Abstract
We answer in the negative Siegel’s question whether all $E$-functions are polynomial expressions in hypergeometric $E$-functions. Namely, we show that if an irreducible differential operator of order three annihilates an $E$-function in the hypergeometric class, then the singularities of its Fourier transform are constrained to satisfy a symmetry property that generically does not hold. The proof relies on André’s theory of $E$-operators and Katz’s computation of the Galois group of hypergeometric differential equations.
-
@BOOK{Gfunctions,
author = {André,
Yves},
title = {{$G$}-{F}unctions and {G}eometry},
series = {Aspects Math.},
publisher = {Friedr. Vieweg \& Sohn, Braunschweig},
year = {1989},
pages = {xii+229},
isbn = {3-528-06317-3},
mrclass = {11J82 (11-02 11G10 11J87 12H25)},
mrnumber = {0990016},
mrreviewer = {C. L. Stewart},
doi = {10.1007/978-3-663-14108-2},
url = {https://doi.org/10.1007/978-3-663-14108-2},
zblnumber = {0688.10032},
} -
[GevreyI]
Y. André, "Séries Gevrey de type arithmétique. I. Théorèmes de pureté et de dualité," Ann. of Math. (2), vol. 151, iss. 2, pp. 705-740, 2000.
@ARTICLE{GevreyI,
author = {André,
Yves},
title = {Séries {G}evrey de type arithmétique. {I}. {T}héorèmes de pureté et de dualité},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {151},
year = {2000},
number = {2},
pages = {705--740},
issn = {0003-486X},
mrclass = {11J81 (34M99)},
mrnumber = {1765707},
mrreviewer = {P. Bundschuh},
doi = {10.2307/121045},
url = {https://doi.org/10.2307/121045},
zblnumber = {1037.11049},
} -
[GevreyII]
Y. André, "Séries Gevrey de type arithmétique. II. Transcendance sans transcendance," Ann. of Math. (2), vol. 151, iss. 2, pp. 741-756, 2000.
@ARTICLE{GevreyII,
author = {André,
Yves},
title = {Séries {G}evrey de type arithmétique. {II}. {T}ranscendance sans transcendance},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {151},
year = {2000},
number = {2},
pages = {741--756},
issn = {0003-486X},
mrclass = {11J81 (34M99)},
mrnumber = {1765708},
mrreviewer = {P. Bundschuh},
doi = {10.2307/121046},
url = {https://doi.org/10.2307/121046},
zblnumber = {1037.11050},
} -
[beukers]
F. Beukers, "A refined version of the Siegel-Shidlovskii theorem," Ann. of Math. (2), vol. 163, iss. 1, pp. 369-379, 2006.
@ARTICLE{beukers,
author = {Beukers, F.},
title = {A refined version of the {S}iegel-{S}hidlovskii theorem},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {163},
year = {2006},
number = {1},
pages = {369--379},
issn = {0003-486X},
mrclass = {11J91 (11J81)},
mrnumber = {2195138},
mrreviewer = {R. Wallisser},
doi = {10.4007/annals.2006.163.369},
url = {https://doi.org/10.4007/annals.2006.163.369},
zblnumber = {1133.11044},
} -
[BH]
F. Beukers and G. Heckman, "Monodromy for the hypergeometric function $_nF_{n-1}$," Invent. Math., vol. 95, iss. 2, pp. 325-354, 1989.
@ARTICLE{BH,
author = {Beukers, F. and Heckman, G.},
title = {Monodromy for the hypergeometric function {$_nF_{n-1}$}},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {95},
year = {1989},
number = {2},
pages = {325--354},
issn = {0020-9910},
mrclass = {11F99 (12H05 20F38 20G20 33A35)},
mrnumber = {0974906},
mrreviewer = {A. L. Onishchik},
doi = {10.1007/BF01393900},
url = {https://doi.org/10.1007/BF01393900},
zblnumber = {0663.30044},
} -
[BlochEsnault]
S. Bloch and H. Esnault, "Gau\ss -Manin determinant connections and periods for irregular connections," in GAFA 2000 (Tel Aviv, 1999), , 2000, pp. 1-31.
