Qp0), we get

τ(p0)− τ(b∗(id⊗ θρ)(b)) = τ(p0)− ‖(id⊗ θρt)(b)‖22

= ‖αt(b)− EM(αt(b))‖22 6
9

16
τ(p0).

Hence, (4.6) holds with δ = 7
16τ(p0). �

Remark 4.4. We make the following two observations about Corollary 4.3,

but we do not use them in the rest of the paper. In the situation where Q ⊂
p(N ⊗M)p has the relative property (T), Corollary 4.3 can be strengthened in

two ways. First of all, the same conclusion holds without the assumption that

Stab i is amenable for all i ∈ I. In the relative property (T) part of the proof,

we did not use the amenability of Stab i. Secondly, if we assume that Stab i is

amenable and that Q ⊂ P has the relative property (T), then it is easy to see

that the option P ≺ N ⊗ (Ao Stab i) actually implies that Q ≺ N ⊗ 1.

5. Clustering sequences techniques and intertwining of abelian

subalgebras

Throughout this section assume that Γ y I is an action of the countable

group Γ on the countable set I. Assume that κ > 0 such that the stabilizer

StabF is finite whenever F ⊂ I is a subset with |F| > κ. Let (X0, µ0) be a

nontrivial standard probability space and put A := L∞(XI
0 ), together with the

action Γ y A given by the generalized Bernoulli shift. Define M = Ao Γ.

We prove a strong structural result for abelian von Neumann subalgebras

D ⊂ (M ⊗M)t that are normalized by many unitaries in (LΓ⊗LΓ)t. Later we

shall apply this structural result to D = ∆(A) whenever ∆ : M → (M ⊗M)t

is (the amplification of) the comultiplication given by another group von Neu-

mann algebra or group measure space decomposition of M . This structural

result and its proof are very similar to [Ioa11, Th. 6.1]. However, we give all the

details because the generalization from plain Bernoulli to generalized Bernoulli

actions is not totally innocent. Both here and in [Ioa11] the technique is very

much inspired by the clustering sequences techniques from [Pop06d, §§1–4].

For a more gentle introduction to these matters, we refer to the lecture notes

[Vae11].

Theorem 5.1. As above let Γ y I be such that StabF is finite whenever

F ⊂ I and |F| > κ. Put A := L∞(XI
0 ) and M = Ao Γ.

Assume that t > 0 and that D ⊂ (M ⊗M)t is an abelian von Neumann

subalgebra that is normalized by a group of unitaries (γ(s))s∈Λ that belong



254 ADRIAN IOANA, SORIN POPA, and STEFAAN VAES

to (LΓ ⊗ LΓ)t. Denote by P ⊂ (M ⊗M)t the quasi-normalizer of D inside

(M ⊗M)t. Make the following assumptions :

(1) D 6≺M ⊗ 1 and D 6≺ 1⊗M .

(2) For all i ∈ I , we have P 6≺M ⊗ (Ao Stab i) and P 6≺ (Ao Stab i)⊗M .

(3) P 6≺M ⊗ LΓ and P 6≺ LΓ⊗M .

(4) For all i∈I , we have γ(Λ)′′ 6≺L(Γ)⊗L(Stab i) and γ(Λ)′′ 6≺L(Stab i)⊗L(Γ).

Denote C := D′∩(M⊗M)t. Then for every nonzero projection q ∈ Z(C),

we have that Cq ≺ A⊗A.

Remark 5.2. To avoid unnecessary notational complexity we did not for-

mulate the obvious more general result for subalgebras of (M1 ⊗M2)t where

Mi = L∞(XIi
i )o Γi and where both Γi y Ii satisfy the finiteness assumption

on the stabilizer groups. Also there is an obvious version of the theorem for

subalgebras D ⊂M t that are normalized by unitaries γ(s) ∈ L(Γ)t.

Proof. Note that because D is abelian, we have Z(C) = C ′ ∩ (M ⊗M)t.

The main part of the proof consists in showing that for every nonzero projection

q ∈ Z(C), we have that Cq ≺M⊗A. At the end we then deduce that actually

Cq ≺ A⊗A for every nonzero projection q ∈ Z(C). Consider

P := {q1 ∈ Z(C) | q1 is a projection and for every nonzero projection

q ∈ Z(C)q1 we have that Cq ≺M ⊗A}.

One easily checks that P admits a maximum q2 and that this maximum com-

mutes with the normalizer of C; in particular, with the unitaries (γ(s))s∈Λ.

(See [Vae13, Prop. 2.5] for details.) We have to prove that q2 = 1. If not, we

can replace D by D(1 − q2) and γ(s) by γ(s)(1 − q2). So in the end, we only

need to prove that P is nonempty. This means that we have to prove that

C ≺M ⊗A.

We split the proof of the statement C ≺M ⊗A into several steps. We use

the following notation. We use the letter Q to denote all kind of orthogonal

projections related to the infinite tensor product A = AI0 and the letter P to

denote all kind of orthogonal projections related to the group Γ. All these

projections Q and P project onto subspaces of the form L2(M)⊗K and they

all commute.

• For every subset F ⊂ I, we denote by QF the orthogonal projection onto

the closed linear span of {M ⊗AF0 ug | g ∈ Γ}.

• For every ` ∈ N, we denote by Q>` the orthogonal projection onto the

closed linear span of {M ⊗ (A0 	 C1)Fug | F ⊂ I, ` 6 |F| <∞, g ∈ Γ}.

• For every subset S ⊂ Γ, we denote by PS the orthogonal projection onto

the closed linear span of {M ⊗Aug | g ∈ S}.
We denote by Q>`

F the product of Q>` and QF .
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In general, the projection QF does not behave well with respect to the

operator norm ‖ · ‖. Because of the formula

PS(QF (x)) =
∑
g∈S

EM⊗AF0
(x(1⊗ ug)∗) (1⊗ ug),

we do get ‖PS(QF (x))‖ 6 |S| ‖x‖ and ‖PS(x)‖ 6 |S| ‖x‖ for all x ∈ M ⊗M
and all subsets F ⊂ I.

In a few cases, we use the same notation QF , Q
>`, PS to denote projections

of L2(M) onto the corresponding obvious subspaces.

To avoid a too heavy notation, we assume that t 6 1. So we have a

projection p ∈ L(Γ × Γ) such that D ⊂ p(M ⊗M)p and γ(s) ∈ pL(Γ × Γ)p.

This simplification does not hide any essential part of the argument.

Step 1. For every ε > 0 and every ` ∈ N, there exists a unitary a ∈ D
such that

‖a− (Q>` ⊗Q>`)(a)‖2 < ε.

Proof. Denote by σ : M ⊗M →M ⊗M the flip automorphism σ(a⊗ b) =

b⊗ a. Consider the projection

p̃ :=

Ç
p 0

0 σ(p)

å
∈ M2(C)⊗M ⊗M.

Define the von Neumann subalgebra ‹D ⊂ p̃(M2(C)⊗M ⊗M)p̃ given by‹D :=

{Ç
a 0

0 σ(a)

å ∣∣∣∣ a ∈ D
}
.

Denote by ‹P the quasi-normalizer of ‹D inside p̃(M2(C)⊗M⊗M)p̃. By assump-

tion (1), we have ‹D 6≺ M ⊗ 1. By assumption (2), we have for all i ∈ I that‹P 6≺M⊗(AoStab i). By assumption (3) we have ‹P 6≺M⊗LΓ. We now apply

Theorem 4.2. We conclude that (4.2) in Theorem 4.2 cannot hold. So, given

ε > 0 and ` ∈ N, we find a unitary b ∈ ‹D such that ‖d− (1⊗Q>`)(d)‖2 < ε/2.

Writing

d =

Ç
a 0

0 σ(a)

å
,

we have found a unitary a ∈ D such that ‖a − (1 ⊗ Q>`)(a)‖2 < ε/2 and

‖a− (Q>` ⊗ 1)(a)‖2 < ε/2. Hence also ‖a− (Q>` ⊗Q>`)(a)‖2 < ε. �

Step 2. There is a sequence of group elements gn ∈ Λ such that for all

i ∈ I and g, h ∈ Γ× Γ, we have

(5.1)

‖EL(Γ×Stab i)(ugγ(gn)uh)‖2 → 0 and ‖EL(Stab i×Γ)(ugγ(gn)uh)‖2 → 0.
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Proof. This follows immediately from assumption (4), Definition 2.1 and

Remark 2.2. �

From now on, we fix a sequence (gn) in Λ satisfying (5.1). We put vn :=

γ(gn).

Step 3. For all x ∈M ⊗M and all finite subsets F ⊂ I, we have

(5.2) ‖vnxv∗n −QI−F (vnxv
∗
n)‖2 → 0.

Proof. It suffices to check (5.2) when x is of the form x = x0 ⊗ aug with

x0 ∈ M , g ∈ Γ and a ∈ AG0 for some finite subset G ⊂ I. Fix a finite subset

F ⊂ I. Define

K := {k ∈ Γ | kG ∩ F = ∅}.
Define wn = PK(vn). Then, wn ∈ L2(M ⊗M) and by (5.1), ‖vn − wn‖2 → 0.

Hence, ‖vnxv∗n −wnxv∗n‖2 → 0. Since by construction wnxv
∗
n lies in the image

of QI−F , the formula (5.2) follows. �

Step 4. For all a∈D and all ε>0, there exists a finite subset S⊂Γ such that

‖vnav∗n − (PS ⊗ PS)(vnav
∗
n)‖2 6 ε ∀n.

Proof. Choose a unitary a ∈ U(D), and put an := vnav
∗
n. Since the

projections PS⊗1 and 1⊗PS commute, by symmetry it suffices to prove that for

all ε > 0, there exists a finite subset S ⊂ Γ such that ‖(1⊗PS)(an)‖2 > ‖p‖2−4ε

for all n large enough.

Write δ = ε‖p‖2. By Step 1 take a unitary b ∈ U(D) such that ‖b −
Q>κ(b)‖2 6 δ. By the Kaplansky density theorem, take a finite subset G ⊂ I

and an element

b0 ∈ span{x0 ⊗ x1ug | x0 ∈M,x1 ∈ AG0 , g ∈ Γ}

such that ‖b0‖ 6 1, ‖b− b0‖2 6 δ and ‖b0‖2 6 ‖b‖2 = ‖p‖2. Put η = Q>κ(b0),

and observe that ‖η‖2 6 ‖b0‖2 6 ‖p‖2, that ‖b− η‖2 6 2δ and that

η ∈ span{y0 ⊗ y1uh | y0 ∈M,y1 ∈ (A0 	 C1)J , J ⊂ G, |J | > κ, h ∈ Γ}.

Since an and b are commuting unitaries in p(M ⊗M)p, we have 〈an b, b an〉 =

τ(p) and hence,

(5.3)
∣∣∣τ(p)− 〈an b0, η an〉

∣∣∣ 6 3δ

for all n. Put S := {g ∈ Γ | |g · G ∩ G| > κ}. By our assumption on the action

Γ y I, the set S is finite.

Claim. We have that 〈PΓ−S(an) b0, η an〉 → 0. Given the special form of

b0 and η, it suffices to prove the claim for b0 = x0 ⊗ x1ug and η = y0 ⊗ y1uh
where x0, y0 ∈M , x1 ∈ AG0 , y1 ∈ (A0 	 C1)J , J ⊂ G, |J | > κ and g, h ∈ Γ.
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Put dn := QI−(G∪h−1G)(an). By construction, ηdn lies in the closed linear

span of

M ⊗ (A0 	 C1)JAI−G0 uk, k ∈ Γ.

On the other hand, PΓ−S(dn)b0 lies in the closed linear span of

M ⊗ArG∪(I−G)
0 uk, r ∈ Γ− S, k ∈ Γ.

