Rough solutions of the $3$-D compressible Euler equations

Abstract

We prove the local-in-time well-posedness for the solution of the compressible Euler equations in $3$-D for the Cauchy data of the velocity, density and vorticity $(v,\varrho, \mathfrak{w}) \in H^s\times H^s\times H^{s’}$, $2<s'<s$. The result extends the sharp results of Smith-Tataru and of Wang, established in the irrotational case, i.e., $ \mathfrak{w}=0$, which is known to be optimal for $s>2$. At the opposite extreme, in the incompressible case, i.e., with a constant density, the result is known to hold for
$\mathfrak{w}\in H^s$, $s>3/2$ and fails for $s\le 3/2$. We therefore, conjecture that the optimal result should be $(v,\varrho, \mathfrak{w}) \in H^s\times H^s\times H^{s’}$, $s>2, \, s’>\frac{3}{2}$. We view our work here as an important step in proving the conjecture. The main difficulty in establishing sharp well-posedness results for general compressible Euler flow is due to the highly nontrivial interaction between the sound waves, governed by quasilinear wave equations, and vorticity which is transported by the flow. To overcome this difficulty, we separate the dispersive part of sound wave from the transported part, and gain regularity significantly by exploiting the nonlinear structure of the system and the geometric structures of the acoustical spacetime.

  • [Ander] Go to document M. T. Anderson, "Cheeger-Gromov theory and applications to general relativity," in The Einstein Equations and the Large Scale Behavior of Gravitational Fields, Birkhäuser, Basel, 2004, pp. 347-377.
    @INCOLLECTION{Ander,
      author = {Anderson, Michael T.},
      title = {Cheeger-{G}romov theory and applications to general relativity},
      booktitle = {The {E}instein Equations and the Large Scale Behavior of Gravitational Fields},
      pages = {347--377},
      publisher = {Birkhäuser, Basel},
      year = {2004},
      mrclass = {53C23 (53C20 53C80 83C05 83C20)},
      mrnumber = {2098921},
      mrreviewer = {Janko Latschev},
      doi = {10.1007/978-3-0348-7953-8_10},
      url = {https://doi.org/10.1007/978-3-0348-7953-8_10},
      zblnumber = {1064.83004},
      }
  • [BC1] Go to document H. Bahouri and J. Chemin, "Équations d’ondes quasilinéaires et effet dispersif," Internat. Math. Res. Notices, iss. 21, pp. 1141-1178, 1999.
    @ARTICLE{BC1,
      author = {Bahouri, Hajer and Chemin, Jean-Yves},
      title = {\'{E}quations d'ondes quasilinéaires et effet dispersif},
      journal = {Internat. Math. Res. Notices},
      fjournal = {International Mathematics Research Notices},
      year = {1999},
      number = {21},
      pages = {1141--1178},
      issn = {1073-7928},
      mrclass = {35L70},
      mrnumber = {1728676},
      mrreviewer = {Denis Serre},
      doi = {10.1155/S107379289900063X},
      url = {https://doi.org/10.1155/S107379289900063X},
      zblnumber = {0938.35106},
      }
  • [BC2] Go to document H. Bahouri and J. Chemin, "Équations d’ondes quasilinéaires et estimations de Strichartz," Amer. J. Math., vol. 121, iss. 6, pp. 1337-1377, 1999.
    @ARTICLE{BC2,
      author = {Bahouri, Hajer and Chemin, Jean-Yves},
      title = {\'{E}quations d'ondes quasilinéaires et estimations de {S}trichartz},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {121},
      year = {1999},
      number = {6},
      pages = {1337--1377},
      issn = {0002-9327},
      mrclass = {35L70 (35B45)},
      mrnumber = {1719798},
      mrreviewer = {Tohru Ozawa},
      doi = {10.1353/ajm.1999.0038},
      url = {https://doi.org/10.1353/ajm.1999.0038},
      zblnumber = {0952.35073},
      }
  • [Bourgain-Li] Go to document J. Bourgain and D. Li, "Strong ill-posedness of the 3D incompressible Euler equation in borderline spaces," Int. Math. Res. Not. IMRN, iss. 16, pp. 12155-12264, 2021.
    @ARTICLE{Bourgain-Li,
      author = {Bourgain, Jean and Li, Dong},
      title = {Strong ill-posedness of the 3{D} incompressible {E}uler equation in borderline spaces},
      journal = {Int. Math. Res. Not. IMRN},
      fjournal = {International Mathematics Research Notices. IMRN},
      year = {2021},
      number = {16},
      pages = {12155--12264},
      issn = {1073-7928},
      mrclass = {35Q30},
      mrnumber = {4300224},
      doi = {10.1093/imrn/rnz158},
      url = {https://doi.org/10.1093/imrn/rnz158},
      zblnumber = {},
      }
  • [Bressan1] A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford Univ. Press, Oxford, 2000, vol. 20.
