Rubin’s conjecture on local units in the anticyclotomic tower at inert primes

Abstract

We prove a fundamental conjecture of Rubin on the structure of local units in the anticyclotomic $\mathbb{Z}_p$-extension of the unramified quadratic extension of $\mathbb{Q}_p$ for $p\geq 5$ a prime.

Rubin’s conjecture underlies Iwasawa theory of the anticyclotomic deformation of a CM elliptic curve over the CM field at primes $p$ of good supersingular reduction, notably the Iwasawa main conjecture in terms of the $p$-adic $L$-function. As a consequence, we prove an inequality in the $p$-adic Birch and Swinnerton-Dyer conjecture for Rubin’s $p$-adic $L$-function. Rubin’s conjecture is also an essential tool in our exploration of the arithmetic of Rubin’s $p$-adic $L$-function, which includes a Bertolini–Darmon–Prasanna type formula.

  • [AH0] Go to document A. Agboola and B. Howard, "Anticyclotomic Iwasawa theory of CM elliptic curves. II," Math. Res. Lett., vol. 12, iss. 5-6, pp. 611-621, 2005.
    @ARTICLE{AH0,
      author = {Agboola, Adebisi and Howard, Benjamin},
      title = {Anticyclotomic {I}wasawa theory of {CM} elliptic curves. {II}},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {12},
      year = {2005},
      number = {5-6},
      pages = {611--621},
      issn = {1073-2780},
      mrclass = {11R23 (11G05)},
      mrnumber = {2189225},
      mrreviewer = {Mak Trifković},
      doi = {10.4310/MRL.2005.v12.n5.a1},
      url = {https://doi.org/10.4310/MRL.2005.v12.n5.a1},
      zblnumber = {1130.11058},
      }
  • [Ar] Go to document T. Arnold, "Anticyclotomic main conjectures for CM modular forms," J. Reine Angew. Math., vol. 606, pp. 41-78, 2007.
    @ARTICLE{Ar,
      author = {Arnold, Trevor},
      title = {Anticyclotomic main conjectures for {CM} modular forms},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {606},
      year = {2007},
      pages = {41--78},
      issn = {0075-4102},
      mrclass = {11R23 (11G40)},
      mrnumber = {2337641},
      mrreviewer = {Benjamin V. Howard},
      doi = {10.1515/CRELLE.2007.034},
      url = {https://doi.org/10.1515/CRELLE.2007.034},
      zblnumber = {1138.11047},
      }
  • [BDP1] Go to document M. Bertolini, H. Darmon, and K. Prasanna, "Generalized Heegner cycles and $p$-adic Rankin $L$-series," Duke Math. J., vol. 162, iss. 6, pp. 1033-1148, 2013.
    @ARTICLE{BDP1,
      author = {Bertolini, Massimo and Darmon, Henri and Prasanna, Kartik},
      title = {Generalized {H}eegner cycles and {$p$}-adic {R}ankin {$L$}-series},
      note = {with an appendix by Brian Conrad},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {162},
      year = {2013},
      number = {6},
      pages = {1033--1148},
      issn = {0012-7094},
      mrclass = {11G40 (11G05 11G15 11G35)},
      mrnumber = {3053566},
      mrreviewer = {Jan Nekov\'{a}\v{r}},
      doi = {10.1215/00127094-2142056},
      url = {https://doi.org/10.1215/00127094-2142056},
      zblnumber = {1302.11043},
      }
  • [BKO1] A. A. Burungale, S. Kobayashi, and K. Ota, $p$-adic $L$-functions and rational points on CM elliptic curves at inert primes.
    @MISC{BKO1,
      author = {Burungale, Ashay A. and Kobayashi, S. and Ota, K.},
      title = {$p$-adic {$L$}-functions and rational points on {CM} elliptic curves at inert primes},
      note = {preprint},
      zblnumber = {},
      }
  • [BKO2] A. A. Burungale, S. Kobayashi, and K. Ota, A local invariant of Rubin and $p$-divisibility of anticyclotomic Hecke $L$-values at inert primes.
