Abstract
We prove a fundamental conjecture of Rubin on the structure of local units in the anticyclotomic $\mathbb{Z}_p$-extension of the unramified quadratic extension of $\mathbb{Q}_p$ for $p\geq 5$ a prime.
Rubin’s conjecture underlies Iwasawa theory of the anticyclotomic deformation of a CM elliptic curve over the CM field at primes $p$ of good supersingular reduction, notably the Iwasawa main conjecture in terms of the $p$-adic $L$-function. As a consequence, we prove an inequality in the $p$-adic Birch and Swinnerton-Dyer conjecture for Rubin’s $p$-adic $L$-function. Rubin’s conjecture is also an essential tool in our exploration of the arithmetic of Rubin’s $p$-adic $L$-function, which includes a Bertolini–Darmon–Prasanna type formula.
-
[AH0]
A. Agboola and B. Howard, "Anticyclotomic Iwasawa theory of CM elliptic curves. II," Math. Res. Lett., vol. 12, iss. 5-6, pp. 611-621, 2005.
@ARTICLE{AH0,
author = {Agboola, Adebisi and Howard, Benjamin},
title = {Anticyclotomic {I}wasawa theory of {CM} elliptic curves. {II}},
journal = {Math. Res. Lett.},
fjournal = {Mathematical Research Letters},
volume = {12},
year = {2005},
number = {5-6},
pages = {611--621},
issn = {1073-2780},
mrclass = {11R23 (11G05)},
mrnumber = {2189225},
mrreviewer = {Mak Trifković},
doi = {10.4310/MRL.2005.v12.n5.a1},
url = {https://doi.org/10.4310/MRL.2005.v12.n5.a1},
zblnumber = {1130.11058},
} -
[Ar]
T. Arnold, "Anticyclotomic main conjectures for CM modular forms," J. Reine Angew. Math., vol. 606, pp. 41-78, 2007.
@ARTICLE{Ar,
author = {Arnold, Trevor},
title = {Anticyclotomic main conjectures for {CM} modular forms},
journal = {J. Reine Angew. Math.},
fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
volume = {606},
year = {2007},
pages = {41--78},
issn = {0075-4102},
mrclass = {11R23 (11G40)},
mrnumber = {2337641},
mrreviewer = {Benjamin V. Howard},
doi = {10.1515/CRELLE.2007.034},
url = {https://doi.org/10.1515/CRELLE.2007.034},
zblnumber = {1138.11047},
} -
[BDP1]
M. Bertolini, H. Darmon, and K. Prasanna, "Generalized Heegner cycles and $p$-adic Rankin $L$-series," Duke Math. J., vol. 162, iss. 6, pp. 1033-1148, 2013.
@ARTICLE{BDP1,
author = {Bertolini, Massimo and Darmon, Henri and Prasanna, Kartik},
title = {Generalized {H}eegner cycles and {$p$}-adic {R}ankin {$L$}-series},
note = {with an appendix by Brian Conrad},
journal = {Duke Math. J.},
fjournal = {Duke Mathematical Journal},
volume = {162},
year = {2013},
number = {6},
pages = {1033--1148},
issn = {0012-7094},
mrclass = {11G40 (11G05 11G15 11G35)},
mrnumber = {3053566},
mrreviewer = {Jan Nekov\'{a}\v{r}},
doi = {10.1215/00127094-2142056},
url = {https://doi.org/10.1215/00127094-2142056},
zblnumber = {1302.11043},
} -
[BKO1] A. A. Burungale, S. Kobayashi, and K. Ota, $p$-adic $L$-functions and rational points on CM elliptic curves at inert primes.
@MISC{BKO1,
author = {Burungale, Ashay A. and Kobayashi, S. and Ota, K.},
title = {$p$-adic {$L$}-functions and rational points on {CM} elliptic curves at inert primes},
note = {preprint},
zblnumber = {},
} -
[BKO2] A. A. Burungale, S. Kobayashi, and K. Ota, A local invariant of Rubin and $p$-divisibility of anticyclotomic Hecke $L$-values at inert primes.
