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Splitting mixed Hodge structures
over affine invariant manifolds

By Simion Filip

Dedicated to the memory of my parents, Eudochia and Boris Filip

Abstract

We prove that affine invariant manifolds in strata of flat surfaces are

algebraic varieties. The result is deduced from a generalization of a theorem

of Möller. Namely, we prove that the image of a certain twisted Abel-Jacobi

map lands in the torsion of a factor of the Jacobians. This statement can

be viewed as a splitting of certain mixed Hodge structures.
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1. Introduction

Let (X,ω) be a Riemann surface with a holomorphic 1-form on it. The

set of all such pairs forms an algebraic variety H(κ) called a stratum, where
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κ encodes the multiplicities of the zeros of ω. The stratum carries a natural

action of the group SL2R that is of transcendental nature.

A stratum H(κ) has natural charts to complex affine spaces. The coordi-

nates are the periods of ω on X, thus in C. After identifying C with R2, the

action of SL2R is the standard one on each coordinate individually. In par-

ticular, the stratum carries a natural Lebesgue-class measure that is invariant

under SL2R. The finiteness of the measure was proved by Masur [Mas82] and

Veech [Vee82].

The action of SL2R and knowledge of invariant measures can be applied

to study other dynamical systems. For interval exchange transformations, this

started in the work of Masur and Veech [Mas82], [Vee82]. A starting point for

applications to polygonal billiards was in the work of Kerckhoff-Masur-Smillie

[KMS86]. Some recent applications involve a detailed analysis of the wind-

tree model by Hubert-Lelièvre-Troubetzkoy [HLT11]. For a comprehensive

introduction to the subject, see the survey of Zorich [Zor06].

For more precise applications, especially to concrete examples, one needs

to understand all possible invariant measures. For instance, polygonal billiards

correspond to a set of Masur-Veech measure zero.

Recent results of Eskin and Mirzakhani [EM13] show that finite ergodic

invariant measures are rigid and, in particular, are of Lebesgue class and sup-

ported on smooth manifolds. In further work with Mohammadi [EMM15] they

show that many other analogies with the homogeneous setting and Ratner’s

theorems hold.

The SL2R-invariant measures give rise to affine invariant manifolds. These

are complex manifolds that are given in local period coordinates by linear equa-

tions. It was shown by Wright [Wri14] that the linear equations can be taken

with coefficients in a number field.

Note that finite SL2R-invariant measures are supported on real codimen-

sion 1 hypersurfaces inside affine manifolds, the issue arising from the action of

scaling by R×. The affine invariant manifolds are then closed GL2R-invariant

sets. In fact, by [EMM15] the closure of any GL2R-orbit is an affine manifold.

Period coordinates are transcendental and so a priori affine manifolds,

which are given by linear equations, are only complex-analytic submanifolds.

In this paper, we prove the following result (see Theorem 5.4).

Theorem 1.1. Affine invariant manifolds are algebraic subvarieties of

the stratum H(κ), defined over Q.

I am grateful to Curtis McMullen for suggesting the next result. (See also

[McM07, Th. 1.1] for a much more precise result in genus 2.)

Corollary 1.2 (see Remark 1.6(ii)). Let H → Mg be a Teichmüller

disk. Then its closure (in the standard topology) inside Mg is an algebraic

subvariety of Mg .
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The lowest-dimensional affine manifolds are Teichmüller curves. It was

proved they are algebraic by Smillie and Weiss [SW04, Prop. 8]; a different

sketch of proof (attributed to Smillie) is in [Vee95]. That they are defined over

Q was proved by McMullen [McM09]. It was proved by Möller in [Möl06b] that

they are defined over Q after embedding into a moduli space of abelian varieties.

Teichmüller curves and higher-dimensional SL2R-invariant loci also have

interesting arithmetic properties. McMullen has related in [McM03] Teich-

müller curves in genus 2 with real multiplication. He also gave further con-

structions using Prym loci [McM06]. In genus 2, algebraicity follows from a

complete classification of invariant loci by McMullen [McM07]. In the stra-

tum H(4) algebraicity is known by results of Aulicino, Nguyen and Wright

[ANW13], [NW14]. Lanneau and Nguyen have also done extensive work on

Prym loci in genus 3 and 4 [LN14], [LN16].

Techniques from variations of Hodge structures were introduced by Möller,

starting in [Möl06b]. In particular, he showed that Teichmüller curves always

parametrize surfaces with Jacobians admitting real multiplication on a factor.

He also showed that over a Teichmüller curve, the Mordell-Weil group of the

corresponding factor is finite [Möl06a]. In particular, zeros of the 1-form are

torsion under the Abel-Jacobi map. See also [Möl08] for further results.

The results in [Fil13] show that on affine manifolds, the topological decom-

position of cohomology (e.g., the local systems from [Wri14]) are compatible

with the Hodge structures. As a consequence, affine manifolds also parametrize

Riemann surfaces with nontrivial endomorphisms, typically real multiplication

on a factor (see [Fil13, Th. 1.6]).

This paper extends Möller’s torsion result to affine manifolds. The precise

statement and definitions are in Section 5.1 and Theorem 5.2.

Theorem 1.3. LetM be an affine invariant manifold, parametrizing Rie-

mann surfaces with real multiplication by the order O on a factor of the Jaco-

bians. Then M carries a natural local system Λ of O-linear combinations of

the zeros of the 1-form (see equation (5.2)) and a twisted Abel-Jacobi map (see

Definition 5.1)

ν : Λ→ JacZ
Ä
⊕ιH1

ι

ä
.

The range is the factor of Jacobians admitting real multiplication (see equa-

tion (2.2)). Then the image of ν always lies in the torsion of the abelian

varieties.

Remark 1.4.

(i) The expression “real multiplication by O” is used in a rather loose sense.

It means that the ring O maps to the endomorphisms of a factor of the

Jacobian. The factor of the Jacobian is always nontrivial, as it contains
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at least the part coming from the 1-form ω. The ring O could be Z, and

the factor could be the entire Jacobian.

(ii) The local system Λ can be trivialized on a finite cover of the stratum and is

defined as follows. The tangent space to the stratum contains the relative

cohomology classes that vanish on absolute homology, denoted W0. The

tangent space TM of the affine manifold intersects it in a sublocal system

(over M), denoted W0M. The dual of W0, denoted W̌0, is canonically

identified with linear combinations of the zeros of the 1-form with zero

total weight. Then Λ is an O-submodule of (W0M)⊥ ⊂ W̌0, i.e., of the

annihilator of W0M.

Indeed, by results of Wright [Wri14], W0M and thus (W0M)⊥ are

defined over k - the field giving real multiplication. Since W̌0 carries a

Z-structure, extending scalars to O, define Λ := W̌0(O) ∩ (W0M)⊥(k),

where A(R) denotes the R-points of A.

(iii) When W0M is empty, e.g., for Teichmüller curves, Λ coincides with

W̌0(O). In particular, it contains (up to finite index) all the Z-linear

combinations of zeros of the 1-form, with total weight zero; on them ν is

the usual Abel-Jacobi map. The extension of ν to O-linear combinations

of zeros uses the O-action on the Jacobian factor.

Remark 1.5. The result on torsion can be described concretely using pe-

riods of 1-forms. Note that it refers, in particular, to 1-forms other than ω;

describing them using the flat structure does not seem immediate.

Let {rj}j be formal integral combinations of the zeros of ω, such that the

coefficients of each rj add up to 0. They can be lifted to actual relative cycles

on the surface, denoted r′j . (These are now actual curves that connect zeros

of ω.) Let also {ai, bi}gi=1 denote an integral basis of the first homology of the

surface.

Suppose
∑
j c
jrj is an element of Λ, where cj are elements of O. The

condition that its image is torsion under the twisted cycle map ν is equivalent

to the following. There exist αi, βi ∈ Q such that whenever ωl ∈ H1,0
ιl

is a

holomorphic 1-form, we have

(1.1)
∑
j

ιl(c
j)

∫
r′j

ωl =
∑
i

Ç
αi

∫
ai

ωl + βi

∫
bi

ωl

å
.

In other words, the absolute and relative periods of ωl satisfy some linear

relations. The coefficients ιl(c
j) vary with the embedding ιl corresponding to

the subspace in which ωl lives.

Remark 1.6.

(i) The algebraicity result also applies to strata of quadratic differentials. In-

deed, these embed via the double-covering construction to strata of holo-

morphic 1-forms. An affine invariant submanifold of a stratum of quadratic
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differentials thus gives one in a stratum of 1-forms. This construction is

described analytically, e.g., in [Lan04, Construction 1] and algebraically as

follows.

If (X, q) is an algebraic curve with a quadratic differential (over a base

field k), let TX denote the tangent bundle over X and view q : TX → k

as a quadratic function. In the cotangent bundle T∨X, consider the locus

X̃ := {λ ∈ T∨X|λ2 = q}. Away from the zeros of q, the projection X̃
π−→ X

is 2 : 1 and X̃ naturally carries a 1-form ω such that ω⊗2 = π∗q.

Note that if q has a zero of order more than 1, then X̃ is not smooth

and one has to argue on the normalization of X̃. On it the 1-form ω has

no poles. The construction works in families, and so applies to strata,

embedding algebraically (over Q) a stratum of quadratic differentials into

a stratum of 1-forms.

(ii) To establish Remark 1.2, consider Qg →Mg the cotangent bundle of the

moduli space of curves, with fiber over X the space of quadratic differen-

tials on X. Taking a quotient by the scaling action on Qg gives the proper

projection PQg →Mg.

A Teichmüller disk f : H → Mg as in Remark 1.2 lifts, essentially

by definition, to f̃ : H → PQg. Note that f̃(H) is contained in some

stratum PQg(κ) ⊂ PQg. Combining Theorem 2.1 from [EMM15] and

Theorem 5.4 we find that the (Zariski and usual) closure of the Teichmüller

disk in PQg(κ) is an algebraic variety PM. We can further take its (Zariski

and usual) closure inside PQg to find that it is also an algebraic variety

PM⊆ PQg. Note that the Zariski and usual closure of a quasi-projective

set coincide.

Finally, recall that the map PQg →Mg is proper. Therefore, the topo-

logical closure of f(H) will agree with the projection of the topological

closure of f̃(H) inside PQg, which is PM. Properness also ensures the

projection of an algebraic variety is still a variety, so Remark 1.2 follows.

Outline of the paper. Section 2 proves in a special case that affine invariant

manifolds are algebraic. This special case occurs when the tangent space of

the affine manifold contains all relative cohomology classes. The proof only

uses results from [Fil13].

Section 3 contains basic definitions and constructions about mixed Hodge

structures. We only describe the small part of the theory that is necessary

for our arguments. The proofs in later sections use this formalism, and we

also include some concrete examples throughout. One does not need to be

acquainted with the full theory to follow the arguments.

Section 4 contains the main technical part. It proves that certain se-

quences of mixed Hodge structures are split, i.e., as simple as possible. This

uses the negative curvature properties of Hodge bundles.
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Section 5 combines the previous results to deduce the Torsion Theorem 5.2.

This is then used to prove the Algebraicity Theorem 5.4.

Remark 1.7 (Self-intersections). Affine manifolds are only immersed in

a stratum (see [EM13, Def. 1.1]) and could have locally finitely many self-

intersecting sheets. Thus, any affine manifold M can be written as the union

M =M0
∐M′, where M0 is a smooth open subset of M and M′ is a lower-

dimensional proper closed GL+
2 (R)-invariant affine manifold (possibly discon-

nected or with self-intersections). Moreover, the topological closure ofM0 con-

tainsM′. Since dimCM′ < dimCM, it follows thatM0 is connected ifM is.

The arguments in Sections 2 and 5 about algebraicity apply locally onM0

and identify it (locally) with a quasi-projective variety. Thus, assuming by in-

duction that M′ is quasi-projective, they show that M0 is quasi-projective

inside H\M′. Again, sinceM′ is quasi-projective and contained in the (topo-

logical) closure of M0, it follows that M is quasi-projective inside H.

Orbifolds. All the arguments are made in some finite cover of a stratum,

to avoid orbifold issues. In particular, period coordinates are well-defined and

the zeros of the 1-form are labeled. The results are invariant under passing to

finite covers.

Acknowledgments. I would like to thank my advisor Alex Eskin, who was

very helpful and supportive at various stages of this work, and in particular

about the paper [Fil13] whose methods are used here. I have also benefited

a lot from conversations with Madhav Nori, especially on the topic of mixed

Hodge structures.

I had several conversations on the topic of algebraicity with Alex Eskin

and Alex Wright. In particular, Alex Wright explained his result ([Wri15, Prop.

2.18]) that the torsion and real multiplication theorems of Möller characterize

Teichmüller curves and suggested that finding and proving some generalization

of the torsion theorem could imply algebraicity. I have also discussed and

received very useful feedback on an earlier draft of this paper from both Alex

Eskin and Alex Wright. I am very grateful for their feedback and the numerous

insights they shared with me.

I am grateful to Curtis McMullen for suggesting Remark 1.2.

2. Algebraicity in a particular situation

In this section, we prove a special case of algebraicity. It only requires

results of [Fil13]. In this special case, the location of the tangent space to an

affine manifold can be described precisely.

Setup. Consider an affine invariant manifold M in some stratum H(κ).

We omit κ from the notation and refer to the stratum as H. Let TH be the
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tangent bundle of the stratum, and let W0 ⊂ TH be the subbundle correspond-

ing to the purely relative cohomology classes. The survey of Zorich [Zor06, §3]

provides a clear and detailed exposition of these objects.

The purpose of this section is to prove the following result.

Proposition 2.1. Suppose that everywhere on M we have W0 ⊂ TM,

where TM denotes the tangent bundle of M. Then M is a quasi-projective

algebraic subvariety of H.

Before proceeding to the proof, we recall some facts about the local struc-

ture on a stratum H. In particular, we discuss the way in which the relative

cohomology groups H1(X, (ω)red;C) provide local coordinates. These arise

from the Gauss-Manin connection and the tautological section, which assigns

to (X,ω) the cohomology class of ω.

Some preliminaries. As explained in Remark 1.7, it suffices to argue lo-

cally in the open part of M where there are no self-intersections.

Focus on a small neighborhood in H of some (X0, ω0) ∈ M, denoted

Nε(X0, ω0). Introduce the identification coming from parallel transport (i.e.,

the Gauss-Manin connection) on relative cohomology

GM(X,ω) : H1(X, (ω)red;C)−̃→H1(X0, (ω0)red;C).

This is defined for all (X,ω) ∈ Nε(X0, ω0), and (ω)red denotes the zeros of ω,

forgetting the multiplicities (i.e., the reduced divisor).

Recall that for (X,ω), we have the natural element ω ∈ H1(X, (ω)red;C)

viewing ω as a relative cohomology class. Call this the tautological section

ω : H → TH.

Period coordinates are then described by the tautological section:

(2.1)
Π : Nε(X0, ω0)→ H1(X0, (ω0)red;C),

(X,ω) 7→ GM(X,ω)ω.

Recall that we have a short exact sequence of vector bundles over H

0→W0 → TH p→ H1 → 0.

Here H1 is the bundle of absolute first cohomology of the underlying family of

Riemann surfaces, and W0 is the purely relative part as before.

It is proved by Wright in [Wri14, Th. 1.5] that over M the local system

of cohomology decomposes as

H1 =

Ç⊕
ι

H1
ι

å
⊕ V.(2.2)

The summation is over embeddings ι of a number field k in C, and there is a

distinguished real embedding ι0. We then have p(TM) = H1
ι0 .
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Proof of Proposition 2.1. In the neighborhood Nε(X0, ω0) in period coor-

dinates, the property p(TM) = H1
ι0 translates to the statement

Π(M∩Nε) ⊆ p−1(H1
ι0)(X0,ω0) ⊆ TH(X0,ω0).(2.3)

Because TM contains all the purely relative cohomology classes, locally M
coincides with an open subset of the middle space above.

An equivalent way to state the above local description of M is to say

M∩Nε = {(X,ω) | p(GM(X,ω)ω) ∈ H1
ι0(X0, ω0)}.(2.4)

So over M, the section p(ω) must belong to the local system H1
ι0 .

Note that the local system H1
ι0 cannot be globally defined on H. How-

ever, in the neighborhood Nε one can still define it using the Gauss-Manin

connection.

Checking algebraicity. We also know by [Fil13, Th. 1.6] that each H1
ι

carries a Hodge structure. Moreover, for each a ∈ k, we have the operator

ρ(a) =

Ç⊕
ι

ι(a)

å
⊕ 0,(2.5)

which acts by the corresponding scalar on each factor of the decomposition

(2.2). These operators give real multiplication on the Jacobians, with ω as an

eigenform.

As a consequence, there is an order O ⊂ k that acts by genuine endomor-

phisms of the Jacobian factor obtained via (2.2). Moreover, the isomorphism

class of the corresponding Z-lattice, viewed as an O-module, is constant on

M. Recall that we are working on the open subset of M where there are no

self-intersections, and this is still connected if M is (see Remark 1.7).

Define N ′ to be the locus in H of (X,ω) that admits real multiplication by

O on a factor of the Jacobian, with the sameO-module structure on the integral

lattice of the factor, and with ω as an eigenform. This is a countable union of

algebraic subvarieties of H, since it is the preimage of such a collection under

the period map to P(H1,0), which is the projectivization of the Hodge bundle

over Ag. See Remark 2.3 for an explanation why, in fact, it is a finite union.

The discussion above, in particular equation (2.4), gives thatM⊆ N ′. In

the neighborhood Nε of (X0, ω0) let N be one of the irreducible components

of N ′ that contains M. We will check that this component is unique and

coincides with M.

Recall the defining conditions of N ′ in Nε:

Nε ∩N ′ = {(X,ω)|∀a ∈ k we have ρ(a) is of Hodge type (0, 0)

and ρ(a)ω = ι0(a)ω}.
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The local systems H1
ι are defined on N but are extended to Nε using the flat

connection. They serve as “eigen-systems” for the action of ρ(a), which itself

is defined in Nε using the flat connection. We then have the containment

Nε ∩N ′ ⊆ {(X,ω) | ∀a ∈ k we have ρ(a)ω = ι0(a)ω}.

However, we also have the (local) equality that follows from the identifications

via parallel transport

{(X,ω)|∀a ∈ k, ρ(a)ω = ι0(a)ω} = {(X,ω)|p (Π(X,ω)) ∈ H1
ι0,(X0,ω0)

}.

Looking back at the local definition ofM given by the inclusions (2.3), we see

that this locus is exactly M. So we found that locally near (X0, ω0) we have

M⊆ N ⊆M.

This finishes the proof that M is an algebraic subvariety of H. �

Remark 2.2. In local period coordinates, requiring the section ω : H →
TH to be in some local system is the same as restricting to a (local) affine

manifold. Algebraicity in the above theorem followed because we could identify

the tangent space toM with p−1(H1
ι0). In general, we need to know the precise

location of the tangent space in relative cohomology. The next few sections

deal with this question.

Remark 2.3. We now discuss the finiteness of the components of the eigen-

form locus for real multiplication. Assume the type of real multiplication is

fixed — in other words, the order O and the isomorphism of O-lattice with

symplectic form corresponding to the factor of the Jacobian.

To prove finiteness of the eigenform locus, it suffices to prove finiteness of

the real multiplication locus in Ag. Indeed, the eigenform locus is a projective

space bundle over the real multiplication locus.

Finiteness of the real multiplication locus will follow from the following

general theorem of Borel and Harish-Chandra [BHC62]. Let Γ be an arithmetic

lattice in a Q-algebraic group G. Consider some representation V of G, with

a Z-structure compatible with Γ, and an integral vector v ∈ V (Z) such that

G(R) · v ⊂ V (R) is closed (equivalently, the stabilizer of v is reductive). Then

the set of integral points in the orbit G(R) · v form finitely many classes under

the action of Γ.

Consider the decomposition of absolute cohomology given in equation (2.2),

and abbreviate it as H1 = M ⊕ V , where M is the factor with real multiplica-

tion. Each factor contains a lattice, denoted M(Z) and V (Z) respectively.

Now consider the abstract O⊕Z-module M ⊕ V , equipped with the com-

patible symplectic form. (The Z-factor in O ⊕ Z acts on V only.) Associ-

ated to it is the period domain HM,V parametrizing pairs of abelian varieties

(AM , AV ), with markings M
∼−→ H1(AM ) and V

∼−→ H1(AV ). Moreover, the
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markings should respect the symplectic forms and O should act by endomor-

phisms of AM .

Consider possible embeddings φ : M(Z) ⊕ V (Z) ↪→ H1
Z respecting the

symplectic form. Note that M(Z) and V (Z) are free Z-modules, equipped

with nondegenerate symplectic pairings, and the map φ should respect this

for the symplectic pairing on the target. Choose bases {mi} and {vj} for

M(Z) and V (Z) respectively. Then φ is determined by a collection of vectors

{m′i := φ(mi), v
′
j := φ(vj)} in H1

Z such that for all a, b 〈ma,mb〉 = 〈m′a,m′b〉
and same for vj , v

′
j , where 〈−,−〉 denotes the appropriate symplectic form.

Additionally, require that 〈m′i, v′j〉 = 0. Equivalently, φ is determined by a

single vector in the direct sum of several H1
Z’s with the appropriate constraints.

The set of real vectors subject to the same constraints forms a single orbit

under Sp(H1)(R). Therefore, by the Borel–Harish-Chandra theorem there are

finitely many possible φ up to the action of Sp(H1)(Z) on the target.

Finally, each φ determines an embedding Iφ of the period domain HM,V

into the Siegel space corresponding to H1. The stabilizer of the image of Iφ
acts with co-finite volume on this image. Since there are only finitely many

Sp(H1)(Z)-equivalence classes of φ’s, there are finitely many corresponding

subvarieties in Ag. These subvarieties of Ag parametrize abelian varieties with

real multiplication by O on a factor and O-module structure as the one corre-

sponding to the affine manifold M.

3. Mixed Hodge structures and their splittings

This section contains background on mixed Hodge structures and their

properties. The monograph of Peters and Steenbrink [PS08] provides a thor-

ough treatment. We include examples relevant to our situation. The full

machinery, as developed, e.g., by Carlson in [Car80], is not strictly necessary.

However, using this language streamlines some of the arguments. Throughout

this section, we fix a ring k such that Z ⊆ k ⊆ R. Most often, k will be a field.

3.1. Definitions. First recall some standard definitions.

Definition 3.1. A k-Hodge structure of weight w is a k-module Vk, and

the data on VC = Vk ⊗k C of a decreasing filtration F • by complex subspaces

· · · ⊆ F p ⊆ F p−1 ⊆ · · · ⊆ VC.

The filtration is called the Hodge filtration and is required to satisfy

F p ⊕ Fw+1−p = VC.

Definition 3.2. A k-Mixed Hodge structure is a k-module Vk with an in-

creasing filtration W• defined over k ⊗Z Q,

· · ·Wn ⊆Wn+1 ⊆ · · · ⊆ (Vk ⊗Z Q) ,
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and a decreasing filtration F • on VC such that F • induces a k-Hodge structure

of weight n on

grWn V = Wn/Wn−1.

The filtration W• is called the weight filtration.

Remark 3.3. We can take duals of (mixed) Hodge structures and overall,

they form an abelian category. Negative indexing in the filtration is allowed.

See [PS08, §3.1] for more background.

For future use, we recall the definition of the dual Hodge structure. To

describe the Hodge and weight filtrations on the dual of V , denoted V ∨, let

(3.1)
F p+1V ∨ = {ξ ∈ V ∨|ξ(F−pV ) = 0},
Wn−1V

∨ = {ξ ∈ V ∨|ξ(W−n) = 0}.

Remark 3.4. In the definition of mixed Hodge structures, the weight fil-

tration was defined only after allowing Q-coefficients. However, if it came from

a Z-module, the position of the lattice will be relevant.

Example 3.5. Let C be a compact Riemann surface and S ⊂ C a finite

set of points. On the relative cohomology group H1(C, S) we have a natural

mixed Hodge structure with weights 0 and 1. This is the same as the compactly

supported cohomology of the punctured surface C \ S.

We have the exact sequence

0→W0 ↪→ H1(C, S) � H1(C)→ 0.

The sequence is valid with any coefficients, so we consider it over Z. We have

the canonical identification W0 = ·�H0(S), which is the reduced cohomology of

the set S.

Here is the mixed Hodge structure on H1(C, S). The weight filtration has

W0 defined by the exact sequence, and W1 is the entire space. The holomorphic

1-forms on the Riemann surface C also give relative cohomology classes and

so form a subspace

F 1 ⊂ H1
C(C, S).

This subspace maps isomorphically onto the holomorphic 1-forms on H1
C(C).

This describes the mixed Hodge structure, and according to Carlson [Car80,

Th. A], it recovers the punctured curve in many cases.

The dual picture. We shall often work with duals, because the construc-

tions are more natural. Dualizing the above sequence we find

0←W∨0 ← Ȟ1(C, S)← Ȟ1(C)← 0.

On the space Ȟ1(C, S) we have a mixed Hodge structure of weights −1 and 0

(see equation (3.1)).
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The space W−1 is the image of Ȟ1(C), which is pure of weight −1. The

space W0 is everything. The Hodge filtration has F 0Ȟ1(C, S) equal to the

annihilator of F 1H1(C, S). In particular, it contains the image of F 0Ȟ1(C),

which is the annihilator of F 1H1(C). Moreover, we have the (natural) isomor-

phism over C
W∨0 ← F 0Ȟ1(C, S)/F 0Ȟ1(C).

3.2. Splittings. The concepts below were first analyzed by Carlson; see

[Car80], which provides more details. We work exclusively with mixed Hodge

structures of weights {0, 1} and their duals, with weights {−1, 0}. They are

viewed as extensions of pure Hodge structures of corresponding weights. Ex-

ample 3.5 describes the mixed Hodge structures that occur in later sections.

Definition 3.6. Fix a ring L with k ⊆ L ⊆ R. A k-mixed Hodge structure

0→W0 → E → H1 → 0

is L-split if the sequence, after extending scalars to L, is isomorphic as a

sequence of L-mixed Hodge structures to

0→W0 →W0 ⊕H1 → H1 → 0.

The mixed Hodge structure in this sequence is the direct sum of the pure

structures. The isomorphism is required to be defined over L, but it must map

the weight and Hodge filtrations isomorphically.

Remark 3.7.

(i) The definition for splittings of duals is analogous. A mixed Hodge struc-

ture is L-split if and only if its dual is.

(ii) Giving a splitting is the same as giving a map defined over L

σ : H1 → E,

which is the identity when composed with projection back to H1. It is

required to map F 1H1 isomorphically to F 1E.

(iii) Mixed Hodge structures as above are always R-split. In the dual picture,

we have the sequence

0←W∨0 ← E∨ ← Ȟ1 ← 0.

Then F 0E∨ ∩ F 0E∨ is a real subspace that maps isomorphically onto

W∨0 (R). Over R we can thus lift W∨0 inside E∨ using this subspace, and

this provides the splitting.

Example 3.8. It is more convenient to describe splittings of dual sequences,

and below is the simplest example. Consider a pure weight −1 Hodge structure

Ȟ1
Z = 〈a, b〉 with filtration F 0Ȟ1 = 〈a+ τb〉, where Im τ > 0. This defines an

elliptic curve

Jac(Ȟ1) := Ȟ1
C/
Ä
F 0Ȟ1 + Ȟ1

Z
ä ∼= C/(Z⊕ Zτ).
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Note that Ȟ1
C = F 0Ȟ1⊕F 0Ȟ1 (since τ 6= τ) and, in particular, Ȟ1

Z ∩F 0Ȟ1 =

{0} (since integral elements are invariant under complex conjugation).

Consider now possible extensions of the form

0←W0 ← E ← Ȟ1 ← 0.

Assume W0 is of Z-rank 1, generated by c. Lift it to some c1 ∈ EZ. It gives a

map
σZ : W0(Z)→ EZ.

Note that the lift c1 is ambiguous, up to addition of terms xa+yb with x, y ∈ Z.

Here, the generators of Ȟ1 are identified with their image inside E.

The extra data on E is a subspace F 0E that contains F 0Ȟ1, is complex

two-dimensional, and maps surjectively onto W0. Pick a vector v ∈ F 0E that

maps to c. It must be of the form

v = c1 + λa+ µb,

where λ, µ ∈ C. Note that the lift v is ambiguous, up to the addition of com-

plex multiples of a+ τb (which generate F 0Ȟ1 = F 0E ∩ ker(E → W0)). This

provides a second lift
σR : W0(Z)→ EC/F

0Ȟ1.

We can take the difference of σZ and σR. Because projecting σZ − σR back to

W0 is the zero map, their image must land in Ȟ1
C. Taking into account also

the ambiguity in the definition of σZ, we get a canonical map

σZ − σR : W0(Z)→ Ȟ1
C/
Ä
F 0Ȟ1 + Ȟ1

Z
ä
.

So we get a canonical element of the elliptic curve associated to the Hodge

structure Ȟ1. This element is zero if and only if the sequence is Z-split. In-

deed, the vanishing of this element means we could choose the lift v above to

be integral.

The element is torsion in the elliptic curve if and only if the sequence is

Q-split. It means we could choose v above with rational coefficients in a and b.

3.3. Extension classes and field changes. This section contains a discus-

sion of algebraic facts needed later. The details of the constructions are avail-

able in [Car80] and [PS08, Chap. 3.5].

Jacobians and extensions. For a Z-Hodge structure H1 of weight 1, its

Jacobian is defined using the dual Hodge structure Ȟ1 by

JacZH
1 := Ȟ1(C)/

Ä
F 0Ȟ1 + Ȟ1(Z)

ä
.

This is a compact complex torus, again since Ȟ1
C = F 0Ȟ1 ⊕ F 0Ȟ1 and the

Z-lattice does not intersect F 0. As in Example 3.8, extensions of H1 by a

weight 0 Hodge structure W0

0→W0 → E → H1 → 0
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are classified by elements in HomZ(W̌0(Z), JacZH
1). Rather, it is dual exten-

sions that are classified by such elements.

Now let K be a larger field or ring Z ⊆ K ⊆ R and H1 be a K-Hodge

structure of weight 1. We can also define a Jacobian

JacK H
1 := Ȟ1(C)/

Ä
F 0Ȟ1 + Ȟ1(K)

ä
.

It is an abelian group (even a K-vector space, usually of infinite dimension)

with no structure of manifold. Extensions are still classified by elements of

HomK(W̌0(K), JacK H
1), where the Jacobian is viewed as a K-vector space.

Morphisms. If H1 has a Z-structure and we extend scalars to K, then we

have a natural map of abelian groups

JacZH
1 → JacK H

1.

For example, JacQH
1 = JacZH

1/〈torsion〉 and an extension class is torsion in

the usual Jacobian if and only if the extension splits over Q.

More generally, suppose we have (after extending scalars to K) an inclu-

sion of Hodge structures H1
ι ↪→ H1. The dual map becomes Ȟ1 � Ȟ1

ι , and

we have an induced surjection on Jacobians

JacZH
1 � JacK H

1
ι .

From an extension class ξ ∈ HomZ(W̌0(Z), JacZH
1) we get another one, ξι ∈

HomK(W̌0(K), JacK H
1), by composing with the above map. This gives a cor-

responding extension of K-Hodge structures. Given a K-subspace S ⊆ W̌0(K)

we can restrict the extension class ξι to it and get another such extension. Note

that a subspace of W̌0(K) corresponds to a quotient of W0(K).

4. Splittings over affine invariant manifolds

In this section we identify variations of mixed Hodge structure that nat-

urally exist on affine invariant manifolds. The main result is that they split

after an appropriate extension of scalars, in the sense of the previous section.

4.1. Setup. Consider an affine invariant manifold M inside a stratum of

flat surfaces H. It was proved in [Fil13, Th. 1.6] that the variation of Hodge

structure over M given by the first cohomology H1 splits as

H1 =
Ä
H1
ι0 ⊕ · · · ⊕H

1
ιr−1

ä
⊕ V.

Each term above gives a variation of Hodge structure. Moreover, the direct

sum in the parentheses comes from a Q-local system. Each summand H1
ι

corresponds to an embedding ι of a totally real number field k and comes

from a local system defined over that embedding. The embedding ι0 is the

distinguished embedding.
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Recall that the tangent space TH to the stratum is given, via period

coordinates, by the relative cohomology of the underlying surfaces. Restrict

the tangent bundle TH toM. It projects to H1, and we can take the preimage

of the summands coming from the totally real field. This yields an exact

sequence of Q-local systems

0→W0 → E
p→
Ä
H1
ι0 ⊕ · · · ⊕H

1
ιr−1

ä
→ 0.(4.1)

Here W0 is the local system of purely relative cohomology classes. It coincides

with the (reduced) cohomology of the marked points (i.e., zeros of the 1-form).

This provides a variation of Q-mixed Hodge structures in the following

sense. Above each point in M we have an induced mixed Hodge structure.

The Hodge filtrations F • give holomorphic subbundles of the corresponding

local systems. The Griffiths transversality conditions are empty in this case.

Remark 4.1. Below we discuss local systems defined over a particular field,

for example ι0(k) from above. To define this notion, fix a normal closure K

containing all the embeddings of k, with Galois group over Q denoted G. Given

a Q-local system VQ, we can extend scalars to K and denote it VK . A sublocal

system W ⊂ VK is “defined over ιl(k)” if it is invariant by the subgroup

Gιl ⊂ G stabilizing ιl(k).

We will omit the explicit extension of scalars to K below and just say that

W ⊂ V is a sublocal system defined over ιl(k).

The tangent space of the affine manifold. According to results of Wright

[Wri14, Th. 1.5], the tangent space TM to the affine submanifold gives a local

subsystem TM⊂ E, which is defined over k (rather, ι0(k)). It has the property

that p(TM) = H1
ι0 . Define the kernel of the map p (see equation (4.1)) by

W0M := W0 ∩ TM.

Define also TMιl to be the Galois-conjugate of the local system TM corre-

sponding to the embedding ιl. Analogously, define

W0Mιl := W0 ∩ TMιl .

Note that TMιl surjects onto H1
ιl

with kernel W0Mιl .

4.2. The splitting. The space H1
ιl

contains holomorphic 1-forms denoted

H1,0
ιl

. These also give relative cohomology classes, i.e., a natural map H1,0
ιl
→

H1
rel. The main theorem of this section (below) is the compatibility of this

map with TMιl . Note that in the case when W0 is contained in TM (i.e., the

setup of Section 2), the statement below holds trivially.

Theorem 4.2. Consider the variation of ιl(k)-mixed Hodge structures

0→W0/W0Mιl ↪→ p−1(H1
ιl

)/W0Mιl � H1
ιl
→ 0.(4.2)
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It is an exact sequence of local systems defined over ιl(k), and each space carries

compatible (mixed) Hodge structures. Then this sequence is (pointwise) split

over ιl(k) in the sense of Definition 3.6.

The splitting is provided by the local system TMιl/W0Mιl ; i.e., the sur-

jection in the sequence (4.2) can be split by an ιl(k)-isomorphism

H1
ιl
−̃→TMιl/W0Mιl .(4.3)

Note that there are two ways to lift a cohomology class in H1,0
ιl

to H1
rel.

One uses the map (4.3), and the other is by viewing a holomorphic 1-form as

a relative cohomology class. This theorem claims that these two ways in fact

agree.

Proof. The proof is in three steps. In Step 1 we dualize the sequence

(4.2) and use the Galois-conjugate tangent space to produce a flat splitting of

the local systems. We also find the R-splitting coming from the underlying

Hodge structures. Their difference is a (holomorphic) section of a bundle with

negative curvature.

In Step 2, we show the section must have constant Hodge norm. In Step 3,

we use this to show that the section must come from a flat one and thus must

in fact be zero. This concludes the proof, since it shows that the R-splitting

was in fact defined over ιl(k). The next three sections deal with each step. �

4.3. Proof of Step 1. Because in the exact sequence (4.2) we quotient out

W0Mιl, we deduce the bundle TMιl/W0Mιl maps isomorphically onto H1
ιl

.

Dualizing the sequence (4.2) we obtain

0← (W0/W0Mιl)
∨ �

Ä
p−1
Ä
H1
ιl

ä
/W0Mιl

ä∨ ←↩ Ȟ1
ιl
← 0.(4.4)

Denote the annihilator of TMιl/W0Mιl by (TMιl/W0Mιl)
⊥. By the remark

above, it maps isomorphically onto (W0/W0Mιl)
∨. The inverse isomorphism

defines a canonical flat map of ιl(k) local systems, which is a splitting of the

left surjection in the exact sequence (4.4)

σιl : (W0/W0Mιl)
∨ →

Ä
p−1
Ä
H1
ιl

ä
/W0Mιl

ä∨
.

We now construct another splitting using the Hodge structures (see Re-

mark 3.7 (iii)). Consider the F 0 piece of the middle term in the sequence

(4.4). It maps surjectively onto (W0/W0Mιl)
∨ with kernel F 0Ȟ1

ιl
. This gives

a canonical splitting

σR : (W0/W0Mιl)
∨
C →

Ä
p−1
Ä
H1
ιl

ä
/W0Mιl

ä∨
C
/F 0Ȟ1

ιl
.

Note that because it really comes from an isomorphism of vector bundles, it is

in fact holomorphic over the affine manifold.
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Note that both maps σR and σιl are splittings. This means that composing

either with the surjection onto the left term of the sequence (4.4) gives the

identity. So their difference has image in the kernel of the surjection in (4.4):

σιl − σR : (W0/W0Mιl)
∨
C → Ȟ1

ιl
/F 0Ȟ1

ιl
.

Next, we assume that we are in some finite cover of the stratum where the

local system W0 is trivial; labeling the zeros of the 1-form suffices. Then we

can choose an element (same as a global section) of (W0/W0Mιl)
∨
C denoted

by e. By taking its image under the above map, we obtain a global over M
holomorphic section

ψe := (σιl − σR)(e) ∈ Γ(M; Ȟ1
ιl
/F 0Ȟ1

ιl
).

4.4. Proof of Step 2. Given the holomorphic section ψe produced in Step 1,

we now show it has constant Hodge norm.

Notation. Denote the Hodge decomposition of Ȟ1 by

Ȟ1 = Ȟ0,−1 ⊕ Ȟ−1,0.

We keep the same notation for indices involving the embeddings ιl.

Note that H0,−1 = F 0Ȟ1 gives a holomorphic subbundle, being identified

with the annihilator of H1,0 = F 1H1 (which is the bundle of holomorphic

1-forms). Using the polarization of H1, we see that Ȟ1 is isomorphic to H1,

up to a shift of weight by (1, 1).

The section ψe produced above is a holomorphic section of Ȟ−1,0, endowed

with the holomorphic structure when viewed as a quotient Ȟ−1,0 = Ȟ1/F 0Ȟ1.

This bundle has negative curvature (see [Fil13, Corollary 3.15], with a weight

shift).

We want to apply Lemma 5.2 from [Fil13] to conclude that the function

log ‖ψe‖ is constant. For this, we need to check the boundedness and sublinear

growth assumptions. This is done below.

Note that this function is subharmonic by the calculation in [Fil13, Lemma

3.1] and the negative curvature of the bundle. If ‖ψe‖ 6= 0 identically, then

it can vanish only on a lower-dimensional analytic subset. Therefore, one can

define the functions fN := max(−N, log ‖ψe‖) and apply [Fil13, Lemma 5.2]

to them (and let N → +∞). As the maximum of two subharmonic functions,

each fN is itself subharmonic.

Checking assumptions. First, we examine how ψe was defined. We have

the exact sequence

0→W0 → E → (H1
ι0 ⊕ · · · ⊕H

1
ιr−1

)→ 0(4.5)

and its dual

0←W∨0 ← E∨ ← (Ȟ1
ι0 ⊕ · · · ⊕ Ȟ

1
ιr−1

)← 0.
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We have the R-splitting coming from Hodge theory (see Remark 3.7 (iii))

W∨0 (R)→ E∨R .

This gives a direct sum decomposition

E∨(R) ∼= W∨0 (R)⊕ Ȟ1(R)(4.6)

and an induced metric from each factor. At the level of the exact sequence (4.5)

this is the same as using the harmonic representatives of absolute cohomology

classes to obtain relative cohomology classes.

Cocycles and Norms. Recall that if V →M is a vector bundle overM and

M carries an action of a (connected) group G (for instance G = SL2R), then

a cocycle on V is the lift of the action of G to V by linear maps on the fibers.

If V has a flat connection, every path γ inM from x to y gives a monodromy

matrix Vx → Vy between the fibers of V . Suppose that any nontrivial loop in

G has trivial monodromy. Namely, assume that for any x ∈ M and a loop

γ′ ⊂ G, the loop γ′ · x ⊂M has trivial monodromy. Then the flat connection

on V gives a cocycle for the G-action. For any g ∈ G, x ∈ M, the linear

map A(x, g) : Vx → Vgx is defined by connecting g to the identity in G and

parallel-transporting along the corresponding path in M.

Suppose now the vector bundle V carries a metric. A cocycle is bounded

if there is a constant C > 0 such that

‖A(x, g)‖op ≤ C‖g‖ where ‖ − ‖op is the operator norm of A(g, x) : Vx → Vgx.

For g ∈ SL2R, the right-hand side above, ‖g‖, denotes the matrix norm.

In our case, we have three cocycles (coming from vector bundles with flat

connections) that sit in an exact sequence:

0→W0 → H1
rel → H1 → 0.(4.7)

The bundles H1 and W0 have natural norms for which the cocycle is bounded.

(For H1, this is due to Forni [For02]; for W0, we can assume the cocycle is

trivial.) Moreover, the exact sequence (4.7) has a natural splitting, as vector

bundles, but not as cocycles.

For the induced metric coming from the splitting of the vector bundles,

the cocycle on H1
rel is not (a priori) bounded. Using the splitting, we can write

the cocycle on H1
rel asñ

1 U(x, g)

0 A(x, g)

ô
where A(x, g) : H1

x → H1
gx and U(x, g) : H1

x → (W0)gx .(4.8)

The issue is that, in general, there is no universal bound on the operator norm

of U(x, g) in terms of the matrix norm of g. However, the operator norm of

U(x, g) can be bounded in terms of ‖g‖ and how far x is in the cusp of the

stratum. Using this, one can increase the metric on H1 to achieve two things:
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first, keep the cocycle on H1 bounded, and second, make U(x, g) bounded.

This is achieved by the modified Hodge norm from [EMM15], defined on H1,

and is discussed below.

Note that to make U(x, g) bounded, we have to increase the metric on H1.

Note also that H1 is the quotient of H1
rel. When we dualize (see equation (4.14)

and the discussion before), we have to again increase the metric on the quotient

of Ȟ1
rel, which will be W∨0 . (Compare also equations (4.8) and (4.15) describing

the cocycles on H1
rel and its dual Ȟ1

rel.)

Terminology for norms. Using the splitting from (4.6) and more generally

the same for H1
rel, we can put norms on the cocycle by putting a norm on each

factor. Several norms will appear below, and we explain now the terminology.

On H1 and its dual Ȟ1 one has the Hodge norms, coming from the Hodge

structure (which are preserved by duality). These Hodge norms will be de-

noted ‖ − ‖ in the sequel. Eskin, Mirzakhani and Mohammadi [EMM15, §7]

introduced a modified Hodge norm on H1, obtained by increasing the usual

Hodge norm. Note that the dual of this modified Hodge norm, on Ȟ1, is less

than the Hodge norm on Ȟ1. The modified Hodge norms on H1 and Ȟ1 will

be denoted ‖ − ‖′.
Finally, we have the modified mixed Hodge norms on H1

rel and Ȟ1
rel. These

will be denoted |||−|||. (Note that they will not be dual to each other.) On H1
rel,

the modified mixed Hodge norm is defined in [EMM15] by putting the constant

norm on W0 and the modified Hodge norm on H1. On Ȟ1
rel the modified mixed

Hodge norm is defined in equation (4.14) by changing the norm on the W∨0
factor.

Below, the adjective dual means that the norm is on the dual space, and

the adjective mixed means that it is in relative (co)homology. We now proceed

to the details.

Modified Hodge norm. The modified Hodge norm ‖ − ‖′ on H1 is defined

in [EMM15, eq. (33) and below]), and the cocycle on H1 is integrable for it

([EMM15, Lemma 7.4]).

Next, recall the splitting H1
rel = W0⊕H1 coming from Hodge theory using

holomorphic lifts (in their language, harmonic representatives). Using it, the

modified Hodge norm |||−||| on H1
rel is defined using the modified Hodge norm

on H1 and the constant norm on W0 (see [EMM15, eq. (40) and above]).

For this modified Hodge norm on H1
rel, the cocycle is bounded [EMM15,

Lemma 7.5]. The main consequence [EMM15, Lemma 7.6] is the following.

For the splitting H1
rel = W0 ⊕H1, write the cocycle matrix asñ

1 U(x, s)

0 A(x, s)

ô
where U(x, s) : H1

x → (W0)gsx.(4.9)
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Then ‖U(x, s)‖op ≤ em
′s for some m′, where H1 is viewed with the modified

Hodge norm ‖ − ‖′ and W0 with the constant norm; here ‖ − ‖op denotes the

operator norm. Explicitly, this says

‖U(x, s)v‖ ≤ em′s‖v‖′ where v ∈ H1
x and so U(x, s)v ∈ (W0)gsx.(4.10)

Dual modified Hodge norm. For a point x in the stratum, let r(x) ∈ [1,∞)

be the ratio of the modified to the usual Hodge norms on H1. In other words,

r(x) := sup
06=v∈H1

x

‖v‖′

‖v‖
.(4.11)

Note that r(x) ≥ 1 since ‖ − ‖′ is always at least the usual Hodge norm (see

before eq. (40) in [EMM15]). By definition, r(x) · ‖v‖ ≥ ‖v‖′ for any v ∈ H1
x.

On Ȟ1 there are two norms: the dual of the usual Hodge norm, denoted

‖−‖, and the dual of the modified Hodge norm, denoted ‖−‖′. The inequality

involving r(x) is now reversed; i.e., letting ξ ∈ Ȟ1
x, we have

‖ξ‖ ≤ r(x) · ‖ξ‖′.(4.12)

To see this, using 1
r(x)‖v‖

′ ≤ ‖v‖ for the second step, we have

‖ξ‖ = sup
‖v‖=1

|ξ(v)| ≤ sup
1
r
‖v‖′=1

|ξ(v)| = r(x)‖ξ‖′.(4.13)

Dual modified mixed Hodge norm. We now explain how to modify the

Hodge norm on the dual cocycle Ȟ1
rel, which is relevant to our arguments.

Recall the splitting Ȟ1
rel = W∨0 ⊕ Ȟ1 coming from Hodge theory. Given a

vector w⊕h ∈ H1
rel, its ordinary mixed Hodge norm is ‖w⊕h‖2 = ‖w0‖2+‖h‖2

(using the usual Hodge norm for h and constant norm for w0). Define now its

dual modified mixed Hodge norm via

|||w ⊕ h|||2 := ‖w0‖2 · r(x)2 + ‖h‖2.(4.14)

Note that the modification affects only the W∨0 part of the norm, not the Ȟ1.

Proposition 4.3. For the modified dual Hodge norm defined in equa-

tion (4.14), the Kontsevich-Zorich cocycle is bounded.

Proof. Given the explicit form of the Kontsevich-Zorich cocycle in equa-

tion (4.9), its dual cocycle (for the dual splitting) will be given by the inverse

transpose of that matrix. This reads(ñ
1 U(x, s)

0 A(x, s)

ôt)−1
=

ñ
1 0

−(A(x, s)t)−1 · U(x, s)t (A(x, s)t)−1

ô
.(4.15)

Next, recall that the cocycle A(x, s) is bounded in both forward and back-

wards time, since it corresponds to H1, and we have the usual Hodge norm on

that part. To show boundedness of the full cocycle, it suffices to prove that
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op ≤ em

′s for some m′. Note that U(x, s)t : (W∨0 )gsx → Ȟ1
x, since

U(x, s) goes the other way between dual spaces (see (4.9)). The bound on the

operator norm of U(x, s)t needs to hold when W∨0 is viewed with the norm

r(x)‖ − ‖ and Ȟ1 is with the usual Hodge norm.

The operator U(x, s) is bounded for the modified Hodge norm on H1 and

usual norm on W0 (see (4.10)). Therefore, U(x, s)t satisfies the same bound

for the dual modified Hodge norm on Ȟ1 and usual norm on W∨0 . This reads

‖U(x, s)tw̌‖′ ≤ em′s‖w̌‖ where w̌ ∈ (W∨0 )x.(4.16)

However, using equation (4.12), which relates the usual and modified Hodge

norms in the dual Ȟ1, we find

‖U(x, s)tw̌‖ · 1

r(x)
≤ ‖U(x, s)tw̌‖′ ≤ em′s‖w̌‖.(4.17)

Moving r(x) to the right side, this exactly says that U(x, s)t is bounded when

W∨0 carries the dual modified mixed Hodge norm.

Finally, note that the identity map on W∨0 no longer acts by isometries,

since the norm on that factor depends now on the basepoint. However, from the

boundedness of the cocycle on H1 with the usual, as well as the modified Hodge

norm, it follows that r(gsx) ≤ em′′sr(x) for all s. Thus, the Kontsevich-Zorich

cocycle on Ȟ1
rel is bounded for the dual modified mixed Hodge norm. �

Properties of the dual modified mixed Hodge norm. First, note that the

boundedness properties of the cocycle descend to the various pieces of Ȟ1 and

Ȟ1
rel. Returning to the notation in equations (4.5) and (4.6), we constructed a

norm |||−||| satisfying

(i) The Kontsevich-Zorich cocycle on E and E∨ is integrable for this norm.

Moreover, it satisfies the absolute bound for some universal constant C > 0

−C · T ≤ log |||gT ||| ≤ C · T.(4.18)

(ii) The projection E → H1 is norm nonincreasing and dually the embedding

Ȟ1 ↪→ E∨ is norm nondecreasing (where H1 and Ȟ1 have the usual Hodge

norms). In other words, if ψ ∈ Ȟ1 is a section, then

‖ψ‖ ≤ |||ψ|||.(4.19)

(In fact, we have equality in this case). Moreover, if φ is a section of

H1
rel and ψ is its Ȟ1-component, then |||φ||| ≥ ‖ψ‖. In other words, the

dual modified mixed Hodge norm of φ dominates the usual Hodge norm

of ψ, since the decomposition Ȟ1
rel = W∨0 ⊕ Ȟ1 is orthogonal for the dual

modified mixed Hodge norm.

Consider now

0→W0 → p−1(H1
ιl

)→ H1
ιl
→ 0.
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In the dual picture, with the dual modified mixed Hodge norm, we have

0←W∨0 � p−1(H1
ιl

)∨ ←↩ Ȟ1
ιl
← 0.(4.20)

Corresponding to W0Mιl in the first sequence is its annihilator W0M⊥ιl in the

dual. It is naturally identified with (W0/W0Mιl)
∨.

Now p−1(H1
ιl

)∨ also contains the annihilator of TMιl denoted TM⊥ιl . The

surjection in the dual sequence (4.20) gives an isomorphism

W0M⊥ιl ← TM⊥ιl .

The section σιl from Step 1 is the inverse of this isomorphism.

Given e ∈ (W0/W0Mιl)
∨ (which is naturally W0M⊥ιl ), we have φe defined

as

φe := σιl(e) ∈ TM
⊥
ιl
⊂ p−1(H1

ιl
)∨.

Note that φe is a flat global section of p−1(H1
ιl

)∨. This last bundle, equipped

with the dual modified mixed Hodge norm, gives rise to an integrable cocycle;

the Oseledets theorem thus holds.

Just as in [Fil13, Lemma 5.1], φe must be in the zero Lyapunov subspace,

otherwise its norm would be unbounded on any set of positive measure. In

particular, its dual modified mixed Hodge norm grows subexponentially along

almost every Teichmüller geodesic.

Recall the splitting over R for the sequence (4.20). This comes from the

decomposition

p−1(H1
ιl

)∨(R) ∼= Ȟ1
ιl

(R)⊕
Ä
F 0 ∩ F 0

ä
.(4.21)

Here F 0 refers to the corresponding piece of the filtration of p−1(H1
ιl

); the

construction was explained in Remark 3.7(iii). Equation (4.21) is a direct sum

decomposition of R-vector bundles, and σR comes from inverting the R-iso-

morphism

W∨0 (R)← F 0 ∩ F 0.

This means that

ψe = (σιl − σR)(e) ∈ Ȟ1
ιl

(R)

is just the Ȟ1
ιl

(R)-component of φe in the decomposition (4.21).

Remark 4.4. For purposes of comparing metrics, we are using the isomor-

phism of R-vector bundles

Ȟ1
ιl

(R)−̃→Ȟ1
ιl

(C)/F 0Ȟ1
ιl
.

The section we are considering can be viewed as living in either. In the second

one, it is also holomorphic for the natural holomorphic structure.
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From the property of the dual modified mixed Hodge norm in (4.19), |||φe|||
bounds from above the usual Hodge norm of its Ȟ1

ιl
-component (which is ψe).

This gives the desired subexponential growth for the Hodge norm ‖ψe‖.
We must also verify that upon acting by an element g ∈ SL2R, the func-

tion has not increased by more than C‖g‖ for some absolute constant C. This

follows from (4.18) and the fact that the norms are SO2(R)-invariant [EMM15,

eq. (41)].

To conclude, the conditions of [Fil13, Lemma 5.2] are satisfied; therefore

the Hodge norm ‖ψe‖ is constant.

4.5. Proof of Step 3. Step 2 showed that ‖ψe‖ is constant. To conclude,

we now show it must be zero. Because ‖ψe‖ is constant, using [Fil13, Rem. 3.3]

for the formula for ∂∂, it follows that

0 = ∂∂‖ψe‖2 = 〈Ωψe, ψe〉 − 〈∇Hgψe,∇Hgψ〉,
where Ω is the curvature of Ȟ−1,0ιl

, which is negative-definite. We conclude

σ†ψe = 0 and ∇Hgψe = 0.

Recall that σ : Ω1,0(M) ⊗ Ȟ0,−1
ιl

→ Ȟ−1,0ιl
is the second fundamental form of

Ȟ1
ιl

and the above identities hold in all direction on M, not just the SL2R
direction. The curvature satisfies Ω = σσ†.

Define now a section of Ȟ1
ιl

by α := ψe⊕ψe. Then α is flat for the Gauss-

Manin connection (since ∇GM = ∇Hg + σ + σ†). But the local system H1
ιl

is

irreducible (see [Wri14, Th. 1.5]) so it has no flat global sections over the affine

manifold M.

Therefore α = 0, so ψe = 0 and thus σιl = σR. This finishes the proof of

Theorem 4.2. �

5. Algebraicity and torsion

In this section, we prove the theorems stated in the introduction. First

we combine the results of the previous section to find that a certain twisted

version of the Abel-Jacobi map is torsion. Using this result, we then prove

that affine invariant manifolds are algebraic.

5.1. Combining the splittings. Setup. In the setting of the previous sec-

tion, over an affine manifold M we had an exact sequence of Z-mixed Hodge

structures
0→W0 → E

p→
⊕
ι

H1
ι → 0.

We are assuming some fixed Z-structure on ⊕ιH1
ι . As was explained in Sec-

tion 3.3, this corresponds to a map

ξ : W̌0(Z)→ JacZ

Ç⊕
ι

H1
ι

å
.(5.1)
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Thus for each element of W̌0(Z), we get a section of the bundle of Jacobians.

We are working with a factor of the actual Jacobian, but we omit this from

the wording.

By Theorem 4.2, for each ι, the variation of ι(k)-mixed Hodge structures

0→W0/W0Mι → p−1(H1
ι )/W0Mι → H1

ι → 0

is split. In the language of Section 3.3 this means that pointwise on M the

induced map of abelian groups (and ι(k)-vector spaces)

ξι : (W0Mι)
⊥(ι(k))→ Jacι(k)H

1
ι

is in fact the zero map. Recall that ξι is obtained from ξ by composing with

the quotient map

JacZ

Ç⊕
ι

H1
ι

å
� Jacι(k)H

1
ι

and restricting the domain to (W0Mι)
⊥ (after extending scalars).

Another description of ξι is as follows. Given cj ∈ ι(k) and rj ∈ W̌0(Z)

with
∑
j c
jrj ∈ (W0Mι)

⊥, we have

ξι

Ñ∑
j

cjrj

é
=
∑
j

cjξ(rj)

∣∣∣∣∣∣
H1
ι

.

The next step will be to combine all the above statements as ι ranges over all

embeddings of k into R.

The twisted cycle map. Since ⊕ιH1
ι has real multiplication by k, we have

an order O ⊆ k that acts by endomorphisms on the bundle of abelian varieties

JacZ(⊕ιH1
ι ). Inside (W0Mι0)⊥, which is a local system over ι0(k), we can

choose an O-lattice, i.e., the ι0(O)-submodule

Λι0 :=
Ä
W̌0(Z)⊗Z ι0(O)

ä
∩ (W0Mι0)⊥.(5.2)

Note that (W0Mι0)⊥ ⊂ W̌0, since this is the annihilator of W0M⊂W0. After

extending scalars to Q we have an isomorphism

Λι0 ⊗Z Q−̃→(W0Mι0)⊥.

Definition 5.1. Recall that for a ∈ k, we denote by ρ(a) the correspond-

ing endomorphism of the family of Jacobians and the map ξ was defined in

equation (5.1). For cj ∈ O and rj ∈ W̌0(Z), we can then define a twisted cycle

map

ν : Λι0 → JacZ

Ç⊕
ι

H1
ι

å
,∑

j

cjrj 7→
∑
j

ρ(cj)ξ(rj).
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The following is the main theorem of this section. It is a generalization of

Theorem 3.3 of Möller from [Möl06a].

Theorem 5.2. The image of ν is torsion in the Jacobian.

Proof. The proof is in two steps. First, we show that the image of ν is

zero after we apply the quotient map (where K is a normal closure of k)

JacZ

Ç⊕
ι

H1
ι

å
� JacK

Ç⊕
ι

H1
ι

å
.

To finish, we prove that it must have been torsion to begin with.

We have the following spaces and the relation between them, which will

appear in the proof:

W̌0 Jac(⊕ιH1
ι )

(W0Mι0)⊥ · · · (W0Mι)
⊥ Jacι0(k)(H

1
ι0) . . . Jacι(k)(H

1
ι ).

ξ

(5.3)

To combine the splittings given by Theorem 4.2 we need to extend scalars to

the field K that contains all the ι(k). Consider the classifying map obtained

from ξ:

ξK : W̌0(K)→ JacK

Ç⊕
ι

H1
ι

å
.

Given x =
∑
j c
jrj ∈ Λι0 , the splittings from Theorem 4.2 say that for any

g ∈ Gal(K/Q), we have

ξK(gx)|H1
gι0

= 0.

Recall that to get the splitting we had to apply the Galois action both on H1

and on W0.

Assuming gι0 = ιl, an explicit way to write the above vanishing is

ξK

Ñ∑
j

ιl(c
j)rj

é∣∣∣∣∣∣
H1
ιl

= 0.

Using the K-linearity of ξK we find

∑
j

ιl(c
j)ξK(rj)

∣∣∣∣∣∣
H1
ιl

= 0.

Taking a direct sum over the different embeddings ιl gives that ν(x) = 0 in

JacK(⊕ιH1
ι ). To see this, recall that the real multiplication action of k on the

factor H1
ι was by the embedding ι.
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To finish, we want to conclude that ν(x) is torsion in the Z-Jacobian. We

know that ν(x) defines a holomorphic section of the corresponding family of

abelian varieties. We just proved that its image lies in the (group-theoretic)

kernel of the map

JacZ

Ç⊕
ι

H1
ι

å
� JacK

Ç⊕
ι

H1
ι

å
.(5.4)

Viewing the bundle of Jacobians as a flat family of real tori (flat in the sense

of the Gauss-Manin connection), we conclude that ν(x) is itself flat. For this,

the continuity of ν would be sufficient.

However, the monodromy acts by parallel transport on a fixed fiber of this

family of tori and ν(x) is invariant by this action. Since the underlying local

system over Q is irreducible (the monodromy acts irreducibly), we conclude

that ν(x) must be among the rational points.

This implies that ν(x) is a torsion section of the bundle of Jacobians. �

Remark 5.3. The splitting over ι(k) of the mixed Hodge structure obtained

in Theorem 4.2 is equivalent to the composition (see diagram (5.3))

(W0Mι)
⊥ → W̌0

ξ−→ Jac(⊕ιH1
ι )→ Jacι(k)(H

1
ι )(5.5)

being the zero map. The torsion condition obtained in Theorem 5.2 implies

that the twisted cycle map ν : Λι0 → JacZ(⊕ιH1
ι ) is torsion. In particular,

A · ν is the zero map for some integer A 6= 0. Note that the twisted cycle map

ν involves the maps in (5.5) ranging over all embeddings ι.

The condition that A · ν is the zero map implies, in particular, that the

composition defined in (5.5) is also the zero map, as ι ranges over all embed-

dings. Indeed, these maps are the components of ν after an extension of scalars

to the appropriate number field. Thus, the torsion condition in Theorem 5.2

implies the splitting property in Theorem 4.2.

5.2. Algebraicity in the general case.

Setup. We keep the notation from the previous section. The affine in-

variant manifold is denoted M, its tangent bundle is TMι0 and W0Mι0 is its

intersection with the purely relative subbundle. We have the decomposition of

the Hodge bundle

H1 =

Ç⊕
ι

H1
ι

å
⊕ V.

Recall also that M lives in a stratum H and we have the tautological section

ω : H → TH.
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This section is algebraic and even defined over Q (see Remark 5.6). Combined

with the Gauss-Manin connection it gives the local flat coordinates on the

stratum H.

Theorem 5.4. The affine invariant manifold M is a quasi-projective al-

gebraic subvariety of H, defined over Q.

Proof. The proof is similar to that of Proposition 2.1. In particular, as

per Remark 1.7 it is carried out in the open subset of M where there are no

self-intersections. We first define an algebraic variety N ′′′ that has the same

properties as M and contains it. Then we check that one of its irreducible

components is contained in M and thus has to coincide with it.

First, let N ′ ⊆ H be the locus where (X,ω) admits real multiplication of

the same type as onM, with ω as an eigenform. On N ′ we also have the map

ν described in Definition 5.1

ν : Λι0 → JacZ

Ç⊕
ι

H1
ι

å
.

By Theorem 5.2, over M the map lands in the torsion so there exists A ∈ N
such that A · ν ≡ 0 everywhere on M. Let N ′′ ⊆ N ′ be the sublocus where

the equation Aν = 0 holds on N ′. This is again algebraic, defined over Q, and

contains M.

Recall now that we are working in a finite cover where the local system W0

is trivial and so W0Mι0 is globally defined. Over N ′′, the condition A · ν = 0

implies (see Remark 5.3) that the exact sequence of mixed Hodge structures

splits (over ι0(k))

0→W0/W0Mι0 → p−1(H1
ι0)/W0Mι0 → H1

ι0 → 0.

The splitting subbundle in p−1(H1
ι0)/W0Mι0 is unique and itself algebraic.

Denote this bundle by T ′. It also gives a local system, and it is the candidate

for the tangent space.

Recall that we had the tautological section ω : H → TH, and letN ′′′ ⊆ N ′′
be the locus where ω ∈ T ′. This is an algebraic variety over Q by construction,

and we claimM coincides with the irreducible component of N ′′′ containing it.

To see this, first note that T ′ = TM onM. However, locally near a point

of M the condition ω ∈ T ′ is the same as being on M. Indeed, requiring ω to

lie in some local subsystem is the same as requiring the flat surface to be in a

linear subspace in local period coordinates (see Remark 2.2).

Finally, note that T ′ is a subquotient of TH, but the condition ω ∈ T ′

still makes sense. It is understood as ω belonging to the preimage of T ′ in TH.

This completes the proof of algebraicity. �

Remark 5.5. Let us explain how affine manifolds are distinguished among

loci of real multiplication, since usually these are not GL+
2 R-invariant.
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Suppose given a subvariety N ′ ⊂ H parametrizing (X,ω) admitting real

multiplication by k with ω an eigenform. Given a k-local system W0T ⊂ W0

(thinking of it as W0Mι0), further require that the quotient mixed Hodge

structure splits as in the above theorem. Let the splitting be given by a bundle

(and also local system) denoted T . Finally, require that ω lies in T .

This provides us with a locus N ⊆ H. Note that the requirement ω ∈ T
implies that the Zariski tangent bundle of N , denoted TN , is contained in T .

The variety N will also be GL+
2 R-invariant if and only if we have the equality

TN = T .

Remark 5.6 (On fields of algebraic definition).

(i) For the purposes of this discussion, a variety is “defined over a field K” if

it can be described in a projective space as the zero locus of polynomials

with coefficients in K. It is quasi-projective if it can be described in

a projective space as the locus where a given collection of polynomials

vanish and another collection does not vanish. A map between varieties

(in particular, a section of a bundle) is “defined over K” if it can be

described using polynomials with coefficients in K.

(ii) Suppose given varieties X ⊂ Y , with Y is defined over Q but X a priori

only over a finite extension of Q. To check that X is defined over Q, it

suffices to check that X is invariant by the Galois action of Gal(Q/Q).

(iii) An intersection of two varieties (e.g., imposing the condition that some

section of a bundle lies in a subbundle) is defined over a field that contains

the defining fields for both varieties. To select connected components, one

might need to pass to a further finite field extension.

(iv) Given a variety X defined over k (where k = Q or a finite extension

thereof), to find the topological connected components of the complex

points X(C) it suffices to pass to a finite extension of k. This follows from

two standard facts. First, if a variety Y over C is irreducible in the sense

of algebraic geometry, then its complex points Y (C) are connected (see

[Sha94, Ch. VII.2]). Second, if a variety over Q is irreducible, then it is

also irreducible when extending scalars to C (see [Har77, Ex. 3.15]).

Therefore given a variety X over k, extend scalars to Q to obtain the

irreducible (over Q) components. Moreover, a finite extension of k suffices,

since there are finitely many components, and X is assumed of finite type.

Finally, the irreducible components over Q agree with the topological

components over C.

We can now collect some properties of the varieties that appear in the

proofs above.

Proposition 5.7.
(i) A stratum H is a (quasi-projective) algebraic variety defined over Q.

Moreover, so is any connected component of a stratum.
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(ii) The tautological section ω of the Hodge bundle restricted to a stratum is

also defined over Q.

(iii) The locus where a factor of the Jacobian had real multiplication by O with

ω as an eigenform is defined over Q. To select a connected component

(e.g., N ′ appearing in the proof of Theorem 5.4) where the real multipli-

cation is as on M, one might need to pass to some finite extension of Q.

Proof. For (i), recall that the moduli space of genus g Riemann surfaces

Mg is defined over Q, and so is the Hodge bundle Hg
π−→Mg. Moreover, the

pullback of the Hodge bundle π∗Hg toHg has the tautological section ω : Hg →
π∗Hg, also defined over Q. Next, letting Cg →Mg be the universal bundle of

Riemann surfaces, the Hodge bundle admits a map Div : Hg → Sym2g−2
Mg
Cg

that takes a 1-form to its zero locus. The space Sym2g−2
Mg
Cg parametrizes 2g−2-

tuples of (not necessarily distinct) points on the same fiber of the universal

family. This space is defined over Q and has a stratification, also defined over

Q, depending on multiplicities. A stratum of Hg is then the preimage of one

of the strata on Sym2g−2
Mg
Cg.

To distinguish connected components of strata, one might a priori need

to extend the base field Q. However, from the classification of connected

components due to Kontsevich and Zorich [KZ03], each connected component

can be described by an algebraic condition also defined over Q. Indeed, the

spin invariant of a square root of the canonical bundle is invariant by Galois

conjugation, and so is the property of being hyperelliptic.

For (ii), recall that the stratum carries a universal family of Riemann

surfaces, and also the canonical set of marked points corresponding to the

zeros of ω. The vector bundle H1
rel has a description as the algebraic de Rham

cohomology of this family of Riemann surfaces, and is thus itself defined over

Q. The natural map from the Hodge bundle π∗Hg to H1
rel is also defined over

Q, and so ω : H → H1
rel
∼= TH is defined over Q. See also [Möl08, §2] for a

detailed discussion of these constructions.

For (iii), note that the condition of having real multiplication by O (i.e.,

having a map O → End(A)) is invariant by Gal(Q/Q), so the locus is defined

over Q. The eigenform condition is also Galois-invariant since the tautological

section ω is defined over Q. Note that this argument applies to the locus in Ag,
but also to its lift inside PH1,0 — the eigenform locus inside the projectivization

of the Hodge bundle over Ag. �

The above discussion explains why affine invariant manifolds are quasi-

projective varieties defined over Q. Acting by the Galois group of Q on the

defining equations inside H produces new quasi-projective varieties. These will

also be affine invariant manifolds.
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Corollary 5.8. The group Gal(Q/Q) acts on the set of affine invariant

manifolds.

Proof. From the proof of Theorem 5.4 (see also the discussion in Re-

mark 5.5) an affine manifold M is defined by the following set of algebraic

conditions:

• the parametrized Riemann surfaces have a factor with real multiplication

by O, and ω as an eigenform;

• there is a sublocal system Λι0 ⊂ W̌0 such that its image under the twisted

Abel-Jacobi map is torsion of some fixed degree, i.e., A · ν ≡ 0 for some

integer A 6= 0;

• there is an upper bound for the dimension of this locus inside the stratum

H (computed from the ranks of the objects above) and the dimension ofM
achieves this bound.

Each of the above conditions persists when the Galois group of Q acts on the

defining equations. Note that ω is defined with Q-coefficients, and so if it is

an eigenform on one locus, it will also be an eigenform in the Galois-conjugate

locus.

Next, to define the locus N ′′ by imposing the torsion condition A · ν ≡ 0

required a finite cover where the zeros are labeled. This requires another finite

extension of the base field. �

Remark 5.9.

(i) Certain invariants of the affine manifold stay constant under Galois con-

jugation. For example, the ranks of vector bundles stay the same and

therefore so do the rank of M (i.e., 1
2 dim p (TM)), its dimension, and

the number of torsion conditions. Moreover, the stratum, and even the

connected component of the stratum, do not change, since these are (al-

gebraically) defined over Q.

The order O giving real multiplication stays the same, since it is the

data of a map O → End
(
Jac

(
⊕ιH1

ι

))
. In particular, the field of affine

definition, cutting out M in period coordinates, does not change either.

However, the O-module structure on the integer Z-lattice inside ⊕ιH1
ι can

change.

(ii) The intersection of connected varieties need not be connected. For exam-

ple, intersecting a stratum with an eigenform locus might lead to several

components. This occurs for some of the Calta-McMullen curves, in-

tersecting H(2) with the locus of real multiplication by OD when D ≡
1(mod 8). This gives two components, each defined over Q(

√
D) (see

e.g., [MZ15, Th. 5.4]). Note that the “spin” invariant used by McMullen

[McM05] to distinguish them is thus not Galois invariant.



SPLITTING MHS OVER AFFINE INVARIANT MANIFOLDS 711

Remark 5.10. The results of Wright [Wri14] show that in local period

coordinates on H1
rel, an affine manifold is described by linear equations with

coefficients in the number field k. These equations and field of definition are

usually not related to the algebraic equations and respective fields. In partic-

ular, acting by the Galois group on the linear equations would typically not

produce another affine manifold.

For comparison, the field of affine definition of square-tiled surfaces is Q.

However, algebraically these can be quite rich; Möller [Möl05, Th. 5.4] showed

that the action of the Galois group is faithful on the corresponding Teichmüller

curves.
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