Splitting mixed Hodge structures over affine invariant manifolds

Abstract

We prove that affine invariant manifolds in strata of flat surfaces are algebraic varieties. The result is deduced from a generalization of a theorem of Möller. Namely, we prove that the image of a certain twisted Abel-Jacobi map lands in the torsion of a factor of the Jacobians. This statement can be viewed as a splitting of certain mixed Hodge structures.

Note: To view the article, click on the URL link for the DOI number.

  • [ANW_H^4] D. Aulicino, D. -M. Nguyen, and A. Wright, Classification of higher rank orbit closures in $\mathcal{H}^{ odd}$(4), 2013.
    @misc{ANW_H^4,
      author = {Aulicino, D. and Nguyen, D.-M. and Wright, A.},
      title = {Classification of higher rank orbit closures in {$\mathcal{H}^{\rm odd}$(4)}},
      year = {2013},
      arxiv = {1308.5879},
      }
  • [BHC] Go to document A. Borel and Harish-Chandra, "Arithmetic subgroups of algebraic groups," Ann. of Math., vol. 75, pp. 485-535, 1962.
    @article{BHC, mrkey = {0147566},
      author = {Borel, Armand and Harish-Chandra},
      title = {Arithmetic subgroups of algebraic groups},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {75},
      year = {1962},
      pages = {485--535},
      issn = {0003-486X},
      mrclass = {20.65 (14.50)},
      mrnumber = {0147566},
      mrreviewer = {P. Cartier},
      doi = {10.2307/1970210},
      zblnumber = {0107.14804},
      }
  • [Carlson] J. A. Carlson, "Extensions of mixed Hodge structures," in Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Germantown, Md.: Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, pp. 107-127.
    @incollection{Carlson, mrkey = {0605338},
      author = {Carlson, James A.},
      title = {Extensions of mixed {H}odge structures},
      booktitle = {Journées de {G}éometrie {A}lgébrique d'{A}ngers, {J}uillet 1979/{A}lgebraic {G}eometry, {A}ngers, 1979},
      pages = {107--127},
      publisher = {Sijthoff \& Noordhoff, Alphen aan den Rijn},
      address = {Germantown, Md.},
      year = {1980},
      mrclass = {14C30 (14H15 32G13)},
      mrnumber = {0605338},
      mrreviewer = {Steven Zucker},
      zblnumber = {0471.14003},
      }
  • [EM] A. Eskin and M. Mirzakhani, Invariant and stationary measures for the SL(2,R) action on moduli space, 2013.
    @misc{EM,
      author = {Eskin, A. and Mirzakhani, M.},
      title = {Invariant and stationary measures for the {SL(2,R)} action on moduli space},
      year = {2013},
      arxiv = {1302.3320}
    }
  • [EMM] Go to document A. Eskin, M. Mirzakhani, and A. Mohammadi, "Isolation, equidistribution, and orbit closures for the $\mathrm{SL}(2,\mathbb{R})$ action on moduli space," Ann. of Math., vol. 182, pp. 673-721, 2015.
    @article{EMM,
      author = {Eskin, A. and Mirzakhani, M. and Mohammadi, A.},
      title = {Isolation, equidistribution, and orbit closures for the {$\mathrm{SL}(2,\mathbb{R})$} action on moduli space},
      journal = {Ann. of Math.},
      volume = {182},
      year = {2015},
      pages = {673--721},
      doi = {10.4007/annals.2015.182.2.7},
      zblnumber = {06487150},
      }
  • [ssimple] S. Filip, Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, 2013.
    @misc{ssimple,
      author = {Filip, S.},
      title = {Semisimplicity and rigidity of the {K}ontsevich-{Z}orich cocycle},
      year = {2013},
      arxiv = {1307.7314},
      }
  • [Forni] Go to document G. Forni, "Deviation of ergodic averages for area-preserving flows on surfaces of higher genus," Ann. of Math., vol. 155, iss. 1, pp. 1-103, 2002.