    @BOOK{Bressan1,
      author = {Bressan, Alberto},
      title = {Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem},
      series = {Oxford Lect. Ser. Math. Appl.},
      volume = {20},
      publisher = {Oxford Univ. Press, Oxford},
      year = {2000},
      pages = {xii+250},
      isbn = {0-19-850700-3},
      mrclass = {35-02 (35B35 35L65)},
      mrnumber = {1816648},
      mrreviewer = {Denis Serre},
      zblnumber = {0997.35002},
      }
  • [Bressan2] A. Bressan, "Hyperbolic systems of conservation laws in one space dimension," in Proceedings of the International Congress of Mathematicians, Vol. I, 2002, pp. 159-178.
    @INPROCEEDINGS{Bressan2,
      author = {Bressan, Alberto},
      title = {Hyperbolic systems of conservation laws in one space dimension},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. {I}},
      venue = {{B}eijing, 2002},
      pages = {159--178},
      publisher = {Higher Ed. Press, Beijing},
      year = {2002},
      mrclass = {35L65 (35L60)},
      mrnumber = {1989183},
      mrreviewer = {Philippe G. LeFloch},
      zblnumber = {1032.35129},
      }
  • [Brenner1] Go to document P. Brenner, "The Cauchy problem for symmetric hyperbolic systems in $L_{p}$," Math. Scand., vol. 19, pp. 27-37, 1966.
    @ARTICLE{Brenner1,
      author = {Brenner, Philip},
      title = {The {C}auchy problem for symmetric hyperbolic systems in {$L\sb{p}$}},
      journal = {Math. Scand.},
      fjournal = {Mathematica Scandinavica},
      volume = {19},
      year = {1966},
      pages = {27--37},
      issn = {0025-5521},
      mrclass = {35.53 (47.00)},
      mrnumber = {0212427},
      mrreviewer = {C. Harvey},
      doi = {10.7146/math.scand.a-10793},
      url = {https://doi.org/10.7146/math.scand.a-10793},
      zblnumber = {0154.11304},
      }
  • [Brenner2] Go to document P. Brenner, "The Cauchy problem for systems in $L_{p}$ and $L_{p,\alpha }$," Ark. Mat., vol. 11, pp. 75-101, 1973.
    @ARTICLE{Brenner2,
      author = {Brenner, Philip},
      title = {The {C}auchy problem for systems in {$L\sb{p}$} and {$L\sb{p,\alpha }$}},
      journal = {Ark. Mat.},
      fjournal = {Arkiv för Matematik},
      volume = {11},
      year = {1973},
      pages = {75--101},
      issn = {0004-2080},
      mrclass = {35S10},
      mrnumber = {0324249},
      mrreviewer = {Bent E. Petersen},
      doi = {10.1007/BF02388508},
      url = {https://doi.org/10.1007/BF02388508},
      zblnumber = {0256.35006},
      }
  • [shock] Go to document D. Christodoulou, The Formation of Shocks in 3-Dimensional Fluids, European Math. Soc. (EMS), Zürich, 2007.
    @BOOK{shock,
      author = {Christodoulou, Demetrios},
      title = {The Formation of Shocks in 3-Dimensional Fluids},
      series = {EMS Monographs in Mathematics},
      publisher = {European Math. Soc. (EMS), Zürich},
      year = {2007},
      pages = {viii+992},
      isbn = {978-3-03719-031-9},
      mrclass = {76L05 (35L67 35Q35 35Q75 76Y05 83C55)},
      mrnumber = {2284927},
      mrreviewer = {Philippe G. LeFloch},
      doi = {10.4171/031},
      url = {https://doi.org/10.4171/031},
      zblnumber = {1117.35001},
      }
  • [CK] D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski Space, Princeton Univ. Press, Princeton, NJ, 1993, vol. 41.
    @BOOK{CK,
      author = {Christodoulou, Demetrios and Klainerman, Sergiu},
      title = {The Global Nonlinear Stability of the {M}inkowski Space},
      series = {Princeton Math. Ser.},
      volume = {41},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {1993},
      pages = {x+514},
      isbn = {0-691-08777-6},
      mrclass = {83C05 (35Q75 58G16 83C35)},
      mrnumber = {1316662},
      mrreviewer = {Alan D. Rendall},
      zblnumber = {0827.53055},
      }
  • [Mih_rod] Go to document M. Dafermos and I. Rodnianski, "A new physical-space approach to decay for the wave equation with applications to black hole spacetimes," in XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, pp. 421-432.
