A counterexample to the unit conjecture for group rings

Abstract

The unit conjecture, commonly attributed to Kaplansky, predicts that if $K$ is a field and $G$ is a torsion-free group, then the only units of the group ring $K[G]$ are the trivial units, that is, the non-zero scalar multiples of group elements. We give a concrete counterexample to this conjecture; the group is virtually abelian and the field is order two.

  • [ArzhantsevaSteenbock14] G. Arzhantseva and M. Steenbock, Rips construction without unique product, 2014.
    @MISC{ArzhantsevaSteenbock14,
      author = {Arzhantseva, G. and Steenbock, M.},
      title = {Rips construction without unique product},
      year = {2014},
      arxiv = {1407.2441},
      zblnumber = {},
      }
  • [BartelsLueck12] Go to document A. Bartels and W. Lück, "The Borel conjecture for hyperbolic and ${ CAT}(0)$-groups," Ann. of Math. (2), vol. 175, iss. 2, pp. 631-689, 2012.
    @ARTICLE{BartelsLueck12,
      author = {Bartels, Arthur and Lück, Wolfgang},
      title = {The {B}orel conjecture for hyperbolic and {${\rm CAT}(0)$}-groups},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {175},
      year = {2012},
      number = {2},
      pages = {631--689},
      issn = {0003-486X},
      mrclass = {57M07 (20F67)},
      mrnumber = {2993750},
      mrreviewer = {Paul D. Mitchener},
      doi = {10.4007/annals.2012.175.2.5},
      url = {https://doi.org/10.4007/annals.2012.175.2.5},
      zblnumber = {1256.57021},
      }
  • [BartelsLueckReich08] Go to document A. Bartels, W. Lück, and H. Reich, "On the Farrell–Jones conjecture and its applications," J. Topol., vol. 1, iss. 1, pp. 57-86, 2008.
    @ARTICLE{BartelsLueckReich08,
      author = {Bartels, Arthur and Lück, Wolfgang and Reich, Holger},
      title = {On the {F}arrell--{J}ones conjecture and its applications},
      journal = {J. Topol.},
      fjournal = {Journal of Topology},
      volume = {1},
      year = {2008},
      number = {1},
      pages = {57--86},
      issn = {1753-8416},
      mrclass = {19D55 (19A31 19B28)},
      mrnumber = {2365652},
      mrreviewer = {A. A. Ranicki},
      doi = {10.1112/jtopol/jtm008},
      url = {https://doi.org/10.1112/jtopol/jtm008},
      zblnumber = {1141.19002},
      }
  • [Bowditch00] Go to document B. H. Bowditch, "A variation on the unique product property," J. London Math. Soc. (2), vol. 62, iss. 3, pp. 813-826, 2000.
    @ARTICLE{Bowditch00,
      author = {Bowditch, B. H.},
      title = {A variation on the unique product property},
      journal = {J. London Math. Soc. (2)},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      volume = {62},
      year = {2000},
      number = {3},
      pages = {813--826},
      issn = {0024-6107},
      mrclass = {20F65},
      mrnumber = {1794287},
      mrreviewer = {Thomas Delzant},
      doi = {10.1112/S0024610700001307},
      url = {https://doi.org/10.1112/S0024610700001307},
      zblnumber = {1033.20040},
      }
  • [Carter14] Go to document W. Carter, "New examples of torsion-free non-unique product groups," J. Group Theory, vol. 17, iss. 3, pp. 445-464, 2014.
    @ARTICLE{Carter14,
      author = {Carter, William},
      title = {New examples of torsion-free non-unique product groups},
      journal = {J. Group Theory},
      fjournal = {Journal of Group Theory},
      volume = {17},
      year = {2014},
      number = {3},
      pages = {445--464},
      issn = {1433-5883},
      mrclass = {20F99},
      mrnumber = {3200369},
      mrreviewer = {E. Formanek},
      doi = {10.1515/jgt-2013-0051},
      url = {https://doi.org/10.1515/jgt-2013-0051},
      zblnumber = {1300.20041},
      }
  • [Cliff80] Go to document G. H. Cliff, "Zero divisors and idempotents in group rings," Canadian J. Math., vol. 32, iss. 3, pp. 596-602, 1980.
    @ARTICLE{Cliff80,
      author = {Cliff, Gerald H.},
      title = {Zero divisors and idempotents in group rings},
      journal = {Canadian J. Math.},
      fjournal = {Canadian Journal of Mathematics. Journal Canadien de Mathématiques},
      volume = {32},
      year = {1980},
      number = {3},
      pages = {596--602},
      issn = {0008-414X},
      mrclass = {16A26 (20C07)},
      mrnumber = {0586978},
      mrreviewer = {E. Formanek},
      doi = {10.4153/CJM-1980-046-3},
      url = {https://doi.org/10.4153/CJM-1980-046-3},
      zblnumber = {0439.16011},
      }
  • [CravenPappas13] Go to document D. A. Craven and P. Pappas, "On the unit conjecture for supersoluble group algebras," J. Algebra, vol. 394, pp. 310-356, 2013.
    @ARTICLE{CravenPappas13,
      author = {Craven, David A. and Pappas, Peter},
      title = {On the unit conjecture for supersoluble group algebras},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {394},
      year = {2013},
      pages = {310--356},
      issn = {0021-8693},
      mrclass = {16S34 (16U60)},
      mrnumber = {3092724},
      mrreviewer = {Zhengxing Li},
      doi = {10.1016/j.jalgebra.2013.07.014},
      url = {https://doi.org/10.1016/j.jalgebra.2013.07.014},
      zblnumber = {1339.16037},
      }
  • [DykemaHeisterJuschenko15] Go to document K. Dykema, T. Heister, and K. Juschenko, "Finitely presented groups related to Kaplansky’s direct finiteness conjecture," Exp. Math., vol. 24, iss. 3, pp. 326-338, 2015.
    @ARTICLE{DykemaHeisterJuschenko15,
      author = {Dykema, Ken and Heister, Timo and Juschenko, Kate},
      title = {Finitely presented groups related to {K}aplansky's direct finiteness conjecture},
      journal = {Exp. Math.},
      fjournal = {Experimental Mathematics},
      volume = {24},
      year = {2015},
      number = {3},
      pages = {326--338},
      issn = {1058-6458},
      mrclass = {16S34 (20C07)},
      mrnumber = {3359220},
      mrreviewer = {Donald S. Passman},
      doi = {10.1080/10586458.2014.993051},
      url = {https://doi.org/10.1080/10586458.2014.993051},
      zblnumber = {1403.20004},
      }
  • [FarrellJones93] Go to document F. T. Farrell and L. E. Jones, "Isomorphism conjectures in algebraic $K$-theory," J. Amer. Math. Soc., vol. 6, iss. 2, pp. 249-297, 1993.
    @ARTICLE{FarrellJones93,
      author = {Farrell, F. T. and Jones, L. E.},
      title = {Isomorphism conjectures in algebraic {$K$}-theory},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {6},
      year = {1993},
      number = {2},
      pages = {249--297},
      issn = {0894-0347},
      mrclass = {57N37 (19D55)},
      mrnumber = {1179537},
      mrreviewer = {Masayuki Yamasaki},
      doi = {10.2307/2152801},
      url = {https://doi.org/10.2307/2152801},
      zblnumber = {0798.57018},
      }
  • [Gardam21+] G. Gardam, Solving semidecidable problems in group theory, 2021.
    @MISC{Gardam21+,
      author = {Gardam, G.},
      title = {Solving semidecidable problems in group theory},
      year = {2021},
      note = {in preparation},
      zblnumber = {},
      }
  • [GruberMartinSteenbock15] Go to document D. Gruber, A. Martin, and M. Steenbock, "Finite index subgroups without unique product in graphical small cancellation groups," Bull. Lond. Math. Soc., vol. 47, iss. 4, pp. 631-638, 2015.
    @ARTICLE{GruberMartinSteenbock15,
      author = {Gruber, D. and Martin, A. and Steenbock, M.},
      title = {Finite index subgroups without unique product in graphical small cancellation groups},
      journal = {Bull. Lond. Math. Soc.},
      fjournal = {Bulletin of the London Mathematical Society},
      volume = {47},
      year = {2015},
      number = {4},
      pages = {631--638},
      issn = {0024-6093},
      mrclass = {20F06 (20F67)},
      mrnumber = {3375930},
      mrreviewer = {Rémi Bernard Coulon},
      doi = {10.1112/blms/bdv040},
      url = {https://doi.org/10.1112/blms/bdv040},
      zblnumber = {1337.20034},
      }
  • [Higman40b] G. Higman, Units in group rings, 1940.
    @MISC{Higman40b,
      author = {Higman, Graham},
      title = {Units in group rings},
      note = {D.Phil. thesis, University of Oxford},
      year = {1940},
      zblnumber = {},
      }
  • [Higman40a] Go to document G. Higman, "The units of group-rings," Proc. London Math. Soc. (2), vol. 46, pp. 231-248, 1940.
    @ARTICLE{Higman40a,
      author = {Higman, Graham},
      title = {The units of group-rings},
      journal = {Proc. London Math. Soc. (2)},
      fjournal = {Proceedings of the London Mathematical Society. Second Series},
      volume = {46},
      year = {1940},
      pages = {231--248},
      issn = {0024-6115},
      mrclass = {20.0X},
      mrnumber = {0002137},
      mrreviewer = {M. Hall},
      doi = {10.1112/plms/s2-46.1.231},
      url = {https://doi.org/10.1112/plms/s2-46.1.231},
      zblnumber = {0025.24302},
      }
  • [HigsonKasparov01] Go to document N. Higson and G. Kasparov, "$E$-theory and $KK$-theory for groups which act properly and isometrically on Hilbert space," Invent. Math., vol. 144, iss. 1, pp. 23-74, 2001.
    @ARTICLE{HigsonKasparov01,
      author = {Higson, Nigel and Kasparov, Gennadi},
      title = {{$E$}-theory and {$KK$}-theory for groups which act properly and isometrically on {H}ilbert space},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {144},
      year = {2001},
      number = {1},
      pages = {23--74},
      issn = {0020-9910},
      mrclass = {19K35 (19L47 46L80)},
      mrnumber = {1821144},
      mrreviewer = {Emmanuel C. Germain},
      doi = {10.1007/s002220000118},
      url = {https://doi.org/10.1007/s002220000118},
      zblnumber = {0988.19003},
      }
  • [KammeyerLueckRueping16] Go to document H. Kammeyer, W. Lück, and H. Rüping, "The Farrell-Jones conjecture for arbitrary lattices in virtually connected Lie groups," Geom. Topol., vol. 20, iss. 3, pp. 1275-1287, 2016.
    @ARTICLE{KammeyerLueckRueping16,
      author = {Kammeyer, Holger and Lück, Wolfgang and Rüping, Henrik},
      title = {The {F}arrell-{J}ones conjecture for arbitrary lattices in virtually connected {L}ie groups},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {20},
      year = {2016},
      number = {3},
      pages = {1275--1287},
      issn = {1465-3060},
      mrclass = {19G24 (18F25 19A31 19B28 22E40)},
      mrnumber = {3523058},
      mrreviewer = {Jonathan M. Rosenberg},
      doi = {10.2140/gt.2016.20.1275},
      url = {https://doi.org/10.2140/gt.2016.20.1275},
      zblnumber = {1346.18019},
      }
  • [Kaplansky57] I. Kaplansky, "Problems in the theory of rings," in Report of a Conference on Linear Algebras, National Academy of Sciences-National Research Council, Washington, Publ. 502, 1957, p. v.
    @INCOLLECTION{Kaplansky57,
      author = {Kaplansky, Irving},
      title = {Problems in the theory of rings},
      booktitle = {{R}eport of a Conference on Linear Algebras},
      year = {1957},
      pages = {v+60},
      publisher = {National Academy of Sciences-National Research Council, Washington, Publ. 502},
      mrclass = {16.00},
      mrnumber = {0096696},
      mrreviewer = {I. N. Herstein},
      zblnumber = {0095.25602},
      }
  • [Kaplansky70] Go to document I. Kaplansky, "“Problems in the theory of rings” revisited," Amer. Math. Monthly, vol. 77, pp. 445-454, 1970.
    @ARTICLE{Kaplansky70,
      author = {Kaplansky, Irving},
      title = {``{P}roblems in the theory of rings'' revisited},
      journal = {Amer. Math. Monthly},
      fjournal = {American Mathematical Monthly},
      volume = {77},
      year = {1970},
      pages = {445--454},
      issn = {0002-9890},
      mrclass = {16.00},
      mrnumber = {0258865},
      doi = {10.2307/2317376},
      url = {https://doi.org/10.2307/2317376},
      zblnumber = {0208.29701},
      }
  • [Kourovka18] The Kourovka Notebook, Khukhro, E. I. and Mazurov, V. D., Eds., Sobolev Institute of Mathematics. Russian Academy of Sciences. Siberian Branch, Novosibirsk, 2018.
