Abstract
We show that if the eccentricity of an ellipse is sufficiently small, then up to isometries it is spectrally unique among all smooth domains. We do not assume any symmetry, convexity, or closeness to the ellipse, on the class of domains.
In the course of the proof we also show that for nearly circular domains, the lengths of periodic orbits that are shorter than the perimeter of the domain must belong to the singular support of the wave trace. As a result we also obtain a Laplace spectral rigidity result for the class of axially symmetric nearly circular domains using a similar result of De Simoi, Kaloshin, and Wei concerning the length spectrum of such domains.
-
[A]
E. Y. Amiran, "A dynamical approach to symplectic and spectral invariants for billiards," Comm. Math. Phys., vol. 154, iss. 1, pp. 99-110, 1993.
@ARTICLE{A,
author = {Amiran, Edoh Y.},
title = {A dynamical approach to symplectic and spectral invariants for billiards},
journal = {Comm. Math. Phys.},
fjournal = {Communications in Mathematical Physics},
volume = {154},
year = {1993},
number = {1},
pages = {99--110},
issn = {0010-3616},
mrclass = {58F19 (58F05)},
mrnumber = {1220949},
doi = {10.1007/BF02096834},
url = {https//doi.org/10.1007/BF02096834},
zblnumber = {0786.58034},
} -
[A2]
E. Y. Amiran, "Noncoincidence of geodesic lengths and hearing elliptic quantum billiards," J. Statist. Phys., vol. 85, iss. 3-4, pp. 455-470, 1996.
@ARTICLE{A2,
author = {Amiran, Edoh Y.},
title = {Noncoincidence of geodesic lengths and hearing elliptic quantum billiards},
journal = {J. Statist. Phys.},
fjournal = {Journal of Statistical Physics},
volume = {85},
year = {1996},
number = {3-4},
pages = {455--470},
issn = {0022-4715},
mrclass = {81Q05 (35J99 58F17 81Q50)},
mrnumber = {1413669},
mrreviewer = {Vasily A. Chernecky},
doi = {10.1007/BF02174214},
url = {https://doi.org/10.1007/BF02174214},
zblnumber = {0929.37007},
} -
[AnMe]
K. G. Andersson and R. B. Melrose, "The propagation of singularities along gliding rays," Invent. Math., vol. 41, iss. 3, pp. 197-232, 1977.
@ARTICLE{AnMe,
author = {Andersson, K. G. and Melrose, R. B.},
title = {The propagation of singularities along gliding rays},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {41},
year = {1977},
number = {3},
pages = {197--232},
issn = {0020-9910},
mrclass = {58G15 (35S15)},
mrnumber = {0494322},
mrreviewer = {Bent E. Petersen},
doi = {10.1007/BF01403048},
url = {https://doi.org/10.1007/BF01403048},
zblnumber = {0373.35053},
} -
[ADK]
A. Avila, J. De Simoi, and V. Kaloshin, "An integrable deformation of an ellipse of small eccentricity is an ellipse," Ann. of Math. (2), vol. 184, iss. 2, pp. 527-558, 2016.
@ARTICLE{ADK,
author = {Avila, Artur and {De Simoi},
Jacopo and Kaloshin, Vadim},
title = {An integrable deformation of an ellipse of small eccentricity is an ellipse},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {184},
year = {2016},
number = {2},
pages = {527--558},
issn = {0003-486X},
mrclass = {37D50},
mrnumber = {3548532},
mrreviewer = {Nicolas Bedaride},
doi = {10.4007/annals.2016.184.2.5},
url = {https://doi.org/10.4007/annals.2016.184.2.5},
zblnumber = {1379.37104},
} -
[Br]
R. M. Brown, "The trace of the heat kernel in Lipschitz domains," Trans. Amer. Math. Soc., vol. 339, iss. 2, pp. 889-900, 1993.