    @MISC{BKO2,
      author = {Burungale, Ashay A. and Kobayashi, S. and Ota, K.},
      title = {A local invariant of {R}ubin and $p$-divisibility of anticyclotomic {H}ecke {$L$-}values at inert primes},
      note = {in preparation},
      zblnumber = {},
      }
  • [BKOY] A. A. Burungale, S. Kobayashi, K. Ota, and S. Yasuda, Kato’s $\varepsilon$-conjecture for anticyclotomic CM deformations at inert primes.
    @MISC{BKOY,
      author = {Burungale, Ashay A. and Kobayashi, S. and Ota, K. and Yasuda, S.},
      title = {Kato's $\varepsilon$-conjecture for anticyclotomic {CM} deformations at inert primes},
      note = {in preparation},
      zblnumber = {},
      }
  • [BuTi] Go to document A. A. Burungale and Y. Tian, "$p$-converse to a theorem of Gross-Zagier, Kolyvagin and Rubin," Invent. Math., vol. 220, iss. 1, pp. 211-253, 2020.
    @ARTICLE{BuTi,
      author = {Burungale, Ashay A. and Tian, Ye},
      title = {{$p$}-converse to a theorem of {G}ross-{Z}agier, {K}olyvagin and {R}ubin},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {220},
      year = {2020},
      number = {1},
      pages = {211--253},
      issn = {0020-9910},
      mrclass = {11G40 (11R23)},
      mrnumber = {4071412},
      mrreviewer = {Xin Wan},
      doi = {10.1007/s00222-019-00929-7},
      url = {https://doi.org/10.1007/s00222-019-00929-7},
      zblnumber = {1452.11068},
      }
  • [CoMc] R. Coleman and K. McMurdy, "Fake CM and the stable model of $X_0(Np^3)$," Doc. Math., iss. Extra Vol., pp. 261-300, 2006.
    @ARTICLE{CoMc,
      author = {Coleman, Robert and McMurdy, Ken},
      title = {Fake {CM} and the stable model of {$X_0(Np^3)$}},
      journal = {Doc. Math.},
      fjournal = {Documenta Mathematica},
      year = {2006},
      number = {Extra Vol.},
      pages = {261--300},
      issn = {1431-0635},
      mrclass = {11G18 (11G07 14G22)},
      mrnumber = {2290590},
      mrreviewer = {Jeffrey D. Achter},
      zblnumber = {1155.11030},
      }
  • [Cox] D. A. Cox, Primes of the Form $x^2 + ny^2$. Fermat, Class Field Theory and Complex Multiplication, John Wiley & Sons, Inc., New York, 1989.
    @BOOK{Cox,
      author = {Cox, David A.},
      title = {Primes of the {F}orm {$x^2 + ny^2$}. Fermat, {C}lass {F}ield {T}heory and {C}omplex Multiplication},
      series = {A Wiley-Interscience Publication},
      publisher = {John Wiley \& Sons, Inc., New York},
      year = {1989},
      pages = {xiv+351},
      isbn = {0-471-50654-0; 0-471-19079-9},
      mrclass = {11A41 (11F11 11R11 11R16 11R18 11R37 11Y11)},
      mrnumber = {1028322},
      mrreviewer = {Andrew Bremner},
      zblnumber = {0701.11001},
      }
  • [Fin] Go to document T. Finis, "Divisibility of anticyclotomic $L$-functions and theta functions with complex multiplication," Ann. of Math. (2), vol. 163, iss. 3, pp. 767-807, 2006.
    @ARTICLE{Fin,
      author = {Finis, Tobias},
      title = {Divisibility of anticyclotomic {$L$}-functions and theta functions with complex multiplication},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {163},
      year = {2006},
      number = {3},
      pages = {767--807},
      issn = {0003-486X},
      mrclass = {11R23 (11S40)},
      mrnumber = {2215134},
      mrreviewer = {David Y. Jao},
      doi = {10.4007/annals.2006.163.767},
      url = {https://doi.org/10.4007/annals.2006.163.767},
      zblnumber = {1111.11047},
      }
  • [Gr83] Go to document R. Greenberg, "On the Birch and Swinnerton-Dyer conjecture," Invent. Math., vol. 72, iss. 2, pp. 241-265, 1983.
