Prisms and prismatic cohomology

Abstract

We introduce the notion of a prism, which may be regarded as a “deperfection” of the notion of a perfectoid ring. Using prisms, we attach a ringed site — the prismatic site — to a $p$-adic formal scheme. The resulting cohomology theory specializes to (and often refines) most known integral $p$-adic cohomology theories.

As applications, we prove an improved version of the almost purity theorem allowing ramification along arbitrary closed subsets (without using adic spaces), give a co-ordinate free description of $q$-de Rham cohomology as conjectured by the second author, and settle a vanishing conjecture for the $p$-adic Tate twists $\mathbf {Z}_p(n)$ introduced in our previous joint work with Morrow.

  • [AnschutzLeBrasqLog] Go to document J. Anschütz and A. Le Bras, "The $p$-completed cyclotomic trace in degree $2$," Ann. K-Theory, vol. 5, iss. 3, pp. 539-580, 2020.
    @article{AnschutzLeBrasqLog,
      author = {Anschütz, J. and Le~Bras, Arthur-César},
      title = {The $p$-completed cyclotomic trace in degree $2$},
      journal = {Ann. K-Theory},
      fjournal = {Annals of K-Theory},
      volume = {5},
      number = {3},
      year = {2020},
      pages = {539--580},
      doi = {10.2140/akt.2020.5.539},
      url = {https://doi.org/10.2140/akt.2020.5.539},
      mrnumber = {4132746},
      zblnumber = {1454.19005},
     }
  • [AnschutzLeBrasPrismaticDieudonne] J. Anschütz and A. Le Bras, Prismatic Dieudonné theory, 2019.
    @MISC{AnschutzLeBrasPrismaticDieudonne,
      author = {Anschütz, J. and Le~Bras, Arthur-César},
      title = {Prismatic {D}ieudonné theory},
      arxiv = {1907.10525},
      year = {2019},
      zblnumber = {},
      }
  • [AndreDirectFactor] Go to document Y. André, "La conjecture du facteur direct," Publ. Math. Inst. Hautes Études Sci., vol. 127, pp. 71-93, 2018.
    @ARTICLE{AndreDirectFactor,
      author = {André,
      Yves},
      title = {La conjecture du facteur direct},
      journal = {Publ. Math. Inst. Hautes \'{E}tudes Sci.},
      fjournal = {Publications Mathématiques. Institut de Hautes \'{E}tudes Scientifiques},
      volume = {127},
      year = {2018},
      pages = {71--93},
      issn = {0073-8301},
      mrclass = {13D22 (13A35 13B40 13D09 18A99)},
      mrnumber = {3814651},
      mrreviewer = {Marcel Morales},
      doi = {10.1007/s10240-017-0097-9},
      url = {https://doi.org/10.1007/s10240-017-0097-9},
      zblnumber = {1419.13029},
      }
  • [AndreAbhyankar] Go to document Y. André, "Le lemme d’Abhyankar perfectoide," Publ. Math. Inst. Hautes Études Sci., vol. 127, pp. 1-70, 2018.
    @ARTICLE{AndreAbhyankar,
      author = {André,
      Yves},
      title = {Le lemme d'{A}bhyankar perfectoide},
      journal = {Publ. Math. Inst. Hautes \'{E}tudes Sci.},
      fjournal = {Publications Mathématiques. Institut de Hautes \'{E}tudes Scientifiques},
      volume = {127},
      year = {2018},
      pages = {1--70},
      issn = {0073-8301},
      mrclass = {11R37 (14F20 16D90 17B60 18B99)},
      mrnumber = {3814650},
      mrreviewer = {Nguy\cftil{e}n Quôc Th\'{a}ng},
      doi = {10.1007/s10240-017-0096-x},
      url = {https://doi.org/10.1007/s10240-017-0096-x},
      zblnumber = {1419.14030},
      }
  • [BerthelotCrisCoh] Go to document P. Berthelot, Cohomologie Cristalline des Schémas de Caractéristique $p>0$, Springer-Verlag, New York, 1974, vol. 407.