@INCOLLECTION{BlochEsnault,
author = {Bloch, Spencer and Esnault, Hélène},
title = {Gau\ss -{M}anin determinant connections and periods for irregular connections},
booktitle = {GAFA 2000 (Tel Aviv, 1999)},
series = {Geom. Funct. Anal.},
year = {2000},
number = {Special Volume, Part I},
pages = {1--31},
issn = {1016-443X},
mrclass = {14C40 (14D05 14F40)},
mrnumber = {1826247},
doi = {10.1007/978-3-0346-0422-2_1},
url = {https://doi.org/10.1007/978-3-0346-0422-2_1},
zblnumber = {0990.14003},
} -
[BlochEsnault2]
S. Bloch and H. Esnault, "Homology for irregular connections," J. Théor. Nombres Bordeaux, vol. 16, iss. 2, pp. 357-371, 2004.
@ARTICLE{BlochEsnault2,
author = {Bloch, Spencer and Esnault, Hélène},
title = {Homology for irregular connections},
journal = {J. Théor. Nombres Bordeaux},
fjournal = {Journal de Théorie des Nombres de Bordeaux},
volume = {16},
year = {2004},
number = {2},
pages = {357--371},
issn = {1246-7405},
mrclass = {32S40 (14F40 33C60)},
mrnumber = {2143558},
mrreviewer = {Nobuo Tsuzuki},
doi = {10.10.5802/jtnb.450},
url = {https://doi.org/10.5802/jtnb.450},
zblnumber = {1075.14016},
} -
[chudnovsky]
D. V. Chudnovsky and G. V. Chudnovsky, "Applications of Padé approximations to diophantine inequalities in values of $G$-functions," in Number theory (New York, 1983–84), Springer, Berlin, 1985, vol. 1135, pp. 9-51.
@INCOLLECTION{chudnovsky,
author = {Chudnovsky, D. V. and Chudnovsky, G. V.},
title = {Applications of {P}adé approximations to diophantine inequalities in values of {$G$}-functions},
booktitle = {Number theory ({N}ew {Y}ork, 1983--84)},
series = {Lecture Notes in Math.},
volume = {1135},
pages = {9--51},
publisher = {Springer, Berlin},
year = {1985},
mrclass = {11J25 (11J87 11J91)},
mrnumber = {0803349},
mrreviewer = {William W. Adams},
doi = {10.1007/BFb0074600},
url = {https://doi.org/10.1007/BFb0074600},
zblnumber = {0561.10016},
} -
[DMR] P. Deligne, B. Malgrange, and J. Ramis, Singularités Irrégulières, Soc, Math. France, Paris, 2007, vol. 5.
@BOOK{DMR,
author = {Deligne, Pierre and Malgrange, Bernard and Ramis, Jean-Pierre},
title = {Singularités Irrégulières},
series = {Doc. Math. (Paris)},
volume = {5},
note = {correspondance et documents},
publisher = {Soc, Math. France, Paris},
year = {2007},
pages = {xii+188},
isbn = {978-2-85629-241-9},
mrclass = {32S40 (01A60 34-06 34M35 34M40)},
mrnumber = {2387754},
mrreviewer = {Jan Stevens},
zblnumber = {1130.14001},
} -
[Dwork]
B. Dwork, G. Gerotto, and F. J. Sullivan, An Introduction to $G$-Functions, Princeton Univ. Press, Princeton, NJ, 1994, vol. 133.
@BOOK{Dwork,
author = {Dwork, Bernard and Gerotto, Giovanni and Sullivan, Francis J.},
title = {An Introduction to {$G$}-Functions},
series = {Ann. of Math. Stud.},
volume = {133},
publisher = {Princeton Univ. Press, Princeton, NJ},
year = {1994},
pages = {xxii+323},
isbn = {0-691-03681-0},
mrclass = {12H25 (11S80 12J25 13F25 14G20 34A99)},
mrnumber = {1274045},
mrreviewer = {Adolfo Quirós},
doi = {10.1515/9781400882540},
url = {https://doi.org/10.1515/9781400882540},
zblnumber = {0830.12004},
} -
[Eisenstein] G. Eisenstein, "Über eine allgemeine Eigenschaft der Reihen-Entwicklungen aller algebraischen Funktionen," Bericht Königl. Preuss. Akad. Wiss. Berlin, pp. 441-443, 1852.
@ARTICLE{Eisenstein,
author = {Eisenstein, G.},
journal = {Bericht K{ö}nigl. Preuss. Akad. Wiss. Berlin},
pages = {441--443},
title = {{Ü}ber eine allgemeine {E}igenschaft der {R}eihen-{E}ntwicklungen aller algebraischen {F}unktionen},
year = {1852},
zblnumber = {},
} -
[RivoalFischlerMicro]
S. Fischler and T. Rivoal, "Microsolutions of differential operators and values of arithmetic Gevrey series," Amer. J. Math., vol. 140, iss. 2, pp. 317-348, 2018.
@ARTICLE{RivoalFischlerMicro,
author = {Fischler, S. and Rivoal, T.},
title = {Microsolutions of differential operators and values of arithmetic {G}evrey series},
journal = {Amer. J. Math.},
fjournal = {American Journal of Mathematics},
volume = {140},
year = {2018},
number = {2},
pages = {317--348},
issn = {0002-9327},
mrclass = {11J91 (32C38 33E30 35A27 44A10 47F05)},
mrnumber = {3783211},
mrreviewer = {Michel Waldschmidt},
doi = {10.1353/ajm.2018.0007},
url = {https://doi.org/10.1353/ajm.2018.0007},
zblnumber = {1431.11093},
} -
[RivoalFischler] S. Fischler and T. Rivoal, On Siegel’s problem for $E$-functions, 2019.
@MISC{RivoalFischler,
author = {Fischler, S. and Rivoal, T.},
arxiv = {1910.06817},
year = {2019},
title = {On {S}iegel's problem for {$E$}-functions},
note = {{\em Rend. Semin. Math. Univ. Padova},
to appear},
sortyear = {2021},
zblnumber = {},
} -
[FJ] J. Fresán and P. Jossen, Exponential motives.
@MISC{FJ,
author = {Fres{á}n, J. and Jossen, P.},
title = {Exponential motives},
note = {available on authors' webpages},
zblnumber = {},
} -
[galoshkin] A. I. Galovckin, "Criterion for membership of hypergeometric Siegel functions in a class of $E$-functions," Mat. Zametki, vol. 29, iss. 1, pp. 3-14, 154, 1981.
@ARTICLE{galoshkin,
author = {Galo\v{c}kin, A. I.},
title = {Criterion for membership of hypergeometric {S}iegel functions in a class of {$E$}-functions},
journal = {Mat. Zametki},
fjournal = {Akademiya Nauk SSSR. Matematicheskie Zametki},
volume = {29},
year = {1981},
number = {1},
pages = {3--14, 154},
issn = {0025-567X},
mrclass = {10F35 (33A35)},
mrnumber = {0604144},
mrreviewer = {Daniel Bertrand},
zblnumber = {0456.10017},
} -
[gorelov1]
V. A. Gorelov, "On the Siegel conjecture for the case of second-order linear homogeneous differential equations," Mat. Zametki, vol. 75, iss. 4, pp. 549-565, 2004.
@ARTICLE{gorelov1,
author = {Gorelov, V. A.},
title = {On the {S}iegel conjecture for the case of second-order linear homogeneous differential equations},
journal = {Mat. Zametki},
fjournal = {Matematicheskie Zametki},
volume = {75},
year = {2004},
number = {4},
pages = {549--565},
issn = {0025-567X},
mrclass = {34M05 (30D15)},
mrnumber = {2068765},
mrreviewer = {Vassili G. Gelfreich},
doi = {10.1023/B:MATN.0000023333.36063.12},
url = {https://doi.org/10.1023/B:MATN.0000023333.36063.12},
zblnumber = {1062.34096},
} -
[gorelov2]
V. A. Gorelov, "On the structure of the set of $E$-functions satisfying second-order linear differential equations," Mat. Zametki, vol. 78, iss. 3, pp. 331-348, 2005.
@ARTICLE{gorelov2,
author = {Gorelov, V. A.},
title = {On the structure of the set of {$E$}-functions satisfying second-order linear differential equations},
journal = {Mat. Zametki},
fjournal = {Matematicheskie Zametki},
volume = {78},
year = {2005},
number = {3},
pages = {331--348},
issn = {0025-567X},
mrclass = {30D05 (30D10 33C70 34M05)},
mrnumber = {2227507},
mrreviewer = {Benharrat Belaïdi},
doi = {10.1007/s11006-005-0130-z},
url = {https://doi.org/10.1007/s11006-005-0130-z},
zblnumber = {1112.33013},
} -
[Ince] E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944.
@BOOK{Ince,
author = {Ince, E. L.},
title = {Ordinary {D}ifferential {E}quations},
publisher = {Dover Publications, New York},
year = {1944},
pages = {viii+558},
mrclass = {36.0X},
mrnumber = {0010757},
zblnumber = {0063.02971},
} -
[KatzGalois]
N. M. Katz, "On the calculation of some differential Galois groups," Invent. Math., vol. 87, iss. 1, pp. 13-61, 1987.
@ARTICLE{KatzGalois,
author = {Katz, Nicholas M.},
title = {On the calculation of some differential {G}alois groups},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {87},
year = {1987},
number = {1},
pages = {13--61},
issn = {0020-9910},
mrclass = {12H05 (14E20 14F20 34B30)},
mrnumber = {0862711},
mrreviewer = {F. Baldassarri},
doi = {10.1007/BF01389152},
url = {https://doi.org/10.1007/BF01389152},
zblnumber = {0609.12025},
} -
[Katz]
N. M. Katz, Exponential Sums and Differential Equations, Princeton Univ. Press, Princeton, NJ, 1990, vol. 124.
@BOOK{Katz,
author = {Katz, Nicholas M.},
title = {Exponential Sums and Differential Equations},
series = {Ann. of Math. Stud.},
volume = {124},
publisher = {Princeton Univ. Press, Princeton, NJ},
year = {1990},
pages = {xii+430},
isbn = {0-691-08598-6; 0-691-08599-4},
mrclass = {14D10 (11L03 11T23 14G15)},
mrnumber = {1081536},
mrreviewer = {Hernando Enrique Sierra-Morales},
doi = {10.1515/9781400882434},
url = {https://doi.org/10.1515/9781400882434},
zblnumber = {0731.14008},
} -
@BOOK{Lang,
author = {Lang, Serge},
title = {Algebra},
series = {Grad. Texts in Math.},
volume = {211},
edition = {third},
publisher = {Springer-Verlag, New York},
year = {2002},
pages = {xvi+914},
isbn = {0-387-95385-X},
mrclass = {00A05 (15-02)},
mrnumber = {1878556},
doi = {10.1007/978-1-4613-0041-0},
url = {https://doi.org/10.1007/978-1-4613-0041-0},
zblnumber = {0984.00001},
} -
[Rivoal] T. Rivoal, Les $E$-fonctions et $G$-fonctions de Siegel.
@MISC{Rivoal,
author = {Rivoal, T.},
title = {Les {$E$}-fonctions et {$G$}-fonctions de {S}iegel},
note = {\emph{P{é}riodes et transcendance, Journée mathématiques X-UPS},
2019, to appear; available on author's webpage},
sortyear={2019},
zblnumber = {},
} -
[RivRoq]
T. Rivoal and J. Roques, "Siegel’s problem for $E$-functions of order $2$," in Transcendence in Algebra, Combinatorics, Geometry and Number Theory, , vol. 373, pp. 473-488.
@incollection{RivRoq,
author = {Rivoal, T. and Roques, J.},
title = {Siegel's problem for {$E$}-functions of order $2$},
series={Springer Proc. Math. Stat.},
volume={373},
pages={473--488},
booktitle={Transcendence in Algebra, Combinatorics, Geometry and Number Theory},
note = {(A. Bostan and K. Raschel, eds.), to appear},
url={https://hal.archives-ouvertes.fr/hal-03327786},
sortyear={2022},
} -
[SiegelShidlovsky] A. B. vSidlovskiui, "A criterion for algebraic independence of the values of a class of entire functions," Izv. Akad. Nauk SSSR. Ser. Mat., vol. 23, pp. 35-66, 1959.
@ARTICLE{SiegelShidlovsky,
author = {Šidlovskiĭ,
A. B.},
title = {A criterion for algebraic independence of the values of a class of entire functions},
journal = {Izv. Akad. Nauk SSSR. Ser. Mat.},
fjournal = {Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya},
volume = {23},
year = {1959},
pages = {35--66},
issn = {0373-2436},
mrclass = {10.00 (30.00)},
mrnumber = {0102503},
mrreviewer = {K. Mahler},
zblnumber = {0085.27301},
} -
[Shidlovsky]
A. B. Shidlovskii, Transcendental Numbers, Walter de Gruyter & Co., Berlin, 1989, vol. 12.
@BOOK{Shidlovsky,
author = {Shidlovskii, Andrei Borisovich},
title = {Transcendental Numbers},
series = {De Gruyter Stud. Math.},
volume = {12},
note = {translated from the Russian by Neal Koblitz; with a foreword by W. Dale Brownawell},
publisher = {Walter de Gruyter \& Co., Berlin},
year = {1989},
pages = {xx+466},
isbn = {3-11-011568-9},
mrclass = {11J81},
mrnumber = {1033015},
doi = {10.1515/9783110889055},
url = {https://doi.org/10.1515/9783110889055},
zblnumber = {0689.10043},
} -
[Siegel1929] C. L. Siegel, "Über einige Anwendungen diophantischer Approximationen," Abhandlungen der Preu\ss ischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, vol. 1, 1929.
@ARTICLE{Siegel1929,
author = {Siegel, Carl Ludwig},
title = {{Ü}ber einige {A}nwendungen diophantischer {A}pproximationen},
journal = {{A}bhandlungen der {P}reu\ss ischen {A}kademie der {W}issenschaften, {P}hysikalisch-mathematische {K}lasse},
volume = {1},
year = {1929},
note = {reprinted in \emph{Gesammelte Abhandlungen} {\bf I},
209--266},
jfmnumber = {56.0180.05},
} -
[Siegel]
C. L. Siegel, Transcendental Numbers, Princeton Univ. Press, Princeton, N. J., 1949, vol. 16.
@BOOK{Siegel,
author = {Siegel, Carl Ludwig},
title = {Transcendental {N}umbers},
series = {Ann. of Math. Stud.},
volume = {16},
publisher = {Princeton Univ. Press, Princeton, N. J.},
year = {1949},
pages = {viii+102},
mrclass = {10.0X},
mrnumber = {0032684},
mrreviewer = {K. Mahler},
doi = {10.1515/9781400882359},
url = {https://doi.org/10.1515/9781400882359},
zblnumber = {1283.11003},
} -
[SingerVanDerPut]
M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, Springer-Verlag, Berlin, 2003, vol. 328.
@BOOK{SingerVanDerPut,
author = {van der Put, Marius and Singer, Michael F.},
title = {Galois Theory of Linear Differential Equations},
series = {Grundlehren Math. Wissen.},
volume = {328},
publisher = {Springer-Verlag, Berlin},
year = {2003},
pages = {xviii+438},
isbn = {3-540-44228-6},
mrclass = {12H05 (12H20 34A99 34M15)},
mrnumber = {1960772},
mrreviewer = {Pedro Fortuny Ayuso},
doi = {10.1007/978-3-642-55750-7},
url = {https://doi.org/10.1007/978-3-642-55750-7},
zblnumber = {1036.12008},
} -
[Vovkodav]
I. F. Vovkodav, "Logarithmic solutions of higher-order hypergeometric differential equations," Ukrainian Math. J., vol. 19, iss. 4, pp. 478-482, 1967.
@ARTICLE{Vovkodav,
author = {Vovkodav, I. F.},
title = {Logarithmic solutions of higher-order hypergeometric differential equations},
journal = {Ukrainian Math. J.},
volume = {19},
number = {4},
year = {1967},
pages = {478--482},
doi = {10.1007/BF01090408},
url = {https://doi.org/10.1007/BF01090408},
zblnumber = {0208.32702},
}