    @ARTICLE{Gr83,
      author = {Greenberg, Ralph},
      title = {On the {B}irch and {S}winnerton-{D}yer conjecture},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {72},
      year = {1983},
      number = {2},
      pages = {241--265},
      issn = {0020-9910},
      mrclass = {11G40 (11G15 14G25 14K07)},
      mrnumber = {0700770},
      mrreviewer = {Kenneth A. Ribet},
      doi = {10.1007/BF01389322},
      url = {https://doi.org/10.1007/BF01389322},
      zblnumber = {0546.14015},
      }
  • [Gr91] Go to document R. Greenberg, "Iwasawa theory and $p$-adic deformations of motives," in Motives (Seattle, WA, 1991), Amer. Math. Soc., Providence, RI, 1994, vol. 55, pp. 193-223.
    @INCOLLECTION{Gr91,
      author = {Greenberg, Ralph},
      title = {Iwasawa theory and {$p$}-adic deformations of motives},
      booktitle = {Motives ({S}eattle, {WA},
      1991)},
      series = {Proc. Sympos. Pure Math.},
      volume = {55},
      pages = {193--223},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1994},
      mrclass = {11F85 (11F33 11F67 11G09 11G20 11R23 19F15)},
      mrnumber = {1265554},
      mrreviewer = {Alexey A. Panchishkin},
      doi = {10.1090/pspum/055.2/1265554},
      url = {https://doi.org/10.1090/pspum/055.2/1265554},
      zblnumber = {0819.11046},
      }
  • [Gr01] Go to document R. Greenberg, "Introduction to Iwasawa theory for elliptic curves," in Arithmetic algebraic geometry (Park City, UT, 1999), Amer. Math. Soc., Providence, RI, 2001, vol. 9, pp. 407-464.
    @INCOLLECTION{Gr01,
      author = {Greenberg, Ralph},
      title = {Introduction to {I}wasawa theory for elliptic curves},
      booktitle = {Arithmetic algebraic geometry ({P}ark {C}ity, {UT},
      1999)},
      series = {IAS/Park City Math. Ser.},
      volume = {9},
      pages = {407--464},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2001},
      mrclass = {11G05 (11G40 11R23 11R34)},
      mrnumber = {1860044},
      mrreviewer = {Massimo Bertolini},
      doi = {10.1090/pcms/009/06},
      url = {https://doi.org/10.1090/pcms/009/06},
      zblnumber = {1002.11048},
      }
  • [Gross] Go to document B. H. Gross, "On canonical and quasi-canonical liftings," Invent. Math., vol. 84, iss. 2, pp. 321-326, 1986.
    @ARTICLE{Gross,
      author = {Gross, Benedict H.},
      title = {On canonical and quasi-canonical liftings},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {84},
      year = {1986},
      number = {2},
      pages = {321--326},
      issn = {0020-9910},
      mrclass = {14L05 (11S31 14H25)},
      mrnumber = {0833193},
      mrreviewer = {K. Shiratani},
      doi = {10.1007/BF01388810},
      url = {https://doi.org/10.1007/BF01388810},
      zblnumber = {0597.14044},
      }
  • [Hz] Go to document M. Hazewinkel, "On norm maps for one dimensional formal groups. III," Duke Math. J., vol. 44, iss. 2, pp. 305-314, 1977.
    @ARTICLE{Hz,
      author = {Hazewinkel, Michiel},
      title = {On norm maps for one dimensional formal groups. {III}},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {44},
      year = {1977},
      number = {2},
      pages = {305--314},
      issn = {0012-7094},
      mrclass = {14L05 (12B25)},
      mrnumber = {0439851},
      mrreviewer = {K. Shiratani},
      doi = {10.1215/S0012-7094-77-04412-X},
      url = {https://doi.org/10.1215/S0012-7094-77-04412-X},
      zblnumber = {0371.14024},
      }
  • [Jo] N. Jochnowitz, Congruences between modular forms of half integral weights and implications for class numbers and elliptic curves.
    @MISC{Jo,
      author = {Jochnowitz, N.},
      title = {Congruences between modular forms of half integral weights and implications for class numbers and elliptic curves},
      note = {preprint},
      zblnumber = {},
      }
  • [K93] Go to document K. Kato, "Lectures on the approach to Iwasawa theory for Hasse-Weil $L$-functions via $B_{ dR}$. I," in Arithmetic Algebraic Geometry, Springer, Berlin, 1993, vol. 1553, pp. 50-163.