    @BOOK{BerthelotCrisCoh,
      author = {Berthelot, Pierre},
      title = {Cohomologie Cristalline des Schémas de Caractéristique {$p>0$}},
      series = {Lecture Notes in Math.},
      volume = {407},
      publisher = {Springer-Verlag, New York},
      year = {1974},
      pages = {604},
      mrclass = {14F30},
      mrnumber = {0384804},
      mrreviewer = {L. Illusie},
      doi = {10.1007/BFb0068636},
      url = { },
      zblnumber = {0298.14012},
      }
  • [Bhattpadicddr] B. Bhatt, $p$-adic derived de Rham cohomology, 2012.
    @MISC{Bhattpadicddr,
      author = {Bhatt, Bhargav},
      title = {$p$-adic derived de {R}ham cohomology},
      arxiv = {1204.6560},
      year = {2012},
      zblnumber = {},
      }
  • [BhattTannaka] Go to document B. Bhatt, "Algebraization and Tannaka duality," Camb. J. Math., vol. 4, iss. 4, pp. 403-461, 2016.
    @ARTICLE{BhattTannaka,
      author = {Bhatt, Bhargav},
      title = {Algebraization and {T}annaka duality},
      journal = {Camb. J. Math.},
      fjournal = {Cambridge Journal of Mathematics},
      volume = {4},
      year = {2016},
      number = {4},
      pages = {403--461},
      issn = {2168-0930},
      mrclass = {14F05 (14A20 18A30)},
      mrnumber = {3572635},
      mrreviewer = {Hsian-Hua Tseng},
      doi = {10.4310/CJM.2016.v4.n4.a1},
      url = {https://doi.org/10.4310/CJM.2016.v4.n4.a1},
      zblnumber = {1356.14006},
      }
  • [BhattDSC] Go to document B. Bhatt, "On the direct summand conjecture and its derived variant," Invent. Math., vol. 212, iss. 2, pp. 297-317, 2018.
    @ARTICLE{BhattDSC,
      author = {Bhatt, Bhargav},
      title = {On the direct summand conjecture and its derived variant},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {212},
      year = {2018},
      number = {2},
      pages = {297--317},
      issn = {0020-9910},
      mrclass = {13D22 (13D09)},
      mrnumber = {3787829},
      mrreviewer = {Linquin Ma},
      doi = {10.1007/s00222-017-0768-7},
      url = {https://doi.org/10.1007/s00222-017-0768-7},
      zblnumber = {1397.13019},
      }
  • [BhattBMS] B. Bhatt, "Specializing varieties and their cohomology from characteristic 0 to characteristic $p$," in Algebraic Geometry: Salt Lake City 2015, Amer. Math. Soc., Providence, RI, 2018, vol. 97, pp. 43-88.
    @INCOLLECTION{BhattBMS,
      author = {Bhatt, Bhargav},
      title = {Specializing varieties and their cohomology from characteristic 0 to characteristic {$p$}},
      booktitle = {Algebraic Geometry: {S}alt {L}ake {C}ity 2015},
      series = {Proc. Sympos. Pure Math.},
      volume = {97},
      pages = {43--88},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2018},
      mrclass = {14F30 (14F40 14F45 14G17)},
      mrnumber = {3821167},
      mrreviewer = {Yukihide Takayama},
      zblnumber = {1451.14066},
      }
  • [BhattCM] B. Bhatt, Cohen–Macaulayness of absolute integral closures, 2020.
    @MISC{BhattCM,
      author = {Bhatt, Bhargav},
      title = {Cohen--{M}acaulayness of absolute integral closures},
      arxiv = {2008.08070},
      year = {2020},
      zblnumber = {},
      }
  • [BhattLurieChern] B. Bhatt and J. Lurie, Absolute prismatic cohomology.
    @MISC{BhattLurieChern,
      author = {Bhatt, Bhargav and Lurie, J.},
      title = {Absolute prismatic cohomology},
      arxiv = {2201.06120},
      zblnumber = {},
      }
  • [BLMdRW] Go to document B. Bhatt, J. Lurie, and A. Mathew, Revisiting the de Rham-Witt Complex, , 2021, vol. 424.
    @BOOK{BLMdRW,
      author = {Bhatt, Bhargav and Lurie, Jacob and Mathew, Akhil},
      title = {Revisiting the de {R}ham-{W}itt Complex},
      series = {Astérisque},
      fjournal = {Astérisque},
      volume = {424},
      year = {2021},
      pages = {viii+165},
      issn = {0303-1179},
      isbn = {978-2-85629-937-1},
      mrclass = {14F30 (11G25 14F40 14G17)},
      mrnumber = {4275461},
      doi = {10.24033/ast.1146},
      url = {https://doi.org/10.24033/ast.1146},
      zblnumber = {1478.14038},
      }
  • [BhattMathew] Go to document B. Bhatt and A. Mathew, "The arc-topology," Duke Math. J., vol. 170, iss. 9, pp. 1899-1988, 2021.