@ARTICLE{Br,
author = {Brown, Russell M.},
title = {The trace of the heat kernel in {L}ipschitz domains},
journal = {Trans. Amer. Math. Soc.},
fjournal = {Transactions of the American Mathematical Society},
volume = {339},
year = {1993},
number = {2},
pages = {889--900},
issn = {0002-9947},
mrclass = {58G11 (35P05 58G18 58G25)},
mrnumber = {1134755},
mrreviewer = {Steven Rosenberg},
doi = {10.2307/2154304},
url = {https://doi.org/10.2307/2154304},
zblnumber = {0853.35083},
} -
[DaHe] K. Datchev and H. Hezari, "Inverse problems in spectral geometry," in Inverse Problems and Applications: Inside Out. II, Cambridge Univ. Press, Cambridge, 2013, vol. 60, pp. 455-485.
@INCOLLECTION{DaHe,
author = {Datchev, Kiril and Hezari, Hamid},
title = {Inverse problems in spectral geometry},
booktitle = {Inverse Problems and Applications: Inside Out. {II}},
series = {Math. Sci. Res. Inst. Publ.},
volume = {60},
pages = {455--485},
publisher = {Cambridge Univ. Press, Cambridge},
year = {2013},
mrclass = {35R01 (35-02 35P05 35R30 58J05 58J50)},
mrnumber = {3114967},
zblnumber = {1316.35001},
} -
[DKW]
J. de Simoi, V. Kaloshin, and Q. Wei, "Dynamical spectral rigidity among $\Bbb Z_2$-symmetric strictly convex domains close to a circle," Ann. of Math. (2), vol. 186, iss. 1, pp. 277-314, 2017.
@ARTICLE{DKW,
author = {{de Simoi},
Jacopo and Kaloshin, Vadim and Wei, Qiaoling},
title = {Dynamical spectral rigidity among {$\Bbb Z_2$}-symmetric strictly convex domains close to a circle},
note = {Appendix B coauthored with H. Hezari},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {186},
year = {2017},
number = {1},
pages = {277--314},
issn = {0003-486X},
mrclass = {37D50 (35J05 35P05 35R30 58J53)},
mrnumber = {3665005},
mrreviewer = {Nicolas Bedaride},
doi = {10.4007/annals.2017.186.1.7},
url = {https://doi.org/10.4007/annals.2017.186.1.7},
zblnumber = {1377.37062},
} -
[Go]
C. Gordon, "Survey of isospectral manifolds," in Handbook of Differential Geometry, Vol. I, North-Holland, Amsterdam, 2000, pp. 747-778.
@INCOLLECTION{Go,
author = {Gordon, Carolyn},
title = {Survey of isospectral manifolds},
booktitle = {Handbook of Differential Geometry, {V}ol. {I}},
pages = {747--778},
publisher = {North-Holland, Amsterdam},
year = {2000},
mrclass = {58J53},
mrnumber = {1736857},
mrreviewer = {Dorothee Schueth},
doi = {10.1016/S1874-5741(00)80009-6},
url = {https://doi.org/10.1016/S1874-5741(00)80009-6},
zblnumber = {0959.58039},
} -
[GWW]
C. S. Gordon, D. Webb, and S. Wolpert, "Isospectral plane domains and surfaces via Riemannian orbifolds," Invent. Math., vol. 110, iss. 1, pp. 1-22, 1992.
@ARTICLE{GWW,
author = {Gordon, Carolyn S. and Webb, D. and Wolpert, S.},
title = {Isospectral plane domains and surfaces via {R}iemannian orbifolds},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {110},
year = {1992},
number = {1},
pages = {1--22},
issn = {0020-9910},
mrclass = {58G99},
mrnumber = {1181812},
mrreviewer = {Robert Brooks},
doi = {10.1007/BF01231320},
url = {https://doi.org/10.1007/BF01231320},
zblnumber = {0778.58068},
} -
[GM1]
V. Guillemin and R. Melrose, "An inverse spectral result for elliptical regions in ${\bf R}^{2}$," Adv. in Math., vol. 32, iss. 2, pp. 128-148, 1979.
@ARTICLE{GM1,
author = {Guillemin, Victor and Melrose, Richard},
title = {An inverse spectral result for elliptical regions in {${\bf R}\sp{2}$}},
journal = {Adv. in Math.},
fjournal = {Advances in Mathematics},
volume = {32},
year = {1979},
number = {2},
pages = {128--148},
issn = {0001-8708},
mrclass = {35P99 (58G25)},
mrnumber = {0535619},
mrreviewer = {V. M. Babich},
doi = {10.1016/0001-8708(79)90039-2},
url = {https://doi.org/10.1016/0001-8708(79)90039-2},
zblnumber = {0415.35062},
} -
[GM2]
V. Guillemin and R. Melrose, "The Poisson summation formula for manifolds with boundary," Adv. in Math., vol. 32, iss. 3, pp. 204-232, 1979.
@ARTICLE{GM2,
author = {Guillemin, Victor and Melrose, Richard},
title = {The {P}oisson summation formula for manifolds with boundary},
journal = {Adv. in Math.},
fjournal = {Advances in Mathematics},
volume = {32},
year = {1979},
number = {3},
pages = {204--232},
issn = {0001-8708},
mrclass = {58G25 (10J25 35P20)},
mrnumber = {0539531},
mrreviewer = {P. Günther},
doi = {10.1016/0001-8708(79)90042-2},
url = {https://doi.org/10.1016/0001-8708(79)90042-2},
zblnumber = {0421.35082},
} -
[HeZeE]
H. Hezari and S. Zelditch, "$C^\infty$ spectral rigidity of the ellipse," Anal. PDE, vol. 5, iss. 5, pp. 1105-1132, 2012.
@ARTICLE{HeZeE,
author = {Hezari, Hamid and Zelditch, Steve},
title = {{$C^\infty$} spectral rigidity of the ellipse},
journal = {Anal. PDE},
fjournal = {Analysis \& PDE},
volume = {5},
year = {2012},
number = {5},
pages = {1105--1132},
issn = {2157-5045},
mrclass = {35P05},
mrnumber = {3022850},
mrreviewer = {J. B. Kennedy},
doi = {10.2140/apde.2012.5.1105},
url = {https://doi.org/10.2140/apde.2012.5.1105},
zblnumber = {1264.35150},
} -
[HoIII]
L. Hörmander, The Analysis of Linear Partial Differential Operators. III, Springer, Berlin, 2007.
@book {HoIII,
author = {H{ö}rmander, Lars},
TITLE = {The Analysis of Linear Partial Differential Operators. {III}},
SERIES = {Classics in Math.},
TITLENOTE = {\emph{Pseudo-Differential Operators}; reprint of the 1994 edition},
PUBLISHER = {Springer, Berlin},
YEAR = {2007},
PAGES = {viii+525},
ISBN = {978-3-540-49937-4},
MRCLASS = {35-02 (35Sxx 47F05 47G30 58J40)},
MRNUMBER = {2304165},
DOI = {10.1007/978-3-540-49938-1},
URL = {https://doi.org/10.1007/978-3-540-49938-1},
ZBLNUMBER = {1115.35005},
} -
[HoIV]
L. Hörmander, The Analysis of Linear Partial Differential Operators. IV, Springer-Verlag, Berlin, 1985, vol. 275.
@book{HoIV,
author = {H{ö}rmander, Lars},
title = {The Analysis of Linear Partial Differential Operators. {IV}},
titlenote={\emph{Fourier Integral Operators}},
series = {Grundlehren math. Wissen.},
volume = {275},
publisher = {Springer-Verlag, Berlin},
year = {1985},
page = {vii+352},
isbn = {3-540-13829-3},
mrclass = {35-02 (35Sxx 47G05 58G15)},
mrnumber = {781537},
mrreviewer = {Min You Qi},
doi = {10.1007/978-3-642-00136-9},
url = {https://doi.org/10.1997/978-3-642-00136-9},
zblnumber = {0612.35001},
} -
[HKS]
G. Huang, V. Kaloshin, and A. Sorrentino, "Nearly circular domains which are integrable close to the boundary are ellipses," Geom. Funct. Anal., vol. 28, iss. 2, pp. 334-392, 2018.
@ARTICLE{HKS,
author = {Huang, Guan and Kaloshin, Vadim and Sorrentino, Alfonso},
title = {Nearly circular domains which are integrable close to the boundary are ellipses},
journal = {Geom. Funct. Anal.},
fjournal = {Geometric and Functional Analysis},
volume = {28},
year = {2018},
number = {2},
pages = {334--392},
issn = {1016-443X},
mrclass = {37D50 (37E40 37J35 37J40 70H06)},
mrnumber = {3788206},
mrreviewer = {Serge E. Troubetzkoy},
doi = {10.1007/s00039-018-0440-4},
url = {https://doi.org/10.1007/s00039-018-0440-4},
zblnumber = {1395.37041},
} -
[KS]
V. Kaloshin and A. Sorrentino, "On the local Birkhoff conjecture for convex billiards," Ann. of Math. (2), vol. 188, iss. 1, pp. 315-380, 2018.
@ARTICLE{KS,
author = {Kaloshin, Vadim and Sorrentino, Alfonso},
title = {On the local {B}irkhoff conjecture for convex billiards},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {188},
year = {2018},
number = {1},
pages = {315--380},
issn = {0003-486X},
mrclass = {37D50 (33E05 37E40 37J35 70H06)},
mrnumber = {3815464},
mrreviewer = {Daniel Massart},
doi = {10.4007/annals.2018.188.1.6},
url = {https://doi.org/10.4007/annals.2018.188.1.6},
zblnumber = {1394.37093},
} -
[Koval] I. Koval, Domains which are integrable close to the boundary and close to the circular ones are ellipses, 2021.
@MISC{Koval,
author = {Koval, I.},
title = {Domains which are integrable close to the boundary and close to the circular ones are ellipses},
year = {2021},
arxiv = {2111.12171},
zblnumber = {},
} -
[L]
V. F. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer-Verlag, Berlin, 1993, vol. 24.
@BOOK{L,
author = {Lazutkin, Vladimir F.},
title = {{KAM} Theory and {S}emiclassical {A}pproximations to {E}igenfunctions},
series = {Ergeb. Math. Grenzgeb.},
volume = {24},
note = {With an addendum by A. I. Shnirel\cprime man},
publisher = {Springer-Verlag, Berlin},
year = {1993},
pages = {x+387},
isbn = {3-540-53389-3},
mrclass = {58Fxx (35J05 35P05 58F19 58F27 70H05 81Q20)},
mrnumber = {1239173},
mrreviewer = {Helmut Rüssmann},
doi = {10.1007/978-3-642-76247-5},
url = {https://doi.org/10.1007/978-3-642-76247-5},
zblnumber = {0814.58001},
} -
[Li] C. Liverani, Implicit function theorem, a quantitative version.
@MISC{Li,
author = {Liverani, C.},
title = {Implicit function theorem, a quantitative version},
note = {online note, Available on author's webpage},
zblnumber = {},
} -
[MM]
S. Marvizi and R. Melrose, "Spectral invariants of convex planar regions," J. Differential Geom., vol. 17, iss. 3, pp. 475-502, 1982.
@ARTICLE{MM,
author = {Marvizi, Shahla and Melrose, Richard},
title = {Spectral invariants of convex planar regions},
journal = {J. Differential Geom.},
fjournal = {Journal of Differential Geometry},
volume = {17},
year = {1982},
number = {3},
pages = {475--502},
issn = {0022-040X},
mrclass = {58G25 (35P05)},
mrnumber = {0679068},
mrreviewer = {Hideo Soga},
doi = {10.4310/jdg/1214437138},
url = {https://doi.org/10.4310/jdg/1214437138},
zblnumber = {0492.53033},
} -
[MF]
J. N. Mather and G. Forni, "Action minimizing orbits in Hamiltonian systems," in Transition to Chaos in Classical and Quantum Mechanics, Springer, Berlin, 1994, vol. 1589, pp. 92-186.
@INCOLLECTION{MF,
author = {Mather, John N. and Forni, Giovanni},
title = {Action minimizing orbits in {H}amiltonian systems},
booktitle = {Transition to Chaos in Classical and Quantum Mechanics},
venue = {{M}ontecatini {T}erme, 1991},
series = {Lecture Notes in Math.},
volume = {1589},
pages = {92--186},
publisher = {Springer, Berlin},
year = {1994},
mrclass = {58F05 (58F27)},
mrnumber = {1323222},
mrreviewer = {F. Cardin},
doi = {10.1007/BFb0074076},
url = {https://doi.org/10.1007/BFb0074076},
zblnumber = {0822.70011},
} -
[Me] R. B. Melrose, Isospectral sets of drumheads are compact in $C^{\infty}$, 1984.
@MISC{Me,
author = {Melrose, R. B.},
title = {Isospectral sets of drumheads are compact in {$C^{\infty}$}},
note = {unpublished, MSRI preprint},
year = {1984},
zblnumber = {},
} -
[PS] V. M. Petkov and L. N. Stoyanov, Geometry of Reflecting Rays and Inverse Spectral Problems, John Wiley & Sons, Ltd., Chichester, 1992.
@BOOK{PS,
author = {Petkov, Vesselin M. and Stoyanov, Luchezar N.},
title = {Geometry of Reflecting Rays and Inverse Spectral Problems},
series = {Pure Appl. Math. (New York)},
publisher = {John Wiley \& Sons, Ltd., Chichester},
year = {1992},
pages = {vi+313},
isbn = {0-471-93174-8},
mrclass = {58G25 (35R30 58G17 78A05)},
mrnumber = {1172998},
mrreviewer = {Hideo Soga},
zblnumber = {0761.35077},
} -
[PR]
S. Pinto-de-Carvalho and R. Ram’irez-Ros, "Non-persistence of resonant caustics in perturbed elliptic billiards," Ergodic Theory Dynam. Systems, vol. 33, iss. 6, pp. 1876-1890, 2013.
@ARTICLE{PR,
author = {{Pinto-de-Carvalho},
Sônia and Ram\'ırez-Ros, Rafael},
title = {Non-persistence of resonant caustics in perturbed elliptic billiards},
journal = {Ergodic Theory Dynam. Systems},
fjournal = {Ergodic Theory and Dynamical Systems},
volume = {33},
year = {2013},
number = {6},
pages = {1876--1890},
issn = {0143-3857},
mrclass = {37D50 (37E40 37J10)},
mrnumber = {3122155},
mrreviewer = {Ian Melbourne},
doi = {10.1017/S0143385712000417},
url = {https://doi.org/10.1017/S0143385712000417},
zblnumber = {1408.37065},
} -
[P]
G. Popov, "Invariants of the length spectrum and spectral invariants of planar convex domains," Comm. Math. Phys., vol. 161, iss. 2, pp. 335-364, 1994.
@ARTICLE{P,
author = {Popov, Georgi},
title = {Invariants of the length spectrum and spectral invariants of planar convex domains},
journal = {Comm. Math. Phys.},
fjournal = {Communications in Mathematical Physics},
volume = {161},
year = {1994},
number = {2},
pages = {335--364},
issn = {0010-3616},
mrclass = {58F19 (58G18 58G25)},
mrnumber = {1266488},
mrreviewer = {Edoh Amiran},
doi = {10.1007/BF02099782},
url = {https://doi.org/10.1007/BF02099782},
zblnumber = {0797.58070},
} -
[PT1]
G. Popov and P. Topalov, "Liouville billiard tables and an inverse spectral result," Ergodic Theory Dynam. Systems, vol. 23, iss. 1, pp. 225-248, 2003.
@ARTICLE{PT1,
author = {Popov, Georgi and Topalov, P.},
title = {Liouville billiard tables and an inverse spectral result},
journal = {Ergodic Theory Dynam. Systems},
fjournal = {Ergodic Theory and Dynamical Systems},
volume = {23},
year = {2003},
number = {1},
pages = {225--248},
issn = {0143-3857},
mrclass = {37J35 (58J50)},
mrnumber = {1971204},
mrreviewer = {Serge E. Troubetzkoy},
doi = {10.1017/S0143385702001190},
url = {https://doi.org/10.1017/S0143385702001190},
zblnumber = {1042.37043},
} -
[PT2]
G. Popov and P. Topalov, "Invariants of isospectral deformations and spectral rigidity," Comm. Partial Differential Equations, vol. 37, iss. 3, pp. 369-446, 2012.
@ARTICLE{PT2,
author = {Popov, Georgi and Topalov, Peter},
title = {Invariants of isospectral deformations and spectral rigidity},
journal = {Comm. Partial Differential Equations},
fjournal = {Communications in Partial Differential Equations},
volume = {37},
year = {2012},
number = {3},
pages = {369--446},
issn = {0360-5302},
mrclass = {47A10 (35P05 35R01 37J40 58J53)},
mrnumber = {2889558},
mrreviewer = {Yuri A. Kordyukov},
doi = {10.1080/03605302.2011.641051},
url = {https://doi.org/10.1080/03605302.2011.641051},
zblnumber = {1245.58015},
} -
[PT3] G. Popov and P. Topalov, From KAM tori to isospectral Invariants and Spectral Rigidity of Billiard Tables, 2016.
@MISC{PT3,
author = {Popov, Georgi and Topalov, Peter},
title = {From {KAM} tori to isospectral Invariants and Spectral Rigidity of Billiard Tables},
year = {2016},
arxiv = {1602.03155},
zblnumber = {},
} -
[R]
R. Ram’irez-Ros, "Break-up of resonant invariant curves in billiards and dual billiards associated to perturbed circular tables," Phys. D, vol. 214, iss. 1, pp. 78-87, 2006.
@ARTICLE{R,
author = {Ram{\'ı}rez-Ros, Rafael},
title = {Break-up of resonant invariant curves in billiards and dual billiards associated to perturbed circular tables},
journal = {Phys. D},
fjournal = {Physica D. Nonlinear Phenomena},
volume = {214},
year = {2006},
number = {1},
pages = {78--87},
issn = {0167-2789},
mrclass = {37J10 (37E40 37J40)},
mrnumber = {2200796},
mrreviewer = {Daniel Massart},
doi = {10.1016/j.physd.2005.12.007},
url = {https://doi.org/10.1016/j.physd.2005.12.007},
zblnumber = {1099.37027},
} -
[Sib99]
K. F. Siburg, "Aubry-Mather theory and the inverse spectral problem for planar convex domains," Israel J. Math., vol. 113, pp. 285-304, 1999.
@ARTICLE{Sib99,
author = {Siburg, Karl Friedrich},
title = {Aubry-{M}ather theory and the inverse spectral problem for planar convex domains},
journal = {Israel J. Math.},
fjournal = {Israel Journal of Mathematics},
volume = {113},
year = {1999},
pages = {285--304},
issn = {0021-2172},
mrclass = {37E40 (37J10 58J53)},
mrnumber = {1729451},
mrreviewer = {Boris Hasselblatt},
doi = {10.1007/BF02780181},
url = {https://doi.org/10.1007/BF02780181},
zblnumber = {0996.37051},
} -
[Sib04]
K. F. Siburg, The Principle of Least Action in Geometry and Dynamics, Springer-Verlag, Berlin, 2004, vol. 1844.
@BOOK{Sib04,
author = {Siburg, Karl Friedrich},
title = {The Principle of Least Action in Geometry and Dynamics},
series = {Lecture Notes in Math.},
volume = {1844},
publisher = {Springer-Verlag, Berlin},
year = {2004},
pages = {xii+128},
isbn = {3-540-21944-7},
mrclass = {37J50 (37E40 37J10 53D35 58E30)},
mrnumber = {2076302},
mrreviewer = {Renato Iturriaga},
doi = {10.1007/b97327},
url = {https://doi.org/10.1007/b97327},
zblnumber = {1060.37048},
} -
[So]
H. Soga, "Oscillatory integrals with degenerate stationary points and their application to the scattering theory," Comm. Partial Differential Equations, vol. 6, iss. 3, pp. 273-287, 1981.
@ARTICLE{So,
author = {Soga, Hideo},
title = {Oscillatory integrals with degenerate stationary points and their application to the scattering theory},
journal = {Comm. Partial Differential Equations},
fjournal = {Communications in Partial Differential Equations},
volume = {6},
year = {1981},
number = {3},
pages = {273--287},
issn = {0360-5302},
mrclass = {35P25 (58G15 81F05)},
mrnumber = {0607549},
mrreviewer = {Gunther A. Uhlmann},
doi = {10.1080/03605308108820177},
url = {https://doi.org/10.1080/03605308108820177},
zblnumber = {0463.35049},
} -
[So86]
H. Soga, "Conditions against rapid decrease of oscillatory integrals and their applications to inverse scattering problems," Osaka J. Math., vol. 23, iss. 2, pp. 441-456, 1986.
@ARTICLE{So86,
author = {Soga, Hideo},
title = {Conditions against rapid decrease of oscillatory integrals and their applications to inverse scattering problems},
journal = {Osaka J. Math.},
fjournal = {Osaka Journal of Mathematics},
volume = {23},
year = {1986},
number = {2},
pages = {441--456},
issn = {0030-6126},
mrclass = {58G15 (35P25 41A60 47G05 81F99)},
mrnumber = {0856897},
mrreviewer = {Alejandro Uribe},
url = {http://projecteuclid.org/euclid.ojm/1200779334},
zblnumber = {0617.35104},
} -
[Vig1]
A. Vig, "Robin spectral rigidity of the ellipse," J. Geom. Anal., vol. 31, iss. 3, pp. 2238-2295, 2021.
@ARTICLE{Vig1,
author = {Vig, Amir},
title = {Robin spectral rigidity of the ellipse},
journal = {J. Geom. Anal.},
fjournal = {Journal of Geometric Analysis},
volume = {31},
year = {2021},
number = {3},
pages = {2238--2295},
issn = {1050-6926},
mrclass = {58J50 (31A30 35P05 46N20)},
mrnumber = {4225807},
mrreviewer = {Tanya J. Christiansen},
doi = {10.1007/s12220-019-00339-4},
url = {https://doi.org/10.1007/s12220-019-00339-4},
zblnumber = {1460.35243},
} -
[Vig2] A. Vig, The wave trace and Birkhoff billiards, 2019.
@MISC{Vig2,
author = {Vig, Amir},
title = {The wave trace and {B}irkhoff billiards},
arxiv = {1910.06441},
year = {2019},
zblnumber = {},
} -
[Z]
S. Zelditch, "The inverse spectral problem," in Surveys in Differential Geometry. Vol. IX, Int. Press, Somerville, MA, 2004, vol. 9, pp. 401-467.
@INCOLLECTION{Z,
author = {Zelditch, Steve},
title = {The inverse spectral problem},
booktitle = {Surveys in Differential Geometry. {V}ol. {IX}},
series = {Surv. Differ. Geom.},
volume = {9},
pages = {401--467},
note = {with an appendix by Johannes Sjöstrand and Maciej Zworski},
publisher = {Int. Press, Somerville, MA},
year = {2004},
mrclass = {58J53 (35P20 35R30 58J50)},
mrnumber = {2195415},
mrreviewer = {David Borthwick},
doi = {10.4310/SDG.2004.v9.n1.a12},
url = {https://doi.org/10.4310/SDG.2004.v9.n1.a12},
zblnumber = {1061.58029},
} -
[Ze]
S. Zelditch, "Inverse spectral problem for analytic domains. II. $\Bbb Z_2$-symmetric domains," Ann. of Math. (2), vol. 170, iss. 1, pp. 205-269, 2009.
@ARTICLE{Ze,
author = {Zelditch, Steve},
title = {Inverse spectral problem for analytic domains. {II}. {$\Bbb Z_2$}-symmetric domains},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {170},
year = {2009},
number = {1},
pages = {205--269},
issn = {0003-486X},
mrclass = {58J53 (35P20 35R30 37D50)},
mrnumber = {2521115},
mrreviewer = {David Borthwick},
doi = {10.4007/annals.2009.170.205},
url = {https://doi.org/10.4007/annals.2009.170.205},
zblnumber = {1196.58016},
} -
[Z14]
S. Zelditch, "Survey on the inverse spectral problem," ICCM Not., vol. 2, iss. 2, pp. 1-20, 2014.
@ARTICLE{Z14,
author = {Zelditch, Steve},
title = {Survey on the inverse spectral problem},
journal = {ICCM Not.},
fjournal = {ICCM Notices. Notices of the International Congress of Chinese Mathematicians},
volume = {2},
year = {2014},
number = {2},
pages = {1--20},
issn = {2326-4810},
mrclass = {58J50 (58J53)},
mrnumber = {3314780},
mrreviewer = {Ruth Gornet},
doi = {10.4310/ICCM.2014.v2.n2.a1},
url = {https://doi.org/10.4310/ICCM.2014.v2.n2.a1},
zblnumber = {},
}