    @INCOLLECTION{K93,
      author = {Kato, Kazuya},
      title = {Lectures on the approach to {I}wasawa theory for {H}asse-{W}eil {$L$}-functions via {$B_{\rm dR}$}. {I}},
      booktitle = {Arithmetic Algebraic Geometry},
      venue = {{T}rento, 1991},
      series = {Lecture Notes in Math.},
      volume = {1553},
      pages = {50--163},
      publisher = {Springer, Berlin},
      year = {1993},
      mrclass = {11F33 (11F67 11F85 11G20 11R23 11S37 19F15)},
      mrnumber = {1338860},
      mrreviewer = {Alexey A. Panchishkin},
      doi = {10.1007/BFb0084729},
      url = {https://doi.org/10.1007/BFb0084729},
      zblnumber = {0815.11051},
      }
  • [K] Go to document K. Kato, "$p$-adic Hodge theory and values of zeta functions of modular forms," in Cohomologies $p$-adiques et Applications Arithmétiques. III, Math. Soc. France, Paris, 2004, vol. 295, p. ix, 117-290.
    @INCOLLECTION{K,
      author = {Kato, Kazuya},
      title = {{$p$}-adic {H}odge theory and values of zeta functions of modular forms},
      booktitle = {Cohomologies $p$-adiques et Applications Arithmétiques. III},
      series = {Astérisque},
      publisher={Math. Soc. France, Paris},
      volume = {295},
      year = {2004},
      pages = {ix, 117--290},
      issn = {0303-1179},
      mrclass = {11F85 (11F67 11G40 11R33 11S80 14G10 14G35)},
      mrnumber = {2104361},
      mrreviewer = {Fabrizio Andreatta},
      url = {http://www.numdam.org/item/AST_2004__295__117_0/},
      zblnumber = {1142.11336},
      }
  • [Kz0] Go to document N. M. Katz, "$p$-adic $L$-functions, Serre-Tate local moduli, and ratios of solutions of differential equations," in Proceedings of the International Congress of Mathematicians. Volume 1, 1980, pp. 365-371.
    @INPROCEEDINGS{Kz0,
      author = {Katz, Nicholas M.},
      title = {{$p$}-adic {$L$}-functions, {S}erre-{T}ate local moduli, and ratios of solutions of differential equations},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians. {V}olume 1},
      venue = {{H}elsinki, 1978},
      pages = {365--371},
      publisher = {Acad. Sci. Fennica, Helsinki},
      year = {1980},
      mrclass = {12B30 (10D30)},
      mrnumber = {0562628},
      mrreviewer = {K. Shiratani},
      url = {https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1978.1/ICM1978.1.ocr.pdf},
      zblnumber = {0439.12010},
      }
  • [Kz] N. M. Katz, "Divisibilities, congruences, and Cartier duality," J. Fac. Sci. Univ. Tokyo Sect. IA Math., vol. 28, iss. 3, pp. 667-678 (1982), 1981.
    @ARTICLE{Kz,
      author = {Katz, Nicholas M.},
      title = {Divisibilities, congruences, and {C}artier duality},
      journal = {J. Fac. Sci. Univ. Tokyo Sect. IA Math.},
      fjournal = {Journal of the Faculty of Science. Univ. of Tokyo. Section IA. Mathematics},
      volume = {28},
      year = {1981},
      number = {3},
      pages = {667--678 (1982)},
      issn = {0040-8980},
      mrclass = {10D23 (14L05)},
      mrnumber = {0656042},
      mrreviewer = {Thomas Zink},
      zblnumber = {0559.14032},
      }
  • [KM] Go to document N. M. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves, Princeton Univ. Press, Princeton, NJ, 1985, vol. 108.
    @BOOK{KM,
      author = {Katz, Nicholas M. and Mazur, Barry},
      title = {Arithmetic Moduli of Elliptic Curves},
      series = {Ann. of Math. Stud.},
      volume = {108},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {1985},
      pages = {xiv+514},
      isbn = {0-691-08349-5; 0-691-08352-5},
      mrclass = {11G05 (11F11 14G25 14K15)},
      mrnumber = {0772569},
      mrreviewer = {Kenneth A. Ribet},
      doi = {10.1515/9781400881710},
      url = {https://doi.org/10.1515/9781400881710},
      zblnumber = {0576.14026},
      }
  • [Ko0] Go to document S. Kobayashi, "Iwasawa theory for elliptic curves at supersingular primes," Invent. Math., vol. 152, iss. 1, pp. 1-36, 2003.
    @ARTICLE{Ko0,
      author = {Kobayashi, Shin-ichi},
      title = {Iwasawa theory for elliptic curves at supersingular primes},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {152},
      year = {2003},
      number = {1},
      pages = {1--36},
      issn = {0020-9910},
      mrclass = {11R23 (11G05)},
      mrnumber = {1965358},
      mrreviewer = {Anupam Saikia},
      doi = {10.1007/s00222-002-0265-4},
      url = {https://doi.org/10.1007/s00222-002-0265-4},
      zblnumber = {1047.11105},
      }
  • [Ku] Go to document M. Kurihara, "On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. I," Invent. Math., vol. 149, iss. 1, pp. 195-224, 2002.
    @ARTICLE{Ku,
      author = {Kurihara, Masato},
      title = {On the {T}ate {S}hafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. {I}},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {149},
      year = {2002},
      number = {1},
      pages = {195--224},
      issn = {0020-9910},
      mrclass = {11G05 (11R23)},
      mrnumber = {1914621},
      mrreviewer = {Vinayak Vatsal},
      doi = {10.1007/s002220100206},
      url = {https://doi.org/10.1007/s002220100206},
      zblnumber = {1033.11028},
      }
  • [MazurICM] B. Mazur, "Modular curves and arithmetic," in Proceedings of the International Congress of Mathematicians, Vol. 1, 2, 1984, pp. 185-211.
    @INPROCEEDINGS{MazurICM,
      author = {Mazur, B.},
      title = {Modular curves and arithmetic},
      booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. 1, 2},
      venue = {{W}arsaw, 1983},
      pages = {185--211},
      publisher = {PWN, Warsaw},
      year = {1984},
      mrclass = {11G05 (11G30 11G40 14G10 14G25)},
      mrnumber = {0804682},
      mrreviewer = {Kenneth A. Ribet},
      zblnumber = {0597.14023},
      }
  • [Nar] Go to document W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Third ed., Springer-Verlag, Berlin, 2004.
    @BOOK{Nar,
      author = {Narkiewicz, W{\l}adys{\l}aw},
      title = {Elementary and Analytic Theory of Algebraic Numbers},
      series = {Springer Monogr. Math.},
      edition = {Third},
      publisher = {Springer-Verlag, Berlin},
      year = {2004},
      pages = {xii+708},
      isbn = {3-540-21902-1},
      mrclass = {11Rxx (11-01 11-02)},
      mrnumber = {2078267},
      doi = {10.1007/978-3-662-07001-7},
      url = {https://doi.org/10.1007/978-3-662-07001-7},
      zblnumber = {1159.11039},
      }
  • [Nasy] Go to document A. G. Nasybullin, "Elliptic curves with supersingular reduction over $\Gamma $-extensions," Uspehi Mat. Nauk, vol. 32, iss. 2(194), pp. 221-222, 1977.
    @ARTICLE{Nasy,
      author = {Nasybullin, A. G.},
      title = {Elliptic curves with supersingular reduction over {$\Gamma $}-extensions},
      journal = {Uspehi Mat. Nauk},
      fjournal = {Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},
      volume = {32},
      year = {1977},
      number = {2(194)},
      pages = {221--222},
      issn = {0042-1316},
      mrclass = {14G25 (10D10 14K15)},
      mrnumber = {0472830},
      mrreviewer = {J. W. S. Cassels},
      url = {http://mi.mathnet.ru/eng/umn/v32/i2/p221},
      zblnumber = {0366.14004},
      }
  • [Po] Go to document R. Pollack, "On the $p$-adic $L$-function of a modular form at a supersingular prime," Duke Math. J., vol. 118, iss. 3, pp. 523-558, 2003.