    @ARTICLE{BhattMathew,
      author = {Bhatt, Bhargav and Mathew, Akhil},
      title = {The arc-topology},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {170},
      year = {2021},
      number = {9},
      pages = {1899--1988},
      issn = {0012-7094},
      mrclass = {14F20 (14F06 14G22)},
      mrnumber = {4278670},
      doi = {10.1215/00127094-2020-0088},
      url = {https://doi.org/10.1215/00127094-2020-0088},
      zblnumber = {1478.14036},
      }
  • [BMS1] Go to document B. Bhatt, M. Morrow, and P. Scholze, "Integral $p$-adic Hodge theory," Publ. Math. Inst. Hautes Études Sci., vol. 128, pp. 219-397, 2018.
    @ARTICLE{BMS1,
      author = {Bhatt, Bhargav and Morrow, Matthew and Scholze, Peter},
      title = {Integral {$p$}-adic {H}odge theory},
      journal = {Publ. Math. Inst. Hautes \'{E}tudes Sci.},
      fjournal = {Publications Mathématiques. Institut de Hautes \'{E}tudes Scientifiques},
      volume = {128},
      year = {2018},
      pages = {219--397},
      issn = {0073-8301},
      mrclass = {14F30},
      mrnumber = {3905467},
      mrreviewer = {Daniel Robert Gulotta},
      doi = {10.1007/s10240-019-00102-z},
      url = {https://doi.org/10.1007/s10240-019-00102-z},
      zblnumber = {1446.14011},
      }
  • [BMS2] Go to document B. Bhatt, M. Morrow, and P. Scholze, "Topological Hochschild homology and integral $p$-adic Hodge theory," Publ. Math. Inst. Hautes Études Sci., vol. 129, pp. 199-310, 2019.
    @ARTICLE{BMS2,
      author = {Bhatt, Bhargav and Morrow, Matthew and Scholze, Peter},
      title = {Topological {H}ochschild homology and integral {$p$}-adic {H}odge theory},
      journal = {Publ. Math. Inst. Hautes \'{E}tudes Sci.},
      fjournal = {Publications Mathématiques. Institut de Hautes \'{E}tudes Scientifiques},
      volume = {129},
      year = {2019},
      pages = {199--310},
      issn = {0073-8301},
      mrclass = {14F30 (13A35)},
      mrnumber = {3949030},
      mrreviewer = {Lance Edward Miller},
      doi = {10.1007/s10240-019-00106-9},
      url = {https://doi.org/10.1007/s10240-019-00106-9},
      zblnumber = {1478.14039},
      }
  • [BorgerWitt1] Go to document J. Borger, "The basic geometry of Witt vectors, I: The affine case," Algebra Number Theory, vol. 5, iss. 2, pp. 231-285, 2011.
    @ARTICLE{BorgerWitt1,
      author = {Borger, James},
      title = {The basic geometry of {W}itt vectors, {I}: {T}he affine case},
      journal = {Algebra Number Theory},
      fjournal = {Algebra \& Number Theory},
      volume = {5},
      year = {2011},
      number = {2},
      pages = {231--285},
      issn = {1937-0652},
      mrclass = {13F35},
      mrnumber = {2833791},
      mrreviewer = {Markus Szymik},
      doi = {10.2140/ant.2011.5.231},
      url = {https://doi.org/10.2140/ant.2011.5.231},
      zblnumber = {1276.13018},
      }
  • [BorgerCourse] J. Borger, Witt vectors, lambda-rings, and arithmetic jet spaces, 2016.
    @MISC{BorgerCourse,
      author = {Borger, J.},
      title = {Witt vectors, lambda-rings, and arithmetic jet spaces},
      note = {course at the Univ. of Copenhagen; available on author's webpage},
      year = {2016},
      zblnumber = {},
      }
  • [BSProetale] Go to document B. Bhatt and P. Scholze, "The pro-étale topology for schemes," Astérisque, iss. 369, pp. 99-201, 2015.
    @ARTICLE{BSProetale,
      author = {Bhatt, Bhargav and Scholze, Peter},
      title = {The pro-étale topology for schemes},
      journal = {Astérisque},
      fjournal = {Astérisque},
      number = {369},
      year = {2015},
      pages = {99--201},
      issn = {0303-1179},
      isbn = {978-2-85629-805-3},
      mrclass = {14F05 (14F20 14F35 14H30 18B25)},
      mrnumber = {3379634},
      mrreviewer = {Pieter Belmans},
      zblnumber = {1351.19001},
      doi = {10.24033/ast.1146},
      url = {https://doi.org/10.24033/ast.1146},
      }
  • [BhattScholzeWitt] Go to document B. Bhatt and P. Scholze, "Projectivity of the Witt vector affine Grassmannian," Invent. Math., vol. 209, iss. 2, pp. 329-423, 2017.
    @ARTICLE{BhattScholzeWitt,
      author = {Bhatt, Bhargav and Scholze, Peter},
      title = {Projectivity of the {W}itt vector affine {G}rassmannian},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {209},
      year = {2017},
      number = {2},
      pages = {329--423},
      issn = {0020-9910},
      mrclass = {14F05 (14M15 19G12)},
      mrnumber = {3674218},
      mrreviewer = {Marc-Hubert Nicole},
      doi = {10.1007/s00222-016-0710-4},
      url = {https://doi.org/10.1007/s00222-016-0710-4},
      zblnumber = {1397.14064},
      }
  • [BhattScholzeFCrys] B. Bhatt and P. Scholze, Prismatic $F$-crystals and crystalline Galois representations, 2021.
    @MISC{BhattScholzeFCrys,
      author = {Bhatt, Bhargav and Scholze, Peter},
      title = {Prismatic $F$-crystals and crystalline {G}alois representations},
      arxiv = {2106.14735},
      year = {2021},
      zblnumber = {},
      }
  • [BuiumArithmeticAnalog] Go to document A. Buium, "Arithmetic analogues of derivations," J. Algebra, vol. 198, iss. 1, pp. 290-299, 1997.
    @ARTICLE{BuiumArithmeticAnalog,
      author = {Buium, Alexandru},
      title = {Arithmetic analogues of derivations},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {198},
      year = {1997},
      number = {1},
      pages = {290--299},
      issn = {0021-8693},
      mrclass = {12H05 (12H10)},
      mrnumber = {1482984},
      mrreviewer = {G. Eisenreich},
      doi = {10.1006/jabr.1997.7177},
      url = {https://doi.org/10.1006/jabr.1997.7177},
      zblnumber = {0892.13008},
      }
  • [ClausenMathewMorrow] Go to document D. Clausen, A. Mathew, and M. Morrow, "$K$-theory and topological cyclic homology of Henselian pairs," J. Amer. Math. Soc., vol. 34, iss. 2, pp. 411-473, 2021.
    @ARTICLE{ClausenMathewMorrow,
      author = {Clausen, Dustin and Mathew, Akhil and Morrow, Matthew},
      title = {{$K$}-theory and topological cyclic homology of {H}enselian pairs},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {34},
      year = {2021},
      number = {2},
      pages = {411--473},
      issn = {0894-0347},
      mrclass = {19D55},
      mrnumber = {4280864},
      doi = {10.1090/jams/961},
      url = {https://doi.org/10.1090/jams/961},
      zblnumber = {1477.19003},
      }
  • [DeligneIllusie] Go to document P. Deligne and L. Illusie, "Relèvements modulo $p^2$ et décomposition du complexe de de Rham," Invent. Math., vol. 89, iss. 2, pp. 247-270, 1987.
    @ARTICLE{DeligneIllusie,
      author = {Deligne, Pierre and Illusie, Luc},
      title = {Relèvements modulo {$p^2$} et décomposition du complexe de de {R}ham},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {89},
      year = {1987},
      number = {2},
      pages = {247--270},
      issn = {0020-9910},
      mrclass = {14F40 (14C30)},
      mrnumber = {0894379},
      mrreviewer = {Thomas Zink},
      doi = {10.1007/BF01389078},
      url = {https://doi.org/10.1007/BF01389078},
      zblnumber = {0632.14017},
      }
  • [FontaineMessing] Go to document J. Fontaine and W. Messing, "$p$-adic periods and $p$-adic étale cohomology," in Current Trends in Arithmetical Algebraic Geometry (Arcata, Calif., 1985), Amer. Math. Soc., Providence, RI, 1987, vol. 67, pp. 179-207.