    @article{Forni, mrkey = {1888794},
      author = {Forni, Giovanni},
      title = {Deviation of ergodic averages for area-preserving flows on surfaces of higher genus},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {155},
      year = {2002},
      number = {1},
      pages = {1--103},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {37A25 (32G15 37C40 37D25 37D40 37E35 53D25)},
      mrnumber = {1888794},
      mrreviewer = {Howard Masur},
      doi = {10.2307/3062150},
      zblnumber = {1034.37003},
      }
  • [Hartshorne_ag] R. Hartshorne, Algebraic Geometry, New York: Springer-Verlag, 1977, vol. 52.
    @book{Hartshorne_ag, mrkey = {0463157},
      author = {Hartshorne, Robin},
      title = {Algebraic {G}eometry},
      series = {Grad. Texts in Math.},
      volume = {52},
      publisher = {Springer-Verlag},
      year = {1977},
      pages = {xvi+496},
      isbn = {0-387-90244-9},
      mrclass = {14-01},
      mrnumber = {0463157},
      mrreviewer = {Robert Speiser},
      address = {New York},
      zblnumber = {0367.14001},
      }
  • [windtree] Go to document P. Hubert, S. Lelièvre, and S. Troubetzkoy, "The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion," J. Reine Angew. Math., vol. 656, pp. 223-244, 2011.
    @article{windtree, mrkey = {2818861},
      author = {Hubert, Pascal and Leli{è}vre, Samuel and Troubetzkoy, Serge},
      title = {The {E}hrenfest wind-tree model: periodic directions, recurrence, diffusion},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {656},
      year = {2011},
      pages = {223--244},
      issn = {0075-4102},
      coden = {JRMAA8},
      mrclass = {37D50 (37E35)},
      mrnumber = {2818861},
      mrreviewer = {Thomas A. Schmidt},
      doi = {10.1515/CRELLE.2011.052},
      zblnumber = {1233.37025},
      }
  • [KMS] Go to document S. Kerckhoff, H. Masur, and J. Smillie, "Ergodicity of billiard flows and quadratic differentials," Ann. of Math., vol. 124, iss. 2, pp. 293-311, 1986.
    @article{KMS, mrkey = {0855297},
      author = {Kerckhoff, Steven and Masur, Howard and Smillie, John},
      title = {Ergodicity of billiard flows and quadratic differentials},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {124},
      year = {1986},
      number = {2},
      pages = {293--311},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {58F17 (30F30 58F11)},
      mrnumber = {0855297},
      mrreviewer = {Eugene Gutkin},
      doi = {10.2307/1971280},
      zblnumber = {0637.58010},
      }
  • [KZ_components] Go to document M. Kontsevich and A. Zorich, "Connected components of the moduli spaces of Abelian differentials with prescribed singularities," Invent. Math., vol. 153, iss. 3, pp. 631-678, 2003.
    @article{KZ_components, mrkey = {2000471},
      author = {Kontsevich, Maxim and Zorich, Anton},
      title = {Connected components of the moduli spaces of {A}belian differentials with prescribed singularities},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {153},
      year = {2003},
      number = {3},
      pages = {631--678},
      issn = {0020-9910},
      coden = {INVMBH},
      mrclass = {32G15 (37D40 37D50 37F99)},
      mrnumber = {2000471},
      mrreviewer = {Serge L. Tabachnikov},
      doi = {10.1007/s00222-003-0303-x},
      zblnumber = {1087.32010},
      }
  • [Lanneau_hyperelliptic] Go to document E. Lanneau, "Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities," Comment. Math. Helv., vol. 79, iss. 3, pp. 471-501, 2004.
    @article{Lanneau_hyperelliptic, mrkey = {2081723},
      author = {Lanneau, Erwan},
      title = {Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities},
      journal = {Comment. Math. Helv.},
      fjournal = {Commentarii Mathematici Helvetici},
      volume = {79},
      year = {2004},
      number = {3},
      pages = {471--501},
      issn = {0010-2571},
      coden = {COMHAX},
      mrclass = {32G15 (30F30 30F60 37F99)},
      mrnumber = {2081723},
      mrreviewer = {Serge L. Tabachnikov},
      doi = {10.1007/s00014-004-0806-0},
      zblnumber = {1054.32007},
      }
  • [LN_periodicity] E. Lanneau and D. Nguyen Nguyen, Complete periodicity of Prym eigenforms.
    @misc{LN_periodicity, key={LN16},
      author = {Lanneau, Erwan and Nguyen, Nguyen, Duc-Manh},
      title = {Complete periodicity of {P}rym eigenforms},
      note = {{\em Ann. Sci. {É}c. Norm. Sup{é}r.} 4 {\bf 49},
      to appear 1er fascicule (janvier-février), 2016},
      arxiv= {1301.0783},
      SORTYEAR={2016},
     }
  • [LN_Prym_g3_G4] Go to document E. Lanneau and D. Nguyen, "Teichmüller curves generated by Weierstrass Prym eigenforms in genus 3 and genus 4," J. Topol., vol. 7, iss. 2, pp. 475-522, 2014.
    @article{LN_Prym_g3_G4, mrkey = {3217628},
      author = {Lanneau, Erwan and Nguyen, Duc-Manh},
      title = {Teichmüller curves generated by {W}eierstrass {P}rym eigenforms in genus 3 and genus 4},
      journal = {J. Topol.},
      fjournal = {Journal of Topology},
      volume = {7},
      year = {2014},
      number = {2},
      pages = {475--522},
      issn = {1753-8416},
      mrclass = {32G15},
      mrnumber = {3217628},
      mrreviewer = {Fei Yu},
      doi = {10.1112/jtopol/jtt036},
      zblnumber = {06366504},
      }
  • [Masur] Go to document H. Masur, "Interval exchange transformations and measured foliations," Ann. of Math., vol. 115, iss. 1, pp. 169-200, 1982.
    @article{Masur, mrkey = {0644018},
      author = {Masur, Howard},
      title = {Interval exchange transformations and measured foliations},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {115},
      year = {1982},
      number = {1},
      pages = {169--200},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {28D05 (10K10 58F11 58F18)},
      mrnumber = {0644018},
      mrreviewer = {D. Newton},
      doi = {10.2307/1971341},
      zblnumber = {0497.28012},
      }
  • [McMullen_Hilbert_mod_surF] Go to document C. T. McMullen, "Billiards and Teichmüller curves on Hilbert modular surfaces," J. Amer. Math. Soc., vol. 16, iss. 4, pp. 857-885, 2003.
    @article{McMullen_Hilbert_mod_surF, mrkey = {1992827},
      author = {McMullen, Curtis T.},
      title = {Billiards and {T}eichmüller curves on {H}ilbert modular surfaces},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {16},
      year = {2003},
      number = {4},
      pages = {857--885},
      issn = {0894-0347},
      mrclass = {32G15 (37D50)},
      mrnumber = {1992827},
      mrreviewer = {Richard Kenyon},
      doi = {10.1090/S0894-0347-03-00432-6},
      zblnumber = {1030.32012},
      }
  • [McMullen_spin] Go to document C. T. McMullen, "Teichmüller curves in genus two: Discriminant and spin," Math. Ann., vol. 333, iss. 1, pp. 87-130, 2005.
    @article{McMullen_spin, mrkey = {2169830},
      author = {McMullen, Curtis T.},
      title = {Teichmüller curves in genus two: {D}iscriminant and spin},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {333},
      year = {2005},
      number = {1},
      pages = {87--130},
      issn = {0025-5831},
      coden = {MAANA},
      mrclass = {32G15 (30F10 37D50)},
      mrnumber = {2169830},
      mrreviewer = {Thomas A. Schmidt},
      doi = {10.1007/s00208-005-0666-y},
      zblnumber = {1086.14024},
      }
  • [McMullen_prym] Go to document C. T. McMullen, "Prym varieties and Teichmüller curves," Duke Math. J., vol. 133, iss. 3, pp. 569-590, 2006.
    @article{McMullen_prym, mrkey = {2228463},
      author = {McMullen, Curtis T.},
      title = {Prym varieties and {T}eichmüller curves},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {133},
      year = {2006},
      number = {3},
      pages = {569--590},
      issn = {0012-7094},
      coden = {DUMJAO},
      mrclass = {32G15 (14H40 37D50 57M50)},
      mrnumber = {2228463},
      mrreviewer = {Thomas A. Schmidt},
      doi = {10.1215/S0012-7094-06-13335-5},
      zblnumber = {1099.14018},
      }
  • [McMullen_classification] Go to document C. T. McMullen, "Dynamics of ${ SL}_2(\Bbb R)$ over moduli space in genus two," Ann. of Math., vol. 165, iss. 2, pp. 397-456, 2007.
    @article{McMullen_classification, mrkey = {2299738},
      author = {McMullen, Curtis T.},
      title = {Dynamics of {${\rm SL}_2(\Bbb R)$} over moduli space in genus two},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {165},
      year = {2007},
      number = {2},
      pages = {397--456},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {32G15 (37C85 37F99)},
      mrnumber = {2299738},
      mrreviewer = {Serge L. Tabachnikov},
      doi = {10.4007/annals.2007.165.397},
      zblnumber = {1131.14027},
      }
  • [McMullen_def_Q] Go to document C. T. McMullen, "Rigidity of Teichmüller curves," Math. Res. Lett., vol. 16, iss. 4, pp. 647-649, 2009.
    @article{McMullen_def_Q, mrkey = {2525030},
      author = {McMullen, Curtis T.},
      title = {Rigidity of {T}eichmüller curves},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {16},
      year = {2009},
      number = {4},
      pages = {647--649},
      issn = {1073-2780},
      mrclass = {32G15 (37D50 37P55)},
      mrnumber = {2525030},
      mrreviewer = {Irene I. Bouw},
      doi = {10.4310/MRL.2009.v16.n4.a7},
      zblnumber = {1187.32010},
      }
  • [MZ_modular] M. Möller and D. Zagier, Modular embeddings of Teichmüller curves, 2015.
    @misc{MZ_modular,
      author = {M{ö}ller, Martin and Zagier, D.},
      title = {Modular embeddings of {T}eichmüller curves},
      year = {2015},
      arxiv= {1503.05690},
     }
  • [Moller_GT] Go to document M. Möller, "Teichmüller curves, Galois actions and $\widehat{GT}$-relations," Math. Nachr., vol. 278, iss. 9, pp. 1061-1077, 2005.
    @article{Moller_GT, mrkey = {2150378},
      author = {M{ö}ller, Martin},
      title = {Teichmüller curves, {G}alois actions and {$\widehat{GT}$}-relations},
      journal = {Math. Nachr.},
      fjournal = {Mathematische Nachrichten},
      volume = {278},
      year = {2005},
      number = {9},
      pages = {1061--1077},
      issn = {0025-584X},
      mrclass = {14H30 (14G32 32G15)},
      mrnumber = {2150378},
      mrreviewer = {Frank Herrlich},
      doi = {10.1002/mana.200310292},
      zblnumber = {1081.14039},
      }
  • [Moller_torsion] Go to document M. Möller, "Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve," Invent. Math., vol. 165, iss. 3, pp. 633-649, 2006.
    @article{Moller_torsion, mrkey = {2242629},
      author = {M{ö}ller, Martin},
      title = {Periodic points on {V}eech surfaces and the {M}ordell-{W}eil group over a {T}eichmüller curve},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {165},
      year = {2006},
      number = {3},
      pages = {633--649},
      issn = {0020-9910},
      coden = {INVMBH},
      mrclass = {14D07 (32G15)},
      mrnumber = {2242629},
      mrreviewer = {Thomas A. Schmidt},
      doi = {10.1007/s00222-006-0510-3},
      zblnumber = {1111.14019},
      }
  • [Moller_VHS] Go to document M. Möller, "Variations of Hodge structures of a Teichmüller curve," J. Amer. Math. Soc., vol. 19, iss. 2, pp. 327-344, 2006.
    @article{Moller_VHS, mrkey = {2188128},
      author = {M{ö}ller, Martin},
      title = {Variations of {H}odge structures of a {T}eichmüller curve},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {19},
      year = {2006},
      number = {2},
      pages = {327--344},
      issn = {0894-0347},
      mrclass = {32G15 (14D07 32G20)},
      mrnumber = {2188128},
      mrreviewer = {Thomas A. Schmidt},
      doi = {10.1090/S0894-0347-05-00512-6},
      zblnumber = {1090.32004},
      }
  • [Moller_Linear_mnfds] Go to document M. Möller, "Linear manifolds in the moduli space of one-forms," Duke Math. J., vol. 144, iss. 3, pp. 447-487, 2008.
    @article{Moller_Linear_mnfds, mrkey = {2444303},
      author = {M{ö}ller, Martin},
      title = {Linear manifolds in the moduli space of one-forms},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {144},
      year = {2008},
      number = {3},
      pages = {447--487},
      issn = {0012-7094},
      coden = {DUMJAO},
      mrclass = {32G15 (14D07 32G20)},
      mrnumber = {2444303},
      mrreviewer = {Thomas A. Schmidt},
      doi = {10.1215/00127094-2008-041},
      zblnumber = {1148.32007},
      }
  • [NW] Go to document D. Nguyen and A. Wright, "Non-Veech surfaces in $\mathcal{H}^{ hyp}(4)$ are generic," Geom. Funct. Anal., vol. 24, iss. 4, pp. 1316-1335, 2014.
    @article{NW, mrkey = {3248487},
      author = {Nguyen, Duc-Manh and Wright, Alex},
      title = {Non-{V}eech surfaces in {$\mathcal{H}\sp {\rm hyp}(4)$} are generic},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {24},
      year = {2014},
      number = {4},
      pages = {1316--1335},
      issn = {1016-443X},
      mrclass = {32G15 (14H10)},
      mrnumber = {3248487},
      mrreviewer = {Fei Yu},
      doi = {10.1007/s00039-014-0297-0},
      zblnumber = {1303.30039},
      }
  • [PetersSteenbrink] C. A. M. Peters and J. H. M. Steenbrink, Mixed Hodge Structures, New York: Springer-Verlag, 2008, vol. 52.
    @book{PetersSteenbrink, mrkey = {2393625},
      author = {Peters, Chris A. M. and Steenbrink, Joseph H. M.},
      title = {Mixed {H}odge Structures},
      series = {Ergeb. Math. Grenzgeb.},
      volume = {52},
      publisher = {Springer-Verlag},
      year = {2008},
      pages = {xiv+470},
      isbn = {978-3-540-77015-2},
      mrclass = {14C30 (14D07 32G20 32J25 32S35)},
      mrnumber = {2393625},
      mrreviewer = {Matt Kerr},
      address = {New York},
      zblnumber = {1138.14002},
      }
  • [Shafarevich_bag2] I. R. Shafarevich, Basic Algebraic Geometry. 2, Second ed., New York: Springer-Verlag, 1994.
    @book{Shafarevich_bag2, mrkey = {1328834},
      author = {Shafarevich, Igor R.},
      title = {Basic {A}lgebraic {G}eometry. 2},
      edition = {Second},
      note = {Schemes and complex manifolds, translated from the 1988 {R}ussian edition by {M}iles {R}eid},
      publisher = {Springer-Verlag},
      year = {1994},
      pages = {xiv+269},
      isbn = {3-540-57554-5},
      mrclass = {14-01},
      mrnumber = {1328834},
      address = {New York},
      zblnumber = {0797.14001},
      }
  • [Smillie_Weiss] Go to document J. Smillie and B. Weiss, "Minimal sets for flows on moduli space," Israel J. Math., vol. 142, pp. 249-260, 2004.
    @article{Smillie_Weiss, mrkey = {2085718},
      author = {Smillie, John and Weiss, Barak},
      title = {Minimal sets for flows on moduli space},
      journal = {Israel J. Math.},
      fjournal = {Israel Journal of Mathematics},
      volume = {142},
      year = {2004},
      pages = {249--260},
      issn = {0021-2172},
      coden = {ISJMAP},
      mrclass = {37D40 (32G15 37F30 57M50)},
      mrnumber = {2085718},
      mrreviewer = {Serge L. Tabachnikov},
      doi = {10.1007/BF02771535},
      zblnumber = {1052.37025},
      }
  • [Veech] Go to document W. A. Veech, "Gauss measures for transformations on the space of interval exchange maps," Ann. of Math., vol. 115, iss. 1, pp. 201-242, 1982.
    @article{Veech, mrkey = {0644019},
      author = {Veech, William A.},
      title = {Gauss measures for transformations on the space of interval exchange maps},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {115},
      year = {1982},
      number = {1},
      pages = {201--242},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {28D05 (58F11)},
      mrnumber = {0644019},
      mrreviewer = {Michael Keane},
      doi = {10.2307/1971391},
      zblnumber = {0486.28014},
      }
  • [Veech_closure] W. A. Veech, "Geometric realizations of hyperelliptic curves," in Algorithms, Fractals, and Dynamics, New York: Plenum, 1995, pp. 217-226.
    @incollection{Veech_closure, mrkey = {1402493},
      author = {Veech, William A.},
      title = {Geometric realizations of hyperelliptic curves},
      booktitle = {Algorithms, {F}ractals, and {D}ynamics},
      venue = {{O}kayama/{K}yoto, 1992},
      pages = {217--226},
      publisher = {Plenum},
      address = {New York},
      year = {1995},
      mrclass = {14H45},
      mrnumber = {1402493},
      mrreviewer = {G. Ewald},
      zblnumber = {0859.30039},
      }
  • [Wright_field] Go to document A. Wright, "The field of definition of affine invariant submanifolds of the moduli space of abelian differentials," Geom. Topol., vol. 18, iss. 3, pp. 1323-1341, 2014.
    @article{Wright_field, mrkey = {3254934},
      author = {Wright, Alex},
      title = {The field of definition of affine invariant submanifolds of the moduli space of abelian differentials},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {18},
      year = {2014},
      number = {3},
      pages = {1323--1341},
      issn = {1465-3060},
      mrclass = {32G15 (30F60 37D40)},
      mrnumber = {3254934},
      mrreviewer = {Jayadev S. Athreya},
      doi = {10.2140/gt.2014.18.1323},
      zblnumber = {1320.32019},
      }
  • [Wright_survey] Go to document A. Wright, "Translation surfaces and their orbit closures: an introduction for a broad audience," EMS Surv. Math. Sci., vol. 2, iss. 1, pp. 63-108, 2015.
    @article{Wright_survey, mrkey = {3354955},
      author = {Wright, Alex},
      title = {Translation surfaces and their orbit closures: an introduction for a broad audience},
      journal = {EMS Surv. Math. Sci.},
      fjournal = {EMS Surveys in Mathematical Sciences},
      volume = {2},
      year = {2015},
      number = {1},
      pages = {63--108},
      issn = {2308-2151},
      mrclass = {32G15 (30D05 30F30 30F60)},
      mrnumber = {3354955},
      mrreviewer = {Jayadev S. Athreya},
      doi = {10.4171/EMSS/9},
      zblnumber = {06455787},
      }
  • [Zorich_survey] A. Zorich, "Flat surfaces," in Frontiers in Number Theory, Physics, and Geometry. I, New York: Springer-Verlag, 2006, pp. 439-585.
    @incollection{Zorich_survey, mrkey = {2261104},
      author = {Zorich, Anton},
      title = {Flat surfaces},
      booktitle = {Frontiers in {N}umber {T}heory, {P}hysics, and {G}eometry. {I}},
      pages = {439--585},
      publisher = {Springer-Verlag},
      year = {2006},
      mrclass = {37D40 (30F30 32G15 37D50 57M50)},
      mrnumber = {2261104},
      mrreviewer = {Thomas A. Schmidt},
      address = {New York},
      zblnumber = {1129.32012},
      }

Authors

Simion Filip

University of Chicago, Chicago, IL