    @ARTICLE{Po,
      author = {Pollack, Robert},
      title = {On the {$p$}-adic {$L$}-function of a modular form at a supersingular prime},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {118},
      year = {2003},
      number = {3},
      pages = {523--558},
      issn = {0012-7094},
      mrclass = {11F67 (11R23)},
      mrnumber = {1983040},
      mrreviewer = {Vinayak Vatsal},
      doi = {10.1215/S0012-7094-03-11835-9},
      url = {https://doi.org/10.1215/S0012-7094-03-11835-9},
      zblnumber = {1074.11061},
      }
  • [PR94] Go to document B. Perrin-Riou, "Théorie d’Iwasawa des représentations $p$-adiques sur un corps local," Invent. Math., vol. 115, iss. 1, pp. 81-161, 1994.
    @ARTICLE{PR94,
      author = {Perrin-Riou, Bernadette},
      title = {Théorie d'{I}wasawa des représentations {$p$}-adiques sur un corps local},
      note = {with an appendix by Jean-Marc Fontaine},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {115},
      year = {1994},
      number = {1},
      pages = {81--161},
      issn = {0020-9910},
      mrclass = {11G45 (11S31 22E55)},
      mrnumber = {1248080},
      mrreviewer = {Jacques Tilouine},
      doi = {10.1007/BF01231755},
      url = {https://doi.org/10.1007/BF01231755},
      zblnumber = {0838.11071},
      }
  • [PRbook] B. Perrin-Riou, Fonctions $L$ $p$-adiques des Représentations $p$-adiques, Math. Soc. France, Paris, 1995, vol. 229.
    @BOOK{PRbook,
      author = {Perrin-Riou, Bernadette},
      title = {Fonctions {$L$} {$p$}-adiques des Représentations {$p$}-adiques},
      series = {Astérisque},
      publisher={Math. Soc. France, Paris},
      volume = {229},
      year = {1995},
      pages = {198 pp.},
      issn = {0303-1179},
      mrclass = {11F33 (11F41 11F67 11F85 11G20 11G40 19F15)},
      mrnumber = {1327803},
      mrreviewer = {Alexey A. Panchishkin},
      zblnumber = {0845.11040},
      }
  • [PR03] Go to document B. Perrin-Riou, "Arithmétique des courbes elliptiques à réduction supersingulière en $p$," Experiment. Math., vol. 12, iss. 2, pp. 155-186, 2003.
    @ARTICLE{PR03,
      author = {Perrin-Riou, Bernadette},
      title = {Arithmétique des courbes elliptiques à réduction supersingulière en {$p$}},
      journal = {Experiment. Math.},
      fjournal = {Experimental Mathematics},
      volume = {12},
      year = {2003},
      number = {2},
      pages = {155--186},
      issn = {1058-6458},
      mrclass = {11G40 (11G05 11R23)},
      mrnumber = {2016704},
      doi = {10.1080/10586458.2003.10504490},
      url = {https://doi.org/10.1080/10586458.2003.10504490},
      zblnumber = {1061.11031},
      }
  • [Ro1] Go to document D. E. Rohrlich, "Root numbers of Hecke $L$-functions of CM fields," Amer. J. Math., vol. 104, iss. 3, pp. 517-543, 1982.
    @ARTICLE{Ro1,
      author = {Rohrlich, David E.},
      title = {Root numbers of {H}ecke {$L$}-functions of {CM} fields},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {104},
      year = {1982},
      number = {3},
      pages = {517--543},
      issn = {0002-9327},
      mrclass = {12A70 (10H10)},
      mrnumber = {0658544},
      mrreviewer = {Kenneth Kramer},
      doi = {10.2307/2374152},
      url = {https://doi.org/10.2307/2374152},
      zblnumber = {0503.12008},
      }
  • [Ru81] Go to document K. Rubin, "Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer," Invent. Math., vol. 64, iss. 3, pp. 455-470, 1981.
    @ARTICLE{Ru81,
      author = {Rubin, Karl},
      title = {Elliptic curves with complex multiplication and the conjecture of {B}irch and {S}winnerton-{D}yer},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {64},
      year = {1981},
      number = {3},
      pages = {455--470},
      issn = {0020-9910},
      mrclass = {10D25 (12B30)},
      mrnumber = {0632985},
      mrreviewer = {Sheldon Kamienny},
      doi = {10.1007/BF01389277},
      url = {https://doi.org/10.1007/BF01389277},
      zblnumber = {0506.14039},
      }
  • [Ru] Go to document K. Rubin, "Local units, elliptic units, Heegner points and elliptic curves," Invent. Math., vol. 88, iss. 2, pp. 405-422, 1987.