    @INCOLLECTION{FontaineMessing,
      author = {Fontaine, Jean-Marc and Messing, William},
      title = {{$p$}-adic periods and {$p$}-adic étale cohomology},
      booktitle = {Current {T}rends in {A}rithmetical {A}lgebraic {G}eometry ({A}rcata, {C}alif., 1985)},
      series = {Contemp. Math.},
      volume = {67},
      pages = {179--207},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1987},
      mrclass = {14F30 (14F40 14G20)},
      mrnumber = {0902593},
      mrreviewer = {T. Ekedahl},
      doi = {10.1090/conm/067/902593},
      url = {https://doi.org/10.1090/conm/067/902593},
      zblnumber = {0632.14016},
      }
  • [GabberRameroFART] O. Gabber and L. Ramero, Foundations of almost ring theory.
    @MISC{GabberRameroFART,
      author = {Gabber, Ofer and Ramero, Lorenzo},
      title = {{F}oundations of almost ring theory},
      note = {available on L.~Ramero's webpage},
      }
  • [GabberRamero] Go to document O. Gabber and L. Ramero, Almost Ring Theory, Springer-Verlag, Berlin, 2003, vol. 1800.
    @BOOK{GabberRamero,
      author = {Gabber, Ofer and Ramero, Lorenzo},
      title = {Almost Ring Theory},
      series = {Lecture Notes in Math.},
      volume = {1800},
      publisher = {Springer-Verlag, Berlin},
      year = {2003},
      pages = {vi+307},
      isbn = {3-540-40594-1},
      mrclass = {13D10 (13B40 13D03 14G22 18D10)},
      mrnumber = {2004652},
      doi = {10.1007/b10047},
      url = {https://doi.org/10.1007/b10047},
      zblnumber = {1045.13002},
      }
  • [HeitmannMaExtPlus] Go to document R. C. Heitmann and L. Ma, "Extended plus closure in complete local rings," J. Algebra, vol. 571, pp. 134-150, 2021.
    @ARTICLE{HeitmannMaExtPlus,
      author = {Heitmann, Raymond C. and Ma, Linquan},
      title = {Extended plus closure in complete local rings},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {571},
      year = {2021},
      pages = {134--150},
      issn = {0021-8693},
      mrclass = {13A35},
      mrnumber = {4200713},
      doi = {10.1016/j.jalgebra.2018.10.006},
      url = {https://doi.org/10.1016/j.jalgebra.2018.10.006},
      zblnumber = {1457.13010},
      }
  • [HuberBook] Go to document R. Huber, Étale cohomology of rigid analytic varieties and adic spaces, Friedr. Vieweg & Sohn, Braunschweig, 1996, vol. E30.
    @BOOK{HuberBook,
      author = {Huber, Roland},
      title = {\'{E}tale cohomology of rigid analytic varieties and adic spaces},
      series = {Aspects of Mathematics},
      volume = {E30},
      publisher = {Friedr. Vieweg \& Sohn, Braunschweig},
      year = {1996},
      pages = {x+450},
      isbn = {3-528-06794-2},
      mrclass = {14G22 (14F20)},
      mrnumber = {1734903},
      mrreviewer = {Lorenzo Ramero},
      doi = {10.1007/978-3-663-09991-8},
      url = {https://doi.org/10.1007/978-3-663-09991-8},
      zblnumber = {0868.14010},
      }
  • [IllusiePartialDeg] L. Illusie, Partial degeneration of Hodge to de Rham spectral sequences and Kodaira type vanishing theorems for locally complete intersections in positive characteristic.
    @MISC{IllusiePartialDeg,
      author = {Illusie, L.},
      title = {Partial degeneration of {H}odge to de {R}ham spectral sequences and {K}odaira type vanishing theorems for locally complete intersections in positive characteristic},
      note = {available on author's webpage},
      zblnumber = {},
      }
  • [IllusieSaitoConfTalk] L. Illusie, Revisiting Deligne–Illusie.