@MISC{BKO2,
author = {Burungale, Ashay A. and Kobayashi, S. and Ota, K.},
title = {A local invariant of {R}ubin and $p$-divisibility of anticyclotomic {H}ecke {$L$-}values at inert primes},
note = {in preparation},
zblnumber = {},
} -
[BKOY] A. A. Burungale, S. Kobayashi, K. Ota, and S. Yasuda, Kato’s $\varepsilon$-conjecture for anticyclotomic CM deformations at inert primes.
@MISC{BKOY,
author = {Burungale, Ashay A. and Kobayashi, S. and Ota, K. and Yasuda, S.},
title = {Kato's $\varepsilon$-conjecture for anticyclotomic {CM} deformations at inert primes},
note = {in preparation},
zblnumber = {},
} -
[BuTi]
A. A. Burungale and Y. Tian, "$p$-converse to a theorem of Gross-Zagier, Kolyvagin and Rubin," Invent. Math., vol. 220, iss. 1, pp. 211-253, 2020.
@ARTICLE{BuTi,
author = {Burungale, Ashay A. and Tian, Ye},
title = {{$p$}-converse to a theorem of {G}ross-{Z}agier, {K}olyvagin and {R}ubin},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {220},
year = {2020},
number = {1},
pages = {211--253},
issn = {0020-9910},
mrclass = {11G40 (11R23)},
mrnumber = {4071412},
mrreviewer = {Xin Wan},
doi = {10.1007/s00222-019-00929-7},
url = {https://doi.org/10.1007/s00222-019-00929-7},
zblnumber = {1452.11068},
} -
[CoMc] R. Coleman and K. McMurdy, "Fake CM and the stable model of $X_0(Np^3)$," Doc. Math., iss. Extra Vol., pp. 261-300, 2006.
@ARTICLE{CoMc,
author = {Coleman, Robert and McMurdy, Ken},
title = {Fake {CM} and the stable model of {$X_0(Np^3)$}},
journal = {Doc. Math.},
fjournal = {Documenta Mathematica},
year = {2006},
number = {Extra Vol.},
pages = {261--300},
issn = {1431-0635},
mrclass = {11G18 (11G07 14G22)},
mrnumber = {2290590},
mrreviewer = {Jeffrey D. Achter},
zblnumber = {1155.11030},
} -
[Cox] D. A. Cox, Primes of the Form $x^2 + ny^2$. Fermat, Class Field Theory and Complex Multiplication, John Wiley & Sons, Inc., New York, 1989.
@BOOK{Cox,
author = {Cox, David A.},
title = {Primes of the {F}orm {$x^2 + ny^2$}. Fermat, {C}lass {F}ield {T}heory and {C}omplex Multiplication},
series = {A Wiley-Interscience Publication},
publisher = {John Wiley \& Sons, Inc., New York},
year = {1989},
pages = {xiv+351},
isbn = {0-471-50654-0; 0-471-19079-9},
mrclass = {11A41 (11F11 11R11 11R16 11R18 11R37 11Y11)},
mrnumber = {1028322},
mrreviewer = {Andrew Bremner},
zblnumber = {0701.11001},
} -
[Fin]
T. Finis, "Divisibility of anticyclotomic $L$-functions and theta functions with complex multiplication," Ann. of Math. (2), vol. 163, iss. 3, pp. 767-807, 2006.
@ARTICLE{Fin,
author = {Finis, Tobias},
title = {Divisibility of anticyclotomic {$L$}-functions and theta functions with complex multiplication},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {163},
year = {2006},
number = {3},
pages = {767--807},
issn = {0003-486X},
mrclass = {11R23 (11S40)},
mrnumber = {2215134},
mrreviewer = {David Y. Jao},
doi = {10.4007/annals.2006.163.767},
url = {https://doi.org/10.4007/annals.2006.163.767},
zblnumber = {1111.11047},
} -
[Gr83]
R. Greenberg, "On the Birch and Swinnerton-Dyer conjecture," Invent. Math., vol. 72, iss. 2, pp. 241-265, 1983.
@ARTICLE{Gr83,
author = {Greenberg, Ralph},
title = {On the {B}irch and {S}winnerton-{D}yer conjecture},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {72},
year = {1983},
number = {2},
pages = {241--265},
issn = {0020-9910},
mrclass = {11G40 (11G15 14G25 14K07)},
mrnumber = {0700770},
mrreviewer = {Kenneth A. Ribet},
doi = {10.1007/BF01389322},
url = {https://doi.org/10.1007/BF01389322},
zblnumber = {0546.14015},
} -
[Gr91]
R. Greenberg, "Iwasawa theory and $p$-adic deformations of motives," in Motives (Seattle, WA, 1991), Amer. Math. Soc., Providence, RI, 1994, vol. 55, pp. 193-223.
@INCOLLECTION{Gr91,
author = {Greenberg, Ralph},
title = {Iwasawa theory and {$p$}-adic deformations of motives},
booktitle = {Motives ({S}eattle, {WA},
1991)},
series = {Proc. Sympos. Pure Math.},
volume = {55},
pages = {193--223},
publisher = {Amer. Math. Soc., Providence, RI},
year = {1994},
mrclass = {11F85 (11F33 11F67 11G09 11G20 11R23 19F15)},
mrnumber = {1265554},
mrreviewer = {Alexey A. Panchishkin},
doi = {10.1090/pspum/055.2/1265554},
url = {https://doi.org/10.1090/pspum/055.2/1265554},
zblnumber = {0819.11046},
} -
[Gr01]
R. Greenberg, "Introduction to Iwasawa theory for elliptic curves," in Arithmetic algebraic geometry (Park City, UT, 1999), Amer. Math. Soc., Providence, RI, 2001, vol. 9, pp. 407-464.
@INCOLLECTION{Gr01,
author = {Greenberg, Ralph},
title = {Introduction to {I}wasawa theory for elliptic curves},
booktitle = {Arithmetic algebraic geometry ({P}ark {C}ity, {UT},
1999)},
series = {IAS/Park City Math. Ser.},
volume = {9},
pages = {407--464},
publisher = {Amer. Math. Soc., Providence, RI},
year = {2001},
mrclass = {11G05 (11G40 11R23 11R34)},
mrnumber = {1860044},
mrreviewer = {Massimo Bertolini},
doi = {10.1090/pcms/009/06},
url = {https://doi.org/10.1090/pcms/009/06},
zblnumber = {1002.11048},
} -
[Gross]
B. H. Gross, "On canonical and quasi-canonical liftings," Invent. Math., vol. 84, iss. 2, pp. 321-326, 1986.
@ARTICLE{Gross,
author = {Gross, Benedict H.},
title = {On canonical and quasi-canonical liftings},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {84},
year = {1986},
number = {2},
pages = {321--326},
issn = {0020-9910},
mrclass = {14L05 (11S31 14H25)},
mrnumber = {0833193},
mrreviewer = {K. Shiratani},
doi = {10.1007/BF01388810},
url = {https://doi.org/10.1007/BF01388810},
zblnumber = {0597.14044},
} -
[Hz]
M. Hazewinkel, "On norm maps for one dimensional formal groups. III," Duke Math. J., vol. 44, iss. 2, pp. 305-314, 1977.
@ARTICLE{Hz,
author = {Hazewinkel, Michiel},
title = {On norm maps for one dimensional formal groups. {III}},
journal = {Duke Math. J.},
fjournal = {Duke Mathematical Journal},
volume = {44},
year = {1977},
number = {2},
pages = {305--314},
issn = {0012-7094},
mrclass = {14L05 (12B25)},
mrnumber = {0439851},
mrreviewer = {K. Shiratani},
doi = {10.1215/S0012-7094-77-04412-X},
url = {https://doi.org/10.1215/S0012-7094-77-04412-X},
zblnumber = {0371.14024},
} -
[Jo] N. Jochnowitz, Congruences between modular forms of half integral weights and implications for class numbers and elliptic curves.
