Abstract
Let $T$ be a smooth homogeneous Calderón-Zygmund singular integral operator in $\mathbb{R}^n$. In this paper we study the problem of controlling the maximal singular integral $T^{\star}f$ by the singular integral $Tf$. The most basic form of control one may consider is the estimate of the $L^2(\mathbb{R}^n)$ norm of $T^{\star}f$ by a constant times the $L^2(\mathbb{R}^n)$ norm of $Tf$. We show that if $T$ is an even higher order Riesz transform, then one has the stronger pointwise inequality $T^{\star}f(x) \leq C \, M(Tf)(x)$, where $C$ is a constant and $M$ is the Hardy-Littlewood maximal operator. We prove that the $L^2$ estimate of $T^{\star}$ by $T$ is equivalent, for even smooth homogeneous Calderón-Zygmund operators, to the pointwise inequality between $T^{\star}$ and $M(T)$. Our main result characterizes the $L^2$ and pointwise inequalities in terms of an algebraic condition expressed in terms of the kernel $\frac{\Omega(x)}{|x|^n}$ of $T$, where $\Omega$ is an even homogeneous function of degree $0$, of class $C^\infty(S^{n-1})$ and with zero integral on the unit sphere $S^{n-1}$. Let $\Omega= \sum P_j$ be the expansion of $\Omega$ in spherical harmonics $P_j$ of degree $j$. Let $A$ stand for the algebra generated by the identity and the smooth homogeneous Calderón-Zygmund operators. Then our characterizing condition states that $T$ is of the form $R\circ U$, where $U$ is an invertible operator in $A$ and $R$ is a higher order Riesz transform associated with a homogeneous harmonic polynomial $P$ which divides each $P_j$ in the ring of polynomials in $n$~variables with real coefficients.
-
[ACL] N. Aronszajn, T. M. Creese, and L. J. Lipkin, Polyharmonic Functions, New York: The Clarendon Press Oxford University Press, 1983.
@book {ACL, MRKEY = {0745128},
AUTHOR = {Aronszajn, Nachman and Creese, Thomas M. and Lipkin, Leonard J.},
TITLE = {Polyharmonic Functions},
SERIES = {Oxford Math. Monogr.},
PUBLISHER = {The Clarendon Press Oxford University Press},
ADDRESS = {New York},
YEAR = {1983},
PAGES = {x+265},
ISBN = {0-19-853906-1},
MRCLASS = {31-02 (26E05 31B30 32Axx 35C99)},
MRNUMBER = {0745128},
MRREVIEWER = {E. Gerlach},
ZBLNUMBER = {0514.31001},
} -
[BM] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge: Cambridge Univ. Press, 2002, vol. 27.
@book {BM, MRKEY = {1867882},
AUTHOR = {Majda, Andrew J. and Bertozzi, Andrea L.},
TITLE = {Vorticity and Incompressible Flow},
SERIES = {Cambridge Texts Appl. Math.},
VOLUME = {27},
PUBLISHER = {Cambridge Univ. Press},
ADDRESS = {Cambridge},
YEAR = {2002},
PAGES = {xii+545},
ISBN = {0-521-63057-6; 0-521-63948-4},
MRCLASS = {76-02 (35Q30 35Q35 76B03 76D03 76D05)},
MRNUMBER = {1867882},
MRREVIEWER = {Yuxi Zheng},
ZBLNUMBER = {0983.76001},
} -
[CZ]
A. P. Calderón and A. Zygmund, "On a problem of Mihlin," Trans. Amer. Math. Soc., vol. 78, pp. 209-224, 1955.
@article {CZ, MRKEY = {0068028},
AUTHOR = {Calder{ó}n, A. P. and Zygmund, A.},
TITLE = {On a problem of {M}ihlin},
JOURNAL = {Trans. Amer. Math. Soc.},
FJOURNAL = {Transactions of the American Mathematical Society},
VOLUME = {78},
YEAR = {1955},
PAGES = {209--224},
ISSN = {0002-9947},
MRCLASS = {42.4X},
MRNUMBER = {0068028},
MRREVIEWER = {F. Smithies},
DOI = {10.2307/1992955},
ZBLNUMBER = {0065.04104},
} -
[Ch] J. Chemin, "Fluides parfaits incompressibles," Astérisque, vol. 230, p. 177, 1995.
@article {Ch, MRKEY = {1340046},
AUTHOR = {Chemin, Jean-Yves},
TITLE = {Fluides parfaits incompressibles},
JOURNAL = {Astérisque},
FJOURNAL = {Astérisque},
VOLUME = {230},
YEAR = {1995},
PAGES = {177},
ISSN = {0303-1179},
MRCLASS = {76C05 (35-02 35Q35 76-02)},
MRNUMBER = {1340046},
MRREVIEWER = {Denis Serre},
ZBLNUMBER = {0829.76003},
} -
[DS] G. David and S. Semmes, Singular integrals and rectifiable sets in ${\mathbb R}^n$: Beyond Lipschitz graphs, Paris: Soc. Math. France, 1991, vol. 193.
@book{DS,
author={David, G. and Semmes, S.},
TITLE={Singular integrals and rectifiable sets in ${\mathbb R}^n$: {B}eyond {L}ipschitz graphs},
SERIES={Astérisque},
VOLUME={193},
PUBLISHER={Soc. Math. France},
ADDRESS={Paris},
YEAR={1991},
MRNUMBER={1113517},
ZBLNUMBER={0743.49018},
} -
[Gr] L. Grafakos, Classical and Modern Fourier Analysis, Upper Saddle River, NJ: Pearson Education, 2004.
@book {Gr, MRKEY = {2449250},
AUTHOR = {Grafakos, Loukas},
TITLE = {Classical and Modern {F}ourier Analysis},
PUBLISHER = {Pearson Education},
ADDRESS={Upper Saddle River, NJ},
YEAR = {2004},
PAGES = {xii+931},
ISBN = {0-13-035399-X},
MRCLASS = {42-01},
MRNUMBER = {2449250},
ZBLNUMBER = {1148.42001},
} -
[GKP] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, Second ed., Reading, MA: Addison-Wesley Publishing Company, 1994.
@book {GKP, MRKEY = {1397498},
AUTHOR = {Graham, Ronald L. and Knuth, Donald E. and Patashnik, Oren},
TITLE = {Concrete Mathematics. A Foundation for Computer Science},
EDITION = {Second},
PUBLISHER = {Addison-Wesley Publishing Company},
ADDRESS = {Reading, MA},
YEAR = {1994},
PAGES = {xiv+657},
ISBN = {0-201-55802-5},
MRCLASS = {68-01 (00-01 00A05 05-01 68Rxx)},
MRNUMBER = {1397498},
MRREVIEWER = {Volker Strehl},
ZBLNUMBER = {0836.00001},
} -
[K] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Boston, MA: Birkhäuser, 1985.
@book {K, MRKEY = {0789602},
AUTHOR = {Kunz, Ernst},
TITLE = {Introduction to Commutative Algebra and Algebraic Geometry},
PUBLISHER = {Birkhäuser},
ADDRESS = {Boston, MA},
YEAR = {1985},
PAGES = {xi+238},
ISBN = {3-7643-3065-1},
MRCLASS = {14-01 (13-01)},
MRNUMBER = {0789602},
ZBLNUMBER = {0563.13001},
} -
[LS]
L. Lorch and P. Szego, "A singular integral whose kernel involves a Bessel function," Duke Math. J., vol. 22, pp. 407-418, 1955.
@article {LS, MRKEY = {0087774},
AUTHOR = {Lorch, Lee and Szego, Peter},
TITLE = {A singular integral whose kernel involves a {B}essel function},
JOURNAL = {Duke Math. J.},
FJOURNAL = {Duke Mathematical Journal},
VOLUME = {22},
YEAR = {1955},
PAGES = {407--418},
ISSN = {0012-7094},
MRCLASS = {33.0X},
MRNUMBER = {0087774},
MRREVIEWER = {A. P. Calder{ó}n},
DOI = {10.1215/S0012-7094-55-02244-4},
ZBLNUMBER = {0066.05201},
} -
[Lo] G. G. Lorentz, Approximation of Functions, Second ed., New York: Chelsea Publishing Co., 1986.
@book {Lo, MRKEY = {0917270},
AUTHOR = {Lorentz, G. G.},
TITLE = {Approximation of Functions},
EDITION = {Second},
PUBLISHER = {Chelsea Publishing Co.},
ADDRESS = {New York},
YEAR = {1986},
PAGES = {x+188},
ISBN = {0-8284-0322-8},
MRCLASS = {41-01},
MRNUMBER = {0917270},
ZBLNUMBER = {0643.41001},
} -
[LZ]
R. Lyons and K. Zumbrun, "Homogeneous partial derivatives of radial functions," Proc. Amer. Math. Soc., vol. 121, iss. 1, pp. 315-316, 1994.
@article {LZ, MRKEY = {1227524},
AUTHOR = {Lyons, Russell and Zumbrun, Kevin},
TITLE = {Homogeneous partial derivatives of radial functions},
JOURNAL = {Proc. Amer. Math. Soc.},
FJOURNAL = {Proceedings of the American Mathematical Society},
VOLUME = {121},
YEAR = {1994},
NUMBER = {1},
PAGES = {315--316},
ISSN = {0002-9939},
CODEN = {PAMYAR},
MRCLASS = {26B05 (31B05 35A99)},
MRNUMBER = {1227524},
MRREVIEWER = {J. Luke{š}},
DOI = {10.2307/2160399},
ZBLNUMBER = {0815.26006},
} -
[MNOV]
J. Mateu, Y. Netrusov, J. Orobitg, and J. Verdera, "BMO and Lipschitz approximation by solutions of elliptic equations," Ann. Inst. Fourier $($Grenoble$)$, vol. 46, iss. 4, pp. 1057-1081, 1996.
@article {MNOV, MRKEY = {1415957},
AUTHOR = {Mateu, Joan and Netrusov, Y. and Orobitg, J. and Verdera, J.},
TITLE = {B{MO} and {L}ipschitz approximation by solutions of elliptic equations},
JOURNAL = {Ann. Inst. Fourier $($Grenoble$)$},
FJOURNAL = {Université de Grenoble. Annales de l'Institut Fourier},
VOLUME = {46},
YEAR = {1996},
NUMBER = {4},
PAGES = {1057--1081},
ISSN = {0373-0956},
CODEN = {AIFUA7},
MRCLASS = {41A30 (31C15 35J30)},
MRNUMBER = {1415957},
MRREVIEWER = {Juan Carlos Fari{ñ}a Gil},
URL = {http://www.numdam.org/item?id=AIF_1996__46_4_1057_0},
ZBLNUMBER = {0853.31007},
} -
[MO]
J. Mateu and J. Orobitg, "Lipschitz approximation by harmonic functions and some applications to spectral synthesis," Indiana Univ. Math. J., vol. 39, iss. 3, pp. 703-736, 1990.
@article {MO, MRKEY = {1078735},
AUTHOR = {Mateu, Joan and Orobitg, Joan},
TITLE = {Lipschitz approximation by harmonic functions and some applications to spectral synthesis},
JOURNAL = {Indiana Univ. Math. J.},
FJOURNAL = {Indiana University Mathematics Journal},
VOLUME = {39},
YEAR = {1990},
NUMBER = {3},
PAGES = {703--736},
ISSN = {0022-2518},
CODEN = {IUMJAB},
MRCLASS = {46E15 (31B05)},
MRNUMBER = {1078735},
DOI = {10.1512/iumj.1990.39.39035},
ZBLNUMBER = {0768.46006},
} -
[MOV]
J. Mateu, J. Orobitg, and J. Verdera, "Extra cancellation of even Calderón-Zygmund operators and quasiconformal mappings," J. Math. Pures Appl., vol. 91, iss. 4, pp. 402-431, 2009.
@article {MOV, MRKEY = {2518005},
AUTHOR = {Mateu, Joan and Orobitg, Joan and Verdera, Joan},
TITLE = {Extra cancellation of even {C}alderón-{Z}ygmund operators and quasiconformal mappings},
JOURNAL = {J. Math. Pures Appl.},
FJOURNAL = {Journal de Mathématiques Pures et Appliquées. Neuvième Série},
VOLUME = {91},
YEAR = {2009},
NUMBER = {4},
PAGES = {402--431},
ISSN = {0021-7824},
CODEN = {JMPAAM},
MRCLASS = {42B20 (30C62)},
MRNUMBER = {2518005},
MRREVIEWER = {Caroline P. Sweezy},
DOI = {10.1016/j.matpur.2009.01.010},
ZBLNUMBER = {1179.30017},
} -
[MOPV]
J. Mateu, J. Orobitg, C. Pérez, and J. Verdera, "New estimates for the maximal singular integral," Int. Math. Res. Not., vol. 2010, iss. 19, pp. 3658-3722, 2010.