Since |rG ∩ J | < κ for all r ∈ Γ− S, the two subspaces are orthogonal. Hence,

〈PΓ−S(dn) b0, ηdn〉 = 0 for all n. By Step 3, ‖an − dn‖2 → 0. Hence, the claim

follows.

Combining the claim with (5.3), we can take n0 such that∣∣∣τ(p)− 〈PS(an) b0, η an〉
∣∣∣ 6 4δ

for all n > n0. It follows that

τ(p)− 4δ 6 |〈PS(an) b0, η an〉| 6 ‖PS(an)‖2 ‖b0‖ ‖η‖2 ‖an‖ 6 ‖PS(an)‖2 ‖p‖2.

Since τ(p)− 4δ = ‖p‖2(‖p‖2− 4ε), we have shown that ‖PS(an)‖2 > ‖p‖2− 4ε

for all n > n0. �

Recall from (3.1) the notion of the height of an element in a group von Neu-

mann algebra. We now use this notion in the group von Neumann algebra

L(Γ× Γ). So, for all v ∈ L(Γ× Γ), we consider

h(v) = max{|τ(vu∗g)| | g ∈ Γ× Γ}.

Step 5. There exists a δ > 0 such that h(vn) > δ for all n.

Proof. If the assertion does not hold, we can pass to a subsequence and

assume that h(vn)→ 0.

Claim. Take J1, J2 ⊂ I with |Ji| > κ. For all a ∈ (A0	C1)J1⊗(A0	C1)J2

and for all sequences wn in the unit ball of L(Γ× Γ), we have

‖EA⊗A(vnaw
∗
n)‖2 → 0.

To prove the claim, denote by (v)g, g ∈ Γ × Γ, the Fourier coefficients of

an element v ∈ L(Γ × Γ). So, by definition and with ‖ · ‖2-convergence, we

have

v =
∑

g∈Γ×Γ

(v)gug.

Take finite sets Fi ⊂ Γ such that for all g ∈ Γ − Fi, we have |g · Ji ∩ Ji| < κ.

Put F = F1 × F2. So, whenever g ∈ (Γ × Γ) − F , we have a ⊥ σg(a). As a
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result, we get

‖EA⊗A(vnaw
∗
n)‖22

=
∑
k∈F

∑
g∈Γ×Γ

(vn)g (vn)gk (wn)g (wn)gk τ(aσk(a
∗))

6 ‖a‖22 h(vn)2
∑
k∈F

∑
g∈Γ×Γ

|(wn)g| |(wn)gk|

6 ‖a‖22 h(vn)2
∑
k∈F

Ñ( ∑
g∈Γ×Γ

|(wn)g|2
)1/2 ( ∑

g∈Γ×Γ

|(wn)gk|2
)1/2

é
6 ‖a‖22 |F| h(vn)2 → 0.

This proves the claim. Applying the claim to wn of the form wn = ugvnu
∗
h, we

get the following: for all η ∈ L2(M ⊗M) satisfying η = (Q>κ ⊗ Q>κ)(η) and

for all finite subsets S ⊂ Γ, we have

(5.4) ‖(PS ⊗ PS)(vnηv
∗
n)‖2 → 0.

By Step 1 take a unitary a ∈ U(D) such that ‖a− (Q>κ⊗Q>κ)(a)‖2 6 ‖p‖2/2.

Formula (5.4) implies that for all S ⊂ Γ finite, we have

lim sup
n
‖(PS ⊗ PS)(vnav

∗
n)‖2 6 ‖p‖2/2.

This is a contradiction with Step 4. �

Step 6. Take δ > 0 such that h(vn) >
√

6δ for all n.

For every ε > 0, there exists a unitary a ∈ U(D), finite subsets S ⊂ Γ,

F ⊂ I and a sequence hn ∈ Γ such that, writing xn=vnav
∗
n, we have for all n,

• ‖xn − PS(xn)‖2 6 ε,

• ‖xn −Q>κ(xn)‖2 6 ε,

• ‖xn −Qhn·F (xn)‖2 6 ‖p‖2 − 2δ,

• ‖xn −QI−G(xn)‖2 → 0 for every finite subset G ⊂ I.

Proof. Choose ε > 0. By Step 1 take a ∈ U(D) such that ‖a−Q>κ(a)‖26ε.
Put xn = vnav

∗
n. Since the image ofQ>κ is an (M⊗L(Γ))-(M⊗L(Γ))-bimodule,

we have

‖xn −Q>κ(xn)‖2 = ‖a−Q>κ(a)‖2 6 ε
for all n. By Step 4, take a finite subset S ⊂ Γ such that ‖xn − PS(xn)‖2 6 ε

for all n. By Step 3, we have ‖xn − QI−G(xn)‖2 → 0 for every finite subset

G ⊂ I.

Take a finite subset F ⊂ I such that ‖a−QF (a)‖2 6 δ. Choose elements

kn ∈ Γ×Γ such that |τ(vnu
∗
kn

)| >
√

6δ for all n. Denote by hn ∈ Γ the second

component of kn.
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Denote wn = τ(vnu
∗
kn

)ukn and yn = wnav
∗
n. It follows that

‖xn −Qhn·F (xn)‖2 = ‖(1−Qhn·F )(xn − yn) + (1−Qhn·F )(yn)‖2
6 ‖xn − yn‖2 + ‖yn −Qhn·F (yn)‖2.

We consecutively get

‖xn − yn‖2 6 ‖vn − wn‖2 6
»
‖p‖22 − 6δ 6 ‖p‖2 − 3δ

and

‖yn −Qhn·F (yn)‖2 = ‖wn(a−QF (a))v∗n‖2 6 ‖a−QF (a)‖2 6 δ.

Altogether we have ‖xn −Qhn·F (xn)‖2 6 ‖p‖2 − 2δ. �

We finally gathered enough results to prove that C ≺M ⊗A.

Step 7. We have that C ≺M ⊗A.

Proof. Assume that C 6≺M⊗A. Note that M⊗M = (M ⊗A)oΓ, where

Γ acts trivially on M . By [Ioa11, Th. 1.3.2], for every ε > 0 and every k ∈ N,

there exists a unitary d ∈ U(C) such that ‖PG(d)‖2 < ε for all subsets G ⊂ Γ

with |G| 6 k.

Take a ∈ U(D), finite subsets S ⊂ Γ, F ⊂ I and a sequence hn ∈ Γ

satisfying the conclusion of Step 6 with ε 6 δ/8. Whenever Z ⊂ Γ is finite, we

define the orthogonal projection

RZ =
∨
g∈Z

Qg·F .

Claim. Whenever Zn is a sequence of finite subsets of Γ such that supn |Zn|
< ∞, there exists a sequence of larger finite subsets Z ′n ⊃ Zn such that

supn |Z ′n| <∞ and

(5.5) lim inf
n
‖RZ′n(xn)−RZn(xn)‖2 > δ.

Once the claim is proven, we inductively construct Z1
n ⊂ Z2

n ⊂ · · · . Since

the vectors RZk+1
n

(xn) − RZk
n
(xn) are orthogonal for different k, we arrive at

the contradiction

‖p‖2 = lim inf
n
‖xn‖22 > kδ2 ∀k ∈ N.

We now prove the claim. Let the sequence Zn be given. For every n,

denote

Ln := {g ∈ Γ | ∃k ∈ Zn such that |ghnF ∩ kF| > κ}.
Since Stab J is finite whenever |J | > κ, it follows that supn |Ln| < ∞. So, we

can take a unitary d ∈ U(C) such that ‖PLn(d)‖2 6 ε/(2|S|) for every n. Take

a finite set S′ ⊂ Γ such that ‖d− PS′(d)‖2 6 ε/(2|S|). Put Kn = S′ −Ln. We
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retain that ‖d − PKn(d)‖2 6 ε/|S| for all n and that |ghnF ∩ kF| < κ for all

g ∈ Kn and all k ∈ Zn. Put Z ′n = Knhn∪Zn. We prove that Z ′n satisfies (5.5).

Using the Kaplansky density theorem, take a finite subset G ⊂ I and

d0 ∈ M ⊗M such that d0 = QG(d0), ‖d0‖ 6 1 and ‖d − d0‖2 6 ε/|S|. Write

dn := PKn(d0). Hence, ‖d− dn‖2 6 2ε/|S|. Also write x′n := Qhn·F (PS(xn)) =

PS(Qhn·F (xn)). Note that ‖x′n‖ 6 |S| and ‖xn−x′n‖2 6 ‖p‖2−2δ+ε for all n.

As a result,

‖dxn − dnx′n‖2 6 ‖d‖ ‖xn − x′n‖2 + ‖x′n‖ ‖d− dn‖2 6 ‖p‖2 − 2δ + 3ε.

Define the orthogonal projection

Rn :=
∨

g∈Kn

QG∪ghnF .

Since dnx
′
n lies in the image of Rn, it follows that ‖(1−Rn)(dxn)‖2 6 ‖p‖2 −

2δ + 3ε. But dxn = xnd. Hence, ‖Rn(xnd)‖2 > 2δ − 3ε.

Observe that

‖xnd− PS(xn)d0‖2 6 ‖xn − PS(xn)‖2 ‖d‖+ ‖PS(xn)‖ ‖d− d0‖2 6 2ε.

So, ‖Rn(PS(xn)d0)‖2 > 2δ − 5ε. Write

R′n :=
∨

g∈Kn

QG∪SG∪ghnF .

Since Rn 6 R′n, we have ‖R′n(PS(xn)d0)‖2 > 2δ − 5ε. But, R′n(PS(xn)d0) =

R′n(PS(xn))d0 and ‖d0‖ 6 1. It follows that

‖R′n(xn)‖2 > ‖PS(R′n(xn))‖2 = ‖R′n(PS(xn))‖2 > ‖R′n(PS(xn))d0‖2
= ‖R′n(PS(xn)d0)‖2 > 2δ − 5ε.

Since ‖xn−Q>κ(xn)‖2 6 ε and since ‖xn−QI−(G∪SG)(xn)‖2 → 0, we can take

n0 such that

‖R′′n(xn)‖2 > 2δ − 7ε ∀n > n0, where R′′n :=
∨

g∈Kn

Q>κ
ghnF .

Whenever g ∈ Kn and k ∈ Zn, we have |ghnFn ∩ kF| < κ. So, the projections

Q>κ
ghnF and QkF have orthogonal ranges. Hence, R′′n and RZn are orthogonal

as well. By construction, R′′n 6 R
′
n. It follows that

‖RZ′n(xn)−RZn(xn)‖2 > ‖R′′n(RZ′n(xn)−RZn(xn))‖2
= ‖R′′n(xn)‖2 > 2δ − 7ε > δ

for all n > n0. So, we have proven (5.5). �

Step 8. End of the proof of Theorem 5.1.
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We have shown that Cq ≺M⊗A for every nonzero projection q ∈ Z(C) =

C ′ ∩ p(M ⊗M)p. This means that the following holds (see [Vae13, Lemma

2.4 and Proposition 2.5] for details): for every ε > 0, there exists a finite set

S ⊂ Γ such that ‖d − (1 ⊗ PS)(d)‖2 6 ε/2 for every unitary d ∈ U(C). By

symmetry, we also find a finite set S′ ⊂ Γ such that ‖d− (PS′ ⊗ 1)(d)‖2 6 ε/2
for all d ∈ U(C). Taking the union of S and S′, we have found a finite set

S ⊂ Γ such that ‖d − (PS ⊗ PS)(d)‖2 6 ε for all d ∈ U(C). This means that

Cq ≺ A⊗A for all nonzero projections q ∈ Z(C). �

6. A conjugacy criterion for group actions

Suppose that we are given an embedding of group measure space factors

B oΛ ↪→ Ao Γ such that B = A and such that vLΛv∗ ⊂ LΓ for some unitary

v ∈ AoΓ. Under the right conditions, one can deduce from this information the

existence of a unitary w ∈ Ao Γ such that wBw∗ = A and wvsw
∗ = ω(s)uδ(s)

for all s ∈ Λ, where δ : Λ → Γ is a group morphism and ω : Λ → T is a

character. Such a result was first proven in [Pop06d, Th. 5.2] and generalized

in [Ioa11, Th. 7.1]. We now prove a further generalization, involving arbitrary

amplifications and weaker assumptions. We give a more elementary proof in

the spirit of [Vae07, Prop. 9.3].

Theorem 6.1. Let Γ y (X,µ) be a free ergodic probability measure-

preserving action. Put A = L∞(X) and M = A o Γ. Let p ∈ Mn(C) ⊗ LΓ be

a projection. Assume that C ⊂ p(Mn(C)⊗M)p is a von Neumann subalgebra

and γ : Λ→ U(p(Mn(C)⊗ LΓ)p) is a group morphism such that the following

conditions hold :

(1) C ≺ A and C ′ ∩ p(Mn(C)⊗M)p = Z(C).

(2) The unitaries γ(s) normalize C , and the action (Ad γ(s))s∈Λ on Z(C)

is weakly mixing.

Then there exist

• a subgroup Γ1 < Γ, a finite normal subgroup K C Γ1 and a finite-dimen-

sional unitary representation ρ : K → U(Md(C)) with corresponding pro-

jection pK := |K|−1∑
k∈K ρ(k)⊗ uk;

• a group homomorphism δ : Λ→ G/L where

G := {u⊗ ug | u ∈ U(Md(C)), g ∈ Γ1, ρ(gkg−1) = uρ(k)u∗ ∀k ∈ K}

and where the normal subgroup K ∼= LC G is given by L := {ρ(k)⊗ uk |
k ∈ K};

• a Γ1-invariant projection q ∈ A;

• a partial isometry v ∈ Mn,d(C) ⊗ LΓ with vv∗ = p and v∗v commuting

with δ(Λ)L ⊂ G
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such that the composition of δ and the quotient homomorphism G/L→ Γ1/K

is surjective and such that w := τ(q)−1/2v(1⊗ q) is a partial isometry with left

support p and right support pK(1⊗ q) satisfying

w∗Cw = (Md(C)⊗Aq)AdL pK and w∗γ(s)w = δ(s)pK(1⊗ q) ∀s ∈ Λ.

Proof. Define the automorphism βs ∈ Aut(C) as βs = Ad γ(s). Since

C ≺ A, the von Neumann algebra C has a direct summand that is finite

of type I. Since (βs)s∈Λ is ergodic on Z(C), we find an integer d such that

C ∼= Md(C) ⊗ Z(C). So, we can take matrix units (eij)i,j=1,...,d in C with

e := e11 satisfying eCe = Z(C)e. By construction, Z(C)e is a maximal abelian

subalgebra of e(Mn(C) ⊗M)e that is semi-regular; the normalizer of Z(C)e

acts ergodically on Z(C)e. Also, Z(C)e ≺ A.

Denote by Dm(C) ⊂ Mm(C) the subalgebra of diagonal matrices. Take an

integer m and a projection q1 ∈ Dm(C)⊗A such that (Tr⊗τ)(q1) = (Tr⊗τ)(e).

Write B := Dm(C) ⊗ A. By [Pop06a, Th. A.1], we find V1 ∈ Mn,m(C) ⊗M
such that V1V

∗
1 = e, V ∗1 V1 = q1 and V ∗1 Z(C)eV1 = Bq1. Put the elements

Vi = ei1V1, i = 1, . . . , d next to each other, yielding

V ∈ Mn,dm(C)⊗M

such that

V V ∗ = p, V ∗V = 1⊗ q1 and V ∗CV = Md(C)⊗Bq1.

For every s ∈ Λ, the unitary V ∗γ(s)V ∈ Md(C)⊗ q1(Mm(C)⊗M)q1 nor-

malizes Md(C)⊗Bq1. One can describe all unitaries w ∈ Md(C)⊗q1(Mm(C)⊗
M)q1 normalizing Md(C) ⊗ Bq1 as follows. Then, w also normalizes 1 ⊗ Bq1

and we define the automorphism βw of Bq1 given by 1⊗ βw(b) = w(1⊗ b)w∗.
Denote by e1, . . . , em the standard minimal projections in Dm(C). Write

q1 =
∑m
k=1 ek ⊗ qk. For all k, l ∈ {1, . . . ,m} and g ∈ Γ, we find a projec-

tion qk,gl ∈ Aql such that
m∑
k=1

∑
g∈Γ

qk,gl = ql and βw(el ⊗ aqk,gl ) = ek ⊗ σg(aqk,gl ) ∀a ∈ A.

It follows that

w1 :=
m∑

k,l=1

∑
g∈Γ

ekl ⊗ ugqk,gl

is a unitary element in q1(Mm(C) ⊗ M)q1 satisfying βw(b) = w1bw
∗
1 for all

b ∈ Bq1. It follows that w0 := w(1 ⊗ w∗1) commutes with 1 ⊗ Bq1 and hence

belongs to U(Md(C)⊗Bq1). By construction, w = w0(1⊗ w1).

Define Xm = X t · · · tX as the disjoint union of m copies of X. Identify

L∞(X) = B. Let Y ⊂ Xm be the support of the projection q1. Define the

closed subgroup G1 ⊂ U(Md(C)⊗ L(Γ)) given by

G1 := {u⊗ ug | u ∈ U(Md(C)) and g ∈ Γ}.
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We can view w0 as a measurable function from Y to U(Md(C)). We then

denote by Ωw : Y → G1 the measurable function given by

Ωw(y) = w0(y)⊗ uh whenever y belongs to the support of

ek ⊗ σh(qk,hl ) = βw(el ⊗ qk,hl ).

To make computations easier, we provide an alternative description of Ωw.

Define the Hilbert space K := Mn,dm(C)⊗L2(M) that we view as an (Mn(C)⊗
M)-(Mdm(C)⊗M)-bimodule. Define the Hilbert space H := Mn,d(C)⊗`2(Γ)⊗
L2(B) that we view as an (Mn(C)⊗LΓ⊗B)-(Md(C)⊗LΓ⊗B)-bimodule. Define

the unitary operator

η : K → H : η(ei,jk⊗uga)=eij⊗δg⊗(ek⊗a) for all indices i, j, k, g ∈ Γ, a∈A.
Viewing Mn(C)⊗ LΓ ⊂ Mn(C)⊗M and Md(C)⊗B ⊂ Mdm(C)⊗M , we have

for all ξ ∈ K the obvious formulae

η(aξ) = (a⊗ 1)ξ when a ∈ Mn(C)⊗ LΓ

and

η(ξb) = η(ξ)b13 when b ∈ Md(C)⊗B.
An elementary computation yields

(6.1) η(ξ)Ωw = (id⊗ id⊗ βw)η(ξw) ∀ξ ∈ K(1⊗ q1).

The following 1-cocycle relation is then an immediate consequence.

(6.2) Ωwv = Ωw (id⊗id⊗βw)(Ωv) when both w, v normalize Md(C)⊗Bq1.

For s ∈ Λ, define ws := V ∗γ(s)V . Since Md(C) ⊗ Bq1 = V ∗CV , the

unitaries ws normalize Md(C) ⊗ Bq1. So we can define the action (βs)s∈Λ on

Bq1 given by βs = βws . We denote by s ∗ y, s ∈ Λ, y ∈ Y , the corresponding

action of Λ on Y . By assumption, Λ y Y is weakly mixing.

Thanks to the construction above, we can define the measurable function

ω1 : Λ × Y → G1 given by ω1(s, y) = Ωws(s ∗ y). The 1-cocycle relation (6.2)

now becomes

ω1(st, y) = ω1(s, t ∗ y) ω1(t, y) ∀s, t ∈ Λ and a.e. y ∈ Y.

Hence, ω1 is a 1-cocycle for the action Λ y Y with values in G1. Define the

vector

ϕ ∈ Mn,d(C)⊗ `2(Γ)⊗ L2(Bq1) given by ϕ = η(V ).

View ϕ as a measurable function from Y to Mn,d(C) ⊗ `2(Γ) and view the

latter as an (Mn(C)⊗LΓ)-(Md(C)⊗LΓ)-bimodule. By definition pV = V and

γ(s)V = V ws for all s ∈ Λ. The properties of η imply that pϕ(y) = ϕ(y) almost

everywhere and that η(γ(s)V ) equals almost everywhere the function given by

y 7→ γ(s)ϕ(y). By (6.1) we have that η(V ws) equals almost everywhere the

function given by y 7→ ϕ(s ∗ y)ω1(s, y). So, we conclude that

ϕ : Y → p(Mn,d(C)⊗ `2(Γ)) and γ(s)ϕ(y) = ϕ(s ∗ y)ω1(s, y) a.e.
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From now on, identify

p(Mn,d(C)⊗ `2(Γ)) = pL2(Mn,d(C)⊗ LΓ).

So, we can define P (y) := ϕ(y)ϕ(y)∗ as an element in pL1(Mn(C)⊗ LΓ)p. We

have P (s∗y) = γ(s)P (y)γ(s)∗. Since Λ y Y is weakly mixing, [PV11, Lemma

5.4] implies that P is essentially constant. So, we have found an element

P ∈ pL1(Mn(C)⊗LΓ)p such that P (y) = P almost everywhere. We claim that

P = (Tr⊗τ)(q1)−1p. Indeed, for an arbitrary projection f ∈ p(Mn(C)⊗ LΓ)p,

we get

(Tr⊗τ)(f) = 〈fV, V 〉 = 〈η(fV ), η(V )〉 =

∫
Y
〈fϕ(y), ϕ(y)〉 dρ(y)

=

∫
Y

(Tr⊗τ)(fP ) dρ(y) = (Tr⊗τ)(fP ) (Tr⊗τ)(q1).

Since this holds for all projections f , the claim follows.

Define ψ1(y) := (Tr⊗τ)(q1)1/2ϕ(y). Denote by I the set of all partial

isometries in Mn,d(C)⊗LΓ with left projection equal to p. So, ψ1 : Y → I and

ψ1 satisfies

γ(s)ψ1(y) = ψ1(s ∗ y)ω1(s, y) almost everywhere.

The ‖ · ‖2-distance turns I into a Polish space on which U(p(Mn(C)⊗ LΓ)p)

acts by left multiplication and G1 by right multiplication. Both actions are

isometric. The action of G1 on I by right multiplication is proper, so that the

set I/G1 of G1-orbits equipped with the distance between orbits is still a Polish

space on which U(p(Mn(C) ⊗ LΓ)p) acts isometrically. Since ψ1(s ∗ y)G1 =

γ(s)ψ1(y)G1 almost everywhere and since Λ y Y is weakly mixing, [PV11,

Lemma 5.4] implies that y 7→ ψ1(y)G1 is essentially constant. Take v ∈ I such

that ψ1(y) ∈ vG1 almost everywhere and denote p1 := v∗v.

Define the compact subgroup L ⊂ G1 consisting of the unitaries u ⊗ ug
that satisfy p1(u⊗ ug) = p1. Define the measurable map ψ2 : Y → L\G1 such

that ψ1(y) = vψ2(y) almost everywhere. Composing ψ2 with a measurable

cross-section L\G1 → G1, we find a measurable map ψ : Y → G1 satisfying

ψ1(y) = vψ(y) almost everywhere. Define the 1-cocycle ω : Λ× Y → G1 given

by ω(s, y) = ψ(s ∗ y)ω1(s, y)ψ(y)−1. Define the group morphism π : Λ →
U(p1(Md(C)⊗ LΓ)p1) given by π(s) = v∗γ(s)v. By construction,

π(s) = p1ω(s, y) almost everywhere.

Define the closed subgroup G2 ⊂ G1 consisting of the unitaries u ⊗ ug that

commute with p1. It follows that ω takes values almost everywhere in G2 and

hence π(s) ∈ G2p1 for all s ∈ Λ. Note that L is a normal subgroup of G2. We

get a well-defined group morphism δ : Λ→ G2/L such that π(s) = δ(s)p1. So,

δ(Λ)L commutes with p1 = v∗v and v∗γ(s)v = δ(s)p1 for all s ∈ Λ.
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Write ψ(y)=ζ(y)⊗uθ(y). View ζ as a unitary element in Md(C)⊗Bq1. Re-

placing V by V ζ∗, we may assume that ψ(y) = 1⊗uθ(y). Define the projection

qg ∈ Bq1 with support {y ∈ Y | θ(y) = g}. Write

qg =
m∑
k=1

ek ⊗ qkg and v =
∑
ij

eij ⊗ vij .

Since η(V ) equals almost everywhere the function y 7→ (Tr⊗τ)(q1)−1/2v(1 ⊗
uθ(y)), it follows that

(6.3) V = (Tr⊗τ)(q1)−1/2
∑
g∈Γ

∑
i,j,k

ei,jk ⊗ vijugqkg .

Define the projections q̃kg := ugq
k
gu
∗
g. Since V ∗V = 1⊗ q1 we have

(1⊗ qh)V ∗V (1⊗ qg) = δg,h1⊗ qg
so that by (6.3), it follows that

(1⊗ q̃jh)p1(1⊗ q̃ig) = (Tr⊗τ)(q1)δi,jδg,h1⊗ q̃ig.

Applying Tr⊗EA, it follows that the projections q̃ig are orthogonal. In partic-

ular, the sum of their traces is at most 1, so that (Tr⊗τ)(q1) 6 1. Hence, we

may assume from the beginning that m = 1 and that q1 ∈ A. We do not write

the upper indices i, j, k any more. Since the projections q̃g are orthogonal,

u :=
∑
g∈Γ ugqg is a partial isometry in M with right support q1, with left

support in A and such that uAq1 u
∗ = Auu∗. Replacing V by V (1⊗ u∗) and

q1 by uu∗, we may further assume that V = τ(q1)−1/2v(1⊗ q1). By construc-

tion, the 1-cocycle ω that corresponds to the group of unitaries (V ∗γ(s)V )s∈Λ

normalizing Md(C)⊗Aq1 satisfies

(6.4) p1ω(s, y) = π(s) = p1δ(s) and hence, ω(s, y)L = δ(s)L.

Let p1 =
∑
g∈Γ Pg ⊗ ug, with Pg ∈ Md(C), be the Fourier decomposition

of p1. Since V = τ(q1)−1/2v(1⊗ q1), we have

(6.5) (1⊗ q1)p1(1⊗ q1) = τ(q1) 1⊗ q1.

Applying id⊗EA, we get that Pe = τ(q1) 1. So, when u⊗ uk ∈ L, the formula

p1(u∗ ⊗ u∗k) = p1 implies that Pk = τ(q1)u. In particular, the homomorphism

L → Γ : u ⊗ uk 7→ k is injective. We denote the image by K and define the

unitary representation ρ : K → U(Md(C)) such that L = {ρ(k)⊗ uk | k ∈ K}.
Define Γ1 as the image of δ(Λ)L in Γ. By construction, K is a finite normal

subgroup of Γ1. Define G as in the formulation of the theorem, i.e., as the

unitaries u⊗ ug, g ∈ Γ1, that normalize L. So, δ(Λ)L ⊂ G.

Let k ∈ K−{e}. Multiplying (6.5) on the right by ρ(k)∗⊗u∗k and applying

id⊗ EA, it follows that q1 σk(q1) = 0. Define the projection q =
∑
k∈K σk(q1).

We claim that q is Γ1-invariant. Recall that s ∗ y denotes the action of s ∈ Λ
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on y ∈ Y implemented by AdV ∗γ(s)V . Denote by µ : Λ × Y → Γ and

δ1 : Λ→ Γ1/K the compositions of the 1-cocycle ω and the group morphism δ

with the natural morphism G → Γ. By (6.4), we have µ(s, y)K = δ1(s)K, so

that µ takes values in Γ1 and

δ1(s)K · y = µ(s, y)K · y = Kµ(s, y) · y = K · (s ∗ y).

Hence δ1(Λ)K · Y = K · Y , proving the claim.

Define the projection pK=|K|−1∑
k∈K ρ(k)⊗uk. Put w:=τ(q)−1/2v(1⊗q).

We make several computations to check that all the conclusions of the theorem

hold. We freely use that τ(q) = |K| τ(q1), that V = τ(q1)−1/2v(1 ⊗ q1) and

that vu = vp1u = v for all u ∈ L. First we get that

ww∗ = τ(q)−1 v(1⊗ q)v∗ =
∑
u∈L

τ(q)−1 vu(1⊗ q1)u∗v∗

= |L| τ(q)−1 v(1⊗ q1)v∗ = V V ∗ = p.

On the other hand,

w∗w = τ(q)−1 (1⊗ q) v∗v (1⊗ q) = τ(q)−1
∑

u1,u2∈L
u1(1⊗ q1)u∗1 p1 u2(1⊗ q1)u∗2

= τ(q)−1
∑

u1,u2∈L
u1(1⊗ q1)p1(1⊗ q1)u∗2 = |L|−1

∑
u1,u2∈L

u1V
∗V u∗2

= |L|−1
∑

u1,u2∈L
u1(1⊗ q1)u∗2 = pK(1⊗ q).

Since δ(Λ)L commutes with 1 ⊗ q and v∗γ(s)v = δ(s)p1, it follows that

w∗γ(s)w = δ(s)pK(1⊗ q) for all s ∈ Λ. Finally,

w∗Cw = (1⊗ q)v∗Cv(1⊗ q) =
∑

u1,u2∈L
u1(1⊗ q1)v∗Cv(1⊗ q1)u∗2

=
∑

u1,u2∈L
u1V

∗CV u∗2 = pK(Md(C)⊗Aq1)pK = (Md(C)⊗Aq)AdLpK .

This ends the proof of the theorem. �

Corollary 6.2. The conclusions of Theorem 6.1 can be strengthened if

we impose extra conditions. Denote by N the von Neumann algebra generated

by C and γ(Λ).

(1) If we impose the extra condition that N 6≺ Ao Centr g whenever g 6= e,

it follows that K = {e}, q = 1, w = v and v∗γ(s)v = π(s)⊗ uδ1(s) for all

s ∈ Λ, where π : Λ→ U(Md(C)) and δ1 : Λ→ Γ are group morphisms. If,

moreover, the weak mixing assumption is strengthened by imposing that

C1 is the only nonzero, finite dimensional, globally (Ad γ(s))s∈Λ-invariant

vector subspace of C , then it follows that d = 1 and that π : Λ → T is a

character.
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(2) If we impose the extra condition that N 6≺ AoΓ1 whenever Γ1 y (X,µ)

is nonergodic, it follows that q = 1 and v∗v = pK .

Proof. (1) Choose a projection q1 ∈ Aq such that q =
∑
k∈K σk(q1). It fol-

lows that w(Md(C)⊗q1)w∗ is a globally (Ad γ(s))s∈Λ-invariant vector subspace

of C. So, d = 1 and the rest follows immediately.

(2) Denote by δ1 : Λ → Γ1/K the composition of δ and the natural

homomorphism G/L→ Γ1/K. Replacing Γ1 by δ1(Λ)K, we may assume that

δ1 is surjective. The conclusions of Theorem 6.1 say in particular that w∗Nw ⊂
Md(C)⊗ (AoΓ1). The extra condition N 6≺ AoCentr g whenever g 6= e then

implies that {hgh−1 | h ∈ Γ1} is infinite for all g 6= e. So, we can take a

sequence hn ∈ Γ1 such that hngh
−1
n → ∞ for all g 6= e. Take un ∈ U(Md(C))

such that un ⊗ uhn ∈ δ(Λ)L. Since v∗v commutes with δ(Λ)L, it follows that

v∗v = p0 ⊗ 1 for some projection p0 ∈ Md(C). But then w∗w = τ(q)−1p0 ⊗ q.
Since w∗w actually equals pK(1⊗ q), it follows that q = 1 and K = {e}.

(3) As in the proof of (2), we get that w∗Nw ⊂ Md(C)⊗ (Ao Γ1). Since

q is Γ1-invariant, the extra condition (3) implies that q = 1. Hence w = v and

v∗v = pK . �

7. Some properties of the comultiplication

Throughout this section, we fix a countable group Λ and put M = LΛ.

We denote by (ug)g∈Λ the canonical unitaries generating LΛ. We consider the

comultiplication ∆ : M →M ⊗M given by ∆(ug) = ug ⊗ ug for all g ∈ Λ.

We start with the following elementary and well-known lemma.

Lemma 7.1. A nonzero element u ∈M satisfies ∆(u) = u⊗u if and only

if u = ug for some g ∈ Λ. A unital von Neumann subalgebra A ⊂ M satisfies

∆(A) ⊂ A ⊗ A if and only if A is of the form A = LΣ for some subgroup

Σ < Λ.

Proof. Observe that (id⊗ τu∗g)∆(x) = τ(xu∗g)ug for all g ∈ Λ, x ∈M . Let

u ∈ M be a nonzero element satisfying ∆(u) = u ⊗ u. Take g ∈ Λ such that

τ(uu∗g) 6= 0. It follows that u is a nonzero multiple of ug. Since ∆(u) = u⊗ u,

this multiple must be 1.

Let A ⊂ M be a von Neumann subalgebra satisfying ∆(A) ⊂ A ⊗ A.

Define the subset Σ ⊂ Λ consisting of the elements g ∈ Λ for which there

exists a ∈ A with τ(au∗g) 6= 0. Since A 3 (id⊗ τu∗g)∆(a) = τ(au∗g)ug, it follows

that ug ∈ A for all g ∈ Σ. Conversely, it is obvious that g ∈ Σ whenever

ug ∈ A. Since A is a von Neumann subalgebra, it follows that Σ is a subgroup

of Λ and that A = LΣ. �

Recall from Section 2.4 the notion of relative amenablity for von Neumann

subalgebras.
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Proposition 7.2. Let P ⊂M be a von Neumann subalgebra.

(1) If P is diffuse, then ∆(P ) 6≺M ⊗ 1 and ∆(P ) 6≺ 1⊗M .

(2) If ∆(M) ≺ M ⊗ P , there exists a nonzero projection p ∈ P ′ ∩M such

that Pp ⊂ pMp has finite index.

(3) Denote by Centr g the centralizer of g ∈ Λ, and assume that for all

g 6= e we have P 6≺ L(Centr g). If H ⊂ L2(M ⊗M) is a ∆(P )-∆(M)-

subbimodule that is finitely generated as a right ∆(M)-module, then H ⊂
∆(L2(M)).

In particular, the quasi-normalizer of ∆(P ) inside M ⊗M is contained

in ∆(M). So, if Λ is an icc group, the quasi-normalizer of ∆(M) inside

M ⊗M equals ∆(M).

(4) If P has no amenable direct summand, then ∆(P ) is strongly nona-

menable relative to M ⊗ 1. In particular, if N ⊂ M is an amenable

von Neumann subalgebra, we have ∆(P ) 6≺M ⊗N .

Proof. (1) Let P be diffuse. Take a sequence vn ∈ U(P ) tending to 0

weakly. We claim that ‖EM⊗1(x∆(vn)y∗)‖2 → 0 for all x, y ∈ M ⊗M . It

suffices to prove this claim for x = 1⊗ ug and y = 1⊗ uh, g, h ∈ Λ. Then,

‖EM⊗1((1⊗ ug)∆(vn)(1⊗ uh)∗)‖2 = ‖τ(ugvnu
∗
h)ug−1h‖2 = |τ(ugvnu

∗
h)| → 0

and the claim follows. By Definition 2.1, ∆(P ) 6≺ M ⊗ 1. The statement

∆(P ) 6≺ 1⊗M follows similarly.

(2) Assume that ∆(M) ≺ M ⊗ P . Definition 2.1 provides elements

h1, . . . , hn ∈ Λ and δ > 0 such that

n∑
i,j=1

‖EM⊗P ((1⊗ uhi)∆(ug)(1⊗ uhj )
∗)‖22 > δ ∀g ∈ Λ.

This precisely means that

n∑
i,j=1

‖EP (uhiugu
∗
hj )‖

2
2 > δ ∀g ∈ Λ.

So, M ≺M P . This means that Pp ⊂ pMp has finite index for some nonzero

projection p ∈ P ′ ∩M .

(3) Assume that P 6≺ L(Centr g) for all g 6= e. By Definition 2.1, we find

a sequence of unitaries vn ∈ U(P ) such that ‖EL(Centr g)(uhvnu
∗
k)‖2 → 0 for all

h, k ∈ Λ and all g 6= e. To conclude the proof of the proposition, it suffices to

prove the following (see, e.g., [Vae07, Lemma D.3], based on [Pop06c, Th. 3.1]):

‖E∆(M)(x∆(vn)y∗)‖2 → 0 ∀x, y ∈ (M ⊗M)	∆(M).
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It is sufficient to prove this statement for x = uh ⊗ uk and y = uh′ ⊗ uk′ with

h 6= k and h′ 6= k′. In that case,

‖E∆(M)((uh ⊗ uk)∆(vn)(uh′ ⊗ uk′)∗)‖22 =
∑

g∈Λ,hg(h′)−1=kg(k′)−1

|τ(vnu
∗
g)|2.

If for all g ∈ Γ we have hg(h′)−1 6= kg(k′)−1, this last expression is zero. If

there is at least one g0 ∈ Λ such that hg0(h′)−1 = kg0(k′)−1, this last expression

equals ∑
g∈Centr k−1h

|τ(vnu
∗
gg0)|2 = ‖EL(Centr k−1h)(vnu

∗
g0)‖22 → 0.

(4) Note that the M -(M ⊗M)-bimodule

(∆(M)⊗ 1)L
2(M ⊗M ⊗M)(M ⊗ 1⊗M)

is isomorphic with the coarse M -(M ⊗M)-bimodule L2(M) ⊗ L2(M ⊗M).

Assume that ∆(P ) is not strongly nonamenable relative to M ⊗ 1. We get a

nonzero projection p ∈ ∆(P )′ ∩ (M ⊗M) such that ∆(P )L
2(p(M ⊗M))M ⊗M

is weakly contained in (∆(P )⊗ 1)L
2(M ⊗M ⊗M)(M ⊗ 1⊗M) and hence, weakly

contained in the coarse P -(M ⊗M)-bimodule. Take z ∈ P such that ∆(z) is

the support projection of E∆(P )(p). Note that z is a nonzero central projection

in P and that ∆ embeds the trivial Pz-Pz-bimodule into

∆(Pz)L
2(∆(z)(M ⊗M)∆(z))∆(Pz).

It follows that the trivial Pz-Pz-bimodule is weakly contained in the coarse

Pz-Pz-bimodule so that Pz is amenable.

If N ⊂ M is an amenable von Neumann subalgebra, then M ⊗ N is

amenable relative to M ⊗ 1. If ∆(P ) ≺ M ⊗ N , it follows that ∆(P )p is

amenable relative to M ⊗1 for some nonzero projection p∈∆(P )′ ∩ (M ⊗M).

So, ∆(P ) is not strongly nonamenable relative to M ⊗ 1. The previous para-

graph implies that P has an amenable direct summand. �

8. Proof of Theorem 1.1:

superrigidity of group von Neumann algebras

Theorem 1.1 is a specific instance of a general superrigidity theorem for

group factors LG where G arises as a generalized wreath product G = H0 oI Γ

for certain group actions Γ y I. The class of actions Γ y I that we are able

to treat is defined as follows.

Condition 8.1. We say that Γ y I satisfies Condition 8.1 if the following

two sets of conditions hold.
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Conditions on the group. The group Γ is icc and admits a chain of infinite

subgroups Γ0 < Γ1 < · · · < Γn = Γ such that Γk−1 is almost normal in Γk for

all k = 1, . . . , n. Moreover, at least one of the following rigidity properties hold:

• Γ0 < Γ1 has the relative property (T).

• The centralizer of Γ0 inside Γ1 is nonamenable.

Conditions on the action.

• There exists κ ∈ N such that StabJ is finite whenever J ⊂ I and |J | > κ.

• Stab i is amenable for all i ∈ I.

The conditions on the group Γ in 8.1 are satisfied whenever Γ is an icc

group with property (T), whenever Γ is the direct product of two icc groups

with at least one of them being nonamenable or whenever Γ is itself a wreath

product Γ = Γ0 o S with Γ0 being nonamenable and S nontrivial. Indeed, in

this last case, we consider the chain of subgroups Γ0 < Γ
(S)
0 < Γ.

The conditions on the action in 8.1 are automatically satisfied when we

let Γ act on itself by multiplication. They are also satisfied when Γ y Γ/S,

where S < Γ is an amenable subgroup that is almost malnormal: gSg−1 ∩S is

finite for all g ∈ Γ− S.

Whenever Γ y I satisfies Condition 8.1, we consider the generalized

wreath product G = H0 oI Γ and describe all countable groups Λ such that

LΛ ∼= LG. The main result is the following Theorem 8.2. The conclusions

of Theorem 8.2 can be made significantly more precise if moreover we assume

that Stab i · j is infinite for all i 6= j. This excludes plain wreath products and

will lead to Theorem 8.3 below, of which Theorem 1.1 is a special case.

Theorem 8.2. Assume that Γ y I satisfies Condition 8.1. Let H0 be a

nontrivial abelian group, and define the generalized wreath product group G :=

H0oIΓ := H
(I)
0 oΓ. Denote by A the abelian von Neumann algebra A = L(H

(I)
0 ),

and denote by (σg)g∈Γ the corresponding generalized Bernoulli action of Γ on A.

If Λ is any countable group and π : LΛ → L(G)t is a ∗-isomorphism for

some t > 0, then t = 1 and Λ ∼= Σ o Γ for some infinite abelian group Σ and

some action Γ
αy Σ by automorphisms.

More precisely, there exists a group isomorphism δ : Λ→ Σo Γ, a ∗-iso-

morphism θ : LΣ → A satisfying θ ◦ αg = σg ◦ θ for all g ∈ Γ, a character

ω : G→ T and a unitary w ∈ LG such that π = Adw ◦ πω ◦ πθ ◦ πδ , where

• πδ : LΛ → L(Σ o Γ) is the isomorphism given by πδ(vs) = uδ(s) for all

s ∈ Λ,

• πθ : L(Σ)o Γ→ Ao Γ is given by πθ(aug) = θ(a)ug for all a ∈ L(Σ) and

all g ∈ Γ,
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• πω is the automorphism of LG given by πω(ug) = ω(g)ug for all g ∈ G.

In order to fully understand all groups Λ for which LΛ ∼= LG, we need to

classify all actions of Γ by group automorphisms of a countable abelian group

Σ such that the corresponding measure preserving action Γ y “Σ is conjugate

with the given generalized Bernoulli action Γ y XI
0 with base space X0 = ”H0.

As we illustrate in Section 9, such a classification is untractable for plain wreath

products H0 oΓ. However, if we specialize to the case where moreover Stab i · j
is infinite for all i 6= j, we get the following full superrigidity theorem.

Theorem 8.3. Assume that Γ y I satisfies Condition 8.1 and that

Stab i · j is infinite for all i 6= j. Let H0 be a nontrivial abelian group, and

define the generalized wreath product group G := H0 oI Γ = H
(I)
0 o Γ. Let Λ

be any countable group, and let π : LΛ→ L(G)t be a ∗-isomorphism for some

t > 0.

• In the case where |H0| is a square-free integer, we must have t = 1 and

Λ ∼= G.

• In the general case, but assuming that Γ y I is transitive, we must have

t = 1 and Λ ∼= H1 oI Γ for some abelian group H1 with |H1| = |H0|.

• In the case where H0 = Z/2Z or H0 = Z/3Z, we must have t = 1 and

there exist an isomorphism of groups δ : Λ → G, a character ω : Λ → T
and a unitary w ∈ LG such that

π(vs) = ω(s)w uδ(s)w
∗ ∀s ∈ Λ.

Example 8.4. If Γ y I is defined as in Theorem 1.1, it is easy to check

that all conditions of Theorem 8.3 are indeed satisfied, using the subgroup

Γ0 < Γ (which we put in an arbitrary position of Γ
(S)
0 ) and the chain of normal

subgroups Γ0 C Γ
(S)
0 C Γ.

Define Γ = SL(2,Z)nZ2. Let A ∈ SL(2,Z) be any matrix whose eigenval-

ues have modulus different from 1. Define the subgroup ΓA < SL(2,Z) consist-

ing of the matrices B such that BAB−1 = A±1. View ΓA as a subgroup of Γ.

Then, the action Γ y Γ/ΓA satisfies all conditions of Theorem 8.3 with κ = 2.

More generally, whenever the icc group Γ admits an infinite almost nor-

mal subgroup with the relative property (T) and S < Γ is an infinite amenable

almost malnormal subgroup, then Γ y Γ/S satisfies the conditions of Theo-

rem 8.3 with κ = 2. Examples of infinite amenable almost malnormal sub-

groups of PSL(n,Z) are provided in [PV08, Example 7.4].

Proof of Theorem 8.2. Fix Γ y I satisfying Condition 8.1. Choose a

nontrivial abelian group H0, and put A0 := L(H0), A := L(H
(I)
0 ). Denote

M = L(H0 oI Γ) = Ao Γ.
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We first prove that the action Γ y A is essentially free and ergodic. It

suffices to prove that every g ∈ Γ − {e} moves infinitely many i ∈ I. Choose

n ∈ N. For every g ∈ Γ, denote Fix g := {i ∈ I | g · i = i}. It suffices to prove

that Gn := {g ∈ Γ | |I − Fix g| 6 n} equals {e}. Since hGnh−1 = Gn for all

h ∈ Γ and since Γ is icc, it suffices to prove that Gn is finite. Choose a finite

subset F ⊂ I such that |F| = κ+ n. Then,

Gn ⊂
⋃

F0⊂F , |F0|=κ
StabF0.

Since all StabF0 are finite, Gn is finite as well. We have proven that Γ y A

is essentially free. Because Γ · i is infinite for all i ∈ I, the action Γ y A is

ergodic as well.

Assume that LΛ = M t for some countable group Λ. The amplification

of the comultiplication on LΛ yields a unital ∗-homomorphism ∆ : M →
(M ⊗M)t. To avoid unnecessary notational complexity, in the first steps of

the proof, through Step 3, we will proceed as if t 6 1 and consider ∆ : M →
p(M ⊗M)p for some projection p ∈M ⊗M . The reader can check easily that

this notational simplification does not hide any essential steps of the argument.

Step 1. There exists v ∈M ⊗M with v∗v = p and v∆(LΓ)v∗ ⊂ L(Γ×Γ).

Proof. Take a chain of subgroups Γ0 < Γ1 < · · · < Γn = Γ as in Condi-

tion 8.1. Note that Γ1 is nonamenable. Put Q = ∆(LΓ0), and denote by P the

quasi-normalizer of Q inside p(M ⊗M)p. Note that ∆(LΓ1) ⊂ P . In the case

where Γ0 < Γ1 has the relative property (T), Q ⊂ P has the relative property

(T). In the case where the centralizer of Γ0 inside Γ1 is nonamenable, Propo-

sition 7.2 implies that the relative commutant Q′ ∩P is strongly nonamenable

relative to M ⊗ 1.

By Proposition 7.2(1), Q 6≺ M ⊗ 1. By Proposition 7.2(4) and because

∆(Γ1) ⊂ P , we have P 6≺ M ⊗ (A o Stab i) for all i ∈ I. So, Corollary 4.3

yields v ∈M ⊗M with v∗v = p and vPv∗ ⊂M ⊗ LΓ.

Repeating the same argument and applying Corollary 4.3 with N = LΓ,

we find w ∈M ⊗ LΓ such that w∗w = vv∗ and wvPv∗w∗ ⊂ LΓ⊗ LΓ.

We write v instead of wv, so that v∗v = p and vPv∗ ⊂ L(Γ × Γ). In

particular, v∆(LΓ1)v∗ ⊂ L(Γ × Γ). Write Pk := v∆(LΓk)v
∗. We prove by

induction on k that automatically Pk ⊂ L(Γ × Γ). For k = 1, the statement

is already proven. Assume that Pk ⊂ L(Γ × Γ) for some 1 6 k 6 n − 1. We

already observed that P1 6≺ L(Γ × Stab i) and P1 6≺ L(Stab i × Γ) so that,

a fortiori, the same holds for Pk instead of P1. By Lemma 4.1(1) and because

Pk ⊂ Pk+1 is quasi-regular, it follows that Pk+1 ⊂ L(Γ× Γ).

Since Γ = Γn, we have proven that v∆(LΓ)v∗ ⊂ L(Γ× Γ). �
From now on, we replace ∆ : M → p(M ⊗M)p by v∆( · )v∗ and p by

vv∗ ∈ L(Γ× Γ), so that ∆(LΓ) ⊂ pL(Γ× Γ)p.
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Denote C := ∆(A)′ ∩ p(M ⊗M)p.

Step 2. We have C ≺ A⊗A.

Proof. We apply Theorem 5.1 to the abelian von Neumann subalgebra

D := ∆(A) of p(M ⊗M)p that is normalized by the unitaries (∆(ug))g∈Γ that

belong to pL(Γ × Γ)p. So we have to check the four assumptions (1)–(4) of

Theorem 5.1.

Since A is diffuse, Proposition 7.2(1) says that ∆(A) 6≺M⊗1 and ∆(A) 6≺
1⊗M . So assumption (1) holds.

The quasi-normalizer of ∆(A) inside p(M ⊗M)p contains ∆(M). Since

for every i ∈ I we have that Stab i ⊂ Γ has infinite index, Proposition 7.2(2)

implies that ∆(M) 6≺ M ⊗ (A o Stab i) and ∆(M) 6≺ (A o Stab i) ⊗M . So

assumption (2) holds. Since also LΓ ⊂ M has infinite index, for the same

reason assumption (3) holds.

Finally, since Γ is nonamenable and Stab i is amenable for every i ∈ I,

Proposition 7.2(4) implies that ∆(LΓ) 6≺L(Γ×Stab i) and ∆(LΓ) 6≺L(Stab i×Γ).

So also assumption (4) holds.

The conclusion of Step 2 now follows from Theorem 5.1. �

Since C = p(M ⊗ M)p ∩ ∆(A)′, the unitaries ∆(ug) normalize C and

define an action (βg)g∈Γ of Γ on C given by βg(d) = ∆(ug)d∆(ug)
∗ for all

g ∈ Γ, d ∈ C.

Step 3. If H ⊂ L2(C) is a finite dimensional (βg)g∈Γ-invariant subspace,

we have H ⊂ C1.

Proof. DefineK ⊂ pL2(M⊗M)p as the norm closed linear span ofH∆(M).

Then, ∆(A)K ⊂ K because H and ∆(A) commute. Also, ∆(ug)K = K for all

g ∈ Γ because H is globally invariant under (βg)g∈Γ. So, K is a ∆(M)-∆(M)-

bimodule which, by construction, is finitely generated as a right ∆(M)-module.

By Proposition 7.2(3), we have K ⊂ ∆(L2(M)) and hence H ⊂ ∆(L2(M)).

Since elements of H commute with ∆(A), we have H ⊂ ∆(L2(A)). Since the

action of Γ on A is weakly mixing, the global invariance under (βg)g∈Γ forces

H ⊂ C1. �

Step 4. We have t = 1, and there exist a unitary Ω ∈ M ⊗M , a group

homomorphism δ : Γ→ Γ× Γ and a character ω : Γ→ T such that

(8.1) Ω∗∆(ug)Ω = ω(g)uδ(g) ∀g ∈ Γ and Ω∗∆(A)Ω ⊂ A⊗A.

Proof. We apply Corollary 6.2 to the crossed product M ⊗M = (A⊗A)

o (Γ × Γ). We no longer make the simplifying assumption that t 6 1. So,

take a projection p ∈ Mn(C)⊗M ⊗M with (Tr⊗τ ⊗ τ)(p) = t. The amplified

comultiplication is a unital ∗-homomorphism ∆ : M → p(Mn(C)⊗M ⊗M)p,
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and by Step 1 we may assume, after a unitary conjugacy, that p ∈ Mn(C) ⊗
L(Γ×Γ) and ∆(LΓ) ⊂ p(Mn(C)⊗L(Γ×Γ))p. Put C = ∆(A)′∩p(Mn(C)⊗M⊗
M)p. Since A is abelian, C ′ ∩ p(Mn(C)⊗M ⊗M)p = Z(C). By Step 2, C ≺
A⊗A. By Step 3, the action (Ad ∆(ug))g∈Γ is weakly mixing on Z(C). Even

more so, C1 is the only finite-dimensional globally (Ad ∆(ug))g∈Γ-invariant

subspace of C. Since Γ is an icc group, Proposition 7.2(2) implies that ∆(M) 6≺
M⊗ (AoCentr g) and ∆(M) 6≺ (AoCentr g)⊗M . Because the von Neumann

algebra generated by C and ∆(ug), g ∈ Γ contains ∆(M), all conditions of

Theorem 6.1, together with the extra condition 1 in Corollary 6.2, are satisfied.

By Corollary 6.2 we get that t = 1 and that there exist a unitary Ω ∈
M ⊗M , a group homomorphism δ : Γ→ Γ×Γ and a character ω : Γ→ T such

that Ω∗∆(ug)Ω = ω(g)uδ(g) and Ω∗CΩ = A ⊗ A. In particular, Ω∗∆(A)Ω ⊂
A⊗A. �

Step 5. End of the proof of Theorem 8.2.

Proof. Take Ω, δ, ω as in Step 4. After Step 1, we decided to replace ∆ by

Ad v ◦∆. From now on, ∆ : LΛ→ LΛ⊗LΛ is again the comultiplication. The

conclusion of Step 4 remains of course true, replacing Ω by v∗Ω.

Write δ(g) = (δ1(g), δ2(g)). By Proposition 7.2(2), ∆(M) 6≺M ⊗ (Ao S)

whenever S < Γ is of infinite index. Hence, the subgroups δi(Γ), i = 1, 2, are

of finite index in Γ.

Applying the flip to (8.1), it follows that uδ1(g) ⊗ uδ2(g) and uδ2(g) ⊗ uδ1(g)

are unitarily conjugate inside M ⊗M . Since δi(Γ) ⊂ Γ has finite index, there

must exist h ∈ Γ such that δ2(g) = hδ1(g)h−1 for all g ∈ Γ. Replacing Ω by

Ω(1⊗ uh), we may assume that δ1 = δ2 and we write δ instead of δ1, δ2.

Define Γ′ = δ(Γ). The co-associativity of ∆ implies that the representa-

tions (uδ(g)⊗uδ(g)⊗ug)g∈Γ′ and (ug⊗uδ(g)⊗uδ(g))g∈Γ′ are unitarily conjugate

in M ⊗M ⊗M . Since Γ′ < Γ has finite index, it follows that there exists h ∈ Γ

such that δ(g) = hgh−1 for all g ∈ Γ′. Then automatically, δ(g) = hgh−1 for

all g ∈ Γ. Replacing Ω by Ω(uh ⊗ uh), we may assume that

Ω∗∆(ug)Ω = ω(g) ug ⊗ ug ∀g ∈ Γ.

If σ(a⊗ b) = b⊗a denotes the flip map, it follows that Ω∗σ(Ω) commutes with

all ug ⊗ ug, g ∈ Γ and hence, is scalar. Similarly,

(Ω⊗1)∗(∆⊗id)(Ω)∗(id⊗∆)(Ω)(1⊗Ω) commutes with all ug⊗ug⊗ug, g ∈ Γ

and hence, is scalar. By Theorem 3.3, there exists a unitary w ∈M such that

Ω = ∆(w∗)(w ⊗ w).

To make the end of the argument more clear, again we write explicitly

the isomorphism π : LΛ → L(G)t, instead of the implicit identification LΛ =

L(G)t. So far, we have shown that t = 1 and we have found a unitary w ∈ LG
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and a character ω : Γ→ T such that after replacing π by π−1
ω ◦ Adw∗ ◦ π, we

have

(π ⊗ π)∆(π−1(A)) = A⊗A and (π ⊗ π)∆(π−1(ug)) = ug ⊗ ug
for all g ∈ Γ. By Lemma 7.1 we find an abelian subgroup Σ < Λ such that

π−1(A) = LΣ and an injective group homomorphism ρ : Γ → Λ such that

π−1(ug) = vρ(g). By construction, Ad vρ(g) normalizes LΣ and hence, Ad ρ(g)

normalizes Σ. We have found an action of Γ by automorphisms of Σ and an

isomorphism of groups δ : Λ→ Σo Γ satisfying δ(sρ(g)) = (s, g) for all s ∈ Σ,

g ∈ Γ. Moreover, the ∗-isomorphism π◦πδ−1 : L(Σ)oΓ→ AoΓ maps LΣ onto

A and is the identity on ug, g ∈ Γ. We define θ : LΣ→ A as the restriction of

π ◦ πδ−1 to LΣ, ending the proof of the theorem. �

This ends the proof of Theorem 8.2. �

Proof of Theorem 8.3. By Theorem 8.2, we have t = 1 and π = Adw ◦
πω ◦πθ ◦πδ, where w ∈ LG is a unitary, δ : Λ→ ΣoΓ is a group isomorphism,

ω : Λ → T is a character and θ : LΣ → A is a ∗-isomorphism satisfying

θ ◦ αg = σg ◦ θ for all g ∈ Γ.

For all i ∈ I, put Γi := Stab i. Recall that A = L(H
(I)
0 ). Denote by

H i
0 < H

(I)
0 the copy of H0 in position i ∈ I. Define the subalgebra Bi ⊂ LΣ

given by Bi := θ−1
Ä
LH i

0

ä
. We claim that ∆(Bi) ⊂ Bi ⊗ Bi. If b ∈ Bi, the

element (θ⊗θ)∆(b) is fixed under the automorphisms σg⊗σg, g ∈ Stab i. Since

Stab i · j is infinite for all j 6= i, this implies that (θ ⊗ θ)∆(b) ∈ L(H i
0 ×H i

0).

Hence, ∆(b) ∈ Bi ⊗ Bi. By Lemma 7.1 we find subgroups Σi < Σ such that

Bi = LΣi. By construction, the subalgebras Bi ⊂ LΣ are independent and

generate LΣ. Hence Σ =
⊕
i∈I Σi. Denote by θi the restriction of θ to LΣi.

So, θi : LΣi → LH i
0 is a ∗-isomorphism.

In particular, Σi is an abelian group of order |H0|. So, if |H0| is a square-

free integer, then necessarily Σi
∼= H0 for every i ∈ I and we easily conclude

that Λ ∼= G. For general nontrivial abelian groups H0, but assuming that

Γ y I is transitive, choose i0 ∈ I and put H1 := Σi0 . We have proven that

Λ ∼= H1 oI Γ.

In the specific case where H0 = Z
2Z or Z

3Z , every algebra isomorphism

LΣi → LH i
0 is group-like. So, we find characters γi : H i

0 → T and group

isomorphisms ρi : Σi → H i
0 such that θi = πγi ◦ πρi .

By construction, γg·i = γi ◦ σ−1
g , αg(Σi) = Σg·i and σg ◦ ρi = ρg·i ◦ αg.

So, all γi combine into a (σg)g∈Γ-invariant character γ : H
(I)
0 → T and all ρi

combine into an group isomorphism ρ : Σ→ H
(I)
0 satisfying ρ ◦αg = σg ◦ ρ for

all g ∈ Γ. By construction, θ = πγ ◦πρ. We extend γ to a character γ : G→ T
by putting γ(g) = 1 for all g ∈ Γ. We extend ρ to a group isomorphism

ρ : ΣoΓ→ G by putting ρ(g) = g for all g ∈ Γ. By construction, πθ = πγ ◦πρ.
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We have proven that

π = Adw ◦ πω γ ◦ πρ◦δ.
This ends the proof of Theorem 8.3. �

9. Counterexamples for plain wreath products:

proof of Theorem 1.2

Assume that Γ is a countable group and Z ↪→ Γ is an embedding. Let H0

be a nontrivial finite abelian group. Using the co-induction construction, we

construct a new group Λ such that L(Λ) ∼= L(H0 o Γ).

Define the countable abelian group Σ0 := Z[|H0|−1], and denote by α the

automorphism of Σ0 given through multiplication by |H0|. We also denote by

(αk)k∈Z the corresponding action of Z by group automorphisms of Σ0 and then

by automorphisms of L(Σ0). We claim that α is conjugate with a Bernoulli

action with base space {1, . . . , |H0|} equipped with the normalized counting

measure. View L∞(T) ∼= LZ ⊂ L(Σ0). Identify L(H0) ∼= `∞({1, . . . , |H0|})
with the subalgebra of L∞(T) that consists of the functions that are constant

on the intervals {exp(2πit) | t ∈ [(j − 1)/|H0|, j/|H0|)}. After all these iden-

tifications, one checks that the subalgebras αk(L(H0)), k ∈ Z of L(Σ0) are

independent and generate L(Σ0). This results into a ∗-isomorphism

θ0 : L(Σ0)→ L(H
(Z)
0 ) satisfying θ0 ◦ αk = σk ◦ θ0 ∀k ∈ Z.

Here, (σk)k∈Z denotes the Bernoulli shift on L(H
(Z)
0 ).

We now perform the co-induction construction. Choose representatives

I ⊂ Γ for the coset space Γ/Z. So, the multiplication map I × Z → Γ is a

bijection. We get an action Γ y I : (g, i) 7→ g · i and a map ω : Γ × I → Z
such that gi = (g · i)ω(g, i) for all g ∈ Γ, i ∈ I. The map ω is a 1-cocycle:

ω(gh, i) = ω(g, h · i)ω(h, i) for all g, h ∈ Γ and i ∈ I. Define Σ := Σ
(I)
0 and

denote by πi : Σ0 → Σ the embedding in position i. Then, Γ acts on Σ by

group automorphisms (βg)g∈Γ defined as βg ◦ πi = πg·i ◦ αω(g,i).

Put Λ = Σo Γ. Observe that Λ is torsion free whenever Γ is torsion free.

We claim that LΛ ∼= L(H0 o Γ).

Identifying (L(H
(Z)
0 ))I∼=L(H

(Γ)
0 ) through the multiplication map I×Z→Γ,

the formula θ =
⊗
i∈I θ0 defines a ∗-isomorphism

θ : L(Σ)→ L(H
(Γ)
0 ) satisfying θ ◦ βg = σg ◦ θ ∀g ∈ Γ.

But then, θ extends to an isomorphism of the corresponding crossed product

II1 factors that are isomorphic with L(Λ) and L(H0 o Γ) respectively. This

proves the claim.

We have already proven that for Γ torsion free, there exists a torsion free

group Λ satisfying LΛ ∼= L(H0 o Γ). To conclude the proof of Theorem 1.2 we

show that by varying the initial embedding Z ↪→ Γ := PSL(n,Z), the above
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construction provides infinitely many nonisomorphic groups Λ. Assume that

Λ = ΣoΓ and Λ′ = Σ′oΓ are constructed as above from embeddings η : Z→ Γ

and η′ : Z→ Γ. It suffices to prove the following.

Claim. If for every automorphism δ ∈ Aut(Γ), the intersection δ(η(Z)) ∩
η′(Z) is reduced to {1}, then Λ 6∼= Λ′.

Assume that λ : Λ → Λ′ is an isomorphism of groups. Since PSL(n,Z)

has no normal abelian subgroups except from {1}, it follows that λ(Σ) = Σ′.

Hence, λ is of the form λ(x, g) = (. . . , δ(g)) for some automorphism δ of

Γ = PSL(n,Z). Since Σ and Σ′ are abelian groups, it follows that λ|Σ ◦ βg =

βδ(g) ◦ λ|Σ for all g ∈ Γ. Denote by i ∈ I the coset η(Z) of the identity

element. Take a nontrivial element x ∈ Σ0. Take a finite subset F ⊂ Γ/η′(Z)

such that λ(πi(x)) ⊂ ΣF0 . We prove that λ(πi(Σ0)) ⊂ ΣF0 . Choose y ∈ Σ0. By

construction, we can find z ∈ Σ0 such that both x and y are a multiple of z. So,

λ(πi(x)) is a multiple of λ(πi(z)). Since Σ0 is torsion free and λ(πi(x)) ∈ ΣF0 ,

it follows that λ(πi(z)) ∈ ΣF0 . But then, λ(πi(y)) ∈ ΣF0 as well.

Since the subgroup πi(Σ0) is globally invariant under η(Z), it follows that

λ(πi(Σ0)) is globally invariant under δ(η(Z)). But λ(πi(Σ0)) ⊂ ΣF0 . Hence,

the action of δ(η(Z)) on Γ/η′(Z) has at least one finite orbit. Applying the

assumption to the automorphism Ad g ◦ δ, we have gδ(η(Z))g−1 ∩ η′(Z) = {1}
for all g ∈ Γ, so that δ(η(Z)) acts freely on Γ/η′(Z). We have reached a

contradiction.

Remark 9.1. There are essentially two sources of unexpected isomorphisms

between II1 factors. The first one is Connes’ uniqueness theorem for amenable

II1 factors [Con76] implying that all LΓ for Γ amenable icc are isomorphic.

Secondly, Voiculescu’s free probability theory leads to striking isomorphisms

between von Neumann algebras constructed as free products; see, e.g., [Voi90]

and the later developments in [Dyk94], [Dyk93], [DR00]. As an illustration we

provide the following list of isomorphic group factors LG.

(1) Since infinite tensor products of II1 factors are McDuff, it follows

that whenever G =
⊕∞

i=1 Λi is the infinite direct sum of icc groups Λi, then

LG ∼= L(Γ×G) for all icc amenable groups Γ.

(2) We have that L(Γ1 ∗ · · · ∗ Γn) ∼= LFn whenever Γ1, . . . ,Γn are infinite

amenable groups and n > 2. By [Dyk93, Cor. 5.3], the statement holds for

n = 2 and next, by induction,

L(Γ1 ∗ · · · ∗ Γn) ∼= L(Γ1 ∗ · · · ∗ Γn−2) ∗ L(Γn−1 ∗ Γn)

∼= L(Γ1 ∗ · · · ∗ Γn−2) ∗ L(F2)

∼= L(Γ1 ∗ · · · ∗ Γn−2 ∗ Z) ∗ L(Z) ∼= L(Fn−1) ∗ L(Z) ∼= L(Fn).

In the same vein, by [DR00, Th. 1.5] it follows that whenever G = Λ1 ∗Λ2 ∗ · · ·
is the infinite free product of nontrivial groups Λi, then L(G) ∼= L(F∞ ∗G).
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(3) The subtlety of how LG depends on G is nicely illustrated by the

following remark due to Ozawa [Oza06]. Fix a nonamenable group Γ and an

infinite group Λ. Consider Gn := F∞ ∗ (Γ× Λ)∗n.

• If Λ is abelian and LΓ ∼= M2(C) ⊗ L(Γ), then all L(Gn) are isomorphic,

though nonisomorphic with LF∞.

• If Γ,Λ are icc (and still Γ nonamenable), then all L(Gn) are nonisomor-

phic.

The reason for this is the following. Fix arbitrary von Neumann algebras

P,Q equipped with faithful normal tracial states. Consider the II1 factors

Nn := LF∞ ∗ (P ⊗ Q)∗n. If P ∼= M2(C) ⊗ P and if Q is diffuse abelian, then

all Nn are isomorphic. Indeed, applying [Dyk94, Th. 3.5(iii)] to A = LF∞,

B = P⊗Q and using the fact that 2 belongs to the fundamental group of LF∞,

it follows that 2 belongs to the fundamental group of N1. Applying [Dyk94,

Th. 3.5(ii)] to the same algebras A,B and using the obvious isomorphism

Q ∼= Q⊗ L(Z/2Z), it follows that N1
∼= M2(C)⊗N2. Since 1/2 belongs to the

fundamental group of N1, we conclude that N1
∼= N2. But then, N1

∼= Nn for

all n. On the other hand, if P is a nonamenable factor and Q is a diffuse factor,

then the II1 factors Mn are nonisomorphic. When P and Q are semi-exact,

this follows from [Oza06, Cor. 3.5]. In the general case, the methods of [IPP08]

can be used; see [Pet09, Th. 1.4] and [CH10, Th. 1.1].

(4) As observed in [Ioa07, Prop. 6.4], if L(H1) and L(H2) are stably iso-

morphic, then L(H1 o Z) ∼= L(H2 o Z). In particular, all group von Neumann

algebras L(Fn o Z), n > 2, are isomorphic. This is in sharp contrast with our

Theorem 1.1 saying that the group (Z/2Z)(I) o (Fn o Z) is superrigid, where

I = (Fn o Z)/Z.

(5) In [Bow11a, Cor. 1.2] it is shown that the Bernoulli actions F2 y
(X0, µ0)F2 are orbit equivalent for different choices of the base probability

space (X0, µ0). It follows that all L(H o F2), H a nontrivial abelian group,

are isomorphic. In [Bow11b, Th. 1.1] it is shown that for different values of

n, the Bernoulli actions Fn y (X0, µ0)Fn are stably orbit equivalent. Hence,

for all choices of n,m and all nontrivial abelian groups H1, H2, the II1 factors

L(H1 o Fn) and L(H2 o Fm) are stably isomorphic. In particular, L((H1 o Fn)×
Λ1) ∼= L((H2 o Fm)× Λ2) when Λ1,Λ2 are icc amenable.

10. W∗-superrigidity for Bernoulli actions of product groups

Theorem 10.1. Let Γ be an icc group that admits a chain of infinite

subgroups Γ0 < Γ1 < · · · < Γn = Γ such that Γk−1 is almost normal in Γk,

for every k = 1, . . . , n and the centralizer of Γ0 inside Γ1 is nonamenable. Let

(X0, µ0) be a nontrivial standard probability space. Then the Bernoulli action

Γ y (X,µ) := (X0, µ0)Γ is W∗-superrigid. If Λ y (Y, η) is an arbitrary free
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ergodic probability measure-preserving action and π : L∞(Y )oΛ→ L∞(X)oΓ

a ∗-isomorphism, then Λ ∼= Γ and the actions are conjugate.

More precisely, there exist an isomorphism of groups δ : Λ → Γ, an iso-

morphism of probability spaces Ψ : Y → X , a character ω : Γ → T and a

unitary w ∈ L∞(X) o Γ such that Ψ(s · y) = δ(s) · Ψ(y) for all s ∈ Λ and

almost every y ∈ Y and such that

π = (Adw) ◦ πω ◦ πΨ,δ,

where πΨ,δ(bvs) = (b ◦ Ψ−1)uδ(s) for all b ∈ L∞(Y ), s ∈ Λ and πω(aug) =

ω(g)aug for all a ∈ L∞(X), g ∈ Γ.

Denote A = L∞(X) and M = A o Γ. Put B = L∞(Y ), and identify

M = B o Λ through π. Let ∆ : M → M⊗M be the unital ∗-homomorphism

defined as ∆(bvs) = bvs ⊗ vs for all b ∈ B and s ∈ Λ. Before continuing, let us

record a few useful properties of ∆.

Lemma 10.2. Let P ⊂M be a von Neumann subalgebra.

• If P 6≺ B, then ∆(P ) ⊀M ⊗ 1.

• If P is diffuse, then ∆(P ) ⊀ 1⊗M .

• If ∆(M) ≺M⊗P , then LΛ ≺M .

• If ∆(M) ≺ P⊗M , there exists a nonzero projection p ∈ P ′ ∩M such that

Pp ⊂ pMp has finite index.

• If P has no amenable direct summand, then ∆(P ) is strongly nonamenable

relative to M ⊗ 1 and 1 ⊗M . In particular, if N ⊂ M is an amenable

von Neumann subalgebra, then ∆(P ) ⊀M⊗N and ∆(P ) ⊀ N⊗M .

Proof. To prove (1)–(4), see [Ioa11, Lemma 9.2] or adapt the proof of

Proposition 7.2. Since B is amenable, the M -(M⊗M)-bimodule

(∆(M)⊗ 1)L
2(M⊗M⊗M)(M⊗1⊗M)

is weakly contained in the coarse M -(M⊗M)-bimodule L2(M)⊗L2(M⊗M).

Continuing exactly as in the proof of Proposition 7.2(4) yields (5). �

To prove Theorem 10.1 it is sufficient to show that B ≺ A or LΛ ≺ LΓ.

First, if LΛ ≺ LΓ, then [Ioa11, Case (5) in the proof of Theorem 9.1] shows

that automatically B ≺ A. If B ≺ A then, by [Pop06a, Th. A.1], B and A are

unitarily conjugate, so that after such a unitary conjugacy, π is implemented

by an orbit equivalence between Λ y Y and Γ y X, together with an T-valued

cocycle for the action Γ y X. By the cocycle superrigidity theorem [Pop08,

Th. 1.1], we can assume that the orbit equivalence is a conjugacy and that the

T-valued cocycle is a character.

We prove Theorem 10.1 by contradiction, assuming that B ⊀ A and LΛ ⊀
LΓ. The proof consists of several steps.
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Step 1. There exists a unitary v ∈M⊗M such that v∆(LΓ)v∗ ⊂ L(Γ×Γ).

Proof. Let Q = ∆(LΓ0), and denote by P the quasi-normalizer of Q inside

M⊗M . Since ∆(LΓ1) ⊂ P and the centralizer of Γ0 inside Γ1 is nonamenable,

Lemma 10.2.5 implies that Q′ ∩ P is strongly nonamenable relative to M ⊗ 1

and 1 ⊗M . Since Γ1 is nonamenable and ∆(LΓ1) ⊂ P , Lemma 10.2.5 gives

that P ⊀M⊗A and P ⊀ A⊗M .

We claim that Q ⊀ M ⊗ 1 and Q ⊀ 1 ⊗ M . Indeed, by Lemma 10.2

it suffices to prove that LΓ0 ⊀ B. If we assume that LΓ0 ≺ B, then [Va07,

Lemma 3.5.] implies that B ≺ (LΓ0)′ ∩M . Since Γ0 is infinite, we get that

(LΓ0)′∩M ⊂ LΓ and therefore B ≺ LΓ, contradicting the fact that B is regular

in M (see [Pop06c, Th. 3.1]).

Applying Corollary 4.3(3) we get a unitary v ∈M⊗M such that vPv∗ ⊂
M⊗LΓ. Repeating the last part of Step 1 in the proof of Theorem 8.2 yields

the conclusion. �

From now we replace ∆ by (Ad v)◦∆ and assume that ∆(LΓ) ⊂ L(Γ×Γ).

Let C = ∆(A)′ ∩ (M⊗M).

Step 2. For every projection p ∈ Z(C) we have Cp ≺ A⊗A. Moreover

there exists a unitary u ∈M⊗M such that uZ(C)u∗ ⊂ A⊗A.

Proof. Since Γ is nonamenable, by Lemma 10.2 we have that ∆(LΓ) ⊀
LΓ ⊗ 1 and ∆(LΓ) ⊀ 1 ⊗ LΓ. We claim that ∆(A) ⊀ LΓ⊗M and ∆(A) ⊀
M⊗LΓ. If we assume the contrary, since ∆(M) is contained in the quasi-

normalizer of ∆(A) inside M⊗M , [Ioa11, Prop. 3.5] implies that one of the

following holds: ∆(A) ≺ 1⊗M , ∆(M) ≺ LΓ⊗M , ∆(A) ≺M ⊗ 1 or ∆(M) ≺
M⊗LΓ. Applying Lemma 10.2 we get that either A is not diffuse, L(Γ) has

finite index in M , A ≺ B or LΛ ≺ LΓ, all of which give a contradiction.

Since {∆(ug)}g∈Γ normalize ∆(A), the previous paragraph allows us to

apply [Ioa11, Th. 6.1] and the conclusion follows. �

Note that the unitaries {∆(ug)}g∈Γ normalize C, and denote by (βg)g∈Γ

the action of Γ on C given by βg(x) = ∆(ug)x∆(ug)
∗ for g ∈ Γ and x ∈ C.

Step 2 implies that the algebra Z0 := Z(C) ∩ L(Γ × Γ) is completely atomic.

Let p ∈ Z0 be a minimal projection, and let G ⊂ Γ be a finite index subgroup

such that p is (βg)g∈G-invariant.

We claim that the action (βg)g∈G on Z(C)p is weakly mixing. To prove

this claim, let H ⊂ Z(C)p be a finite dimensional (βg)g∈G-invariant subspace.

Then H is contained in the quasi-normalizer of ∆(LG)p inside p(M⊗M)p.

Since ∆(LG) ⊀ LΓ⊗ 1 and ∆(LG) ⊀ 1⊗LΓ, we get from [Vae08, Lemma 4.2]

that H ⊂ pL(Γ× Γ)p. Thus H ⊂ Z0p = Cp, proving the claim.

For d > 1, we denote by Gd the group {u⊗ ug|u ∈ U(Md(C)), g ∈ Γ× Γ}.
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Step 3. There exist d > 1, two groups K ⊂ G ⊂ Gd with K finite and

normal in G, a group homomorphism δ : G → G/K, a partial isometry w ∈
M1,d(C)⊗ L(Γ× Γ) with ww∗ = p and w∗w = pK := |K|−1∑

k∈K k such that

w∗Cw = (Md(C)⊗ (A⊗A))AdKpK and w∗∆(ug)w = δ(g)pK for all g ∈ G.

Proof. We apply Theorem 6.1 and Corollary 6.2(2) to the crossed product

M⊗M = (A⊗A) o (Γ × Γ). Since the action (Ad(∆(ug)p))g∈G on Z(Cp) is

weakly mixing, Cp ≺ A⊗A by Step 2, and (Cp)′ ∩ p(M⊗M)p = Z(Cp), all

conditions of Theorem 6.1 are indeed satisfied.

Moreover, also the extra condition (2) in Corollary 6.2 holds. Indeed, if

a subgroup H of Γ × Γ acts nonergodically on A⊗A, then H ⊂ H0 × Γ or

H ⊂ Γ×H0 for some finite subgroup H0 of Γ. Since G is nonamenable, from

Lemma 10.2 we know that ∆(LG) ⊀ (A⊗A) oH for every such subgroup H

of Γ × Γ. Thus, we also have that N ⊀ (A⊗A) o H, where N denotes the

von Neumann algebra generated by Cp and ∆(LG)p.

Theorem 6.1 and Corollary 6.2(2) provide the conclusion of Step 3. �

Step 4. End of the proof of Theorem 10.1.

Proof. Denote by γ : U(Md(C))×Γ×Γ→ Γ the group morphism γ(u, g, h)

= h. Put G0 := γ(G) and K0 := γ(K). By construction, K0 is a finite normal

subgroup of G0, and we still denote by γ the natural group homomorphism

γ : G/K → G0/K0. Denote by G1 < G the kernel of the homomorphism γ ◦ δ.
By construction, w∗∆(LG1)w ≺ M ⊗ 1 and hence, ∆(LG1) ≺ M ⊗ 1. By

Lemma 10.2 we have LG1 ≺ B, and the proof of Step 1 implies that G1 cannot

be infinite.

We consider the Fourier decomposition of elements in Md(C)⊗M⊗M with

respect to the crossed product Md(C)⊗M⊗M = (Md(C)⊗M⊗A)oΓ, where

Γ only acts on A. Note that the Fourier coefficients of a bounded sequence

xn ∈ Md(C)⊗M ⊗M tend to zero pointwise in ‖ · ‖2 if and only if

‖EMd(C)⊗M⊗A(axnb)‖2 → 0 ∀a, b ∈ Md(C)⊗M ⊗M.

It follows that for all a, b ∈ Md(C) ⊗M ⊗M , the Fourier coefficients of axnb

also tend to zero pointwise. We also consider the Fourier decomposition of

elements in M with respect to the crossed product M = A o Γ. In both

situations, we denote the Fourier coefficients of an element x as (x)g, g ∈ Γ.

When x ∈ Md(C)⊗M ⊗M , then (x)g ∈ Md(C)⊗M ⊗A.

Define the normal ∗-homomorphism θ : A → (Md(C) ⊗ A ⊗ A)AdK such

that w∗∆(a)w = θ(a)pK for all a ∈ A. By Step 3 we get that for all x ∈ AoG
and all h ∈ Γ, we have∑

k∈K0

(w∗∆(x)w)hk(1⊗ 1⊗ uhk) =
∑

g∈G,γ(δ(g))=hK0

θ((x)g)δ(g)pK .
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Recall that for a fixed h ∈ Γ, there are only finitely many g ∈ G satisfying

γ(δ(g)) = hK0. So, if xn is a bounded sequence in A o G whose Fourier

coefficients tend to zero pointwise, the same is true for w∗∆(xn)w. By the

remarks in the previous paragraph, the Fourier coefficients of ∆(xn)p then

also tend to zero pointwise.

Next, let xn be a bounded sequence in A o Γ whose Fourier coefficients

tend to zero pointwise. Let g1, . . . , gs ∈ Γ be representatives for Γ/G. Define

for j = 1, . . . , s,

xjn := EAoG(u∗gjxn).

Then for every j, we have that (xjn)n is a bounded sequence in A o G whose

Fourier coefficients tend to zero pointwise. The previous paragraph, together

with the formula

∆(xn)p =
s∑
j=1

∆(ugj )∆(xjn)p,

imply that the Fourier coefficients of ∆(xn)p tend to zero pointwise.

Since B 6≺ A, Definition 2.1 provides a sequence of unitaries bn whose

Fourier coefficients tend to zero pointwise. By the previous paragraph the

same is true for ∆(bn)p. But for b ∈ B, we have ∆(b) = v(b ⊗ 1)v∗ (recall

that the unitary v ∈M ⊗M was given by Step 1 and that we conjugated the

initial comultiplication ∆ by v). So, ∆(bn)p = v(bn ⊗ 1)vp and it follows that

the Fourier coefficients of (bn ⊗ 1)vp tend to zero pointwise. Taking the g-th

Fourier coefficient we get that

‖(vp)g‖2 = ‖bn(vp)g‖2 = ‖((bn ⊗ 1)vp)g‖2 → 0

for all g ∈ Γ. We reached the contradiction that p must be 0. �

This ends the proof of Theorem 10.1. �
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