@MISC{Jo,
author = {Jochnowitz, N.},
title = {Congruences between modular forms of half integral weights and implications for class numbers and elliptic curves},
note = {preprint},
zblnumber = {},
} -
[K93]
K. Kato, "Lectures on the approach to Iwasawa theory for Hasse-Weil $L$-functions via $B_{ dR}$. I," in Arithmetic Algebraic Geometry, Springer, Berlin, 1993, vol. 1553, pp. 50-163.
@INCOLLECTION{K93,
author = {Kato, Kazuya},
title = {Lectures on the approach to {I}wasawa theory for {H}asse-{W}eil {$L$}-functions via {$B_{\rm dR}$}. {I}},
booktitle = {Arithmetic Algebraic Geometry},
venue = {{T}rento, 1991},
series = {Lecture Notes in Math.},
volume = {1553},
pages = {50--163},
publisher = {Springer, Berlin},
year = {1993},
mrclass = {11F33 (11F67 11F85 11G20 11R23 11S37 19F15)},
mrnumber = {1338860},
mrreviewer = {Alexey A. Panchishkin},
doi = {10.1007/BFb0084729},
url = {https://doi.org/10.1007/BFb0084729},
zblnumber = {0815.11051},
} -
[K]
K. Kato, "$p$-adic Hodge theory and values of zeta functions of modular forms," in Cohomologies $p$-adiques et Applications Arithmétiques. III, Math. Soc. France, Paris, 2004, vol. 295, p. ix, 117-290.
@INCOLLECTION{K,
author = {Kato, Kazuya},
title = {{$p$}-adic {H}odge theory and values of zeta functions of modular forms},
booktitle = {Cohomologies $p$-adiques et Applications Arithmétiques. III},
series = {Astérisque},
publisher={Math. Soc. France, Paris},
volume = {295},
year = {2004},
pages = {ix, 117--290},
issn = {0303-1179},
mrclass = {11F85 (11F67 11G40 11R33 11S80 14G10 14G35)},
mrnumber = {2104361},
mrreviewer = {Fabrizio Andreatta},
url = {http://www.numdam.org/item/AST_2004__295__117_0/},
zblnumber = {1142.11336},
} -
[Kz0]
N. M. Katz, "$p$-adic $L$-functions, Serre-Tate local moduli, and ratios of solutions of differential equations," in Proceedings of the International Congress of Mathematicians. Volume 1, 1980, pp. 365-371.
@INPROCEEDINGS{Kz0,
author = {Katz, Nicholas M.},
title = {{$p$}-adic {$L$}-functions, {S}erre-{T}ate local moduli, and ratios of solutions of differential equations},
booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians. {V}olume 1},
venue = {{H}elsinki, 1978},
pages = {365--371},
publisher = {Acad. Sci. Fennica, Helsinki},
year = {1980},
mrclass = {12B30 (10D30)},
mrnumber = {0562628},
mrreviewer = {K. Shiratani},
url = {https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1978.1/ICM1978.1.ocr.pdf},
zblnumber = {0439.12010},
} -
[Kz] N. M. Katz, "Divisibilities, congruences, and Cartier duality," J. Fac. Sci. Univ. Tokyo Sect. IA Math., vol. 28, iss. 3, pp. 667-678 (1982), 1981.
@ARTICLE{Kz,
author = {Katz, Nicholas M.},
title = {Divisibilities, congruences, and {C}artier duality},
journal = {J. Fac. Sci. Univ. Tokyo Sect. IA Math.},
fjournal = {Journal of the Faculty of Science. Univ. of Tokyo. Section IA. Mathematics},
volume = {28},
year = {1981},
number = {3},
pages = {667--678 (1982)},
issn = {0040-8980},
mrclass = {10D23 (14L05)},
mrnumber = {0656042},
mrreviewer = {Thomas Zink},
zblnumber = {0559.14032},
} -
[KM]
N. M. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves, Princeton Univ. Press, Princeton, NJ, 1985, vol. 108.
@BOOK{KM,
author = {Katz, Nicholas M. and Mazur, Barry},
title = {Arithmetic Moduli of Elliptic Curves},
series = {Ann. of Math. Stud.},
volume = {108},
publisher = {Princeton Univ. Press, Princeton, NJ},
year = {1985},
pages = {xiv+514},
isbn = {0-691-08349-5; 0-691-08352-5},
mrclass = {11G05 (11F11 14G25 14K15)},
mrnumber = {0772569},
mrreviewer = {Kenneth A. Ribet},
doi = {10.1515/9781400881710},
url = {https://doi.org/10.1515/9781400881710},
zblnumber = {0576.14026},
} -
[Ko0]
S. Kobayashi, "Iwasawa theory for elliptic curves at supersingular primes," Invent. Math., vol. 152, iss. 1, pp. 1-36, 2003.
@ARTICLE{Ko0,
author = {Kobayashi, Shin-ichi},
title = {Iwasawa theory for elliptic curves at supersingular primes},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {152},
year = {2003},
number = {1},
pages = {1--36},
issn = {0020-9910},
mrclass = {11R23 (11G05)},
mrnumber = {1965358},
mrreviewer = {Anupam Saikia},
doi = {10.1007/s00222-002-0265-4},
url = {https://doi.org/10.1007/s00222-002-0265-4},
zblnumber = {1047.11105},
} -
[Ku]
M. Kurihara, "On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. I," Invent. Math., vol. 149, iss. 1, pp. 195-224, 2002.
@ARTICLE{Ku,
author = {Kurihara, Masato},
title = {On the {T}ate {S}hafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. {I}},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {149},
year = {2002},
number = {1},
pages = {195--224},
issn = {0020-9910},
mrclass = {11G05 (11R23)},
mrnumber = {1914621},
mrreviewer = {Vinayak Vatsal},
doi = {10.1007/s002220100206},
url = {https://doi.org/10.1007/s002220100206},
zblnumber = {1033.11028},
} -
[MazurICM] B. Mazur, "Modular curves and arithmetic," in Proceedings of the International Congress of Mathematicians, Vol. 1, 2, 1984, pp. 185-211.
@INPROCEEDINGS{MazurICM,
author = {Mazur, B.},
title = {Modular curves and arithmetic},
booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. 1, 2},
venue = {{W}arsaw, 1983},
pages = {185--211},
publisher = {PWN, Warsaw},
year = {1984},
mrclass = {11G05 (11G30 11G40 14G10 14G25)},
mrnumber = {0804682},
mrreviewer = {Kenneth A. Ribet},
zblnumber = {0597.14023},
} -
[Nar]
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Third ed., Springer-Verlag, Berlin, 2004.
@BOOK{Nar,
author = {Narkiewicz, W{\l}adys{\l}aw},
title = {Elementary and Analytic Theory of Algebraic Numbers},
series = {Springer Monogr. Math.},
edition = {Third},
publisher = {Springer-Verlag, Berlin},
year = {2004},
pages = {xii+708},
isbn = {3-540-21902-1},
mrclass = {11Rxx (11-01 11-02)},
mrnumber = {2078267},
doi = {10.1007/978-3-662-07001-7},
url = {https://doi.org/10.1007/978-3-662-07001-7},
zblnumber = {1159.11039},
} -
[Nasy]
A. G. Nasybullin, "Elliptic curves with supersingular reduction over $\Gamma $-extensions," Uspehi Mat. Nauk, vol. 32, iss. 2(194), pp. 221-222, 1977.
@ARTICLE{Nasy,
author = {Nasybullin, A. G.},
title = {Elliptic curves with supersingular reduction over {$\Gamma $}-extensions},
journal = {Uspehi Mat. Nauk},
fjournal = {Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},
volume = {32},
year = {1977},
number = {2(194)},
pages = {221--222},
issn = {0042-1316},
mrclass = {14G25 (10D10 14K15)},
mrnumber = {0472830},
mrreviewer = {J. W. S. Cassels},
url = {http://mi.mathnet.ru/eng/umn/v32/i2/p221},
zblnumber = {0366.14004},
} -
[Po]
R. Pollack, "On the $p$-adic $L$-function of a modular form at a supersingular prime," Duke Math. J., vol. 118, iss. 3, pp. 523-558, 2003.
@ARTICLE{Po,
author = {Pollack, Robert},
title = {On the {$p$}-adic {$L$}-function of a modular form at a supersingular prime},
journal = {Duke Math. J.},
fjournal = {Duke Mathematical Journal},
volume = {118},
year = {2003},
number = {3},
pages = {523--558},
issn = {0012-7094},
mrclass = {11F67 (11R23)},
mrnumber = {1983040},
mrreviewer = {Vinayak Vatsal},
doi = {10.1215/S0012-7094-03-11835-9},
url = {https://doi.org/10.1215/S0012-7094-03-11835-9},
zblnumber = {1074.11061},
} -
[PR94]
B. Perrin-Riou, "Théorie d’Iwasawa des représentations $p$-adiques sur un corps local," Invent. Math., vol. 115, iss. 1, pp. 81-161, 1994.
@ARTICLE{PR94,
author = {Perrin-Riou, Bernadette},
title = {Théorie d'{I}wasawa des représentations {$p$}-adiques sur un corps local},
note = {with an appendix by Jean-Marc Fontaine},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {115},
year = {1994},
number = {1},
pages = {81--161},
issn = {0020-9910},
mrclass = {11G45 (11S31 22E55)},
mrnumber = {1248080},
mrreviewer = {Jacques Tilouine},
doi = {10.1007/BF01231755},
url = {https://doi.org/10.1007/BF01231755},
zblnumber = {0838.11071},
} -
[PRbook] B. Perrin-Riou, Fonctions $L$ $p$-adiques des Représentations $p$-adiques, Math. Soc. France, Paris, 1995, vol. 229.
@BOOK{PRbook,
author = {Perrin-Riou, Bernadette},
title = {Fonctions {$L$} {$p$}-adiques des Représentations {$p$}-adiques},
series = {Astérisque},
publisher={Math. Soc. France, Paris},
volume = {229},
year = {1995},
pages = {198 pp.},
issn = {0303-1179},
mrclass = {11F33 (11F41 11F67 11F85 11G20 11G40 19F15)},
mrnumber = {1327803},
mrreviewer = {Alexey A. Panchishkin},
zblnumber = {0845.11040},
} -
[PR03]
B. Perrin-Riou, "Arithmétique des courbes elliptiques à réduction supersingulière en $p$," Experiment. Math., vol. 12, iss. 2, pp. 155-186, 2003.
@ARTICLE{PR03,
author = {Perrin-Riou, Bernadette},
title = {Arithmétique des courbes elliptiques à réduction supersingulière en {$p$}},
journal = {Experiment. Math.},
fjournal = {Experimental Mathematics},
volume = {12},
year = {2003},
number = {2},
pages = {155--186},
issn = {1058-6458},
mrclass = {11G40 (11G05 11R23)},
mrnumber = {2016704},
doi = {10.1080/10586458.2003.10504490},
url = {https://doi.org/10.1080/10586458.2003.10504490},
zblnumber = {1061.11031},
} -
[Ro1]
D. E. Rohrlich, "Root numbers of Hecke $L$-functions of CM fields," Amer. J. Math., vol. 104, iss. 3, pp. 517-543, 1982.
@ARTICLE{Ro1,
author = {Rohrlich, David E.},
title = {Root numbers of {H}ecke {$L$}-functions of {CM} fields},
journal = {Amer. J. Math.},
fjournal = {American Journal of Mathematics},
volume = {104},
year = {1982},
number = {3},
pages = {517--543},
issn = {0002-9327},
mrclass = {12A70 (10H10)},
mrnumber = {0658544},
mrreviewer = {Kenneth Kramer},
doi = {10.2307/2374152},
url = {https://doi.org/10.2307/2374152},
zblnumber = {0503.12008},
} -
[Ru81]
K. Rubin, "Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer," Invent. Math., vol. 64, iss. 3, pp. 455-470, 1981.
@ARTICLE{Ru81,
author = {Rubin, Karl},
title = {Elliptic curves with complex multiplication and the conjecture of {B}irch and {S}winnerton-{D}yer},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {64},
year = {1981},
number = {3},
pages = {455--470},
issn = {0020-9910},
mrclass = {10D25 (12B30)},
mrnumber = {0632985},
mrreviewer = {Sheldon Kamienny},
doi = {10.1007/BF01389277},
url = {https://doi.org/10.1007/BF01389277},
zblnumber = {0506.14039},
} -
[Ru]
K. Rubin, "Local units, elliptic units, Heegner points and elliptic curves," Invent. Math., vol. 88, iss. 2, pp. 405-422, 1987.
@ARTICLE{Ru,
author = {Rubin, Karl},
title = {Local units, elliptic units, {H}eegner points and elliptic curves},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {88},
year = {1987},
number = {2},
pages = {405--422},
issn = {0020-9910},
mrclass = {11R23 (11G05 11G16 11G40 14G25)},
mrnumber = {0880958},
mrreviewer = {Jean-Pierre Wintenberger},
doi = {10.1007/BF01388915},
url = {https://doi.org/10.1007/BF01388915},
zblnumber = {0623.14006},
} -
[Ru91]
K. Rubin, "The “main conjectures” of Iwasawa theory for imaginary quadratic fields," Invent. Math., vol. 103, iss. 1, pp. 25-68, 1991.
@ARTICLE{Ru91,
author = {Rubin, Karl},
title = {The ``main conjectures'' of {I}wasawa theory for imaginary quadratic fields},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {103},
year = {1991},
number = {1},
pages = {25--68},
issn = {0020-9910},
mrclass = {11R23 (11G05 11G40)},
mrnumber = {1079839},
mrreviewer = {M. A. Kenku},
doi = {10.1007/BF01239508},
url = {https://doi.org/10.1007/BF01239508},
zblnumber = {0737.11030},
} -
[Ru1]
K. Rubin, "$p$-adic $L$-functions and rational points on elliptic curves with complex multiplication," Invent. Math., vol. 107, iss. 2, pp. 323-350, 1992.
@ARTICLE{Ru1,
author = {Rubin, Karl},
title = {{$p$}-adic {$L$}-functions and rational points on elliptic curves with complex multiplication},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {107},
year = {1992},
number = {2},
pages = {323--350},
issn = {0020-9910},
mrclass = {11G40 (11G05 11G16)},
mrnumber = {1144427},
mrreviewer = {John W. Jones},
doi = {10.1007/BF01231893},
url = {https://doi.org/10.1007/BF01231893},
zblnumber = {0770.11033},
} -
@BOOK{Ru00,
author = {Rubin, Karl},
title = {Euler Systems},
series = {Ann. of Math. Stud.},
volume = {147},
note = {Hermann Weyl Lectures. The Institute for Advanced Study},
publisher = {Princeton Univ. Press, Princeton, NJ},
year = {2000},
pages = {xii+227},
isbn = {0-691-05075-9; 0-691-05076-7},
mrclass = {11R23 (11G40 11R34 11R42)},
mrnumber = {1749177},
mrreviewer = {Jan Nekov\'{a}\v{r}},
doi = {10.1515/9781400865208},
url = {https://doi.org/10.1515/9781400865208},
zblnumber = {0977.11001},
} -
[Sch]
R. Schoof, "Nonsingular plane cubic curves over finite fields," J. Combin. Theory Ser. A, vol. 46, iss. 2, pp. 183-211, 1987.
@ARTICLE{Sch,
author = {Schoof, René},
title = {Nonsingular plane cubic curves over finite fields},
journal = {J. Combin. Theory Ser. A},
fjournal = {Journal of Combinatorial Theory. Series A},
volume = {46},
year = {1987},
number = {2},
pages = {183--211},
issn = {0097-3165},
mrclass = {14G15 (11G20)},
mrnumber = {0914657},
mrreviewer = {José Felipe Voloch},
doi = {10.1016/0097-3165(87)90003-3},
url = {https://doi.org/10.1016/0097-3165(87)90003-3},
zblnumber = {0632.14021},
} -
[Shi] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, Princeton, NJ, 1994, vol. 11.
@BOOK{Shi,
author = {Shimura, Goro},
title = {Introduction to the Arithmetic Theory of Automorphic Functions},
series = {Publ. Math. Soc. Japan},
volume = {11},
note = {reprint of the 1971 original, Kan{ô} Memorial Lectures, 1},
publisher = {Princeton Univ. Press, Princeton, NJ},
year = {1994},
pages = {xiv+271},
isbn = {0-691-08092-5},
mrclass = {11Fxx (11-02 11G05 11G40)},
mrnumber = {1291394},
zblnumber = {0872.11023},
} -
[Sk]
C. Skinner, "A converse to a theorem of Gross, Zagier, and Kolyvagin," Ann. of Math. (2), vol. 191, iss. 2, pp. 329-354, 2020.
@ARTICLE{Sk,
author = {Skinner, Christopher},
title = {A converse to a theorem of {G}ross, {Z}agier, and {K}olyvagin},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {191},
year = {2020},
number = {2},
pages = {329--354},
issn = {0003-486X},
mrclass = {11G40 (11G05 11G07 11R23)},
mrnumber = {4076627},
mrreviewer = {Andreas Nickel},
doi = {10.4007/annals.2020.191.2.1},
url = {https://doi.org/10.4007/annals.2020.191.2.1},
zblnumber = {1447.11071},
} -
[Ts]
T. Tsuji, "Explicit reciprocity law and formal moduli for Lubin-Tate formal groups," J. Reine Angew. Math., vol. 569, pp. 103-173, 2004.
@ARTICLE{Ts,
author = {Tsuji, Takeshi},
title = {Explicit reciprocity law and formal moduli for {L}ubin-{T}ate formal groups},
journal = {J. Reine Angew. Math.},
fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
volume = {569},
year = {2004},
pages = {103--173},
issn = {0075-4102},
mrclass = {11S31 (14L05)},
mrnumber = {2055715},
mrreviewer = {Jan Nekov\'{a}\v{r}},
doi = {10.1515/crll.2004.022},
url = {https://doi.org/10.1515/crll.2004.022},
zblnumber = {1055.14047},
} -
[Ya]
T. Yang, "On CM abelian varieties over imaginary quadratic fields," Math. Ann., vol. 329, iss. 1, pp. 87-117, 2004.
@ARTICLE{Ya,
author = {Yang, Tonghai},
title = {On {CM} abelian varieties over imaginary quadratic fields},
journal = {Math. Ann.},
fjournal = {Mathematische Annalen},
volume = {329},
year = {2004},
number = {1},
pages = {87--117},
issn = {0025-5831},
mrclass = {11G10 (11G15 11G40)},
mrnumber = {2052870},
mrreviewer = {Henri Darmon},
doi = {10.1007/s00208-004-0511-8},
url = {https://doi.org/10.1007/s00208-004-0511-8},
zblnumber = {1088.11048},
} -
[Yu]
J. Yu, "On the moduli of quasi-canonical liftings," Compositio Math., vol. 96, iss. 3, pp. 293-321, 1995.
@ARTICLE{Yu,
author = {Yu, Jiu-Kang},
title = {On the moduli of quasi-canonical liftings},
journal = {Compositio Math.},
fjournal = {Compositio Mathematica},
volume = {96},
year = {1995},
number = {3},
pages = {293--321},
issn = {0010-437X},
mrclass = {11S31 (14L05)},
mrnumber = {1327148},
url = {http://www.numdam.org/item?id=CM_1995__96_3_293_0},
zblnumber = {0866.14029},
} -
[WZhang]
W. Zhang, "Selmer groups and the indivisibility of Heegner points," Camb. J. Math., vol. 2, iss. 2, pp. 191-253, 2014.
@ARTICLE{WZhang,
author = {Zhang, Wei},
title = {Selmer groups and the indivisibility of {H}eegner points},
journal = {Camb. J. Math.},
fjournal = {Cambridge Journal of Mathematics},
volume = {2},
year = {2014},
number = {2},
pages = {191--253},
issn = {2168-0930},
mrclass = {11G05 (14G25)},
mrnumber = {3295917},
mrreviewer = {Robert Juricevic},
doi = {10.4310/CJM.2014.v2.n2.a2},
url = {https://doi.org/10.4310/CJM.2014.v2.n2.a2},
zblnumber = {1390.11091},
}