@article {MOPV, MRKEY = {2725509},
AUTHOR = {Mateu, Joan and Orobitg, Joan and P{é}rez, Carlos and Verdera, Joan},
TITLE = {New estimates for the maximal singular integral},
JOURNAL = {Int. Math. Res. Not.},
FJOURNAL = {International Mathematics Research Notices. IMRN},
YEAR = {2010},
NUMBER = {19},
PAGES = {3658--3722},
ISSN = {1073-7928},
MRCLASS = {42B35 (42B25)},
MRNUMBER = {2725509},
VOLUME = {2010},
ZBLNUMBER = {1208.42005},
DOI = {10.1093/imrn/rnq017},
URL={http://rmi.rsme.es/index.php?option=com_docman&task=doc_details&gid=13 1&Itemid=91&lang=en},
} -
[MPV]
J. Mateu, L. Prat, and J. Verdera, "The capacity associated to signed Riesz kernels, and Wolff potentials," J. Reine Angew. Math., vol. 578, pp. 201-223, 2005.
@article {MPV, MRKEY = {2113895},
AUTHOR = {Mateu, Joan and Prat, Laura and Verdera, Joan},
TITLE = {The capacity associated to signed {R}iesz kernels, and {W}olff potentials},
JOURNAL = {J. Reine Angew. Math.},
FJOURNAL = {Journal für die Reine und Angewandte Mathematik},
VOLUME = {578},
YEAR = {2005},
PAGES = {201--223},
ISSN = {0075-4102},
CODEN = {JRMAA8},
MRCLASS = {31B15 (31C45)},
MRNUMBER = {2113895},
MRREVIEWER = {Jana Bj{ö}rn},
DOI = {10.1515/crll.2005.2005.578.201},
ZBLNUMBER = {1086.31005},
} -
[MV1] J. Mateu and J. Verdera, "BMO harmonic approximation in the plane and spectral synthesis for Hardy-Sobolev spaces," Rev. Mat. Iberoamericana, vol. 4, iss. 2, pp. 291-318, 1988.
@article {MV1, MRKEY = {1028743},
AUTHOR = {Mateu, Joan and Verdera, Joan},
TITLE = {B{MO} harmonic approximation in the plane and spectral synthesis for {H}ardy-{S}obolev spaces},
JOURNAL = {Rev. Mat. Iberoamericana},
FJOURNAL = {Revista Matemática Iberoamericana},
VOLUME = {4},
YEAR = {1988},
NUMBER = {2},
PAGES = {291--318},
ISSN = {0213-2230},
MRCLASS = {42B30 (46E30)},
MRNUMBER = {1028743},
MRREVIEWER = {Weixing Zheng},
ZBLNUMBER = {0702.31001},
} -
[MV2]
J. Mateu and J. Verdera, "$L^p$ and weak $L^1$ estimates for the maximal Riesz transform and the maximal Beurling transform," Math. Res. Lett., vol. 13, iss. 5-6, pp. 957-966, 2006.
@article {MV2, MRKEY = {2280788},
AUTHOR = {Mateu, Joan and Verdera, Joan},
TITLE = {{$L\sp p$} and weak {$L\sp 1$} estimates for the maximal {R}iesz transform and the maximal {B}eurling transform},
JOURNAL = {Math. Res. Lett.},
FJOURNAL = {Mathematical Research Letters},
VOLUME = {13},
YEAR = {2006},
NUMBER = {5-6},
PAGES = {957--966},
ISSN = {1073-2780},
MRCLASS = {42B25},
MRNUMBER = {2280788},
MRREVIEWER = {P. K. Ratnakumar},
ZBLNUMBER = {1134.42322},
URL={http://www.mrlonline.org/mrl/2006-013-006/2006-013-006-010.html},
} -
[MaV]
P. Mattila and J. Verdera, "Convergence of singular integrals with general measures," J. Eur. Math. Soc. $($JEMS$)$, vol. 11, iss. 2, pp. 257-271, 2009.
@article {MaV, MRKEY = {2486933},
AUTHOR = {Mattila, Pertti and Verdera, Joan},
TITLE = {Convergence of singular integrals with general measures},
JOURNAL = {J. Eur. Math. Soc. $($JEMS$)$},
FJOURNAL = {Journal of the European Mathematical Society (JEMS)},
VOLUME = {11},
YEAR = {2009},
NUMBER = {2},
PAGES = {257--271},
ISSN = {1435-9855},
MRCLASS = {42B20},
MRNUMBER = {2486933},
DOI = {10.4171/JEMS/149},
ZBLNUMBER = {1163.42005},
} -
[RS]
F. Ricci and E. M. Stein, "Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals," J. Funct. Anal., vol. 73, iss. 1, pp. 179-194, 1987.
@article {RS, MRKEY = {0890662},
AUTHOR = {Ricci, Fulvio and Stein, E. M.},
TITLE = {Harmonic analysis on nilpotent groups and singular integrals. {I}. {O}scillatory integrals},
JOURNAL = {J. Funct. Anal.},
FJOURNAL = {Journal of Functional Analysis},
VOLUME = {73},
YEAR = {1987},
NUMBER = {1},
PAGES = {179--194},
ISSN = {0022-1236},
CODEN = {JFUAAW},
MRCLASS = {42B20 (22E30 43A80 58G15)},
MRNUMBER = {0890662},
MRREVIEWER = {Detlef H. M{ü}ller},
DOI = {10.1016/0022-1236(87)90064-4},
ZBLNUMBER={0622.42010},
} -
[St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, N.J.: Princeton Univ. Press, 1970, vol. 30.
@book {St, MRKEY = {0290095},
AUTHOR = {Stein, Elias M.},
TITLE = {Singular Integrals and Differentiability Properties of Functions},
SERIES = {Princeton Math. Series},
VOLUME={30},
PUBLISHER = {Princeton Univ. Press},
ADDRESS = {Princeton, N.J.},
YEAR = {1970},
PAGES = {xiv+290},
MRCLASS = {46.38 (26.00)},
MRNUMBER = {0290095},
MRREVIEWER = {R. E. Edwards},
ZBLNUMBER = {0207.13501},
} -
[SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton, N.J.: Princeton Univ. Press, 1971, vol. 32.
@book {SW, MRKEY = {0304972},
AUTHOR = {Stein, Elias M. and Weiss, Guido},
TITLE = {Introduction to {F}ourier Analysis on {E}uclidean Spaces},
SERIES = {Princeton Math. Series},
VOLUME={32},
PUBLISHER = {Princeton Univ. Press},
ADDRESS = {Princeton, N.J.},
YEAR = {1971},
PAGES = {x+297},
MRCLASS = {42A92 (31B99 32A99 46F99 47G05)},
MRNUMBER = {0304972},
MRREVIEWER = {Edwin Hewitt},
ZBLNUMBER = {0232.42007},
} -
[Ve1]
J. Verdera, "$C^m$ approximation by solutions of elliptic equations, and Calderón-Zygmund operators," Duke Math. J., vol. 55, iss. 1, pp. 157-187, 1987.
@article {Ve1, MRKEY = {0883668},
AUTHOR = {Verdera, Joan},
TITLE = {{$C\sp m$} approximation by solutions of elliptic equations, and {C}alderón-{Z}ygmund operators},
JOURNAL = {Duke Math. J.},
FJOURNAL = {Duke Mathematical Journal},
VOLUME = {55},
YEAR = {1987},
NUMBER = {1},
PAGES = {157--187},
ISSN = {0012-7094},
CODEN = {DUMJAO},
MRCLASS = {35A35 (35J30)},
MRNUMBER = {0883668},
MRREVIEWER = {V. S. Rabinovich},
DOI = {10.1215/S0012-7094-87-05509-8},
ZBLNUMBER = {0654.35007},
} -
[Ve2] J. Verdera, "$L^2$ boundedness of the Cauchy integral and Menger curvature," in Harmonic Analysis and Boundary Value Problems, Providence, RI: Amer. Math. Soc., 2001, vol. 277, pp. 139-158.
@incollection {Ve2, MRKEY = {1840432},
AUTHOR = {Verdera, Joan},
TITLE = {{$L\sp 2$} boundedness of the {C}auchy integral and {M}enger curvature},
BOOKTITLE = {Harmonic Analysis and Boundary Value Problems},
VENUE={{F}ayetteville, {AR},
2000},
SERIES = {Contemp. Math.},
VOLUME = {277},
PAGES = {139--158},
PUBLISHER = {Amer. Math. Soc.},
ADDRESS = {Providence, RI},
YEAR = {2001},
MRCLASS = {30E20 (30E25)},
MRNUMBER = {1840432},
MRREVIEWER = {N. V. Rao},
ZBLNUMBER = {1002.42011},
}