    @INCOLLECTION{Mih_rod,
      author = {Dafermos, Mihalis and Rodnianski, Igor},
      title = {A new physical-space approach to decay for the wave equation with applications to black hole spacetimes},
      booktitle = {X{VI}th {I}nternational {C}ongress on {M}athematical {P}hysics},
      pages = {421--432},
      publisher = {World Sci. Publ., Hackensack, NJ},
      year = {2010},
      mrclass = {58J45 (35L10 83C05 83C57)},
      mrnumber = {2730803},
      mrreviewer = {Alan D. Rendall},
      doi = {10.1142/9789814304634\_0032},
      url = {https://doi.org/10.1142/9789814304634_0032},
      zblnumber = {1211.83019},
      }
  • [Glimm] Go to document J. Glimm, "Solutions in the large for nonlinear hyperbolic systems of equations," Comm. Pure Appl. Math., vol. 18, pp. 697-715, 1965.
    @ARTICLE{Glimm,
      author = {Glimm, James},
      title = {Solutions in the large for nonlinear hyperbolic systems of equations},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {18},
      year = {1965},
      pages = {697--715},
      issn = {0010-3640},
      mrclass = {35.57},
      mrnumber = {0194770},
      mrreviewer = {A. K. Aziz},
      doi = {10.1002/cpa.3160180408},
      url = {https://doi.org/10.1002/cpa.3160180408},
      zblnumber = {0141.28902},
      }
  • [HKM] Go to document T. J. R. Hughes, T. Kato, and J. E. Marsden, "Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity," Arch. Rational Mech. Anal., vol. 63, iss. 3, pp. 273-294, 1976.
    @ARTICLE{HKM,
      author = {Hughes, Thomas J. R. and Kato, Tosio and Marsden, Jerrold E.},
      title = {Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity},
      journal = {Arch. Rational Mech. Anal.},
      fjournal = {Archive for Rational Mechanics and Analysis},
      volume = {63},
      year = {1976},
      number = {3},
      pages = {273--294},
      issn = {0003-9527},
      mrclass = {35L55 (58D15)},
      mrnumber = {0420024},
      mrreviewer = {M. Fabrizio},
      doi = {10.1007/BF00251584},
      url = {https://doi.org/10.1007/BF00251584},
      zblnumber = {0361.35046},
      }
  • [Kato] Go to document T. Kato, "The Cauchy problem for quasi-linear symmetric hyperbolic systems," Arch. Rational Mech. Anal., vol. 58, iss. 3, pp. 181-205, 1975.
    @ARTICLE{Kato,
      author = {Kato, Tosio},
      title = {The {C}auchy problem for quasi-linear symmetric hyperbolic systems},
      journal = {Arch. Rational Mech. Anal.},
      fjournal = {Archive for Rational Mechanics and Analysis},
      volume = {58},
      year = {1975},
      number = {3},
      pages = {181--205},
      issn = {0003-9527},
      mrclass = {35L45},
      mrnumber = {0390516},
      mrreviewer = {Frank J. Massey, III},
      doi = {10.1007/BF00280740},
      url = {https://doi.org/10.1007/BF00280740},
      zblnumber = {0343.35056},
      }
  • [Kato-Ponce] Go to document T. Kato and G. Ponce, "Commutator estimates and the Euler and Navier-Stokes equations," Comm. Pure Appl. Math., vol. 41, iss. 7, pp. 891-907, 1988.
    @ARTICLE{Kato-Ponce,
      author = {Kato, Tosio and Ponce, Gustavo},
      title = {Commutator estimates and the {E}uler and {N}avier-{S}tokes equations},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {41},
      year = {1988},
      number = {7},
      pages = {891--907},
      issn = {0010-3640},
      mrclass = {35Q10 (47F05 76D05)},
      mrnumber = {0951744},
      mrreviewer = {Josef Bemelmans},
      doi = {10.1002/cpa.3160410704},
      url = {https://doi.org/10.1002/cpa.3160410704},
      zblnumber = {0671.35066},
      }
  • [Kcom] Go to document S. Klainerman, "A commuting vectorfields approach to Strichartz-type inequalities and applications to quasi-linear wave equations," Internat. Math. Res. Notices, iss. 5, pp. 221-274, 2001.
    @ARTICLE{Kcom,
      author = {Klainerman, Sergiu},
      title = {A commuting vectorfields approach to {S}trichartz-type inequalities and applications to quasi-linear wave equations},
      journal = {Internat. Math. Res. Notices},
      fjournal = {International Mathematics Research Notices},
      year = {2001},
      number = {5},
      pages = {221--274},
      issn = {1073-7928},
      mrclass = {35L70},
      mrnumber = {1820023},
      mrreviewer = {Alan Jeffrey},
      doi = {10.1155/S1073792801000137},
      url = {https://doi.org/10.1155/S1073792801000137},
      zblnumber = {0993.35022},
      }
  • [KRduke] Go to document S. Klainerman and I. Rodnianski, "Improved local well-posedness for quasilinear wave equations in dimension three," Duke Math. J., vol. 117, iss. 1, pp. 1-124, 2003.
    @ARTICLE{KRduke,
      author = {Klainerman, Sergiu and Rodnianski, Igor},
      title = {Improved local well-posedness for quasilinear wave equations in dimension three},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {117},
      year = {2003},
      number = {1},
      pages = {1--124},
      issn = {0012-7094},
      mrclass = {35L70 (35B30 35L15 58J45)},
      mrnumber = {1962783},
      mrreviewer = {Woodford W. Zachary},
      doi = {10.1215/S0012-7094-03-11711-1},
      url = {https://doi.org/10.1215/S0012-7094-03-11711-1},
      zblnumber = {1031.35091},
      }
  • [KRd] Go to document S. Klainerman and I. Rodnianski, "Ricci defects of microlocalized Einstein metrics," J. Hyperbolic Differ. Equ., vol. 1, iss. 1, pp. 85-113, 2004.
    @ARTICLE{KRd,
      author = {Klainerman, Sergiu and Rodnianski, Igor},
      title = {Ricci defects of microlocalized {E}instein metrics},
      journal = {J. Hyperbolic Differ. Equ.},
      fjournal = {Journal of Hyperbolic Differential Equations},
      volume = {1},
      year = {2004},
      number = {1},
      pages = {85--113},
      issn = {0219-8916},
      mrclass = {58J45 (35A27 35Q75 83C05)},
      mrnumber = {2052472},
      mrreviewer = {Terence Tao},
      doi = {10.1142/S0219891604000056},
      url = {https://doi.org/10.1142/S0219891604000056},
      zblnumber = {1063.53051},
      }
  • [KREinst] Go to document S. Klainerman and I. Rodnianski, "Rough solutions of the Einstein-vacuum equations," Ann. of Math. (2), vol. 161, iss. 3, pp. 1143-1193, 2005.
    @ARTICLE{KREinst,
      author = {Klainerman, Sergiu and Rodnianski, Igor},
      title = {Rough solutions of the {E}instein-vacuum equations},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {161},
      year = {2005},
      number = {3},
      pages = {1143--1193},
      issn = {0003-486X},
      mrclass = {58J45 (35Q75)},
      mrnumber = {2180400},
      mrreviewer = {Lars \AA ke Andersson},
      doi = {10.4007/annals.2005.161.1143},
      url = {https://doi.org/10.4007/annals.2005.161.1143},
      zblnumber = {1089.83006},
      }
  • [KREins2] Go to document S. Klainerman and I. Rodnianski, "The causal structure of microlocalized rough Einstein metrics," Ann. of Math. (2), vol. 161, iss. 3, pp. 1195-1243, 2005.
    @ARTICLE{KREins2,
      author = {Klainerman, Sergiu and Rodnianski, Igor},
      title = {The causal structure of microlocalized rough {E}instein metrics},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {161},
      year = {2005},
      number = {3},
      pages = {1195--1243},
      issn = {0003-486X},
      mrclass = {58J45 (35Q75 53C25)},
      mrnumber = {2180401},
      mrreviewer = {Lars \AA ke Andersson},
      doi = {10.4007/annals.2005.161.1195},
      url = {https://doi.org/10.4007/annals.2005.161.1195},
      zblnumber = {1089.83007},
      }
  • [KRsurf] Go to document S. Klainerman and I. Rodnianski, "A geometric approach to the Littlewood-Paley theory," Geom. Funct. Anal., vol. 16, iss. 1, pp. 126-163, 2006.
    @ARTICLE{KRsurf,
      author = {Klainerman, Sergiu and Rodnianski, Igor},
      title = {A geometric approach to the {L}ittlewood-{P}aley theory},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {16},
      year = {2006},
      number = {1},
      pages = {126--163},
      issn = {1016-443X},
      mrclass = {58J45 (35J15 42B25 46E35)},
      mrnumber = {2221254},
      mrreviewer = {Simone Calogero},
      doi = {10.1007/s00039-006-0551-1},
      url = {https://doi.org/10.1007/s00039-006-0551-1},
      zblnumber = {1206.35080},
      }
  • [KJR] Go to document S. Klainerman, I. Rodnianski, and J. Szeftel, "The bounded $L^2$ curvature conjecture," Invent. Math., vol. 202, iss. 1, pp. 91-216, 2015.
    @ARTICLE{KJR,
      author = {Klainerman, Sergiu and Rodnianski, Igor and Szeftel, Jeremie},
      title = {The bounded {$L^2$} curvature conjecture},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {202},
      year = {2015},
      number = {1},
      pages = {91--216},
      issn = {0020-9910},
      mrclass = {83C05 (35A01 35A09 35Q76 58J45)},
      mrnumber = {3402797},
      mrreviewer = {Piotr T. Chru\'{s}ciel},
      doi = {10.1007/s00222-014-0567-3},
      url = {https://doi.org/10.1007/s00222-014-0567-3},
      zblnumber = {1330.53089},
      }
  • [KriegerMKG4] Go to document J. Krieger and J. Lührmann, "Concentration compactness for the critical Maxwell-Klein-Gordon equation," Ann. PDE, vol. 1, iss. 1, p. 5, 2015.
    @ARTICLE{KriegerMKG4,
      author = {Krieger, Joachim and Lührmann, Jonas},
      title = {Concentration compactness for the critical {M}axwell-{K}lein-{G}ordon equation},
      journal = {Ann. PDE},
      fjournal = {Annals of PDE. Journal Dedicated to the Analysis of Problems from Physical Sciences},
      volume = {1},
      year = {2015},
      number = {1},
      pages = {Art. 5, 208},
      issn = {2524-5317},
      mrclass = {35Q60 (35B45 35B65 35P25)},
      mrnumber = {3479062},
      doi = {10.1007/s40818-015-0004-y},
      url = {https://doi.org/10.1007/s40818-015-0004-y},
      zblnumber = {1406.35181},
      }
  • [Lind] Go to document H. Lindblad, "Counterexamples to local existence for semi-linear wave equations," Amer. J. Math., vol. 118, iss. 1, pp. 1-16, 1996.
    @ARTICLE{Lind,
      author = {Lindblad, Hans},
      title = {Counterexamples to local existence for semi-linear wave equations},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {118},
      year = {1996},
      number = {1},
      pages = {1--16},
      issn = {0002-9327},
      mrclass = {35L70 (35A07 35B65)},
      mrnumber = {1375301},
      mrreviewer = {Hiroyuki Takamura},
      doi = {10.1353/ajm.1996.0002},
      url = {https://doi.org/10.1353/ajm.1996.0002},
      zblnumber = {0855.35080},
      }
  • [Jared_Luk] Go to document J. Luk and J. Speck, "The hidden null structure of the compressible Euler equations and a prelude to applications," J. Hyperbolic Differ. Equ., vol. 17, iss. 1, pp. 1-60, 2020.
    @ARTICLE{Jared_Luk,
      author = {Luk, Jonathan and Speck, Jared},
      title = {The hidden null structure of the compressible {E}uler equations and a prelude to applications},
      journal = {J. Hyperbolic Differ. Equ.},
      fjournal = {Journal of Hyperbolic Differential Equations},
      volume = {17},
      year = {2020},
      number = {1},
      pages = {1--60},
      issn = {0219-8916},
      mrclass = {35Q35 (35L67 35L72 35Q31 76N10)},
      mrnumber = {4109292},
      doi = {10.1142/S0219891620500010},
      url = {https://doi.org/10.1142/S0219891620500010},
      zblnumber = {1441.35190},
      }
  • [Majda] Go to document A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New York, 1984, vol. 53.
    @BOOK{Majda,
      author = {Majda, A.},
      title = {Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables},
      series = {App. Math. Sci.},
      volume = {53},
      publisher = {Springer-Verlag, New York},
      year = {1984},
      pages = {viii+159},
      isbn = {0-387-96037-6},
      mrclass = {35L65 (76L05 76N10)},
      mrnumber = {0748308},
      mrreviewer = {Joel Smoller},
      doi = {10.1007/978-1-4612-1116-7},
      url = {https://doi.org/10.1007/978-1-4612-1116-7},
      zblnumber = {0537.76001},
      }
  • [OhMKG4] Go to document S. Oh and D. Tataru, "Global well-posedness and scattering of the $(4+1)$-dimensional Maxwell-Klein-Gordon equation," Invent. Math., vol. 205, iss. 3, pp. 781-877, 2016.
    @ARTICLE{OhMKG4,
      author = {Oh, Sung-Jin and Tataru, Daniel},
      title = {Global well-posedness and scattering of the {$(4+1)$}-dimensional {M}axwell-{K}lein-{G}ordon equation},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {205},
      year = {2016},
      number = {3},
      pages = {781--877},
      issn = {0020-9910},
      mrclass = {35Q60 (35B30 35B44 35C06 35P25 81U10)},
      mrnumber = {3539926},
      mrreviewer = {Gaetano Siciliano},
      doi = {10.1007/s00222-016-0646-8},
      url = {https://doi.org/10.1007/s00222-016-0646-8},
      zblnumber = {1364.35198},
      }
  • [Petersen] P. Petersen, "Convergence theorems in Riemannian geometry," in Comparison Geometry, Cambridge Univ. Press, Cambridge, 1997, vol. 30, pp. 167-202.
    @INCOLLECTION{Petersen,
      author = {Petersen, Peter},
      title = {Convergence theorems in {R}iemannian geometry},
      booktitle = {Comparison Geometry},
      venue = {{B}erkeley, {CA},
      1993--94},
      series = {Math. Sci. Res. Inst. Publ.},
      volume = {30},
      pages = {167--202},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1997},
      mrclass = {53C21 (53C23)},
      mrnumber = {1452874},
      mrreviewer = {Conrad Plaut},
      zblnumber = {0898.53035},
      }
  • [Smith] Go to document H. F. Smith, "A parametrix construction for wave equations with $C^{1,1}$ coefficients," Ann. Inst. Fourier (Grenoble), vol. 48, iss. 3, pp. 797-835, 1998.
    @ARTICLE{Smith,
      author = {Smith, Hart F.},
      title = {A parametrix construction for wave equations with {$C^{1,1}$} coefficients},
      journal = {Ann. Inst. Fourier (Grenoble)},
      fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
      volume = {48},
      year = {1998},
      number = {3},
      pages = {797--835},
      issn = {0373-0956},
      mrclass = {35L15 (35S30)},
      mrnumber = {1644105},
      mrreviewer = {Peter R. Popivanov},
      doi = {10.5802/aif.1640},
      url = {https://doi.org/10.5802/aif.1640},
      zblnumber = {0974.35068},
      }
  • [Tata-Sterb] Go to document J. Sterbenz and D. Tataru, "Regularity of wave-maps in dimension $2+1$," Comm. Math. Phys., vol. 298, iss. 1, pp. 231-264, 2010.
    @ARTICLE{Tata-Sterb,
      author = {Sterbenz, Jacob and Tataru, Daniel},
      title = {Regularity of wave-maps in dimension {$2+1$}},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {298},
      year = {2010},
      number = {1},
      pages = {231--264},
      issn = {0010-3616},
      mrclass = {58E20},
      mrnumber = {2657818},
      mrreviewer = {Michael Ruzhansky},
      doi = {10.1007/s00220-010-1062-3},
      url = {https://doi.org/10.1007/s00220-010-1062-3},
      zblnumber = {1218.35057},
      }
  • [Tao] Go to document T. Tao, "Global regularity of wave maps. II. Small energy in two dimensions," Comm. Math. Phys., vol. 224, iss. 2, pp. 443-544, 2001.
    @ARTICLE{Tao,
      author = {Tao, Terence},
      title = {Global regularity of wave maps. {II}. {S}mall energy in two dimensions},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {224},
      year = {2001},
      number = {2},
      pages = {443--544},
      issn = {0010-3616},
      mrclass = {58J45 (35B60 35B65 35L15 58J47)},
      mrnumber = {1869874},
      mrreviewer = {Joachim Krieger},
      doi = {10.1007/PL00005588},
      url = {https://doi.org/10.1007/PL00005588},
      zblnumber = {1020.35046},
      }
  • [Tao1] T. Tao, Product estimates, multilinear estimates.
    @MISC{Tao1,
      author = {Tao, Terence},
      title = {Product estimates, multilinear estimates},
      note = {class notes: Harmonic analysis in the phase plane, Winter 2001; available on author's webpage},
      sortyear={2022},
      }
  • [Tataru] Go to document H. F. Smith and D. Tataru, "Sharp local well-posedness results for the nonlinear wave equation," Ann. of Math. (2), vol. 162, iss. 1, pp. 291-366, 2005.
    @ARTICLE{Tataru,
      author = {Smith, Hart F. and Tataru, Daniel},
      title = {Sharp local well-posedness results for the nonlinear wave equation},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {162},
      year = {2005},
      number = {1},
      pages = {291--366},
      issn = {0003-486X},
      mrclass = {35L70 (35A07 35B30)},
      mrnumber = {2178963},
      mrreviewer = {Satyanad Kichenassamy},
      doi = {10.4007/annals.2005.162.291},
      url = {https://doi.org/10.4007/annals.2005.162.291},
      zblnumber = {1098.35113},
      }
  • [Stein2] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993, vol. 43.
    @BOOK{Stein2,
      author = {Stein, Elias M.},
      title = {Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals},
      series = {Princeton Math. Ser.},
      volume = {43},
      note = {with the assistance of Timothy S. Murphy},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {1993},
      pages = {xiv+695},
      isbn = {0-691-03216-5},
      mrclass = {42-02 (35Sxx 43-02 47G30)},
      mrnumber = {1232192},
      mrreviewer = {Michael Cowling},
      zblnumber = {0821.42001},
      }
  • [T1] Go to document D. Tataru, "Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation," Amer. J. Math., vol. 122, iss. 2, pp. 349-376, 2000.
    @ARTICLE{T1,
      author = {Tataru, Daniel},
      title = {Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {122},
      year = {2000},
      number = {2},
      pages = {349--376},
      issn = {0002-9327},
      mrclass = {35S05 (35L70)},
      mrnumber = {1749052},
      mrreviewer = {Luigi Rodino},
      doi = {10.1353/ajm.2000.0014},
      url = {https://doi.org/10.1353/ajm.2000.0014},
      zblnumber = {0959.35125},
      }
  • [T3] Go to document D. Tataru, "Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III," J. Amer. Math. Soc., vol. 15, iss. 2, pp. 419-442, 2002.
    @ARTICLE{T3,
      author = {Tataru, Daniel},
      title = {Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. {III}},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {15},
      year = {2002},
      number = {2},
      pages = {419--442},
      issn = {0894-0347},
      mrclass = {35L10 (35A22 35B40 35L70 35S05)},
      mrnumber = {1887639},
      mrreviewer = {Luigi Rodino},
      doi = {10.1090/S0894-0347-01-00375-7},
      url = {https://doi.org/10.1090/S0894-0347-01-00375-7},
      zblnumber = {0990.35027},
      }
  • [Wangthesis] Q. Wang, Causal Geometry of Einstein-Vacuum Spacetimes, ProQuest LLC, Ann Arbor, MI, 2006.
    @BOOK{Wangthesis,
      author = {Wang, Qian},
      title = {Causal Geometry of {E}instein-Vacuum Spacetimes},
      note = {Ph.D. Thesis, Princeton Univ.},
      publisher = {ProQuest LLC, Ann Arbor, MI},
      year = {2006},
      pages = {197},
      isbn = {978-0542-74729-8},
      mrclass = {Thesis},
      mrnumber = {2708931},
      zblnumber = {},
      }
  • [Wang09] Go to document Q. Wang, "On the geometry of null cones in Einstein-vacuum spacetimes," Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 26, iss. 1, pp. 285-328, 2009.
    @ARTICLE{Wang09,
      author = {Wang, Qian},
      title = {On the geometry of null cones in {E}instein-vacuum spacetimes},
      journal = {Ann. Inst. H. Poincaré Anal. Non Linéaire},
      fjournal = {Annales de l'Institut Henri Poincaré. Analyse Non Linéaire},
      volume = {26},
      year = {2009},
      number = {1},
      pages = {285--328},
      issn = {0294-1449},
      mrclass = {53C50 (53C80 83C75)},
      mrnumber = {2483823},
      mrreviewer = {Norbert Noutchegueme},
      doi = {10.1016/j.anihpc.2008.03.002},
      url = {https://doi.org/10.1016/j.anihpc.2008.03.002},
      zblnumber = {1157.83309},
      }
  • [Wang10] Go to document Q. Wang, "Improved breakdown criterion for Einstein vacuum equations in CMC gauge," Comm. Pure Appl. Math., vol. 65, iss. 1, pp. 21-76, 2012.
    @ARTICLE{Wang10,
      author = {Wang, Qian},
      title = {Improved breakdown criterion for {E}instein vacuum equations in {CMC} gauge},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {65},
      year = {2012},
      number = {1},
      pages = {21--76},
      issn = {0010-3640},
      mrclass = {58J45 (35Q76 53C80)},
      mrnumber = {2846637},
      mrreviewer = {Giulio Caciotta},
      doi = {10.1002/cpa.20388},
      url = {https://doi.org/10.1002/cpa.20388},
      zblnumber = {1248.83009},
      }
  • [Wang10online] Go to document Q. Wang, "Improved breakdown criterion for Einstein vacuum equations in CMC gauge," Comm. Pure Appl. Math., vol. 65, iss. 1, pp. 21-76, 2012.
    @ARTICLE{Wang10online,
      author = {Wang, Qian},
      title = {Improved breakdown criterion for {E}instein vacuum equations in {CMC} gauge},
      journal = {Comm. Pure Appl. Math.},
      fjournal = {Communications on Pure and Applied Mathematics},
      volume = {65},
      year = {2012},
      number = {1},
      pages = {21--76},
      issn = {0010-3640},
      mrclass = {58J45 (35Q76 53C80)},
      mrnumber = {2846637},
      mrreviewer = {Giulio Caciotta},
      doi = {10.1002/cpa.20388},
      url = {https://doi.org/10.1002/cpa.20388},
      zblnumber = {1248.83009},
      }
  • [WangCMCSH] Go to document Q. Wang, "Rough solutions of Einstein vacuum equations in CMCSH gauge," Comm. Math. Phys., vol. 328, iss. 3, pp. 1275-1340, 2014.
    @ARTICLE{WangCMCSH,
      author = {Wang, Qian},
      title = {Rough solutions of {E}instein vacuum equations in {CMCSH} gauge},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {328},
      year = {2014},
      number = {3},
      pages = {1275--1340},
      issn = {0010-3616},
      mrclass = {83C05 (35Q75 83C10 83C35)},
      mrnumber = {3201225},
      mrreviewer = {Dimitar Angelov Kolev},
      doi = {10.1007/s00220-014-2015-z},
      url = {https://doi.org/10.1007/s00220-014-2015-z},
      zblnumber = {1294.83009},
      }
  • [Wangricci] Go to document Q. Wang, "Causal geometry of rough Einstein CMCSH spacetime," J. Hyperbolic Differ. Equ., vol. 11, iss. 3, pp. 563-601, 2014.
    @ARTICLE{Wangricci,
      author = {Wang, Qian},
      title = {Causal geometry of rough {E}instein {CMCSH} spacetime},
      journal = {J. Hyperbolic Differ. Equ.},
      fjournal = {Journal of Hyperbolic Differential Equations},
      volume = {11},
      year = {2014},
      number = {3},
      pages = {563--601},
      issn = {0219-8916},
      mrclass = {83C05 (35M30 35Q75)},
      mrnumber = {3261303},
      mrreviewer = {Marcel Dossa},
      doi = {10.1142/S0219891614500167},
      url = {https://doi.org/10.1142/S0219891614500167},
      zblnumber = {1303.83006},
      }
  • [Jared_4] M. M. Disconzi, C. Luo, G. Mazzone, and J. Speck, Rough sound waves in 3D compressible Euler flow with vorticity, 2019.
    @MISC{Jared_4,
      author = {Disconzi, M. M. and Luo, C. and Mazzone, G. and Speck, J.},
      title = {Rough sound waves in {3D} compressible {E}uler flow with vorticity},
      arxiv = {1909.02550v1},
      year = {2019},
      zblnumber = {},
      }
  • [roughgeneral_online] Q. Wang, A geometric approach for sharp local well-posedness of quasilinear wave equations, 2014.
    @MISC{roughgeneral_online,
      author = {Wang, Qian},
      title = {A geometric approach for sharp local well-posedness of quasilinear wave equations},
      arxiv = {1408.3780v1},
      year = {2014},
      zblnumber.= {},
      }
  • [Wangrough] Go to document Q. Wang, "A geometric approach for sharp local well-posedness of quasilinear wave equations," Ann. PDE, vol. 3, iss. 1, p. 108, 2017.
    @ARTICLE{Wangrough,
      author = {Wang, Qian},
      title = {A geometric approach for sharp local well-posedness of quasilinear wave equations},
      journal = {Ann. PDE},
      fjournal = {Annals of PDE. Journal Dedicated to the Analysis of Problems from Physical Sciences},
      volume = {3},
      year = {2017},
      number = {1},
      note = {Paper No. 12},
      pages = {108},
      issn = {2524-5317},
      mrclass = {35L70 (35B30 35L15)},
      mrnumber = {3656947},
      mrreviewer = {Calvin Tadmon},
      doi = {10.1007/s40818-016-0013-5},
      url = {https://doi.org/10.1007/s40818-016-0013-5},
      zblnumber = {1397.35158},
      }

Authors

Qian Wang

Mathematical Institute, University of Oxford, Oxford, UK