    @BOOK{Kourovka18, title = {The {K}ourovka Notebook},
      editor = {Khukhro, E. I. and Mazurov, V. D.},
      note = {Unsolved problems in group theory, Nineteenth edition [\mr{0204500}], March 2019 update},
      publisher = {Sobolev Institute of Mathematics. Russian Academy of Sciences. Siberian Branch, Novosibirsk},
      year = {2018},
      pages = {248},
      mrclass = {20-02 (00A07)},
      mrnumber = {3981599},
      zblnumber = {},
      }
  • [KionkeRaimbault16] S. Kionke and J. Raimbault, "On geometric aspects of diffuse groups," Doc. Math., vol. 21, pp. 873-915, 2016.
    @ARTICLE{KionkeRaimbault16,
      author = {Kionke, Steffen and Raimbault, Jean},
      title = {On geometric aspects of diffuse groups},
      note = {with an appendix by Nathan Dunfield},
      journal = {Doc. Math.},
      fjournal = {Documenta Mathematica},
      volume = {21},
      year = {2016},
      pages = {873--915},
      issn = {1431-0635},
      mrclass = {20F65 (20-04 20H15 22E40 57M07)},
      mrnumber = {3548136},
      mrreviewer = {Nansen Petrosyan},
      zblnumber = {1410.22004},
      }
  • [KrophollerLinnellMoody88] Go to document P. H. Kropholler, P. A. Linnell, and J. A. Moody, "Applications of a new $K$-theoretic theorem to soluble group rings," Proc. Amer. Math. Soc., vol. 104, iss. 3, pp. 675-684, 1988.
    @ARTICLE{KrophollerLinnellMoody88,
      author = {Kropholler, P. H. and Linnell, P. A. and Moody, J. A.},
      title = {Applications of a new {$K$}-theoretic theorem to soluble group rings},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the American Mathematical Society},
      volume = {104},
      year = {1988},
      number = {3},
      pages = {675--684},
      issn = {0002-9939},
      mrclass = {16A27 (16A08 16A34)},
      mrnumber = {0964842},
      mrreviewer = {L. N. Vaserstein},
      doi = {10.2307/2046771},
      url = {https://doi.org/10.2307/2046771},
      zblnumber = {0691.16013},
      }
  • [Lafforgue02] Go to document V. Lafforgue, "$K$-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes," Invent. Math., vol. 149, iss. 1, pp. 1-95, 2002.
    @ARTICLE{Lafforgue02,
      author = {Lafforgue, Vincent},
      title = {{$K$}-théorie bivariante pour les algèbres de {B}anach et conjecture de {B}aum-{C}onnes},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {149},
      year = {2002},
      number = {1},
      pages = {1--95},
      issn = {0020-9910},
      mrclass = {19K35 (46H25 46L80 46M20 58J22)},
      mrnumber = {1914617},
      mrreviewer = {Georges Skandalis},
      doi = {10.1007/s002220200213},
      url = {https://doi.org/10.1007/s002220200213},
      zblnumber = {1084.19003},
      }
  • [Linnell93] Go to document P. A. Linnell, "Division rings and group von Neumann algebras," Forum Math., vol. 5, iss. 6, pp. 561-576, 1993.
    @ARTICLE{Linnell93,
      author = {Linnell, Peter A.},
      title = {Division rings and group von {N}eumann algebras},
      journal = {Forum Math.},
      fjournal = {Forum Mathematicum},
      volume = {5},
      year = {1993},
      number = {6},
      pages = {561--576},
      issn = {0933-7741},
      mrclass = {20C07 (16K40 16S35 22D25 46L10)},
      mrnumber = {1242889},
      mrreviewer = {Alain Valette},
      doi = {10.1515/form.1993.5.561},
      url = {https://doi.org/10.1515/form.1993.5.561},
      zblnumber = {0794.22008},
      }
  • [Lueck02] Go to document W. Lück, $L^2$-Invariants: Theory and Applications to Geometry and $K$-Theory, Springer-Verlag, Berlin, 2002, vol. 44.
    @BOOK{Lueck02, key={L{ü}c02},
      author = {Lück, Wolfgang},
      title = {{$L^2$}-Invariants: Theory and Applications to Geometry and {$K$}-Theory},
      series = {Ergeb. Math. Grenzgeb.},
      volume = {44},
      publisher = {Springer-Verlag, Berlin},
      year = {2002},
      pages = {xvi+595},
      isbn = {3-540-43566-2},
      mrclass = {58J22 (19K56 46L80 57Q10 57R20 58J52)},
      mrnumber = {1926649},
      mrreviewer = {Thomas Schick},
      doi = {10.1007/978-3-662-04687-6},
      url = {https://doi.org/10.1007/978-3-662-04687-6},
      zblnumber = {1009.55001},
      }
  • [MineyevYu02] Go to document I. Mineyev and G. Yu, "The Baum-Connes conjecture for hyperbolic groups," Invent. Math., vol. 149, iss. 1, pp. 97-122, 2002.
    @ARTICLE{MineyevYu02,
      author = {Mineyev, Igor and Yu, Guoliang},
      title = {The {B}aum-{C}onnes conjecture for hyperbolic groups},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {149},
      year = {2002},
      number = {1},
      pages = {97--122},
      issn = {0020-9910},
      mrclass = {20F67 (19K56 20F65 22D25 46L89)},
      mrnumber = {1914618},
      mrreviewer = {Alain Valette},
      doi = {10.1007/s002220200214},
      url = {https://doi.org/10.1007/s002220200214},
      zblnumber = {1038.20030},
      }
  • [Mirowicz91] Go to document M. Mirowicz, "Units in group rings of the infinite dihedral group," Canad. Math. Bull., vol. 34, iss. 1, pp. 83-89, 1991.
    @ARTICLE{Mirowicz91,
      author = {Mirowicz, Maciej},
      title = {Units in group rings of the infinite dihedral group},
      journal = {Canad. Math. Bull.},
      fjournal = {Canadian Mathematical Bulletin. Bulletin Canadien de Mathématiques},
      volume = {34},
      year = {1991},
      number = {1},
      pages = {83--89},
      issn = {0008-4395},
      mrclass = {16U60},
      mrnumber = {1108933},
      mrreviewer = {Sudarshan K. Sehgal},
      doi = {10.4153/CMB-1991-013-4},
      url = {https://doi.org/10.4153/CMB-1991-013-4},
      zblnumber = {0737.16021},
      }
  • [Murray21] A. G. Murray, More counterexamples to the unit conjecture for group rings, 2021.
    @MISC{Murray21,
      author = {Murray, A. G},
      title = {More counterexamples to the unit conjecture for group rings},
      year = {2021},
      arxiv = {2106.02147},
      zblnumber = {},
      }
  • [Passman85] D. S. Passman, The Algebraic Structure of Group Rings, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1985.
    @BOOK{Passman85,
      author = {Passman, Donald S.},
      title = {The Algebraic Structure of Group Rings},
      note = {reprint of the 1977 original},
      publisher = {Robert E. Krieger Publishing Co., Inc., Melbourne, FL},
      year = {1985},
      pages = {xiv+734},
      isbn = {0-89874-789-9},
      mrclass = {16-02 (16A26 16A27)},
      mrnumber = {0798076},
      zblnumber = {0654.16001},
      }
  • [Promislow88] Go to document D. S. Promislow, "A simple example of a torsion-free, nonunique product group," Bull. London Math. Soc., vol. 20, iss. 4, pp. 302-304, 1988.
    @ARTICLE{Promislow88,
      author = {Promislow, S. David},
      title = {A simple example of a torsion-free, nonunique product group},
      journal = {Bull. London Math. Soc.},
      fjournal = {The Bulletin of the London Mathematical Society},
      volume = {20},
      year = {1988},
      number = {4},
      pages = {302--304},
      issn = {0024-6093},
      mrclass = {20F05 (20C07)},
      mrnumber = {0940281},
      mrreviewer = {Stephen J. Pride},
      doi = {10.1112/blms/20.4.302},
      url = {https://doi.org/10.1112/blms/20.4.302},
      zblnumber = {0662.20022},
      }
  • [RipsSegev87] Go to document E. Rips and Y. Segev, "Torsion-free group without unique product property," J. Algebra, vol. 108, iss. 1, pp. 116-126, 1987.
    @ARTICLE{RipsSegev87,
      author = {Rips, Eliyahu and Segev, Yoav},
      title = {Torsion-free group without unique product property},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {108},
      year = {1987},
      number = {1},
      pages = {116--126},
      issn = {0021-8693},
      mrclass = {20F06 (20C07)},
      mrnumber = {0887195},
      mrreviewer = {Stephen J. Pride},
      doi = {10.1016/0021-8693(87)90125-6},
      url = {https://doi.org/10.1016/0021-8693(87)90125-6},
      zblnumber = {0614.20021},
      }
  • [Sandling81] Go to document R. Sandling, "Graham Higman’s thesis “Units in group rings”," in Integral Representations and Applications, Springer, Berlin-New York, 1981, vol. 882, pp. 93-116.
    @INCOLLECTION{Sandling81,
      author = {Sandling, Robert},
      title = {Graham {H}igman's thesis ``{U}nits in group rings''},
      booktitle = {Integral Representations and Applications},
      venue = {{O}berwolfach, 1980},
      series = {Lecture Notes in Math.},
      volume = {882},
      pages = {93--116},
      publisher = {Springer, Berlin-New York},
      year = {1981},
      mrclass = {20C05 (01A60 01A70 16A25 16A26 16A27)},
      mrnumber = {0646094},
      mrreviewer = {B. H. Neumann},
      doi = {10.1007/BFb0092488},
      url = {https://doi.org/10.1007/BFb0092488},
      zblnumber = {0468.16013},
      }
  • [Soelberg18] Go to document L. J. Soelberg, Finding torsion-free groups which do not have the unique product property, 2018.
    @MISC{Soelberg18,
      author = {Soelberg, L. J.},
      title = {Finding torsion-free groups which do not have the unique product property},
      note = {Master's thesis, Brigham Young University},
      year = {2018},
      url = {https://scholarsarchive.byu.edu/etd/6932},
      zblnumber = {},
      }
  • [Steenbock15] Go to document M. Steenbock, "Rips-Segev torsion-free groups without the unique product property," J. Algebra, vol. 438, pp. 337-378, 2015.
    @ARTICLE{Steenbock15,
      author = {Steenbock, Markus},
      title = {Rips-{S}egev torsion-free groups without the unique product property},
      journal = {J. Algebra},
      fjournal = {Journal of Algebra},
      volume = {438},
      year = {2015},
      pages = {337--378},
      issn = {0021-8693},
      mrclass = {20F06 (20F60 20F67 20P05)},
      mrnumber = {3353035},
      mrreviewer = {Arye Juh\'{a}sz},
      doi = {10.1016/j.jalgebra.2015.05.004},
      url = {https://doi.org/10.1016/j.jalgebra.2015.05.004},
      zblnumber = {1402.20046},
      }
  • [Strojnowski80] Go to document A. Strojnowski, "A note on u.p. groups," Comm. Algebra, vol. 8, iss. 3, pp. 231-234, 1980.
    @ARTICLE{Strojnowski80,
      author = {Strojnowski, Andrzej},
      title = {A note on u.p. groups},
      journal = {Comm. Algebra},
      fjournal = {Communications in Algebra},
      volume = {8},
      year = {1980},
      number = {3},
      pages = {231--234},
      issn = {0092-7872},
      mrclass = {20E99},
      mrnumber = {0558112},
      doi = {10.1080/00927878008822456},
      url = {https://doi.org/10.1080/00927878008822456},
      zblnumber = {0423.20005},
      }
  • [Valette02] Go to document A. Valette, Introduction to the Baum-Connes Conjecture, Birkhäuser Verlag, Basel, 2002.
    @BOOK{Valette02,
      author = {Valette, Alain},
      title = {Introduction to the {B}aum-{C}onnes Conjecture},
      series = {Lectures in Math. ETH Zürich},
      note = {from notes taken by Indira Chatterji, with an appendix by Guido Mislin},
      publisher = {Birkhäuser Verlag, Basel},
      year = {2002},
      pages = {x+104},
      isbn = {3-7643-6706-7},
      mrclass = {58J22 (19K35 22D25 46L80 46L87)},
      mrnumber = {1907596},
      mrreviewer = {Paul D. Mitchener},
      doi = {10.1007/978-3-0348-8187-6},
      url = {https://doi.org/10.1007/978-3-0348-8187-6},
      zblnumber = {1136.58013},
      }

Authors

Giles Gardam

Mathematisches Institut, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany