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Estimates for the maximal singular integral
in terms of the singular integral:

the case of even kernels

By Joan Mateu, Joan Orobitg, and Joan Verdera

Abstract

Let T be a smooth homogeneous Calderón-Zygmund singular integral

operator in Rn. In this paper we study the problem of controlling the max-

imal singular integral T ?f by the singular integral Tf . The most basic

form of control one may consider is the estimate of the L2(Rn) norm of

T ?f by a constant times the L2(Rn) norm of Tf . We show that if T is

an even higher order Riesz transform, then one has the stronger pointwise

inequality T ?f(x) ≤ CM(Tf)(x), where C is a constant and M is the

Hardy-Littlewood maximal operator. We prove that the L2 estimate of

T ? by T is equivalent, for even smooth homogeneous Calderón-Zygmund

operators, to the pointwise inequality between T ? and M(T ). Our main

result characterizes the L2 and pointwise inequalities in terms of an alge-

braic condition expressed in terms of the kernel Ω(x)
|x|n of T , where Ω is an

even homogeneous function of degree 0, of class C∞(Sn−1) and with zero

integral on the unit sphere Sn−1. Let Ω =
∑

Pj be the expansion of Ω in

spherical harmonics Pj of degree j. Let A stand for the algebra generated

by the identity and the smooth homogeneous Calderón-Zygmund opera-

tors. Then our characterizing condition states that T is of the form R ◦U ,

where U is an invertible operator in A and R is a higher order Riesz trans-

form associated with a homogeneous harmonic polynomial P which divides

each Pj in the ring of polynomials in n variables with real coefficients.

1. Introduction

Let T be a smooth homogeneous Calderón-Zygmund singular integral op-

erator on Rn with kernel

(1) K(x) =
Ω(x)

|x|n , x ∈ Rn \ {0} ,

where Ω is a (real valued) homogeneous function of degree 0 whose restriction

to the unit sphere Sn−1 is of class C∞(Sn−1) and satisfies the cancellation

property ∫
|x|=1

Ω(x) dσ(x) = 0 ,
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with σ being the normalized surface measure on Sn−1. Recall that Tf is the

principal value convolution operator

(2) Tf(x) = P.V.

∫
f(x− y)K(y) dy ≡ lim

ε→0
T εf(x) ,

where T ε is the truncation at level ε defined by

T εf(x) =

∫
|y−x|>ε

f(x− y)K(y) dy .

As we know, the limit in (2) exists for almost all x for f in Lp(Rn), 1 ≤ p <∞.

Let T ? be the maximal singular integral

T ?f(x) = sup
ε>0
|T εf(x)|, x ∈ Rn .

In this paper we consider the problem of controlling T ?f by Tf . The most

basic form of control one may think of is the L2 estimate

(3) ‖T ?f‖2 ≤ C‖Tf‖2, f ∈ L2(Rn) .

Another way of saying that T ?f is dominated by Tf , apparently much stronger,

is provided by the pointwise inequality

(4) T ?f(x) ≤ CM(Tf)(x), x ∈ Rn ,

where M denotes the Hardy-Littlewood maximal operator. Notice that (4)

may be viewed as an improved version of classical Cotlar’s inequality

T ?f(x) ≤ C (M(Tf)(x) +Mf(x)) , x ∈ Rn ,

because the term involving Mf is missing in the right-hand side of (4).

We prove that if T is an even higher order Riesz transform, then (4)

holds. Recall that T is a higher order Riesz transform if its kernel is given by

a function Ω of the form

Ω(x) =
P (x)

|x|d , x ∈ Rn \ {0} ,

with P a homogeneous harmonic polynomial of degree d ≥ 1. If P (x) = xj ,

then one obtains the j-th Riesz transform Rj . If the homogeneous polynomial

P is not required to be harmonic, but has still zero integral on the unit sphere,

then we call T a polynomial operator.

Thus, if T = R is an even higher order Riesz transform, one has the weak

L1 type inequality

(5) ‖R?f‖1,∞ ≤ C‖Rf‖1 ,
which combined with the classical weak L1 type estimate

‖R?f‖1,∞ ≤ C‖f‖1 ,
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yields the sharp inequality

‖R?f‖1,∞ ≤ C min{‖f‖1, ‖Rf‖1} .

In [MV06] one proved (4) for the Beurling transform in the plane and also

that (5) fails for the Riesz transforms Rj . Therefore the assumption that the

operator is even is crucial.

The question of estimating T ?f by Tf was first raised in [MV06]. The

problem originated in an attempt to gain a better understanding of how one

can obtain almost everywhere existence of principal values of truncated sin-

gular integrals from L2 boundedness, for underlying measures more general

than the Lebesgue measure in Rn. This in turn is motivated by a problem

of David and Semmes [DS91], which consists in deriving uniform rectifiability

of a d-dimensional Ahlfors regular subset of Rn from the L2 boundedness of

the Riesz kernel of homogeneity −d with respect to d-dimensional Hausdorff

measure on the set. For more details on that see the last section of [MV09].

Our main result states that for even operators, inequalities (3) and (4) are

equivalent to an algebraic condition involving the expansion of Ω in spherical

harmonics. This condition may be very easily checked in practice and so,

in particular, we can produce extremely simple examples of even polynomial

operators for which (3) and (4) fail. For these operators no control of T ?f by

Tf seems to be known. To state our main result we need to introduce a piece

of notation.

Recall that Ω has an expansion in spherical harmonics; that is,

(6) Ω(x) =
∞∑
j=1

Pj(x), x ∈ Sn−1 ,

where Pj is a homogeneous harmonic polynomial of degree j. If Ω is even, then

only the Pj of even degree j may be nonzero.

An important role in this paper will be played by the algebra A consisting

of the bounded operators on L2(Rn) of the form

λI + S ,

where λ is a real number and S a smooth homogeneous Calderón-Zygmund

operator.

Our main result reads as follows.

Theorem. Let T be an even smooth homogeneous Calderón-Zygmund op-

erator with kernel (1) and assume that Ω has the expansion (6). Then the

following are equivalent.

(i) T ?f(x) ≤ CM(Tf)(x), x ∈ Rn .
(ii) ‖T ?f‖2 ≤ C‖Tf‖2, f ∈ L2(Rn) .
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(iii) The operator T can be factorized as T = R◦U , where U is an invertible

operator in the algebra A and R is a higher order Riesz transform

associated with a harmonic homogeneous polynomial P which divides

each Pj in the ring of polynomials in n variables with real coefficients.

Two remarks are in order.

Remark 1. Observe that condition (iii) is algebraic in nature. This is one

of the reasons that makes the proof difficult. Condition (iii) can be reformu-

lated in a more concrete fashion as follows. Assume that the expansion of Ω

in spherical harmonics is

Ω(x) =
∞∑
j=j0

P2j(x), P2j0 6= 0 .

Then (iii) is equivalent to the following condition.

(iv) For each j there exists a homogeneous polynomial Q2j−2j0 of degree 2j−
2j0 such that P2j = P2j0 Q2j−2j0 and

∑∞
j=j0 γ2j Q2j−2j0(ξ) 6= 0, ξ ∈

Sn−1.

Here, for a positive integer j, we have set

(7) γj = i−j π
n
2

Γ( j2)

Γ(n+j
2 )

.

The quantities γj appear in the computation of the Fourier multiplier of the

higher order Riesz transform R with kernel given by a homogeneous harmonic

polynomial P of degree j. One has (see [Ste70, p. 73])

R̂f(ξ) = γj
P (ξ)

|ξ|j f̂(ξ), f ∈ L2(Rn) .

As we will show later, the series
∑∞
j=jo γ2j Q2j−2j0(x) is convergent in

C∞(Sn−1). If U is defined as the operator in the algebra A whose Fourier

multiplier is γ−1
2j0

times the sum of the preceding series, then T = R ◦U for the

higher order Riesz transform R given by the polynomial P2j0 . This shows that

(iii) follows from (iv).

To show that (iii) implies (iv) we prove that P = λP2j0 for some real

number λ 6= 0. Since P divides P2j0 by assumption, we only need to show that

the degree d of P must be 2j0. Now, let µ(ξ) denote the Fourier multiplier of

U , so that µ is a smooth function with no zeros on the sphere. The Fourier

multiplier of T is

∞∑
j=j0

γ2j P2j(ξ) = γd P (ξ)µ(ξ), ξ ∈ Sn−1 .
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If d is less than 2j0, then P is orthogonal to all P2j [Ste70, p. 69], and so∫
|ξ|=1

P (ξ)2 µ(ξ) dξ = 0 ,

which yields P (ξ) = 0, |ξ| = 1, a contradiction.

Remark 2. Condition (iii) is rather easy to check in practice. For instance,

take n = 2 and consider the polynomial of fourth degree

P (x, y) = xy + x4 + y4 − 6x2y2 .

The polynomial operator associated with P does not satisfy (i) or (ii), because

the definition of P above is also the spherical harmonics expansion of P and

xy clearly does not divide x4 + y4 − 6x2y2. Section 7 contains other examples

of polynomial operators that do not satisfy (i) or (ii).

On the other hand, the polynomial operator associated with

P (x, y) = xy + x3y − y3x

does satisfy (i) and (ii), but this is not the case for the operator determined by

P (x, y) = xy + 2(x3y − y3x) ,

although xy obviously divides x3y − y3x. See Section 8 for the details.

Thus the condition on Ω so that T satisfies (i) or (ii) is rather subtle.

Having clarified the statement of the theorem and some of its implications,

we now say a few words on the proofs and the organization of the paper.

We devote Sections 2, 3 and 4 to the proof of “(iii) implies (i)”, which

we call the sufficient condition. In Section 2 we prove that the even higher

order Riesz transforms satisfy (i). Section 3 is devoted to the proof of the

sufficient condition for polynomial operators. The argument is an extension

of that used in the previous section. The drawback is that we lose control

on the dependence of the constants on the degree of the polynomial. The

main difficulty we have to overcome in Section 4 to complete the proof of the

sufficient condition in the general case, is to find a second approach to the

polynomial case which gives some estimates with constants independent of the

degree of the polynomial. This allows us to use a compactness argument to

finish the proof. It is an intriguing fact that the approach in Section 3 cannot

be dispensed with, because it provides certain properties which are vital for

the final argument and do not follow otherwise.

In Sections 5 and 6 we prove the necessary condition; that is, “(ii) implies

(iii)”. In Section 5 we deal with the polynomial case. Analysing the inequality

(ii) via Plancherel at the frequency side, we obtain various inclusion relations

among zero sets of certain polynomials. This requires a considerable combina-

torial effort for reasons that will become clear later on. In Maple, we found a
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formidable ally in formulating the right identities which were needed, which we

proved rigorously afterwards. In a second step we solve the division problem

which leads us to (iii) by a recurrent argument with some algebraic geometry

ingredients, the Hilbert’s Nullstellensatz in particular. The question of inde-

pendence on the degree of the polynomial appears again, this time related to

the coefficients of certain expansions. We deal with this problem in Section 6.

Section 7 is devoted to the proof of the intricate combinatorial lemmas used

in the previous sections. In Section 8 we discuss some examples and we ask a

couple of questions that we have not been able to answer.

Our methods are a combination of classical Fourier analysis techniques

and Calderón-Zygmund theory with potential theoretic ideas coming from our

previous work [MO90], [MPV05], [MV88], [MNOV96], [Ver87] and [Ver01].

As was discovered in [MV06], there is remarkable difference between the

odd and even cases for the problem we consider. To keep this article a rea-

sonable length, we decided to only deal here with the even case, which is more

difficult, because one needs special L∞ estimates for singular integrals, which

hold only in the even case. The results for the odd case will be published

elsewhere [MOPV10].

The L∞ estimates mentioned above are not obvious even for the sim-

plest even homogeneous Calderón-Zygmund operator, the Beurling transform,

which plays an important role in planar quasiconformal mapping theory. An

application of our estimates to planar quasiconformal mappings is given in

[MOV09].

2. Even higher order Riesz transforms

In this section we prove that if T is an even higher order Riesz transform,

then

(8) T ?f(x) ≤ CM(Tf)(x), x ∈ Rn .
Let B be the open ball of center 0 and radius 1, ∂B its boundary and

B its closure. In proving (8) we will encounter the following situation. We

are given a function ϕ defined by different formulae in B and Rn \ B, which

is differentiable up to order N on B ∪ (Rn \ B) and whose derivatives up to

order N − 1 extend continuously up to ∂B. The question is to compare the

distributional derivatives of order N with the expressions one gets on B and

Rn \ B by taking ordinary derivatives. The next simple lemma is a sample of

what we need.

Lemma 1. Let ϕ be a continuously differentiable function on B∪ (Rn \B)

which extends continuously to ∂B. Then we have the identity

∂jϕ = ∂jϕ(x)χB(x) + ∂jϕ(x)χRn\B(x) ,

where the left-hand side is the j-th distributional derivative of ϕ.
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Proof. Let ψ be a test function. Then

〈∂jϕ,ψ〉 = −
∫
ϕ∂jψ = −

∫
B
ϕ∂jψ −

∫
Rn\B

ϕ∂jψ .

Now apply Green-Stokes’ theorem to the domains B and Rn \ B to move the

derivatives from ψ to ϕ. The boundary terms cancel precisely because of the

continuity of ϕ on ∂B, and we get

〈∂jϕ,ψ〉 =

∫
(χB ∂jϕ+ χRn\B ∂jϕ)ψ dx . �

We need an analog of the previous statement for second order derivatives

and radial functions, which is the case we take up in the next corollary.

Corollary 2. Assume that ϕ is a radial function of the form

ϕ(x) = ϕ1(|x|)χB(x) + ϕ2(|x|)χRn\B(x) ,

where ϕ1 is continuously differentiable on [0, 1) and ϕ2 on (1,∞). Let L be a

second order differential operator with constant coefficients. Then the distri-

bution Lϕ satisfies

Lϕ = Lϕ(x)χB(x) + Lϕ(x)χRn\B(x) ,

provided ϕ1, ϕ′1, ϕ2 and ϕ′2 extend continuously to the point 1 and the two

conditions

ϕ1(1) = ϕ2(1), ϕ′1(1) = ϕ′2(1)

are satisfied.

Proof. The proof reduces to applying Lemma 1 twice. Before the second

application one should remark that the hypothesis ϕ′1(1) = ϕ′2(1) gives the

continuity of all first order partial derivatives of ϕ. �

We proceed now to describe in detail the main argument for the proof

of (8). By translating and dilating, one reduces the proof of (8) to

(9) |T 1f(0)| ≤ CM(Tf)(0) ,

where

T 1f(0) =

∫
|y|>1

f(y)K(y) dy

is the truncated integral at level 1. Recall that the kernel of our singular

integral is

K(x) =
Ω(x)

|x|n =
P (x)

|x|n+d
,

where P is an even homogeneous harmonic polynomial of degree d ≥ 2. The

idea is to obtain an identity of the form

(10) K(x)χRn\B(x) = T (b)(x)
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for some measurable bounded function b supported on B. Once (10) is at our

disposition we get, for f in some Lp(Rn), 1 ≤ p <∞,

T 1f(0) =

∫
χRn\B(y)K(y) f(y) dy

=

∫
T (b)(y) f(y) dy

=

∫
B
b(y)Tf(y) dy ,

and so (9) follows with C = Vn ‖b‖∞, Vn being the volume of the unit ball

of Rn.

Let us turn our attention to the proof of (10). Set d = 2N and let E be

the standard fundamental solution of the N -th power 4N of the Laplacean.

Consider the function

(11) ϕ(x) = E(x)χRn\B(x) + (A0 +A1 |x|2 + · · ·+Ad−1 |x|2d−2)χB(x) ,

where the constantsA0, A1, . . . , Ad−1 are chosen as follows. Since ϕ(x) is radial,

the same is true of 4jϕ for each positive integer j. Thus, in order to apply the

preceding corollary N times, one needs 2N = d conditions, which (uniquely)

determine A0, A1, . . . , Ad−1. Therefore, for some constants α1, α2, . . . , αN−1,

(12) 4N ϕ = (α0 + α1|x|2 + · · ·+ αN−1|x|2(N−1))χB(x) = b(x) ,

where the last identity is a definition of b. Since

ϕ = E ?4N ϕ ,

taking derivatives of both sides we obtain

(13) P (∂)ϕ = P (∂)E ?4N ϕ .

To compute P (∂)E we take the Fourier transform◊�P (∂)E(ξ) = P (iξ) Ê(ξ) =
P (ξ)

|ξ|d .

On the other hand, as is well known ([Ste70, p. 73],¤�
P.V.

P (x)

|x|n+d
(ξ) = γd

P (ξ)

|ξ|d .

See (7) for the precise value of γd, which is not important now. We conclude

that, for some constant cd depending on d,

P (∂)E = cd P.V.
P (x)

|x|n+d
.

Thus

P (∂)ϕ = cd P.V.
P (x)

|x|n+d
? 4N ϕ = cd T (b) .
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The only thing left is the computation of P (∂)ϕ. We have, by Corollary 2,

P (∂)ϕ = cdK(x)χRn\B + P (∂)(A0 +A1 |x|2 + · · ·+Ad−1 |x|2d−2)(x)χB(x) ,

and so, to complete the proof of (10), we only have to show that

(14) P (∂)(|x|2j) = 0, 1 ≤ j ≤ d− 1 .

Notice that the degree of P may be much smaller than the degree of |x|2j ,
and so the previous identity is not obvious. Taking the Fourier transform we

obtain ¤�P (∂)(|x|2j) = cj P (ξ)4j δ ,

where δ is the Dirac delta at the origin and cj is a constant depending on j.

Let ψ be a test function. Then, since P is harmonic,

〈P (ξ)4j δ, ψ〉 = 〈4j δ, P (ξ)ψ(ξ)〉
= 〈4j−1 δ, 2∇P (ξ) · ∇ψ(ξ) + P (ξ)4ψ(ξ)〉 .

Iterating the previous computation, we obtain that

〈P (ξ)4j δ, ψ〉 = 〈δ,D(ξ)〉 = D(0) ,

where D is a linear combination of products of the form ∂α ψ(ξ) ∂β P (ξ), with

multi-indeces β of length |β| ≤ j ≤ d− 1. Therefore ∂β P (ξ) is a homogeneous

polynomial of degree at least d − j ≥ 1, and so ∂β P (0) = 0. This yields

D(0) = 0 and completes the proof of (14) and, thus, of (10).

In fact, (14) follows immediately from an identity of Lyons and Zumbrun

[LZ94] which will be discussed in the next section. However, we prefer to

present here the above independent natural argument for the reader’s conve-

nience.

3. Proof of the sufficient condition: the polynomial case

In this section we assume that T is an even polynomial operator. This

amounts to saying that for some even integer 2N , N≥1, the function |x|2NΩ(x)

is a homogeneous polynomial of degree 2N . Such a polynomial may be written

as [Ste70, p. 69]

|x|2N Ω(x) = P2(x)|x|2N−2 + · · ·+ P2j(x)|x|2N−2j + · · ·+ P2N (x) ,

where P2j is a homogeneous harmonic polynomial of degree 2j, 1 ≤ j ≤ N . In

other words, the expansion of Ω(x) in spherical harmonics is

Ω(x) = P2(x) + P4(x) + · · ·+ P2N (x), |x| = 1 .

As in the previous section, we want to obtain an expression for the kernel

K(x) off the unit ball B. For this we need the differential operator Q(∂) defined

by the polynomial

Q(x) = γ2 P2(x)|x|2N−2 + · · ·+ γ2j P2j(x)|x|2N−2j + · · ·+ γ2N P2N (x) .
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If E is the standard fundamental solution of ∆N , then

Q(∂)E = P.V.K(x) ,

which may be easily verified by taking the Fourier transform of both sides.

Now take the function ϕ of the previous section. We have ϕ = E ?4N ϕ

and thus

Q(∂)ϕ = Q(∂)E ?4N ϕ = P.V.K(x) ? b = T (b) ,

where b is defined as 4N ϕ. On the other hand, by Corollary 2,

(15)

Q(∂)ϕ = K(x)χRn\B +Q(∂)(A0 +A1 |x|2 + · · ·+A2N−1 |x|4N−2)(x)χB(x) .

Contrary to what happened in the previous section, the term

S(x) := −Q(∂)(A0 +A1 |x|2 + · · ·+A2N−1 |x|4N−2)(x)

does not necessarily vanish, the reason being that now Q does not need to be

harmonic.

Our goal is to find a function β ∈ L∞(Rn), satisfying the decay estimate

(16) |β(x)| ≤ C

|x|n+1
, |x| ≥ 2

and

(17) S(x)χB(x) = T (β)(x) .

Once this is achieved, the proof of (i) is just a variation of the argument

presented in Section 2, which we now explain. By (15), the definition of S(x)

and (17), we get

(18) K(x)χRn\B(x) = T (b)(x) + T (β)(x) .

Set γ = b + β. We show (9) by arguing as follows. For f in any Lp(Rn),

1 ≤ p <∞, we have

T 1f(0) =

∫
χRn\B(y)K(y) f(y) dy

=

∫
T (γ)(y) f(y) dy

=

∫
γ(y)Tf(y) dy

=

∫
2B
γ(y)Tf(y) dy +

∫
Rn\2B

γ(y)Tf(y) dy .

Thus, by the decay inequality (16) with β replaced by γ,

|T 1f(0)| ≤ C
Ç
‖γ‖∞

1

|2B|

∫
2B
|Tf(y)| dy +

∫
Rn\2B

|Tf(y)|
|y|n+1

dy

å
≤ CM(Tf)(0) .
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To construct β satisfying (16) and (17) we resort to our hypothesis, condi-

tion (iii) in the theorem, which says that T = R ◦U , where R is a higher order

Riesz transform, U is an invertible operator in the algebra A and the polyno-

mial P which determines R divides P2j , 1 ≤ j ≤ N , in the ring of polynomials

in n variables with real coefficients. The construction of β is performed in two

steps.

The first step consists in proving that there exists a function β1 in L∞(B),

satisfying a Lipschitz condition of order 1 on B,
∫
β1(x) dx = 0 and such that

(19) S(x)χB(x) = R(β1)(x) .

Later, it will become clear how the Lipschitz condition on β1 is used. To prove

(19) we need an explicit formula for S(x), and for that we will make use of the

following formula of Lyons and Zumbrun [LZ94].

Lemma 3. Let L be a homogeneous polynomial of degree l, and let f be a

smooth function of one variable. Then

L(∂)f(r) =
∑
ν≥0

1

2ν ν!
∆νL(x)

Å
1

r

∂

∂r

ãl−ν
f(r), r = |x| .

An immediate consequence of Lemma 3 is:

Lemma 4. Let P2j a homogeneous harmonic polynomial of degree 2j, and

let k be a nonnegative integer. Then

P2j(∂)(|x|2k) = 22j k!

(k − 2j)!
P2j(x) |x|2(k−2j) if 2j ≤ k ,

and

P2j(∂)(|x|2k) = 0, if 2j > k .

On the other hand, a routine computation gives

(20) 4j(|x|2k) = 4j
j! k!

(k − j)!

Ç
n
2 + k − 1

j

å
|x|2(k−j), k ≥ j ,

and

(21) 4j(|x|2k) = 0, k < j .

By Lemma 4, (20) and (21) we get that for some constants cjk, in view of the

definitions of Q(x) and S(x), one has

(22) S(x) =
N−1∑
j=1

N−1∑
k=j

cjk P2j(x) |x|2(k−j) .

Therefore it suffices to prove (19) with S(x) replaced by P2j(x) |x|2k for 1 ≤
j ≤ N and each nonnegative integer k. The idea is to look for an appropriate
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function ψ such that

(23) P (∂)ψ(x) = P2j(x) |x|2k χB(x) .

Indeed, if (23) holds and 2d is the degree of P , then

ψ = E ?∆dψ ,

provided E is the fundamental solution of 4d and ψ is good enough. Hence

P (∂)ψ = P (∂)E ?∆dψ = c P.V.
P (x)

|x|n+2d
?∆dψ = R(β1)

if β1 = c∆dψ. The conclusion is that we have to solve (23) in such a way that

∆dψ is supported on B, is a Lipschitz function on B and has zero integral.

Taking Fourier transforms in (23), we get

(24) (−1)dP (ξ) ψ̂(ξ) = (−1)j+k P2j(∂)4k (”χB(ξ)) .

Recall that for m = n/2, one has [Gra04, A-10]”χB(ξ) =
Jm(ξ)

|ξ|m , ξ ∈ Rn ,

where Jm is the Bessel function of order m. Set

Gλ(ξ) =
Jλ(ξ)

|ξ|λ , ξ ∈ Rn, λ > 0 .

In computing the right-hand side of (24), we apply Lemma 3 to L(x) =

P2j(x) |x|2k and f(r) = Gm(r), and we get

P (ξ) ψ̂(ξ) = (−1)j+k+d
∑
ν≥0

(−1)ν

2ν ν!
4ν
Ä
P2j(ξ) |ξ|2k

ä
Gm+2j+2k−ν(ξ) ,

owing to the well-known formula, e.g., [Gra04, A-6],

1

r

d

dr
Gλ(r) = −Gλ+1(r) , r > 0, λ > 0 .

Since P2j(ξ) is homogeneous of degree 2j, ∇P2j(ξ) · ξ = 2j P2j(ξ), and hence

one may readily show by an inductive argument that

4ν
Ä
P2j(ξ) |ξ|2k

ä
= ajkν P2j(ξ) |ξ|2(k−ν)

for some constants ajkν . Thus, for some other constants ajkν , we get

(25) P (ξ) ψ̂(ξ) =
∑
ν≥0

ajkν P2j(ξ) |ξ|2(k−ν)Gm+2j+2k−ν(ξ) .

By hypothesis, P divides P2j in the ring of polynomials in n variables, and so

P2j(ξ) = P (ξ)Q2j−2d(ξ)
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for some homogeneous polynomial Q2j−2d of degree 2j − 2d. Cancelling out

the factor P (ξ) in (25), we conclude that

ψ̂(ξ) = Q2j−2d(ξ)
k∑
ν=0

ajkν |ξ|2(k−ν)Gm+2j+2k−ν(ξ) .

Since [Gra04, A-10] ¤�((1− |x|2)λ χB(x))(ξ) = cλGm+λ(ξ) ,

we finally obtain

ψ(x) = Q2j−2d(∂)
k∑
ν=0

ajkν4k−ν
Ä
(1− |x|2)2j+2k−ν χB(x)

ä
.

Observe that ψ restricted to B is a polynomial which vanishes on ∂B up

to order 2d and ψ is zero off B. Therefore 4dψ is supported on B and its

restriction to B is a polynomial with zero integral. This completes the first

step of the construction of β.

The second step proceeds as follows. Since by hypothesis T = R ◦U , with

U invertible in the algebra A, we have

R(β1) = T (U−1β1) .

Setting

(26) β = U−1β1 ,

we are only left with the task of showing that

(27) β ∈ L∞(Rn)

and that, for some positive constant C,

(28) |β(x)| ≤ C

|x|n+1
, |x| ≥ 2 .

Since U−1 ∈ A , for some real number λ and some smooth homogeneous

Calderón-Zygmund operator V ,

U−1 = λ I + V .

Thus

β = λβ1 + V (β1) .

Now β1 is supported on B and has zero integral on B. This is enough to insure

the decay estimate (28). Indeed, let L(x) be the kernel of V and assume that

|x| ≥ 2. Then

V (β1)(x) =

∫
L(x− y)β1(y) dy(29)

=

∫
(L(x− y)− L(x)) β1(y) dy ,
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and so

|V (β1)(x)| ≤
∫
| (L(x− y)− L(x)) | |β1(y)| dy,(30)

≤ C
∫ |y|
|x|n+1

|β1(y)| dy,

=
C

|x|n+1
.

The boundedness of β is a more delicate issue. It follows immediately

from the next lemma applied to the operator V and the function β1. This is

precisely where we use the fact that β1 satisfies a Lipschitz condition.

The constant of the kernel K(x) = Ω(x)/|x|n of the smooth homogeneous

Calderón-Zygmund operator T is

(31) ‖T‖CZ ≡ ‖K‖CZ = ‖Ω‖∞ + ‖|x| ∇Ω(x)‖∞ .

We adopt the standard notation for the minimal Lipschitz constant of a

Lipschitz function f on B, namely

‖f‖Lip(1,B) = sup

® |f(x)− f(y)|
|x− y| : x, y ∈ B, x 6= y

´
<∞ .

Lemma 5. Let T be the homogeneous singular integral operator with kernel

K(x) = Ω(x)
|x|n , where Ω is an even homogeneous function of degree 0, continu-

ously differentiable and with zero integral on the unit sphere. Then

‖T (f χB)‖L∞(Rn) ≤ C ‖K‖CZ
Ä
‖f‖L∞(B) + ‖f‖Lip(1,B)

ä
,

where C is a positive constant which depends only on n.

Proof. We start by examining the behaviour of T (f χB) on the unit sphere.

We claim that

|Tε(f χB)(a)| ≤ C ‖K‖CZ
Ä
‖f‖L∞(B) + ‖f‖Lip(1,B)

ä
, |a| = 1, ε > 0 .

Indeed, if one follows in detail the proof of the claim, which we discuss below,

one will realize that the principal value integral T (f χB)(a) exists for all a in

the sphere and satisfies the desired estimate.

We have

Tε(f χB)(a) =

∫
ε<|x−a|<1/2

χB(x) f(x)K(a− x) dx+

∫
1/2<|x−a|

· · ·

= Iε + II .

Clearly,

|II| ≤
∫

1/2<|x−a|
χB(x) |f(x)| |Ω(x− a)|

|x− a|n dx ≤ 2n |B| ‖Ω‖∞ ‖f‖L∞(B) .
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To deal with the term Iε, we write

Iε =

∫
ε<|x−a|<1/2

χB(x) (f(x)− f(a))K(a− x) dx

+ f(a)

∫
ε<|x−a|<1/2

χB(x)K(a− x) dx

= IIIε + f(a) IVε ,

and we remark that IIIε can easily be estimated as follows:

|IIIε| ≤ ‖f‖Lip(1,B)

∫
B
|x− a||K(a− x)| dx ≤ C ‖Ω‖∞ ‖f‖Lip(1,B) .

Taking care of IVε is not so easy. Take spherical coordinates centered at the

point a, x = a+ r ω with 0 ≤ r and |ω| = 1. Then

(32) IVε =

∫ 1/2

ε

Ç∫
A(r)

Ω(ω) dσ(ω)

å
dr

r
,

where

A(r) = {ω : |ω| = 1 and |a+ rω| < 1} .
Let H be the tangent hiperplane to S = {x : |x| = 1} at the point a. Call V

the half space with boundary H containing the origin. Set Σ = {ω : |ω| = 1},
and think of Σ as the sphere of radius 1 centered at the point a expressed in

polar coordinates centered at a. Then A(r) ⊂ Σ ∩ V . See the figure below.

a

r

≃ r2 H

= 1

Since Ω is even,

0 =

∫
Σ

Ω(ω) dσ(ω) = 2

∫
Σ∩V

Ω(ω) dσ(ω) .

Thus ∫
A(r)

Ω(ω) dσ(ω) = −
∫

(Σ∩V )\A(r)
Ω(ω) dσ(ω) ,

and so ∣∣∣∣∣
∫
A(r)

Ω(ω) dσ(ω)

∣∣∣∣∣ ≤ ‖Ω‖∞ σ((Σ ∩ V ) \A(r)) .
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Since H is tangent to S at the point a, we obtain

σ((Σ ∩ V ) \A(r)) ≤ C r ,
which yields, by (32),

|IVε| ≤ C ‖Ω‖∞ .
Assume now that |a| < 1. Proceeding as before we estimate in the same

way the terms II and IIIε, so that we are again left with IVε. Let ε0 stand for

the distance from a to the boundary of B. In estimating IVε we can assume,

without loss of generality, that ε0 ≤ 1/4. Set a0 = a/|a|,
A = {x ∈ B : ε0 < |x− a| < 1/2}

and
A0 = {x ∈ B : ε0 < |x− a0| < 1/2} .

We compare IVε to the expression we get replacing a by a0 and ε by ε0 in the

definition of IVε. For ε ≤ ε0, we have∫
ε<|x−a|<1/2

χB(x)K(a− x) dx =

∫
ε0<|x−a|<1/2

χB(x)K(a− x) dx ,

and then∣∣∣∣∣
∫
ε<|x−a|<1/2

χB(x)K(a− x) dx−
∫
ε0<|x−a0|<1/2

χB(x)K(a0 − x) dx

∣∣∣∣∣
=

∣∣∣∣∫
A
K(a− x) dx−

∫
A0

K(a0 − x) dx

∣∣∣∣
≤
∫
A∩A0

|K(a− x)−K(a0 − x)| dx

+

∣∣∣∣∣
∫
A\A0

χB(x)K(a− x) dx

∣∣∣∣∣+
∣∣∣∣∣
∫
A0\A

χB(x)K(a0 − x) dx

∣∣∣∣∣
= J1 + J2 + J3 .

If x ∈ A ∩A0, then

|K(a− x)−K(a0 − x)| ≤ C ‖K‖CZ
|a− a0|
|x− a|n+1

.

Hence
J1 ≤ C ‖K‖CZ |a− a0|

∫
|x−a|>ε0

dx

|x− a|n+1
≤ C ‖K‖CZ .

To estimate J2, observe that

A \A0 = (A ∩B(a0, ε0)) ∪ (A ∩ (Rn \B(a0, 1/2))) .

Now, it is obvious that if |x− a0| ≥ 1/2, then |x− a| ≥ 1/4, and so

J2 ≤ ‖Ω‖∞
Ç∫
|x−a0|<ε0

dx

εn0
+

∫
B

4n dx

å
≤ C ‖Ω‖∞ .

A similar argument does the job for J3.

The case |a| > 1 is treated in a completely analogous way. �
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The construction of β is then completed and the theorem is proved for

polynomial operators.

We remark that a variant of Lemma 5 holds, with the same proof, replacing

B by Rn \ B. To control the term II we have to assume, in addition to the

hypothesis of Lemma 5, that f satisfies a decay inequality of the type

|f(x)| ≤
‖f‖L∞(Rn\B)

|x|η , |x| ≥ 1 .

Then we conclude that

‖T (f χRn\B)‖L∞(Rn) ≤ C ‖K‖CZ
Ä
‖f‖L∞(Rn\B) + ‖f‖Lip(1,Rn\B)

ä
,

where C depends on n and η. Later, we will use this variant of Lemma 5 with

f(x) = K(x) on Rn \B, so that η = n and the constant C will depend only on

n.

We mention another straightforward extension of Lemma 5 that will not

be used in this paper. The function f may be assumed to be in Lip(α,B)

0 < α ≤ 1 , and the unit ball may be replaced by a domain with boundary of

class C1+ε .

After the paper was completed, we learned from Stephen Semmes that

Lemma 5 is known in dimension 2 [Che95, p.52] or [MB02, p.348]. This was

used to prove global regularity of vortex patches for incompressible perfect

fluids.

4. Proof of the sufficient condition: the general case

We start this section by clarifying several facts about the convergence of

the series (6). Let us then assume that Ω is a function in C∞(Sn−1) with

zero integral. Then Ω has an expansion (6) in spherical harmonics. For each

positive integer r, one has the identity [Ste70, p. 70]

(33)
∑
j≥1

(j(j + n− 2))r ‖Pj‖22 = (−1)r
∫
Sn−1

4r
SΩ Ω dσ ,

where ∆S stands for the spherical Laplacean. Then∑
j≥1

(j(j + n− 2))r ‖Pj‖22 ≤ ‖4r
SΩ‖2 ‖Ω‖2 ,

where the L2 norm is taken with respect to dσ. Thus, by Schwarz’s inequality,

for each positive integer M ,

(34)
∑
j≥1

jM ‖Pj‖2 <∞ .

We want to see that we also have

(35)
∑
j≥1

jM ‖Pj‖∞ <∞ ,
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where the supremum norm is taken on Sn−1. This follows immediately from

the next lemma, whose proof was indicated to us by Fulvio Ricci.

Lemma 6. For all homogeneous polynomials of degree q,

‖Q‖∞ ≤ C q
n−1

2 ‖Q‖2 ,

where C is a positive constant which depends only on n.

Proof. Take an orthonormal basis Q1, . . . , Qd, d = dq, of the subspace of

L2(dσ) consisting of the restrictions to Sn−1 of all homogeneous polynomials

of degree q. Consider the function

S(x) =
d∑
j=1

Qj(x)2, x ∈ Sn−1 .

We claim that S is rotation invariant, and, hence, constant. Since dσ is a

probability measure, this constant must be
∑d
j=1

∫
Qj(x)2 dσ(x) = d. Now let

Q be a homogeneous polynomial of degree q and set Q =
∑d
j=1 λj Qj . Then

|Q(x)| ≤
Ñ

d∑
j=1

λ2
j

é 1
2
Ñ

d∑
j=1

Qj(x)2

é 1
2

= ‖Q‖2 d
1
2 , x ∈ Sn−1 ,

which proves the lemma because d =
(n+q−1

q

) ' qn−1 ([SW71, p. 139]).

To show the claim, take a rotation ρ. Then we have

Qj(%(x)) =
d∑
j=1

ajkQk(x)

for some matrix (ajk) which is orthogonal, because the polynomials Qj(ρ(x))

form also an orthonormal basis due to the rotation invariance of σ. Hence

d∑
j=1

Qj(%(x))2 =
d∑
j=1

Qj(x)2, x ∈ Sn−1 . �

Let us return now to the context of the theorem. Thus T is an even smooth

homogeneous Calderón-Zygmund operator with kernel K(x) = Ω(x)/|x|n, and

the expansion of Ω in spherical harmonics is

(36) Ω(x) =
∞∑
j≥1

P2j(x) .

By hypothesis there is a homogeneous harmonic polynomial P of degree 2d

which divides each P2j . In other words, P2j = P Q2j−2d, where Q2j−2d is a

homogeneous polynomial of degree 2j − 2d. We want to show that the series
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∑
j Q2j−2d(x) is convergent in C∞(Sn−1); that is, for each positive integer M ,

(37)
∑
j≥d

jM ‖Q2j−2d‖∞ <∞ .

The next lemma states that when one divides two homogeneous polynomi-

als, then the supremum norm (on Sn−1) of the quotient is controlled by the

supremum norm of the dividend.

Lemma 7. Let P be a homogeneous polynomial nonidentically zero. Then

there exists a positive ε and a positive constant C = C(n, P ) such that

‖Q‖∞ ≤ C q2(n−1)/ε ‖P Q‖∞
for each homogeneous polynomial Q of degree q.

Proof. Assume we can prove that for some positive ε,

(38)

∫
|x|=1

1

|P (x)|ε dσ(x) <∞ .

Then, by Lemma 6 and Schwarz’s inequality,

‖Q‖∞ ≤ C q(n−1)/2 ‖Q‖2

≤ C q(n−1)/2

Ç∫
|x|=1

1

|P (x)|ε dσ(x)

å1/4Ç∫
|x|=1

|P (x)|ε |Q|4 dσ(x)

å1/4

≤ C q(n−1)/2 ‖P Q‖ε/4∞
Ç∫
|x|=1

|Q|4−ε dσ(x)

å1/4

≤ C q(n−1)/2 ‖P Q‖ε/4∞ ‖Q‖1−ε/4∞ ,

which completes the proof of the lemma.

Let us prove (38). Let d be the degree of P . By a well-known result of

Ricci and Stein [RS87], |P (x)| is a weight in the class A∞. Indeed, if ε d < 1,

then ∫
|x|<1

1

|P (x)|ε dx ≤ C(ε, d)

Ç∫
|x|<1

|P (x)| dx
å−ε

<∞ .

Since P is an homogeneous polynomial, (38) follows by changing to spherical

coordinates. �

Now (37) may be proved readily from Lemma 7 and (35). Indeed, setting

M0 = 2(n− 1)/ε, we have

‖Q2j−2d‖∞ ≤ C(n, P ) (2j)M0 ‖P2j‖∞
and ∑

j≥d
jM ‖Q2j−2d‖∞ ≤ C(n, P )

∑
j≥1

(2j)M+M0 ‖P2j‖∞ <∞ .
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The scheme for the proof of the sufficient condition in the general case is as

follows. Taking a large partial sum of the series (36), we pass to a polynomial

operator TN (associated to a polynomial of degree 2N), which still satisfies

the hypothesis (iii) of the theorem. Then we may apply the construction of

Section 3 to TN and get functions bN and βN . Unfortunately what was done

in Section 3 does not give any uniform estimate in N , which is precisely what

we need to try a compactness argument. The rest of the section is devoted to

get the appropriate uniform estimates and to describe the final compactness

argument.

By hypothesis, T = R ◦ U , where R is the higher order Riesz transform

associated with the harmonic polynomial P of degree 2d that divides all P2j ,

and U is invertible in the algebra A. The Fourier multiplier of T is

∞∑
j=d

γ2j
P2j(ξ)

|ξ|2j = γ2d
P (ξ)

|ξ|2d
∑
j≥d

γ2j

γ2d

Q2j−2d(ξ)

|ξ|2j−2d
, ξ ∈ Rn \ {0} .

Therefore the Fourier multiplier of U is

(39) µ(ξ) = γ−1
2d

∑
j≥d

γ2j
Q2j−2d(ξ)

|ξ|2j−2d
,

and the series is convergent in C∞(Sn−1) because γ2j ' (2j)−n/2 [SW71,

p. 226]. Set, for N ≥ d,

(40) µN (ξ) = γ−1
2d

N∑
j=d

γ2j
Q2j−2d(ξ)

|ξ|2j−2d
, ξ ∈ Rn \ {0} .

If

KN (x) =
N∑
j=d

P2j(x)

|x|2j+n , x ∈ Rn \ {0} ,

and TN is the polynomial operator with kernel KN , then TN = R ◦UN , where

UN is the operator in the algebra A with Fourier multiplier µN (ξ). From now

on N is assumed to be big enough so that µN (ξ) does not vanish on Sn−1. In

fact, later we will need the inequality

(41) |∂αµ−1
N (ξ)| ≤ C, |ξ| = 1, 0 ≤ |α| ≤ 2(n+ 3) ,

which may be taken for granted owing to the convergence in C∞(Sn−1) of the

series (39). In (41), C is a positive constant depending only on the dimension n

and µ.

Notice that TN satisfies condition (iii) in the theorem (with T replaced by

TN ), because µN (ξ) 6= 0, |ξ| = 1, and so we can apply the results of Section 3.

In particular,

KN (x)χRn\B(x) = TN (bN )(x) + TN (βN )(x) ,
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where bN and βN are, respectively, the functions b and β defined in (18).

It is important to remark that bN does not depend on T . As (12) shows,

the function bN depends on N only through the fundamental solution of the

operator 4N . The uniform estimate we need on bN is given by part (i) of the

next lemma. The polynomial estimates in N of (ii) and (iii) are also basic for

the compactness argument we are looking for.

Lemma 8. There exist a constant C depending only on n such that

(i) |”bN (ξ)| ≤ C, ξ ∈ Rn ;

(ii) ‖bN‖L∞(B) ≤ C (2N)2n+2 ; and

(iii) ‖∇bN‖L∞(B) ≤ C (2N)2n+4 .

Proof. We first prove (i). Let h1, . . . , hd be an orthonormal basis of the

subspace of L2(dσ) consisting of all homogeneous harmonic polynomials of

degree 2N . As in the proof of Lemma 6, we have h2
1 + · · ·+ h2

d = d, on Sn−1.

Set

Hj(x) =
1

γ2N

√
d
hj(x), x ∈ Rn .

Let Sj be the higher order Riesz transform with kernel Kj(x) = Hj(x)/|x|2N+n.

The Fourier multiplier of S2
j is

1

d

hj(ξ)
2

|ξ|4N , 0 6= ξ ∈ Rn ,

and thus
d∑
j=1

S2
j = I .

By (10), we get

Kj(x)χRn\B(x) = Sj(bN )(x), x ∈ Rn, 1 ≤ j ≤ d ,

and so

(42) bN =
d∑
j=1

Sj
Ä
Kj(x)χRn\B(x)

ä
.

We now appeal to a lemma of Calderón and Zygmund ([CZ55]; see [LS55] for

a simpler proof), which can be stated as follows.

Lemma (Calderón and Zygmund). If K is the kernel of a higher order

Riesz transform, then, for some constant C depending only on n,

| ¤�(K(x)χRn\B(x))(ξ)| ≤ C |¤�(P.V.K(x))(ξ)|, ξ ∈ Rn \ {0} .



1450 JOAN MATEU, JOAN OROBITG, and JOAN VERDERA

By (42) and the preceding lemma, we get

|”bN (ξ)| ≤
d∑
j=1

|¤�P.V. Kj(x)(ξ)| | ¤�(Kj(x)χRn\B(x))(ξ)|

≤ C
d∑
j=1

|¤�P.V. Kj(x)(ξ)|2

= C .

We now turn to the proof of (ii) in Lemma 8. In view of expression (42)

for bN , we apply Lemma 5 to the operators Sj and the functions Kj(x), which

satisfy a Lipschitz condition on Rn \B. We obtain

(43) ‖bN‖∞ ≤ C d max
1≤j≤d

‖Kj‖CZ (‖Kj‖L∞(Rn\B) + ‖Kj‖Lip(1,Rn\B)) .

As is well known, d ' (2N)n−2 [SW71, p. 140]. On the other hand,

‖Kj‖CZ ≤ ‖Hj‖∞ + ‖∇Hj‖∞ ,
where the supremum norms are taken on Sn−1. Clearly,

‖Hj‖∞ =
1

γ2N
‖ hj√

d
‖∞ ≤

1

γ2N
' (2N)n/2 .

For the estimate of the gradient of Hj , we use the inequality [Ste70, p. 276]

(44) ‖∇Hj‖∞ ≤ C (2N)n/2+1 ‖Hj‖2 ,
where the L2 norm is taken with respect to dσ. Since the hj are an orthonormal

system,

‖Hj‖2 =
1√
d γ2N

' (2N)n/2

(2N)(n−2)/2
' 2N .

Gathering the above inequalities, we get

‖Kj‖CZ ≤ C (2N)n/2+2 .

On the other hand, a straightforward computation yields

‖Kj‖L∞(Rn\B) + ‖Kj‖Lip(1,Rn\B) ≤ C N‖Hj‖∞ + ‖∇Hj‖∞ ≤ C (2N)n/2+2 ,

and therefore

‖bN‖L∞(B) ≤ C (2N)n−2 (2N)n/2+2 (2N)n/2+2 = C (2N)2n+2 .

We are only left with the proof of (iii) in Lemma 8. Recalling the definition of

b in (12), we see that bN has the form

bN (x) = α0 + α1 |x|2 + · · ·+ αN−1 |x|2N−2, |x| < 1

for some real coefficients αj , 0 ≤ j ≤ N − 1. Define the polynomial p(t) of the

real variable t as

p(t) = α0 + α1 t
2 + · · ·+ αN−1 t

2N−2
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so that bN (x) = p(|x|), |x| < 1. By part (ii) of the lemma,

sup
0≤t≤1

|p(t)| ≤ C (2N)2n+2 ,

and thus, appealing to Markov’s inequality [Lor86, p. 40],

sup
0≤t≤1

|p′(t)| ≤ (2N − 2)2 sup
0≤t≤1

|p(t)| ≤ C (2N)2n+4 .

Now (iii) follows from the obvious identity ∂bN
∂xj

= p′(|x|) ∂|x|∂xj
, which gives

|∇bN (x)| ≤ p′(|x|), |x| < 1. �

Our goal is now to show that under condition (iii) of the theorem, we can

find a function γ in L∞(Rn) such that

(45) K(x)χRn\B(x) = T (γ)(x), x ∈ Rn .

This was proven in the preceding section for the case in which T is a polynomial

operator (see (18)). However, the bound we got there for ‖γ‖L∞(Rn) depends

on the degree of the polynomial defining the operator, and thus the proof does

not cover the general case we are now tackling.

Since Ω has the expansion (36) in spherical harmonics, we have

K(x)χRn\B(x) =
∑
j≥1

P2j(x)

|x|2j+n χRn\B(x)

=
∑
j≥1

Tj(bj)(x) ,

where Tj is the higher order Riesz transform with kernel P2j(x)/|x|2j+n and

bj is the function constructed in Section 2 (see (10) and (12)). The Fourier

multiplier of Tj is

γ2j
P2j(ξ)

|ξ|2j = γ2d
P (ξ)

|ξ|2d
γ2j

γ2d

Q2j−2d(ξ)

|ξ|2j−2d
, ξ ∈ Rn \ {0} .

Let Sj be the operator whose Fourier multiplier is

(46)
γ2j

γ2d

Q2j−2d(ξ)

|ξ|2j−2d
, ξ ∈ Rn \ {0} ,

so that Tj = R ◦ Sj . Then

K(x)χRn\B(x) =
∑
j≥d

(R ◦ Sj)(bj)

=
∑
j≥d

T
Ä
(U−1 ◦ Sj)(bj)

ä
= T

Ñ∑
j≥d

(U−1 ◦ Sj)(bj)
é
.
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The latest identity is justified by the absolute convergence of the series∑
j≥d(U

−1 ◦ Sj)(bj) in L2(Rn), which follows from the estimate∑
j≥d
‖(U−1 ◦ Sj)(bj)‖2 ≤ C

∑
j≥d
‖Q2j−2d‖∞ ‖bj‖L2(Rn)

≤ C
∑
j≥d
‖Q2j−2d‖∞ ‖bj‖L∞(B)

≤ C
∑
j≥d

(2N)2n+2 ‖Q2j−2d‖∞ <∞ .

We claim now that the series
∑
j≥d(U

−1 ◦Sj)(bj) converges uniformly on Rn to

a function γ, which will prove (45) . Observe that the operator U−1 ◦ Sj ∈ A
is not necessarily a Calderón-Zygmund operator because the integral on the

sphere of its multiplier does not need to vanish. However, it can be written as

U−1 ◦ Sj = cjI + Vj , where

cj =
γ2j

γ2d

∫
Sn−1

µ(ξ)−1Q2j−2d(ξ) dσ(ξ) ,

and Vj is the Calderón-Zygmund operator with multiplier

(47) µ(ξ)−1 γ2j

γ2d

Q2j−2d(ξ)

|ξ|2j−2d
− cj .

Now ∑
j≥d

(U−1 ◦ Sj)(bj) =
∑
j≥d

cj bj +
∑
j≥d

Vj(bj) ,

and the first series offers no difficulties because, by Lemma 8(ii) and (37),∑
j≥d
|cj | ‖bj‖L∞(B) ≤ C

∑
j≥d

(2j)−n/2(2j)2n+2‖Q2j−2d‖∞ <∞ .

The second series is more difficult to treat. By Lemma 5 and Lemma 8(ii) and

(iii),

‖Vj(bj)‖L∞(Rn) ≤ C ‖Vj‖CZ
Ä
‖bj‖L∞(B) + ‖∇bj‖L∞(B)

ä
≤ C (2j)2n+4 ‖Vj‖CZ .

Estimating the Calderón-Zygmund constant of the kernel of the operator Vj is

not an easy task, because we do not have an explicit expression for the kernel.

We do know, however, the multiplier (47) of Vj . We need a way of estimating

the constant of the kernel in terms of the multiplier, and this is what the next

lemma supplies.

Lemma 9. Let V be a smooth homogeneous Calderón-Zygmund operator

with Fourier multiplier m. Then for some constant C depending only on n,

‖V ‖CZ ≤ C ‖4n+3
S m‖1/22 ‖m‖1/22 ,
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where 4S is the spherical Laplacean and the L2 norm is taken with respect

to dσ.

Proof. Let ω(x)/|x|n be the kernel of V , so that ω is a homogeneous

function of degree zero, of class C∞(Sn−1) and with zero integral on the sphere.

Consider the expansion of ω in spherical harmonics ω(x) =
∑
j≥1 pj(x), |x| = 1,

so that the kernel of V is
∑
j≥1 pj(x)/|x|j+n, x ∈ Rn \ {0}, and its Fourier

multiplier is m(ξ) =
∑
j≥1 γj pj(ξ), |ξ| = 1. By definition (31) of the constant

of the kernel of a Calderón-Zygmund operator, we have

‖V ‖CZ ≤ C
∑
j≥1

(j ‖pj‖∞ + ‖∇pj‖∞) ,

where the supremum is taken on Sn−1. By (44) with Hj replaced by pj , and

Lemma 6,

‖V ‖CZ ≤ C
∑
j≥1

Ä
j1+(n−1)/2 ‖pj‖2 + jn/2+1 ‖pj‖2

ä
≤ C

∑
j≥1

Ä
jn/2+2 ‖pj‖2

ä
.

Since γj ' j−n/2, using Schwarz’s inequality and (33) with Ω replaced by m

and Pj by γj pj , the above sum can be estimated by

∑
j≥1

jn+2 ‖γj pj‖2 ≤ C
Ñ∑
j≥1

j2n+6 ‖γj pj‖22

é1/2

≤ C
Ñ∑
j≥1

(j(j + n− 2))n+3 ‖γj pj‖22

é1/2

= C

Å
(−1)n

∫
Sn−1

4n+3
S mmdσ

ã1/2

≤ C ‖4n+3
S m‖1/22 ‖m‖1/22 . �

Since the multiplier of Vj is given by (47) and µ−1 is in C∞(Sn−1),

Lemma 9 reduces the estimate of ‖Vj‖CZ to the estimate of the L2(dσ) norm

of ∇kQ2j−2d for 0 ≤ k ≤ 2(n+ 3). Let us consider first the case k = 1.

Since P2j = P Q2j−2d, we have

∇P2j = ∇P Q2j−2d + P ∇Q2j−2d ,
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and so, by Lemma 7 and (44) with Hj replaced by P2j , there is a large positive

integer M = M(n, P ) such that

‖∇Q2j−2d‖∞ ≤ C jM ‖P ∇Q2j−2d‖∞
≤ C jM (‖∇P2j‖∞ + ‖Q2j−2d‖∞)

≤ C jM
Ä
C jn/2+1 ‖P2j‖2 + C jM ‖P2j‖∞

ä
≤ C jM ‖P2j‖2 ,

where in the latest inequality M has been increased without changing the

notation.

By induction, for some large integer M = M(n, P ), we get

‖∇kQ2j−2d‖∞ ≤ C jM ‖P2j‖2, 0 ≤ k ≤ 2(n+ 3) .

Therefore, the estimate we finally obtain for the constant of the kernel of Vj is

‖Vj‖CZ ≤ C jM ‖P2j‖2 ,
and thus

‖Vj(bj)‖L∞(Rn) ≤ C jM ‖P2j‖2 ,
where again M = M(n, P ) is a positive integer. Hence the series∑

j≥d
(U−1 ◦ Sj)(bj)

converges uniformly on Rn and the proof of (45) is complete.

We are now ready for the discussion of the final compactness argument

that will complete the proof of the sufficient condition. The reader is invited

to review the definitions of the operators TN (with kernel KN ) and UN given

in this section just before Lemma 8. We know from Section 3 (see (18)) that

(48) KN (x)χRn\B(x) = TN (bN )(x) + TN (βN )(x) .

On the other hand, by the construction of the function γ we have just described,

we also have

(49) KN (x)χRn\B(x) = TN (γN )(x), γN =
N∑
j≥d

(U−1
N ◦ Sj)(bj) .

Notice that (41) guarantees that the estimate of the supremum norm of γ on

the whole of Rn is applicable to the operator TN , and thus we get an estimate

for ‖γN‖L∞(Rn) which is uniform in N . Since TN is injective, (48) and (49)

imply

(50) bN + βN = γN ,

and, in particular, we conclude that the functions bN + βN are uniformly

bounded in L∞(Rn), a fact that cannot be derived from the work done in

Section 3. It is worth mentioning that numerical computations indicate that
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bN , and thus βN , are not uniformly bounded. On the other hand, Section 3

tells us that γN satisfies the decay estimate (16) with β replaced by γN , which

we cannot infer from the preceding construction of γ. The advantages of both

approaches will be combined now to get both the boundedness and decay prop-

erty for γ.

In view of (49) and the expressions of the multipliers of UN and Sj (see

(46)), ”γN (ξ) =
N∑
j=d

1

µN (ξ)

γ2j

γ2d

Q2j−2d(ξ)

|ξ|2j−2d
“bj(ξ) ,

which yields, by Lemma 8 and (37) for M = 0,

‖”γN‖L∞(Rn) ≤ C
N∑
j=d

‖Q2j−2d‖∞(51)

≤ C
∞∑
j=d

‖Q2j−2d‖∞

≤ C ,
where C does not depend on N . Recall that, from (26) in Section 3, we have

βN = U−1
N (β1,N ) ,

with β1,N a bounded function supported on B satisfying
∫
β1,N (x) dx = 0.

Since ‘β1,N = µN ”βN = µN (”γN −”bN ) ,

we have, again by Lemma 8,

‖‘β1,N‖L∞(Rn) ≤ C .
Therefore, passing to a subsequence, we may assume that, as N goes to ∞,”bN −→ a0 and ‘β1,N −→ a1 ,

weak ? in L∞(Rn). Hence

bN −→ Φ0 = F−1a0 and β1,N −→ Φ1 = F−1a1

in the weak ? topology of tempered distributions, where F−1 is the inverse

Fourier transform. In particular, Φ0 and Φ1 are distributions supported on B

and

(52) 〈Φ1, 1〉 = lim
N→∞

∫
β1,N (x) dx = 0 .

Now we would like to understand the convergence properties of the se-

quence of the βN ’s . Since ”βN (ξ) = µ−1
N (ξ) ‘β1,N (ξ) ,
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and we have pointwise bounded convergence of µ−1
N (ξ) towards µ−1(ξ) on Rn \

{0}, we get that ”βN → µ−1 a1 in the weak ? topology of L∞(Rn). Thus

βN → U−1(Φ1) in the weak ? topology of tempered distributions. Letting

N →∞ in (50), we obtain

Φ0 + U−1(Φ1) = γ .

Now we come to the last key point of the proof, namely, that one has the decay

estimate

(53) |γ(x)| ≤ C

|x|n+1
, |x| ≥ 2 .

Since Φ0 and Φ1 are supported on B and U−1(Φ1) = λΦ1 +V (Φ1), where λ is

a real number and V a smooth homogeneous Calderón-Zygmund operator, it is

enough to show that V (Φ1) has the appropriate behavior off the ball B(0, 2).

Let L be the kernel of V . Regularizing Φ1, one checks that, for a fixed x

satisfying |x| ≥ 2,

V (Φ1)(x) = 〈Φ1, L(x− y)〉(54)

= 〈Φ1, L(x− y)− L(x)〉 ,
where the latest identity follows from (52). Since Φ1 is a distribution supported

on B, there exists a positive integer ν and a constant C such that

(55) |〈Φ1, ϕ〉| ≤ C sup
|α|≤ν

sup
|y|≤3/2

|∂αϕ(y)|

for each infinitely differentiable function ϕ on Rn. The kernel L satisfies

| ∂
α

∂yα
(L(x− y)− L(x)) | ≤ Cα

|x|n+1+|α| , |y| ≤ 3/2 ,

and hence by (54) and (55),

|V (Φ1)(x)| ≤ C

|x|n+1
, |x| ≥ 2 ,

which proves (53) and then completes the proof of the sufficient condition in

the general case.

5. Proof of the necessary condition: the polynomial case

We assume in this section that T is a polynomial operator with kernel

K(x) =
Ω(x)

|x|n =
P2(x)

|x|2+n
+
P4(x)

|x|4+n
+ · · ·+ P2N (x)

|x|2N+n
, x 6= 0 ,

where P2j is a homogeneous harmonic polynomials of degree 2j. Let Q be the

homogeneous polynomial of degree 2N defined by

Q(x) = γ2 P2(x)|x|2N−2 + · · ·+ γ2j P2j(x)|x|2N−2j + · · ·+ γ2N P2N (x) .
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Then ◊�P.V.K(ξ) =
Q(ξ)

|ξ|2N , ξ 6= 0 .

Our assumption is now the L2 estimate between T ? and T (see (ii) in the state-

ment of the theorem). Since the truncated operator T 1 at level 1 is obviously

dominated by T ?, we have∫
(T 1f)2(x) dx ≤

∫
(T ?f)2(x) dx ≤ C

∫
(Tf)2(x) dx .

The kernel of T 1 is (see (15))

(56) K(x)χRn\B(x) = T (b)(x) + S(x)χB(x) ,

where b is given in equation (12), and

−S(x) = Q(∂)(A0 +A1 |x|2 + · · ·+A2N−1 |x|4N−2)(x), x ∈ Rn .

The reader may consult the beginning of Section 3 to review the context of the

definition of S. In view of (56), for each f ∈ L2(Rn), we have

‖S χB ? f‖2 ≤ C ‖T 1f‖2 + ‖b ? Tf‖2
≤ C (‖Tf‖2 + ‖b̂‖∞‖Tf‖2)

= C ‖Tf‖2 .

By Plancherel, the above L2 inequality translates into a pointwise inequality

between the Fourier multipliers, namely,

(57) |’S χB(ξ)| ≤ C |◊�P.V.K(ξ)| = C
|Q(ξ)|
|ξ|2N .

Our next goal is to show that (57) provides interesting relations between the

zero sets of Q and the P2j . For each function f on Rn, set Z(f) = {x ∈ Rn :

f(x) = 0}.
Lemma (Zero Sets Lemma).

Z(Q) ⊂ Z(P2j), 1 ≤ j ≤ N .

Proof. We know that S has an expression of the form (see (22))

(58) S(x) =
2N−1∑
l=N+1

l−N∑
j=1

clj P2j(x) |x|2(l−N−j) .
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Since ”χB = Gm, m = n/2, Lemma 3 yields’S χB(ξ) = S(ı ∂)”χB(ξ)(59)

=
2N−1∑
l=N+1

l−N∑
j=1

clj (−1)l−N P2j(∂) 4l−N−j Gm(ξ)

=
2N−1∑
l=N+1

l−N∑
j=1

l−N−j∑
k=0

c l, j, k P2j(ξ) |ξ|2(l−N−j−k)Gm+2l−2N−k(ξ) .

The function Gp(ξ) is, for each p ≥ 0, a radial function which is the restriction

to the real positive axis of an entire function [Gra04, A-8]. Set ξ = r ξ0,

|ξ0| = 1, r ≥ 0. Then

(60) ’SχB(rξ0) =
∞∑
p=1

a2p(ξ0) r2p ,

and the power series has infinite radius of convergence for each ξ0. Assume

now that Q(ξ0) = 0. Then, by (57), ’SχB(rξ0) = 0 for each r ≥ 0, and hence

a2p(ξ0) = 0 for each p ≥ 1. For p = 1, one has a2(ξ0) = P2(ξ0)C2, where

C2 =
2N−1∑
l=N+1

c l, 1, l−N−1Gm+l−N+1(0) .

It will be shown later that C2 6= 0, and then we get P2(ξ0) = 0. Let us make

the inductive hypothesis that P2(ξ0) = · · · = P2(j−1)(ξ0) = 0. Then we obtain,

if j ≤ N − 1, a2j(ξ0) = P2j(ξ0)C2j , where

(61) C2j =
2N−1∑
l=N+j

c l, j, l−N−j Gm+l−N+j(0) .

Since we will show that C2j 6= 0, P2j(ξ0) = 0, 1 ≤ j ≤ N − 1. We have

0 = Q(ξ0) =
N∑
j=1

γ2j P2j(ξ0) ,

and so we also get P2N (ξ0) = 0. Therefore the Zero Sets Lemma is completely

proved provided we have at our disposition the following:

Lemma 10.

C2j =
−π n

2

Vn 2
n
2 Γ(n2 + 1)

(−1)j

j 4j Γ(2j + n
2 )
, 1 ≤ j ≤ N − 1 .

The proof of Lemma 10 is lengthy and rather complicated from the computa-

tional point of view, and so we postpone it to Section 7. �
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Notice that, although the constants C2j are nonzero, they become rapidly

small as the index j increases.

The reason why Lemma 10 is involved is that one has to trace back the

exact values of the constants C2j from the very beginning of our proof of (56).

This forces us to take into account the exact values of various other constants;

for instance, those which appear in the expression of the fundamental solution

of 4N and the constants A0, A1, . . . , A2N−1 in formula (11). Finally, we need

to prove some new identities involving a triple sum of combinatorial numbers,

in spirit of those that can be found in the book of R. Graham, D. Knuth and

O. Patashnik [GKP94].

The following is elementary folklore, but is proved here for the reader’s

sake.

Lemma (Dimension Lemma). If f is a real-valued, continuous function

on Rn which changes sign, then Hn−1(Z(f)) > 0, Hn−1 being the Hausdorff

measure in dimension n − 1. In particular, the Hausdorff dimension of Z(f)

is at least n− 1.

Proof. Assume, without loss of generality, that f(0) > 0 and f(p) < 0,

where p = (0, . . . , 0, 1). For ε > 0 small enough we have f(x) > 0 if |x| < ε

and f(x) < 0 if |x − p| < ε. Set B = {x ∈ Rn : xn = 0 and |x| < ε}.
Bolzano’s theorem tells us that, for each x ∈ B, f vanishes at some point

of the segment (x1, . . . , xn−1, t), 0 ≤ t ≤ 1. Hence the orthogonal projec-

tion of the set Z(f) onto the hyperplane {x : xn = 0} contains B, and so

Hn−1(Z(f)) ≥ Hn−1(B) > 0. �

We now turn our attention to an algebraic lemma which plays a key role

in obtaining the necessary condition we are looking for.

Lemma (Division Lemma). Let F and G be polynomials in R[x1, . . . , xn].

Assume that G is irreducible and that Hn−1(Z(F ) ∩ Z(G)) > 0. Then there

exists a polynomial H in R[x1, . . . , xn] such that F = GH .

Proof. Denote by V (P ) the complex hyper-surface {z ∈ Cn : P (z) = 0}
of a polynomial P . By hypothesis, V (F ) ∩ V (G) is not empty. If V (G) is

not contained in V (F ), then the complex dimension of V (G) ∩ V (F ) is not

greater than n − 2 [Kun85, 3.2 p. 131]. Since the real dimension of a variety

is less than or equal to the complex dimension, we conclude that Z(G)∩Z(F )

has real dimension not greater than n − 2, which contradicts the fact that it

has positive n − 1-dimensional Hausdorff measure. Thus V (G) ⊂ V (F ), and

therefore F = GH for some polynomial H in C[x1, . . . , xn]. Since F and G

have real coefficients, the same happens to H. �

We proceed to the proof of the necessary condition.
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Let j0 be the first positive index such that P2j0 does not vanish identically.

We want to show that P2j0 divides P2j for j0 ≤ j ≤ N .

Since R[x1, . . . , xn] is a unique factorization domain, we can express P2j0

as a product of irreducible factors, say Rk, 1 ≤ k ≤ M , which are also homo-

geneous. Clearly, Z(P2j0) = ∪kZ(Rk), and so

Z(Q) =
⋃
k

(Z(Q) ∩ Z(Rk)) .

Since the integral of Q on the sphere is 0, Q changes sign. Thus, by the

Dimension Lemma, there is at least a k such that Hn−1(Z(Q) ∩ Z(Rk)) > 0.

Change notation if necessary so that k = 1. Then R1 divides Q, by the

Division Lemma. We may also apply the Division Lemma to R1 and P2j for

each j0 ≤ j ≤ N , because Z(Q) ∩ Z(R1) ⊂ Z(P2j) ∩ Z(R1) by the Zero Sets

Lemma. Hence R1 also divides P2j for j0 ≤ j ≤ N . Set

Q = R1Q1 and P2j = R1 P2j,1, j0 ≤ j ≤ N
for certain homogeneous polynomials Q1 and P2j,1.

If M = 1, we are done. Otherwise our intention is to repeat as many

times as we can the above division process. With this in mind, we use (60) to

rewrite inequality (57) in the form

(62)

∣∣∣∣∣∣
∞∑
p=1

a2p(ξ0) r2p

∣∣∣∣∣∣ ≤ C |Q(ξ0)|, 0 < r .

The definition of the coefficients a2p and (59) show that there exist real num-

bers µj(p) such that

a2p(ξ0) =
N−1∑
j=j0

µj(p)P2j(ξ0) ,

and so

a2p(ξ0) = R1(ξ0)
N−1∑
j=j0

µj(p)P2j,1(ξ0)(63)

= R1(ξ0) a2p,1(ξ0) ,

where the last identity provides the definition of the numbers a2p,1(ξ0). We

can simplify the common factor R1(ξ0) in (62) and get

(64)

∣∣∣∣∣∣
∞∑
p=1

a2p,1(ξ0) r2p

∣∣∣∣∣∣ ≤ C |Q1(ξ0)|, 0 < r .

Equipped with (64), we are ready to begin the second step in the division

process. If Q1(ξ0) = 0, then a2p,1(ξ0) = 0 for each p ≥ 1. Hence, as in the

proof of the Zero Sets Lemma,

Z(Q1) ⊂ Z(P2j,1), j0 ≤ j ≤ N .
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To apply the Division Lemma we need to ascertain that the zero set of Q1 is

big enough. For that it suffices to show, by the Dimension Lemma, that Q1

changes sign. As we are assuming that M is greater than 1, the degree of R1 is

less than 2j0. Considering the expansions of R1 and Q in spherical harmonics,

we see that they are orthogonal in L2(dσ) [Ste70, p. 69]. Hence

0 =

∫
R1(ξ)Q(ξ) dσ(ξ) =

∫
R2

1(ξ)Q1(ξ) dσ(ξ) ,

which tells us that Q1 changes sign.

Since P2j0,1 =
∏M
k=2Rk, we conclude that one of the Rk, say R2, divides

the P2j,1, j0 ≤ j ≤ N . An inductive argument gives that P2j0 divides the P2j ,

j0 ≤ j ≤ N . At the k-th step, one should observe that Q =
∏k
l=1RlQk and

0 =

∫ k∏
l=1

Rl(ξ)Q(ξ) dσ(ξ) =

∫ k∏
l=1

R2
l (ξ)Qk(ξ) dσ(ξ) ,

so that Qk changes sign. It is also important to remark that

a2p,k(ξ0) =
N−1∑
j=j0

µj(p)P2j,k(ξ0), 1 ≤ k ≤M .

Thus, at the M -th step, we get

(65) a2j0,M (ξ0) = C2j0 6= 0

for p = j0. We have P2j = P2j0 Q2j−2j0 for some homogeneous polynomials

Q2j−2j0 of degree 2j − 2j0, and so

Q(ξ) =
N∑
j=j0

γ2j P2j(ξ)|ξ|2N−2j

= P2j0(ξ)
N∑
j=j0

γ2j Q2j−2j0(ξ)|ξ|2N−2j .

By (62) and the definition of the coefficients a2p,M (ξ0), for |ξ0| = 1 and 0 < r,

we get ∣∣∣∣∣∣
∞∑
p=j0

a2p,M (ξ0) r2p

∣∣∣∣∣∣ ≤ C
∣∣∣∣∣∣
N∑
j=j0

γ2j Q2j−2j0(ξ0)

∣∣∣∣∣∣ , 0 < r .

Taking (65) into account, we conclude that

N∑
j=j0

γ2j Q2j−2j0(ξ0) 6= 0, |ξ0| = 1 ,

which completes the proof of the necessary condition in the polynomial case.
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6. Proof of the necessary condition: the general case

In this section the kernel of our operator has the general form K(x) =

Ω(x)/|x|n with Ω a homogeneous function of degree 0, with vanishing integral

on the sphere and of class C∞(Sn−1). Then Ω(x) =
∑∞
j≥1 P2j(x)/|x|2j with P2j

a homogeneous, harmonic polynomial of degree 2j. The strategy consists in

passing to the polynomial case by looking at a partial sum of the series above.

Set, for each N ≥ 1, KN (x) = ΩN (x)/|x|n, where ΩN (x) =
∑N
j=1 P2j(x)/|x|2j ,

and let TN be the operator with kernel KN . The difficulty is now that there

is no obvious way of obtaining the inequality

(66) ‖T ?Nf‖2 ≤ C‖TNf‖2, f ∈ L2(Rn) ,

from our hypothesis; namely,

‖T ?f‖2 ≤ C‖Tf‖2, f ∈ L2(Rn) .

Instead we try to get (66) with ‖TNf‖2 replaced by ‖Tf‖2 in the right-hand

side plus an additional term which becomes small as N tends to ∞. We start

as follows:

‖T 1
Nf‖2 ≤ ‖T 1f‖2 + ‖T 1f − T 1

Nf‖2

≤ C ‖Tf‖2 + ‖
∑
j>N

P2j(x)

|x|2j+n χRn\B ∗ f‖2 .

By (10), there exists a bounded function bj supported on B such that

P2j(x)

|x|2j+n χRn\B(x) = P.V.
P2j(x)

|x|2j+n ∗ bj .

By Lemma 8(i), ‖“bj‖L∞(Rn) is bounded uniformly in j, and then an application

of Plancherel yields∥∥∥∥∥∥∑j>N
P2j(x)

|x|2j+n χRn\B ∗ f
∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∑j>N P.V.
P2j(x)

|x|2j+n ∗ bj ∗ f
∥∥∥∥∥∥

2

≤ C
Ñ∑
j>N

‖P2j‖∞

é
‖f‖2 ,

where the supremum norm is taken on the sphere. By (56) applied to TN ,

T 1
Nf = KN χRn\B ∗ f = KN ∗ bN ∗ f + SN χB ∗ f .
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Hence, for each f in L2(Rn) ,

‖SNχB ∗ f‖2 ≤ ‖T 1
Nf‖2 + ‖KN ∗ f ∗ bN‖2

≤ C‖Tf‖2 + C

Ñ∑
j>N

‖P2j‖∞

é
‖f‖2 + ‖KN ∗ f ∗ bN‖2

≤ C‖Tf‖2 + ‖Tf ∗ bN‖2 + C

Ñ∑
j>N

‖P2j‖∞

é
‖f‖2

≤ C‖Tf‖2 + C

Ñ∑
j>N

‖P2j‖∞

é
‖f‖2 ,

where in the latest inequality, Lemma 8(i) was used. The above L2 inequality

translates, via Plancherel, into the pointwise estimate

(67) |÷SNχB(ξ)| ≤ C|◊�P.V.K(ξ)|+ C

Ñ∑
j>N

‖P2j‖∞

é
, ξ 6= 0 .

The idea is now to take limits, as N goes to ∞, in the preceding inequality.

The remainder of the convergent series will disappear and we will get a useful

analog of (57). The first task is to clarify how the left-hand side converges.

Set ξ = r ξ0, with |ξ0| = 1 and r > 0. Rewrite (60) with S replaced by SN
and a2p by aN2p: ÷SNχB(rξ0) =

∞∑
p=1

aN2p(ξ0) r2p .

It is a remarkable key fact that, for a fixed p, the sequence of the aN2p stabilizes

for N large. This fact depends on a laborious computation of various constants

and will be proved in Section 7 in the following form.

Lemma 11. If p+ 1 ≤ N , then aN2p = ap+1
2p .

If p ≥ 1 and p + 1 ≤ N , we set a2p = aN2p. We need an estimate for the

aN2p, which will be proved as well in Section 7.

Lemma 12. We have, for a constant C depending only on n,

(68) |a2p| ≤
C

(p− 1)! 4p

p∑
j=1

‖P2j‖∞, 1 ≤ p ≤ N − 1

and

(69) |aN2p| ≤
C

4p

Ç
n
2 +N − 1

N − 1

å N−1∑
j=1

‖P2j‖∞, 1 < N ≤ p .
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Let us prove that for each ξ0 in the sphere, the sequence SN χB(r ξ0)

converges uniformly on 0 ≤ r ≤ 1. For 1 ≤ N ≤M ,∣∣∣◊�SN χB(rξ0)− ◊�SM χB(rξ0)
∣∣∣

≤
∑
p≥N
|aN2p|r2p +

M−1∑
p=N

|a2p|r2p +
∑
p≥M
|aM2p |r2p

≤ C
Ñ

1

4N

Ç
n
2 +N − 1

N − 1

å
+
∑
p≥N

1

(p− 1)! 4p

é
∞∑
j=1

‖P2j‖∞ ,

which clearly tends to 0 as N goes to ∞. Letting N go to ∞ in (67), we get

(70)

∣∣∣∣∣∣
∞∑
p=1

a2p(ξ0) r2p

∣∣∣∣∣∣ ≤ C |◊�P.V.K(ξ0)|, 0 ≤ r ≤ 1, |ξ0| = 1 .

At this point we may repeat almost verbatim the proof we presented in the

previous section, because the coefficients aN2p stabilize. This allows us to argue

as in the polynomial case. The only difference lays in the fact that now we are

dealing with infinite sums. However, no convergence problems will really arise

because of (35).

7. Proof of the combinatorial lemmata

This section will be devoted to prove Lemmas 10, 11 and 12 stated and

used in the preceding sections.

For the proof of Lemma 10 (see §5) we need to carefully trace back the

path that led us to the constants C2j . To begin with, we need a formula for

the coefficients Al in (11), and for that it is essential to have the expression

for the fundamental solution EN = EnN of 4N in Rn. One has [ACL83]

EN (x) =
1

|x|n−2N
(α(n,N) + β(n,N) log |x|2) ,

where α and β are constants that depend on n and N . To write in close form

α and β, we consider different cases. Let ωn be the surface measure of Sn−1.

Case 1: n is odd. Then

α(n,N) =
Γ(2− n

2 )

4N−1 (N − 1)! Γ(N + 1− n
2 ) (2− n)ωn

and

β(n,N) = 0 .
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Case 2: n is even, n 6= 2 and N ≤ n
2 − 1. Then

α(n,N) =
(−1)N−1 (n2 −N − 1)!

4N−1(N − 1)! (n2 − 2)! (2− n)ωn

and

β(n,N) = 0 .

Case 3: n is even, n 6= 2 and N ≥ n
2 . Then

β(n,N) =
1

(−1)
n
2

+1(N − n
2 )! 4N−1 (N − 1)! (n2 − 2)! (2− n)ωn

and

α(n,N) = 2β(n,N)SN−n
2
,

where S0 = 0 and

SL =
L∑
k=1

1

2k
+

L+n
2
−1∑

k=n
2

1

2k
, 1 ≤ L .

Case 4: n = 2. Then

β(2, N) =
1

2

1

4N−1(N − 1)!2 ω2

and

α(2, N) = 2β(2, N)SN−1 .

Recall that the constants A0, A1, . . . , A2N−1 are chosen so that the func-

tion (see (11))

(71) ϕ(x) = E(x)χRn\B(x) + (A0 +A1 |x|2 + · · ·+A2N−1 |x|4N−2)χB(x) ,

and all its partial derivatives of order not greater than 2N − 1 extend contin-

uously up to ∂B.

Lemma 13. For L = N + 1, . . . , 2N − 1, we have

AL =
(−1)N+L

(
N+n

2
−1

N−1

)
Vn 4N (L+ n

2 −N) (2N − L− 1)!L!
,

where Vn is the volume of the unit ball.

Proof. Set t = |x|2, so that

(72) EnN (x) ≡ E(t) = tN−
n
2 (α+ β log(t)) .

Let P (t) be the polynomial
∑2N−1
L=0 ALt

L. By Corollary 2 in Section 2, we

need that

P k)(1) = Ek)(1), 0 ≤ k ≤ 2N − 1 .
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By Taylor’s expansion, we have P (t) =
∑2N−1
i=0

Ei)(1)
i! (t − 1)i, and hence,

by the binomial formula applied to (t− 1)i,

AL =
2N−1∑
i=L

Ei)(1)

i!
(−1)i−L

Ç
i

L

å
, 0 ≤ L ≤ 2N − 1 .

Now we want to compute Ei)(1). ClearlyÅ
d

dt

ãi
(tN−

n
2 ) =

Å
N − n

2

ã
· · ·
Å
N − n

2
− i+ 1

ã
tN−

n
2
−i.

Notice that the logarithmic term in (72) only appears when the dimension n

is even. In this case, for each i ≥ N + 1,Å
d

dt

ãi
(tN−

n
2 log t) =

Å
N − n

2

ã
!(−1)i−N+n

2
−1
Å
i−N +

n

2
− 1

ã
! t−i+N−

n
2 .

Hence, for i ≥ N + 1, we obtain

Ei)(1) = α(n,N)

Å
N − n

2

ã
· · ·
Å
n− n

2
− i+ 1

ã
+ β(n,N)

Å
N − n

2

ã
!(−1)i−N+n

2
−1
Å
i−N +

n

2
− 1

ã
!

Consequently,

AL = (−1)Lα(n,N)
2N−1∑
i=L

Å
N − n

2

ã
· · ·
Å
N − n

2
− i+ 1

ã
(−1)i

i!

Ç
i

L

å
(73)

+ (−1)L−N+n
2
−1β(n,N)

Å
N − n

2

ã
!

2N−1∑
i=L

Å
i−N +

n

2
− 1

ã
!

( i
L

)
i!
.

Let us remark that for the cases n = 2 or n even and N ≥ n
2 , the first term in

(73) is zero, while for the cases n odd or n even and N ≤ n
2 − 1, the second

term is zero because β(n,N) = 0. This explains why we compute below the

two terms separately.

For the first term we show that

2N−1∑
i=L

Å
N − n

2

ã
· · ·
Å
N − n

2
− i+ 1

ã
(−1)i

i!

Ç
i

L

å
(74)

= (−1)L
Ç
N − n

2

L

åÇ
n
2 +N − 1

2N − 1− L

å
.
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Indeed, the left-hand side of (74) is, setting k = i− L,

1

L!

2N−1−L∑
k=0

Å
N − n

2

ã
· · ·
Å
N − n

2
− L− k + 1

ã
(−1)L+k

k!

= (−1)L
Ç
N − n

2

L

å 2N−1−L∑
k=0

Ç
n
2 + L−N + k − 1

k

å
= (−1)L

Ç
N − n

2

L

åÇ
N + n

2 − 1

2N − 1− L

å
,

where the last identity comes from ([GKP94, (5.9), p. 159]).

To compute the second term we first show that

(75)
2N−1∑
i=L

Å
i−N +

n

2
− 1

ã
!
1

i!

Ç
i

L

å
=

(L−N + n
2 − 1)!

L!

Ç
N + n

2 − 1

2N − 1− L

å
.

As before, setting k = i− L and applying [GKP94, (5.9), p. 159], we see that

the left-hand side of (75) is

1

L!

2N−1−L∑
k=0

Å
L+ k −N +

n

2
− 1

ã
!
1

k!

=

Å
L−N +

n

2
− 1

ã
!

2N−1−L∑
k=0

Ç
n
2 + L−N + k − 1

k

å
=

(L−N + n
2 − 1)!

L!

Ç
N + n

2 − 1

2N − 1− L

å
.

We are now ready to complete the proof of the lemma distinguishing four

cases.

Case 1: n odd. Since β(n,N) = 0, replacing in (73) α(n,N) by its value

and using (74) we get, by elementary arithmetics and the identity nVn = ωn,

AL =
(−1)LΓ(2− n

2 )

4N−1(N − 1)!Γ(N + 1− n
2 )(2− n)ωn

(−1)L
Ç
N − n

2

L

åÇ
n
2 +N − 1

2N − 1− L

å
=

(−1)N+L(N + n
2 − 1) · · · (n2 + 1)

4N Vn L! (2N − 1− L)! (L+ n
2 −N)(N − 1)!

=
(−1)N+L

(
N+n

2
−1

N−1

)
4N Vn L! (2N − 1− L)! (L+ n

2 −N)
.



1468 JOAN MATEU, JOAN OROBITG, and JOAN VERDERA

Case 2: n even, n 6= 2 and N ≤ n
2 − 1. As in Case 1, β(n,N) = 0. We

proceed similarly using (74) to obtain

AL =
(−1)L(−1)N−1(n2 −N − 1)!

4N (N − 1)!(n2 − 2)!(2− n)ωn
(−1)L

(
N−n

2

L

)Ç N + n
2 − 1

2N − 1− L

å
=

(−1)N+1
(
N+n

2
−1

N−1

)
n
2 !(n2 −N − 1)!{(N − n

2 ) · · · (N − n
2 − L+ 1)}

(2N − 1− L)!L! 4N−1 (2− n)ωn (n2 − 2)! (n2 −N + L)!

=
(−1)N

(
N+n

2
−1

N−1

)
4N Vn L! (2N − 1− L)!

(−1)L(n2 −N + L− 1)!

(n2 −N + L)!

=
(−1)N+L

(
N+n

2
−1

N−1

)
4N Vn L! (2N − 1− L)! (L+ n

2 −N)
.

Case 3: n even, n 6= 2 and N ≥ n
2 . Replacing in (73) α(n,N) and β(n,N)

by their values and using (75), by elementary arithmetics and the identity

nVn = ωn, we get

AL = β(n,N)(N − n

2
)!(−1)N+n

2
−1+L

2N−1∑
i=L

(i−N +
n

2
− 1)!

1

i!

Ç
i

L

å
=

(−1)N+L(L−N + n
2 − 1)!

L!4N−1(n2 − 2)!(N − 1)!(2− n)ωn

Ç
N + n

2 − 1

2N − 1− L

å
=

(−1)L+N n
2 (n2 − 1)

4N−1(2− n)ωnL!(2N − 1− L)!(n2 −N + L)

Ç
N + n

2 − 1

N − 1

å
=

(−1)L+N
(
N+n

2
−1

N−1

)
4NL!Vn(2N − 1− L)!(n2 −N + L)

.

Case 4: n = 2. Proceeding as in Case 3, we obtain

AL = β(n,N)(N − n

2
)!(−1)N+n

2
−1+L

2N−1∑
i=L

(i−N +
n

2
− 1)!

1

i!

Ç
i

L

å
=

(−1)N+LN !

2ω24N−1L!(N − 1)!(2N − 1− L)!(L+ 1−N)

=
(−1)L+N

Ä
N
N−1

ä
V24NL!(2n− 1− L)!(L+ 1−N)

. �

Proof of Lemma 10. Recall that (see (61))

C2j =
2N−1∑
l=N+j

c l, j, l−N−j Gn
2

+l−N+j(0) .
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Thus, we have to compute the constants cl,j,k appearing in expression (59)

for ’S χB(ξ). For that we need the constants cl,j appearing in formula (22) for

S(x). We start by computing P2j(∂)∆N−j(|x|2l). Using (20) and Lemma 4,

one gets

P2j(∂)∆N−j(|x|2l) =
4N l!(N − j)!
(l −N − j)!

Ç
l − 1 + n

2

N − j

å
P2j(x)|x|2(l−N−j)

if l −N − j ≥ 0 (and = 0 if l −N − j < 0).

As in (25), we want to compute P2j(∂)∆l−N−jGn
2
(ξ) by using Lemma 3

applied to f(r) = Gn
2
(r) and the homogeneous polynomial

L(x) = P2j(x) |x|2(l−N−j).

We obtain

P2j(∂)∆l−N−jGn
2
(ξ)

= (−1)2(l−N)
∑
k≥0

(−1)k

2kk!
∆k(P2j(x)|x|2(l−N−j)Gn

2
+2(l−N)−k(ξ)

=
l−N−j∑
k=0

(−1)k

2kk!
4k

(l −N − j)!
(l −N − j − k)!

k!

Ç
n
2 + j + l −N − 1

k

å
× P2j(ξ)|ξ|2(l−N−j−k)Gn

2
+2(l−N)−k(ξ) .

In view of the definitions of Q(x) and S(x),

S(x) = −Q(∂)

(
2N−1∑
l=0

Al|x|2l
)

= −
2N−1∑
l=0

Al

N∑
j=1

γ2jP2j(∂)∆N−j(|x|2l)

= −
2N−1∑
l=N+1

l−N∑
j=1

Alγ2j
4N l!(N − j)!
(l −N − j)!

Ç
l − 1 + n

2

N − j

å
P2j(x)|x|2(l−N−j)

=
2N−1∑
l=N+1

l−N∑
j=1

cl,jP2j(x)|x|2(l−N−j) ,

where the last identity defines the cl,j . In (59) we set’S χB(ξ) = S(ı ∂)”χB(ξ)

=
2N−1∑
l=N+1

l−N∑
j=1

clj (−1)l−N P2j(∂)4l−N−j Gn
2
(ξ)

=
2N−1∑
l=N+1

l−N∑
j=1

l−N−j∑
k=0

c l, j, k P2j(ξ) |ξ|2(l−N−j−k)Gn
2

+2l−2N−k(ξ) .
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Consequently,

cl,j,k = cl,j(−1)l−N
(−1)k

2k
4k

(l −N − j)!
(l −N − j − k)!

Ç
n
2 + j + l −N − 1

k

å
= −(−1)l+k+NAlγ2j

4N l!(N − j)!
(l −N − j)!

Ç
l − 1 + n

2

N − j

å
× 2k

(l −N − j)!
(l −N − j − k)!

Ç
n
2 + j + l −N − 1

k

å
.

Replacing Al by the formula given in Lemma 13 and performing some easy

arithmetics, we get

(76) cl,j,k = −(−1)k

Vn

γ2j

(
N+n

2
−1

N−1

)
2k(N − j)!

(
l−1+n

2

N−j

)( n
2

+j+l−N−1

k

)
(l + n

2 −N)(2N − l − 1)!(l −N − j − k)!
.

The final computation of the C2j is as follows:

C2j =
2N−1∑
l=N+j

c l, j, l−N−j Gn
2

+l−N+j(0)

= [by the explicit value of Gp(0) given in (78) below]

=
2N−1∑
l=N+j

c l, j, l−N−j
1

2
n
2

+l−N+jΓ(n2 + l −N + j + 1)

= [by (76)]

= −
2N−1∑
l=N+j

(−1)l−N−j

Vn

γ2j

(
N+n

2
−1

N−1

)
2l−N−j(N − j)!

(
l−1+n

2

N−j

)( n
2

+j+l−N−1

l−N−j

)
(l+ n

2 −N)(2N− l−1)!2
n
2

+l−N+jΓ(n2 +l−N+j+1)

= [substituting the value given in (7) in γ2j ]

= −
π

n
2 Γ(j)

(
N+n

2
−1

N−1

)
(N − j)!

VnΓ(j + n
2 )2

n
2

+2j

×
2N−1∑
l=N+1

(−1)l+N
(
l−1+n

2

N−j

) ( n
2

+j+l−N−1

l−N−j

)
(l + n

2 −N)(2N − l − 1)!Γ(n2 + l −N + j + 1)

= [setting l = i+N + j]

= −
π

n
2 Γ(j)

(
N+n

2
−1

N−1

)
(N − j)!

VnΓ(j + n
2 )2

n
2

+2j

×
N−1−j∑
i=0

(−1)i+j
(
i+N+j−1+n

2

N−j

) ( n
2

+2j+i−1

i

)
(i+ j + n

2 )(N − i− j − 1)!Γ(n2 + i+ 2j + 1)
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= [because Γ(
n

2
+ i+ 2j + 1) = Γ(2j +

n

2
)

i∏
k=0

(
n

2
+ 2j + i− k)]

= −
(−1)jπ

n
2 Γ(j)

(
N+n

2
−1

N−1

)
(N − j)!

VnΓ(j + n
2 )2

n
2

+2jΓ(2j + n
2 )

×
N−1−j∑
i=0

(−1)i
(
i+N+j−1+n

2

N−j

) ( n
2

+2j+i−1

i

)
(i+ j + n

2 )(N − i− j − 1)!
∏i
k=0(n2 + 2j + i− k)

= [using Lemma 14 below]

= −
(−1)jπ

n
2 Γ(j)

(
N+n

2
−1

N−1

)
(N − j)!

VnΓ(j + n
2 )2

n
2

+2jΓ(2j + n
2 )

Ä
N−1
j−1

ä Γ(j + n
2 )

j Γ(N + n
2 )

=
−π n

2

Vn2
n
2 Γ(n2 + 1)

(−1)j

j 4jΓ(2j + n
2 )
. �

Lemma 14. For each j = 1, . . . , N − 1,

N−1−j∑
i=0

(−1)i
(
i+N+j−1+n

2

N−j

) ( n
2

+2j+i−1

i

)
(i+ j + n

2 )(N − i− j − 1)!
∏i
k=0(n2 +2j+i− k)

=

Ç
N − 1

j − 1

å
Γ(j+ n

2 )

jΓ(N+ n
2 )
.

Proof. Divide the left-hand side by the right-hand side and denote the

quotient by A. We have to prove that A = 1. Using elementary arithmetics,(
i+N+j−1+n

2

N−j

) ( n
2

+2j+i−1

i

)
Γ(N + n

2 )

(i+ j + n
2 )
∏i
k=0(n2 + 2j + i− k) Γ

(
j + n

2

)
=

Ç
N + i+ j + n

2 − 1

N − j − 1

åÇ
N + n

2 − 1

N − i− j − 1

å
(N − i− j − 1)!

N − j

Ç
n
2 + i+ j − 1

i

å
,

and so

A =
j(N−1

j−1

)
(N − j)

N−1−j∑
i=0

(−1)i
Ç
N+i+j+ n

2 −1

N−j−1

åÇ
N+ n

2 −1

N− i−j−1

åÇ
n
2 +i+j−1

i

å
=

ñ
because

Ç
a+i

i

å
= (−1)i

Ç−a− 1

i

åô
=

j(N−1
j−1

)
(N − j)

N−1−j∑
i=0

Ç
N+i+j+ n

2 − 1

N − j − 1

åÇ
N+ n

2 − 1

N − i− j − 1

åÇ−n
2 − j
i

å
= [by the triple-binomial identity (5.28) of ([GKP94, p. 171]); see below]

=
j(N−1

j−1

)
(N − j)

Ç
n
2 +N+j − 1

0

åÇ
N − 1

N − j − 1

å
= 1 .
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For the reader’s convenience and later reference we state the triple-binomial

identity [GKP94, (5.28), p. 171]:

(77)
n∑
k=0

Ç
m− r + s

k

åÇ
n+ r − s
n− k

åÇ
r + k

m+ n

å
=

Ç
r

m

åÇ
s

n

å
,

where m and n are nonnegative integers. �

Our next task is to prove Lemmas 11 and 12. Setting ξ = r ξ0, |ξ0| = 1,

in (59) we obtain◊�SN χB(rξ0) =
2N−1∑
l=N+1

l−N∑
j=1

l−N−j∑
k=0

c l, j, k P2j(rξ0) |rξ0|2(l−N−j−k)Gn
2

+2l−2N−k(rξ0)

[make the change of indexes l = N + s]

=
N−1∑
s=1

s∑
j=1

s−j∑
k=0

cN+s, j, k P2j(ξ0) r2(s−k)Gn
2

+2s−k(r)

=
N−1∑
j=1

N−1∑
s=j

s−j∑
k=0

cN+s, j, k P2j(ξ0) r2(s−k)Gn
2

+2s−k(r)

:=
∞∑
p=1

aN2p(ξ0)r2p .

In order to compute the coefficients aN2p(ξ0), we substitute the power series

expansion of Gq(r) [Gra04, A-8]; namely,

(78) Gq(r) =
∞∑
i=0

(−1)i

i! Γ(q + i+ 1)

r2i

22i+q

in the last triple sum above.

Proof of Lemma 11. We are assuming that 1 ≤ p ≤ N−1. It is important

to remark that, for this range of p, after introducing (78) in the triple sum

above, only the values of the index j satisfying 1 ≤ j ≤ p are involved in the

expression for aN2p. Once (78) has been introduced in the triple sum, one should

sum, in principle, on the four indexes i, j, s and k. But since we are looking

at the coefficient of r2p, we have the relation 2(s−k) + 2i = 2p, which actually

leaves us with three indexes. The range of each of these indexes is easy to

determine and one gets

aN2p =
p∑
j=1

P2j(ξ0)
p−j∑
i=0

N−1∑
s=p−i

cN+s, j, s−(p−i)×coefficient of r2i from Gn
2

+s+p−i(r) .
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In view of (78),

aN2p =
p∑
j=1

P2j(ξ0)
p−j∑
i=0

N−1∑
s=p−i

cN+s, j, s−(p−i)
(−1)i

i!2i+
n
2

+s+pΓ(n2 + s+ p+ 1)

= [by the expression (76) for cl,j,k]

=
p∑
j=1

P2j(ξ0)
p−j∑
i=0

N−1∑
s=p−i

(−1)i+1

i!2i+
n
2

+s+pΓ(n2 + s+ p+ 1)

(−1)s−(p−i)

Vn

×
γ2j

(
N+n

2
−1

N−1

)
2s−(p−i)(N − j)!

(
N+s−1+n

2

N−j

)Å n
2

+j+s−1

s−(p−i)

ã
(s+ n

2 )(N − s− 1)!(p− i− j)!

= (−1)p+1
p∑
j=1

P2j(ξ0)
(−1)jπ

n
2 Γ(j)(N − j)!

VnΓ(n2 + j)2
n
2

+2p

p−j∑
i=0

(
N+n

2
−1

N−1

)
i!(p− i− j)!

×
N−1∑
s=p−i

(−1)s
(
N+s−1+n

2

N−j

)Å n
2

+j+s−1

s−(p−i)

ã
(s+ n

2 )(N − s− 1)!Γ(n2 + s+ p+ 1)
.

In Lemma 15 below we give a useful compact form for the last sum. Using

it, we obtain

aN2p = (−1)p+1
p∑
j=1

P2j(ξ0)
(−1)jπ

n
2 Γ(j)(N − j)!

VnΓ(n2 + j)2
n
2

+2p

p−j∑
i=0

(
N+n

2
−1

N−1

)
i!(p− i− j)!

×
(−1)p−i(N − p− 1)!

Ä
N−1
p

ä
(N − j)!Γ(N + n

2 )j!
( n

2
+p−i+j−1

j

) .
Easy arithmetics with binomial coefficients givesÇ

N + n
2 − 1

N − 1

å
(N − p− 1)!

Ç
N − 1

p

å
1

Γ(N + n
2 )

=
1

p! Γ(n2 + 1)
.

We finally get the extremely surprising identity

(79)

aN2p=
−π n

2

Vn2
n
2

+2pp!Γ(n2 + 1)

p∑
j=1

(−1)jΓ(j)P2j(ξ0)

Γ(n2 + j)

p−j∑
i=0

(−1)i

i!(p− i− j)!j!
( n

2
+p−i+j−1

j

)
in which N has miraculously disappeared. Thus Lemma 11 is proved. �

Proof of Lemma 12. We start by proving the inequality (68), so that 1 ≤
p ≤ N−1. We roughly estimate a2p = aN2p by putting the absolute value inside

the sums in (79). The absolute value of each term in the innermost sum in

(79) is obviously not greater than 1, and there are at most p terms. The factor
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in front of P2j(ξ0) is again not greater than 1 in absolute value. Denoting by

C the terms that depend only on n, we obtain the desired inequality (68).

We turn now to the proof of inequality (69). Recall that◊�SN χB(rξ0)=
∞∑
p=1

aN2p(ξ0)r2p=
N−1∑
j=1

N−1∑
s=j

s−j∑
k=0

cN+s, j, k P2j(ξ0) r2(s−k)Gn
2

+2s−k(r) .

Replacing Gn
2

+2s−k(r) by the expression given by (78), we obtain, as before, a

sum with four indexes. Now we eliminate the index i of (78) using s−k+i = p.

Hence

aN2p =
N−1∑
j=1

P2j(ξ0)
N−1∑
s=j

s−j∑
k=0

cN+s, j, k × coefficient of r2(p−s+k) from Gn
2

+2s−k(r)

=
N−1∑
j=1

P2j(ξ0)
N−1∑
s=j

s−j∑
k=0

cN+s, j, k
(−1)p−s+k

(p− s+ k)!Γ(n2 + p+ s− 1)22p+n
2

+k

=
N−1∑
j=1

P2j(ξ0)
N−1−j∑
k=0

N−1∑
s=j+k

cN+s, j, k
(−1)p−s+k

(p− s+ k)!Γ(n2 + p+ s− 1)22p+n
2

+k

=
(−1)p

Vn4p2
n
2

Ç
N + n

2 − 1

N − 1

åN−1∑
j=1

γ2jP2j(ξ0)
N−1−j∑
k=0

N−1∑
s=j+k

×
(−1)s(N − j)!

(
N+s−1+n

2

N−j

) ( n
2

+j+s−1

k

)
(p− s+ k)!Γ(n2 + p+ s+ 1)(s+ n

2 )(N − s− 1)!(s− j − k)!
.

The second identity is just (78). The third is a change of the order of summa-

tion and the latest follows from the formula (76) for the constants cl,j,k.

In view of the elementary fact that

(N − j)!
Ç
N + s− 1 + n

2

N − j

åÇ
n
2 + j + s− 1

k

å
=

Γ(s+ n
2 +N)

k!Γ(s+ n
2 + j − k)

,

we get∣∣∣∣∣∣∣
N−1−j∑
k=0

N−1∑
s=j+k

(−1)s(N − j)!
(
N+s−1+n

2

N−j

) ( n
2

+j+s−1

k

)
(p− s+ k)!Γ(n2 + p+ s+ 1)(s+ n

2 )(N − s− 1)!(s− j − k)!

∣∣∣∣∣∣∣
≤

N−1−j∑
k=0

1

k!

×
N−1∑
s=j+k

1

Γ(s+ n
2 +j − k)(p− s+k)!(n2 +p+s)(s+ n

2 )(N − s− 1)!(s− j − k)!

≤
N−1−j∑
k=0

1

k!

N−1∑
s=j+k

1

(s− j − k)!
≤ e2 ,
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where in the first inequality we used that, since N ≤ p,
Γ(s+ n

2 +N)

Γ(n2 + p+ s+ 1)
≤ 1

n
2 + p+ s

.

The proof of (69) is complete. �

Lemma 15. Let N − 1 ≥ L ≥ j ≥ k ≥ 0 be integers. Then

N−1∑
s=j

(−1)s
( n

2
+N+s−1

N−k

) ( n
2

+k+s−1

s−j

)
(s+ n

2 )(N − s− 1)!Γ(n2 + s+ L+ 1)

= (−1)j
(N − L− 1)!

(N − k)!

Ç
N − 1

L

å
1

k! Γ(n2 +N)

1(n
2

+k+j−1
k

) .
Proof. To simplify notation set

A =
N−1∑
s=j

(−1)s
( n

2
+N+s−1

N−k

) ( n
2

+k+s−1

s−j

)
(s+ n

2 )(N − s− 1)!Γ(n2 + s+ L+ 1)
.

Making the change of index of summation i = s− j and using repeatedly the

identity Γ(x+ 1) = xΓ(x), we have

A =
(−1)j

Γ(n2 + j + L)

N−1−j∑
i=0

(−1)i
( n

2
+N+i+j−1

N−k

) ( n
2

+k+i+j−1

i

)
(i+j+ n

2 )(N − i− j − 1)!{∏i
p=0(n2 +i+j+L− p)}

=
(−1)j

Γ(n2 + j + L)
B ,

where the last identity defines B. To compute B we need to rewrite the terms

in a more convenient way so that we may apply well-known equalities, among

which the triple-binomial identity (77). Notice that( n
2

+N+i+j−1

N−k

) ( n
2

+k+i+j−1

i

)
{∏i

p=0(n2 + i+ j + L− p)}

=
(N − L− 1)!(L− k)!

i!(N − k)!

Ç
n
2 +N + i+ j − 1

N − L− 1

åÇ
n
2 + j + L− 1

L− k

å
.

Hence

B=
N−1−j∑
i=0

(−1)i(N−L−1)!(L−k)!

i!(N−k)!(N−i−j−1)!(i+j+ n
2 )

Ç
n
2 +N+i+j−1

N−L−1

åÇ
n
2 +j+L−1

L−k

å
.

Since clearly

Γ(n2 +N)

Γ(n2 + j)

1

(i+ j + n
2 )(N − i− j − 1)!

=

Ç
n
2 +N − 1

N − j − i− 1

åÇ
n
2 + j + i− 1

i

å
i! ,
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B can be written as

B =
Γ(n2 + j)(N − L− 1)!(L− k)!

Γ(n2 +N)(N − k)!

Ç
n
2 + j + L− 1

L− k

å
×
N−1−j∑
i=0

(−1)i
Ç

n
2 +N − 1

N − j − i− 1

åÇ
n
2 + j + i− 1

i

åÇ
n
2 +N + i+ j − 1

N − L− 1

å
=

Γ(n2 + j)(N − L− 1)!(L− k)!

Γ(n2 +N)(N − k)!

Ç
n
2 + j + L− 1

L− k

å
C ,

where the last identity defines C.

To simplify notation set L = m + j, where 0 ≤ m ≤ L − j. Using the

elementary identityÇ
n
2 +N−1

N−j− i−1

åÇ
n
2 + i+j − 1

i

å
=

(N−j)!
i!(N− i−j−1)!(n2 + i+j)

Ç
n
2 +N − 1

N − j

å
,

we get

C =

Ç
n
2 +N − 1

N − j

å
(N − j)!

N−1−j∑
i=0

(−1)i
(n

2
+N+i+j−1
N−j−m−1

)
i! (N − i− j − 1)! (n2 + i+ j)

.

The only task left is the computation of the sum

D(j,m) =
N−1−j∑
i=0

(−1)i
(n

2
+N+i+j−1
N−j−m−1

)
i! (N − i− j − 1)! (n2 + i+ j)

.

The identity

1
n
2 + i+ j

=
1

n
2 + j

Ç
1− i

n
2 + i+ j

å
,

yields the expression

D(j,m) =
N−1−j∑
i=0

(−1)i

(n2 + j)i!(N − i− j − 1)!

Ç
n
2 + i+ j +N − 1

N − j −m− 1

å
−
N−1−j∑
i=0

(−1)ii

i!(n2 + j)(n2 + j + i)(N − i− j − 1)!

Ç
n
2 + i+ j +N − 1

N − j −m− 1

å
.
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The first sum in the above expression for D(j,m) turns out to vanish for m ≥ 1.

This is because
N−1−j∑
i=0

(−1)i

(n2 + j)i!(N − i− j − 1)!

Ç
n
2 + i+ j +N − 1

N − j −m− 1

å
=

1

(N − j − 1)! (n2 + j)

N−1−j∑
i=0

(−1)i
Ç
N − j − 1

i

åÇ
n
2 + i+ j +N − 1

N − j −m− 1

å
= (−1)N−j−1

Ç
n
2 + j +N − 1

−m

å
= 0 ,

where the next to the last equality follows from an identity proven in [GKP94,

(5.24), p. 169] and the last equality follows from the fact that

Ç
s

k

å
= 0 provided

k is a negative integer. Hence, setting s = i− 1,

D(j,m) = −
N−1−j∑
i=0

(−1)i i

i!(n2 + j)(n2 + j + i)(N − i− j − 1)!

Ç
n
2 + i+ j +N − 1

N − j −m− 1

å
=

1
n
2 + j

N−(j+1)−1∑
s=0

(−1)s

s!(n2 + s+ (j + 1))

Å
n
2

+(j+1)+N+s−1

N−(j+1)−(m−1)−1

ã
(N − (j + 1)− s− 1)!

=
1

(n2 + j)
D(j + 1,m− 1) .

Repeating the above argument m times we obtain that

D(j,m) =
1

(n2 + j)(n2 + j + 1) · · · (n2 + j +m− 1)
D(L, 0) .

To compute D(L, 0) we use the elementary identity

1

(n2 +L+s)
=
s!(N−L−s−1)!Γ(n2 +L)

Γ(n2 +N)

Ç
n
2 +L+s−1

s

åÇ
n
2 +N−1

N−L−s−1

å
,

from which we get

D(L, 0) =
N−1−L∑
s=0

(−1)s
Γ(n2 + L)

Γ(n2 +N)

×
Ç
n
2 + L+ s− 1

s

åÇ
n
2 +N − 1

N−L−s−1

åÇ
n
2 +L+N+s−1

N − L− 1

å
=

Γ(n2 + L)

Γ(n2 +N)

N−1−L∑
s=0

Ç−n2 −L
s

åÇ
n
2 +N−1

N−L−s−1

åÇ
n
2 + L+N + s−1

N−L−1

å
=

Γ(n2 + L)

Γ(n2 +N)

Ç
N−1

L

å
,
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where in the second identity we applied [GKP94, (5.14), p. 164] and the latest

equality is consequence of the triple-binomial identity [GKP94, (5.28), p. 171]

(for n = N −L− 1, m = 0, r = n
2 +N +L− 1 and s = N − 1). Consequently,

D(j,m) =
Γ(n2 + L)

Γ(n2 +N)

Ç
N − 1

L

å
1

(n2 + j) · · · (n2 + L− 1)

=
Γ(n2 + j)

Γ(n2 +N)

Ç
N − 1

L

å
.

Hence

C =

Ç
n
2 +N − 1

N − j

å
(N − j)! Γ(n2 + j)

Γ(n2 +N)

Ç
N − 1

L

å
,

and

B =
Γ(n2 + j)

Γ(n2 +N)

(N − L− 1)!(L− k)!

(N − k)!

Ç
n
2 + j + L− 1

L− k

åÇ
n
2 +N − 1

N − j

å
×
Ç
n
2 +N − 1

N − j

å
(N − j)! Γ(n2 + j)

Γ(n2 +N)

Ç
N − 1

L

å
.

Finally, after appropriate simplifications,

A =
(−1)j

Γ(n2 + j + L)
B

= (−1)j
(N − L− 1)!

(N − k)!

(N−1
L

)
Γ(n2 +N)k!

(n
2

+j+k−1
k

) ,
which completes the proof of the lemma. �

8. Examples and questions

Example 1. Consider the polynomial operator T = Tλ in R2 determined

by

Ω(x, y) =
xy

|z|2 + λ
x3y − xy3

|z|4 ,

where z = x + iy. We claim that the inequality ‖T ?λf‖2 ≤ C‖Tλf‖2, f ∈
L2(R2), holds if and only if |λ| < 2. This follows from the theorem because

the multiplier of the operator Tλ is

ξη

ξ2 + η2

Ç
−π + λ

π

2

(ξ2 − η2)

ξ2 + η2

å
,

ξη
ξ2+η2 is the multiplier of a second order Riesz Transform and the function

−π + λπ2
(ξ2−η2)
ξ2+η2 has no zeroes on the unit circle if and only if |λ| < 2.
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Example 2. Let B stand for the Beurling transform and consider the op-

erator

Tλ = B − λB2, λ ∈ C ,

which corresponds to

Ω(z) = − 1

π

Ç
z2|z|2 + 2λ z4

|z|4
å
.

In this case the multiplier is

ξ
3
ξ − λ ξ4

|ξ|4 =
ξ

ξ

Ç
1− λ ξ

ξ

å
, ξ ∈ C ,

which is the multiplier of B times a function that vanishes on the unit circle

if and only if |λ| = 1. Then the theorem tells us that ‖T ?λf‖2 ≤ C‖Tλf‖2,

f ∈ L2(R2), if and only if |λ| 6= 1. Indeed, strictly speaking, the necessary

condition of the theorem, i.e., (iii) implies (i), applies only to real homogeneous

polynomials. However, in the case at hand, the factorization results one needs

can be checked by direct inspection.

Example 3. We give an example of a polynomial operator T which is of

the form T = R ◦ U , where R is an even higher order Riesz Transform and

U is invertible, but the L2 inequality ‖T ?f‖2 ≤ C‖Tf‖2, f ∈ L2(Rn), does

not hold. The operator T is associated with the homogenous polynomial of

degree 8

P (x, y) =
1

γ2
P2(x, y)(x2 + y2)3 + ε

Å
1

γ4
P4(x, y)(x2 + y2)2 − 1

γ8
P8(x, y)

ã
,

where

P2(x, y) = xy , P4(x, y) = x4 − 6x2y2 + y4 ,

and

P8(x, y) = x8 + y8 − 28x6y2 − 28x2y6 + 70x4y4

are harmonic polynomials and ε is small enough. Notice that P2 does not divide

P4 or P8. Therefore, by the Theorem, there is no control of T ? in terms of T .

On the other hand, P4 and P8 have been chosen so that P4(ξ1, ξ2)|ξ|4−P8(ξ1, ξ2)

is divisible by P2, and so the multiplier of T is

P2(ξ1, ξ2)

|ξ|2 + ε

Ç
P4(ξ1, ξ2)

|ξ|4 − P8(ξ1, ξ2)

|ξ|8
å

=
P2(ξ1, ξ2)

|ξ|2
Ç

1 + ε
Q(ξ1, ξ2)

|ξ|6
å
,

where Q is a homogeneous polynomial of degree 6. Define R as the higher

order Riesz transform whose multiplier is P2(ξ1,ξ2)
|ξ|2 and U as the operator whose

multiplier is 1 + εQ(ξ1,ξ2)
|ξ|6 . If ε is small enough, then U is invertible.
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Example 4. We show here that condition (iii) in the theorem is very re-

strictive. Take n = 2. Since Ω(eiθ) is an even function, it has, modulo a

rotation, a Fourier series expansion of the type

(80) Ω(eiθ) =
∑
j≥1

aj sin(2jθ) .

Thus the harmonic polynomials P2j are

P2j(z) = aj
z2j − z2j

2i
.

If aj 6= 0, then P2j vanishes exactly on 2j straight lines through the origin

uniformly distributed and containing the two axis. Each such line is determined

by a pair of opposed 4j-th roots of the unity. Assume now that the operator

determined by Ω(eiθ) satisfies condition (iii) of the theorem. Let j0 be the first

positive integer with aj0 6= 0. Then only the aj with j a multiple of j0 may

be nonzero, owing to the particular structure of the zero set of P2j . In other

words, the first nonzero P2j determines all the others, modulo the constants aj .

Example 5. Now, we show a method to construct even kernels in R3 that

satisfy condition (iii) in the theorem. It can be easily adapted to any dimension.

The kernel is determined by the function

Ω(x, y, z) = xy
∑
j≥0

εj Q2j(x, y, z) ,

where the sequence (εj) is chosen so that Ω is in C∞(S2) and the Q2j are

defined by

Q2j(x, y, z) =
2j∑
k=0

ck y
2k z2j−2k .

The ck are determined by a recurrent formula obtained by requiring that

xy Q2j(x, y, z) is harmonic. Computing its Laplacean, we get the recurrent

condition

ck = −ck−1
2k(2k + 1)

(2j − 2k + 1) (2j − 2k + 2)
, 1 ≤ k ≤ j ,

where c0 may be freely chosen.

We would like to close the paper by asking a couple of questions which we

have not been able to answer.

Question 1. Since our methods are very much dependent on the Fourier

transform, we do not know whether either the weak type inequality

‖T ?f‖1,∞ ≤ C‖Tf‖1
or the Lp inequality with 1 < p <∞, p 6= 2,

‖T ?f‖p ≤ C‖Tf‖p, f ∈ Lp(Rn) ,
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imply the L2 inequality

‖T ?f‖2 ≤ C‖Tf‖2, f ∈ L2(Rn) .

As suggested by Carlos Pérez, this might be related to interpolation results for

couples of sub-linear operators.

Question 2. How far may the smoothness assumption on Ω be weakened?

More concretely, does the theorem still hold true for Ω of class Cm(Sn−1) for

some positive integer m?

Acknowledgements. The authors are indebted to F. Cedó and X. Xarles
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