    @MISC{IllusieSaitoConfTalk,
      author = {Illusie, L.},
      title = {Revisiting {D}eligne--{I}llusie},
      note = {{N}otes for a talk at conference in honor of {T}akeshi {S}aito's $60$th birthday, available on author's webpage},
      }
  • [JoyalDelta] A. Joyal, "$\delta$-anneaux et vecteurs de Witt," C. R. Math. Rep. Acad. Sci. Canada, vol. 7, iss. 3, pp. 177-182, 1985.
    @ARTICLE{JoyalDelta,
      author = {Joyal, André},
      title = {{$\delta$}-anneaux et vecteurs de {W}itt},
      journal = {C. R. Math. Rep. Acad. Sci. Canada},
      fjournal = {La Société Royale du Canada. L'Academie des Sciences. Comptes Rendus Mathématiques. (Mathematical Reports)},
      volume = {7},
      year = {1985},
      number = {3},
      pages = {177--182},
      issn = {0706-1994},
      mrclass = {13K05 (14F30 14L05 18C99 18F25 19D99)},
      mrnumber = {0789309},
      mrreviewer = {R. T. Hoobler},
      zblnumber = {0594.13023},
      }
  • [KoshikawaLog1] T. Koshikawa, Logarithmic prismatic cohomology I, 2020.
    @MISC{KoshikawaLog1,
      author = {Koshikawa, Teruhisa},
      title = {Logarithmic prismatic cohomology {I}},
      arxiv = {2007.14037},
      year = {2020},
      zblnumber = {},
      }
  • [LurieHTT] Go to document J. Lurie, Higher Topos Theory, Princeton Univ. Press, Princeton, NJ, 2009, vol. 170.
    @BOOK{LurieHTT,
      author = {Lurie, Jacob},
      title = {Higher Topos Theory},
      series = {Ann. of Math. Stud.},
      volume = {170},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {2009},
      pages = {xviii+925},
      isbn = {978-0-691-14049-0; 0-691-14049-9},
      mrclass = {18-02 (18B25 18E35 18G30 18G55 55U40)},
      mrnumber = {2522659},
      mrreviewer = {Mark Hovey},
      doi = {10.1515/9781400830558},
      url = {https://doi.org/10.1515/9781400830558},
      zblnumber = {1175.18001},
      }
  • [LurieRationalpadic] J. Lurie, Rational and $p$-adic homotopy theory.
    @MISC{LurieRationalpadic,
      author = {Lurie, Jacob},
      sortyear={2024},
      title = {Rational and $p$-adic homotopy theory},
      note = {available on author's webpage},
      zblnumber = {},
      }
  • [LurieSAG] J. Lurie, Spectral algebraic geometry, 2018.
    @MISC{LurieSAG,
      author = {Lurie, Jacob},
      title = {Spectral algebraic geometry},
      year = {2018},
      note= {preprint, available on author's webpage},
      zblnumber = {},
      }
  • [MathewGalois] Go to document A. Mathew, "The Galois group of a stable homotopy theory," Adv. Math., vol. 291, pp. 403-541, 2016.
    @ARTICLE{MathewGalois,
      author = {Mathew, Akhil},
      title = {The {G}alois group of a stable homotopy theory},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {291},
      year = {2016},
      pages = {403--541},
      issn = {0001-8708},
      mrclass = {14F35 (11F11 11S20 14F20 18D10 18G55 55P43 55U35)},
      mrnumber = {3459022},
      mrreviewer = {Rui Miguel Saramago},
      doi = {10.1016/j.aim.2015.12.017},
      url = {https://doi.org/10.1016/j.aim.2015.12.017},
      zblnumber = {1338.55009},
      }
  • [MorrowTsuji] M. Morrow and T. Tsuji, Generalised representations as $q$-connections in integral $p$-adic Hodge theory, 2020.
    @MISC{MorrowTsuji,
      author = {Morrow, Matthew and Tsuji, Takeshi},
      title = {Generalised representations as $q$-connections in integral $p$-adic {H}odge theory},
      arxiv = {2010.04059},
      note = {available on M. Morrow's webpage},
      year = {2020},
      zblnumber = {},
      }
  • [NiziolKLog] W. Niziol, "$K$-theory of log-schemes. I," Doc. Math., vol. 13, pp. 505-551, 2008.
    @ARTICLE{NiziolKLog,
      author = {Nizio\l, Wies\{l}awa},
      title = {{$K$}-theory of log-schemes. {I}},
      journal = {Doc. Math.},
      fjournal = {Documenta Mathematica},
      volume = {13},
      year = {2008},
      pages = {505--551},
      issn = {1431-0635},
      mrclass = {19E08 (14C35 14F20)},
      mrnumber = {2452875},
      mrreviewer = {Claudio Pedrini},
      zblnumber = {1159.19003},
      }
  • [NikolausScholze] Go to document T. Nikolaus and P. Scholze, "On topological cyclic homology," Acta Math., vol. 221, iss. 2, pp. 203-409, 2018.
    @ARTICLE{NikolausScholze,
      author = {Nikolaus, Thomas and Scholze, Peter},
      title = {On topological cyclic homology},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {221},
      year = {2018},
      number = {2},
      pages = {203--409},
      issn = {0001-5962},
      mrclass = {55U35 (16E40 18E30 19D99)},
      mrnumber = {3904731},
      mrreviewer = {Geoffrey M. L. Powell},
      doi = {10.4310/ACTA.2018.v221.n2.a1},
      url = {https://doi.org/10.4310/ACTA.2018.v221.n2.a1},
      zblnumber = {1457.19007},
      }
  • [OgusVologodsky] Go to document A. Ogus and V. Vologodsky, "Nonabelian Hodge theory in characteristic $p$," Publ. Math. Inst. Hautes Études Sci., iss. 106, pp. 1-138, 2007.
    @ARTICLE{OgusVologodsky,
      author = {Ogus, A. and Vologodsky, V.},
      title = {Nonabelian {H}odge theory in characteristic {$p$}},
      journal = {Publ. Math. Inst. Hautes \'{E}tudes Sci.},
      fjournal = {Publications Mathématiques. Institut de Hautes \'{E}tudes Scientifiques},
      number = {106},
      year = {2007},
      pages = {1--138},
      issn = {0073-8301},
      mrclass = {14F30 (14F40)},
      mrnumber = {2373230},
      mrreviewer = {Adolfo Quirós},
      doi = {10.1007/s10240-007-0010-z},
      url = {https://doi.org/10.1007/s10240-007-0010-z},
      zblnumber = {1140.14007},
      }
  • [RezkLambda] C. Rezk, Etale extensions of $\lambda$-rings, 2014.
    @MISC{RezkLambda,
      author = {Rezk, C. },
      title = {Etale extensions of $\lambda$-rings},
      year = {2014},
      note = {available on author's webpage},
      zblnumber = {},
      }
  • [ScholzeThesis] Go to document P. Scholze, "Perfectoid spaces," Publ. Math. Inst. Hautes Études Sci., vol. 116, pp. 245-313, 2012.
    @ARTICLE{ScholzeThesis,
      author = {Scholze, Peter},
      title = {Perfectoid spaces},
      journal = {Publ. Math. Inst. Hautes \'{E}tudes Sci.},
      fjournal = {Publications Mathématiques. Institut de Hautes \'{E}tudes Scientifiques},
      volume = {116},
      year = {2012},
      pages = {245--313},
      issn = {0073-8301},
      mrclass = {14G99},
      mrnumber = {3090258},
      mrreviewer = {Jean-Marc Fontaine},
      doi = {10.1007/s10240-012-0042-x},
      url = {https://doi.org/10.1007/s10240-012-0042-x},
      zblnumber = {1263.14022},
      }
  • [ScholzeTorsion] Go to document P. Scholze, "On torsion in the cohomology of locally symmetric varieties," Ann. of Math. (2), vol. 182, iss. 3, pp. 945-1066, 2015.
    @ARTICLE{ScholzeTorsion,
      author = {Scholze, Peter},
      title = {On torsion in the cohomology of locally symmetric varieties},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {182},
      year = {2015},
      number = {3},
      pages = {945--1066},
      issn = {0003-486X},
      mrclass = {11S37},
      mrnumber = {3418533},
      mrreviewer = {Kimball L. Martin},
      doi = {10.4007/annals.2015.182.3.3},
      url = {https://doi.org/10.4007/annals.2015.182.3.3},
      zblnumber = {1345.14031},
      }
  • [ScholzeqdeRham] Go to document P. Scholze, "Canonical $q$-deformations in arithmetic geometry," Ann. Fac. Sci. Toulouse Math. (6), vol. 26, iss. 5, pp. 1163-1192, 2017.
    @ARTICLE{ScholzeqdeRham,
      author = {Scholze, Peter},
      title = {Canonical {$q$}-deformations in arithmetic geometry},
      journal = {Ann. Fac. Sci. Toulouse Math. (6)},
      fjournal = {Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série 6},
      volume = {26},
      year = {2017},
      number = {5},
      pages = {1163--1192},
      issn = {0240-2963},
      mrclass = {14F30 (11G25 12H10 14F05 14F40)},
      mrnumber = {3746625},
      mrreviewer = {Nobuo Tsuzuki},
      doi = {10.5802/afst.1563},
      url = {https://doi.org/10.5802/afst.1563},
      zblnumber = {1461.14031},
      }
  • [Stacks] Go to document relax The Stacks Project Authors, Stacks Project.
    @MISC{Stacks,
      author = {{\relax The Stacks Project Authors}},
      key = {Stacks},
      title = {{S}tacks {P}roject},
      url = {http://stacks.math.columbia.edu},
      zblnumber = {},
      }
  • [TianFCrys] Y. Tian, Finiteness and duality for the cohomology of prismatic crystals, 2021.
    @MISC{TianFCrys,
      author = {Tian, Y.},
      title = {Finiteness and duality for the cohomology of prismatic crystals},
      arxiv = {2109.00801},
      year = {2021},
      zblnumber = {},
      }
  • [ThomasonTrobaugh] Go to document R. W. Thomason and T. Trobaugh, "Higher algebraic $K$-theory of schemes and of derived categories," in The Grothendieck Festschrift, Vol. III, Birkhäuser Boston, Boston, MA, 1990, vol. 88, pp. 247-435.
    @INCOLLECTION{ThomasonTrobaugh,
      author = {Thomason, R. W. and Trobaugh, Thomas},
      title = {Higher algebraic {$K$}-theory of schemes and of derived categories},
      booktitle = {The {G}rothendieck {F}estschrift, {V}ol. {III}},
      series = {Progr. Math.},
      volume = {88},
      pages = {247--435},
      publisher = {Birkhäuser Boston, Boston, MA},
      year = {1990},
      mrclass = {19E08 (14C35 19D10)},
      mrnumber = {1106918},
      mrreviewer = {Charles Weibel},
      doi = {10.1007/978-0-8176-4576-2\_10},
      url = {https://doi.org/10.1007/978-0-8176-4576-2_10},
      zblnumber = {0731.14001},
      }
  • [VoevodskyHTop] Go to document V. Voevodsky, "Homology of schemes," Selecta Math. (N.S.), vol. 2, iss. 1, pp. 111-153, 1996.
    @ARTICLE{VoevodskyHTop,
      author = {Voevodsky, V.},
      title = {Homology of schemes},
      journal = {Selecta Math. (N.S.)},
      fjournal = {Selecta Mathematica. New Series},
      volume = {2},
      year = {1996},
      number = {1},
      pages = {111--153},
      issn = {1022-1824},
      mrclass = {14F99},
      mrnumber = {1403354},
      mrreviewer = {Claudio Pedrini},
      doi = {10.1007/BF01587941},
      url = {https://doi.org/10.1007/BF01587941},
      zblnumber = {0871.14016},
      }
  • [Wilkerson] Go to document C. Wilkerson, "Lambda-rings, binomial domains, and vector bundles over ${\bf C}P(\infty )$," Comm. Algebra, vol. 10, iss. 3, pp. 311-328, 1982.
    @ARTICLE{Wilkerson,
      author = {Wilkerson, Clarence},
      title = {Lambda-rings, binomial domains, and vector bundles over {${\bf C}P(\infty )$}},
      journal = {Comm. Algebra},
      fjournal = {Communications in Algebra},
      volume = {10},
      year = {1982},
      number = {3},
      pages = {311--328},
      issn = {0092-7872},
      mrclass = {55N15 (13B99)},
      mrnumber = {0651605},
      mrreviewer = {J. F. Adams},
      doi = {10.1080/00927878208822717},
      url = {https://doi.org/10.1080/00927878208822717},
      zblnumber = {0492.55004},
      }

Authors

Bhargav Bhatt

University of Michigan, Ann Arbor, MI, USA

Current address:

Institute for Advanced Study and Princeton University, Princeton, NJ, USA Peter Scholze

Max-Planck Institut für Mathematik, Bonn, Germany