    @ARTICLE{Ru,
      author = {Rubin, Karl},
      title = {Local units, elliptic units, {H}eegner points and elliptic curves},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {88},
      year = {1987},
      number = {2},
      pages = {405--422},
      issn = {0020-9910},
      mrclass = {11R23 (11G05 11G16 11G40 14G25)},
      mrnumber = {0880958},
      mrreviewer = {Jean-Pierre Wintenberger},
      doi = {10.1007/BF01388915},
      url = {https://doi.org/10.1007/BF01388915},
      zblnumber = {0623.14006},
      }
  • [Ru91] Go to document K. Rubin, "The “main conjectures” of Iwasawa theory for imaginary quadratic fields," Invent. Math., vol. 103, iss. 1, pp. 25-68, 1991.
    @ARTICLE{Ru91,
      author = {Rubin, Karl},
      title = {The ``main conjectures'' of {I}wasawa theory for imaginary quadratic fields},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {103},
      year = {1991},
      number = {1},
      pages = {25--68},
      issn = {0020-9910},
      mrclass = {11R23 (11G05 11G40)},
      mrnumber = {1079839},
      mrreviewer = {M. A. Kenku},
      doi = {10.1007/BF01239508},
      url = {https://doi.org/10.1007/BF01239508},
      zblnumber = {0737.11030},
      }
  • [Ru1] Go to document K. Rubin, "$p$-adic $L$-functions and rational points on elliptic curves with complex multiplication," Invent. Math., vol. 107, iss. 2, pp. 323-350, 1992.
    @ARTICLE{Ru1,
      author = {Rubin, Karl},
      title = {{$p$}-adic {$L$}-functions and rational points on elliptic curves with complex multiplication},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {107},
      year = {1992},
      number = {2},
      pages = {323--350},
      issn = {0020-9910},
      mrclass = {11G40 (11G05 11G16)},
      mrnumber = {1144427},
      mrreviewer = {John W. Jones},
      doi = {10.1007/BF01231893},
      url = {https://doi.org/10.1007/BF01231893},
      zblnumber = {0770.11033},
      }
  • [Ru00] Go to document K. Rubin, Euler Systems, Princeton Univ. Press, Princeton, NJ, 2000, vol. 147.
    @BOOK{Ru00,
      author = {Rubin, Karl},
      title = {Euler Systems},
      series = {Ann. of Math. Stud.},
      volume = {147},
      note = {Hermann Weyl Lectures. The Institute for Advanced Study},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {2000},
      pages = {xii+227},
      isbn = {0-691-05075-9; 0-691-05076-7},
      mrclass = {11R23 (11G40 11R34 11R42)},
      mrnumber = {1749177},
      mrreviewer = {Jan Nekov\'{a}\v{r}},
      doi = {10.1515/9781400865208},
      url = {https://doi.org/10.1515/9781400865208},
      zblnumber = {0977.11001},
      }
  • [Sch] Go to document R. Schoof, "Nonsingular plane cubic curves over finite fields," J. Combin. Theory Ser. A, vol. 46, iss. 2, pp. 183-211, 1987.
    @ARTICLE{Sch,
      author = {Schoof, René},
      title = {Nonsingular plane cubic curves over finite fields},
      journal = {J. Combin. Theory Ser. A},
      fjournal = {Journal of Combinatorial Theory. Series A},
      volume = {46},
      year = {1987},
      number = {2},
      pages = {183--211},
      issn = {0097-3165},
      mrclass = {14G15 (11G20)},
      mrnumber = {0914657},
      mrreviewer = {José Felipe Voloch},
      doi = {10.1016/0097-3165(87)90003-3},
      url = {https://doi.org/10.1016/0097-3165(87)90003-3},
      zblnumber = {0632.14021},
      }
  • [Shi] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, Princeton, NJ, 1994, vol. 11.
    @BOOK{Shi,
      author = {Shimura, Goro},
      title = {Introduction to the Arithmetic Theory of Automorphic Functions},
      series = {Publ. Math. Soc. Japan},
      volume = {11},
      note = {reprint of the 1971 original, Kan{ô} Memorial Lectures, 1},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {1994},
      pages = {xiv+271},
      isbn = {0-691-08092-5},
      mrclass = {11Fxx (11-02 11G05 11G40)},
      mrnumber = {1291394},
      zblnumber = {0872.11023},
      }
  • [Sk] Go to document C. Skinner, "A converse to a theorem of Gross, Zagier, and Kolyvagin," Ann. of Math. (2), vol. 191, iss. 2, pp. 329-354, 2020.
    @ARTICLE{Sk,
      author = {Skinner, Christopher},
      title = {A converse to a theorem of {G}ross, {Z}agier, and {K}olyvagin},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {191},
      year = {2020},
      number = {2},
      pages = {329--354},
      issn = {0003-486X},
      mrclass = {11G40 (11G05 11G07 11R23)},
      mrnumber = {4076627},
      mrreviewer = {Andreas Nickel},
      doi = {10.4007/annals.2020.191.2.1},
      url = {https://doi.org/10.4007/annals.2020.191.2.1},
      zblnumber = {1447.11071},
      }
  • [Ts] Go to document T. Tsuji, "Explicit reciprocity law and formal moduli for Lubin-Tate formal groups," J. Reine Angew. Math., vol. 569, pp. 103-173, 2004.
    @ARTICLE{Ts,
      author = {Tsuji, Takeshi},
      title = {Explicit reciprocity law and formal moduli for {L}ubin-{T}ate formal groups},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {569},
      year = {2004},
      pages = {103--173},
      issn = {0075-4102},
      mrclass = {11S31 (14L05)},
      mrnumber = {2055715},
      mrreviewer = {Jan Nekov\'{a}\v{r}},
      doi = {10.1515/crll.2004.022},
      url = {https://doi.org/10.1515/crll.2004.022},
      zblnumber = {1055.14047},
      }
  • [Ya] Go to document T. Yang, "On CM abelian varieties over imaginary quadratic fields," Math. Ann., vol. 329, iss. 1, pp. 87-117, 2004.
    @ARTICLE{Ya,
      author = {Yang, Tonghai},
      title = {On {CM} abelian varieties over imaginary quadratic fields},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {329},
      year = {2004},
      number = {1},
      pages = {87--117},
      issn = {0025-5831},
      mrclass = {11G10 (11G15 11G40)},
      mrnumber = {2052870},
      mrreviewer = {Henri Darmon},
      doi = {10.1007/s00208-004-0511-8},
      url = {https://doi.org/10.1007/s00208-004-0511-8},
      zblnumber = {1088.11048},
      }
  • [Yu] Go to document J. Yu, "On the moduli of quasi-canonical liftings," Compositio Math., vol. 96, iss. 3, pp. 293-321, 1995.
    @ARTICLE{Yu,
      author = {Yu, Jiu-Kang},
      title = {On the moduli of quasi-canonical liftings},
      journal = {Compositio Math.},
      fjournal = {Compositio Mathematica},
      volume = {96},
      year = {1995},
      number = {3},
      pages = {293--321},
      issn = {0010-437X},
      mrclass = {11S31 (14L05)},
      mrnumber = {1327148},
      url = {http://www.numdam.org/item?id=CM_1995__96_3_293_0},
      zblnumber = {0866.14029},
      }
  • [WZhang] Go to document W. Zhang, "Selmer groups and the indivisibility of Heegner points," Camb. J. Math., vol. 2, iss. 2, pp. 191-253, 2014.
    @ARTICLE{WZhang,
      author = {Zhang, Wei},
      title = {Selmer groups and the indivisibility of {H}eegner points},
      journal = {Camb. J. Math.},
      fjournal = {Cambridge Journal of Mathematics},
      volume = {2},
      year = {2014},
      number = {2},
      pages = {191--253},
      issn = {2168-0930},
      mrclass = {11G05 (14G25)},
      mrnumber = {3295917},
      mrreviewer = {Robert Juricevic},
      doi = {10.4310/CJM.2014.v2.n2.a2},
      url = {https://doi.org/10.4310/CJM.2014.v2.n2.a2},
      zblnumber = {1390.11091},
      }

Authors

Ashay A. Burungale

California Institute of Technology, Pasadena, CA and The University of Texas at Austin, Austin, TX

Shinichi Kobayashi

Kyushu University, Fukuoka, Japan

Kazuto Ota

Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan