A non-hypergeometric $E$-function

Abstract

We answer in the negative Siegel’s question whether all $E$-functions are polynomial expressions in hypergeometric $E$-functions. Namely, we show that if an irreducible differential operator of order three annihilates an $E$-function in the hypergeometric class, then the singularities of its Fourier transform are constrained to satisfy a symmetry property that generically does not hold. The proof relies on André’s theory of $E$-operators and Katz’s computation of the Galois group of hypergeometric differential equations.

  • [Gfunctions] Go to document Y. André, $G$-Functions and Geometry, Friedr. Vieweg & Sohn, Braunschweig, 1989.
    @BOOK{Gfunctions,
      author = {André,
      Yves},
      title = {{$G$}-{F}unctions and {G}eometry},
      series = {Aspects Math.},
      publisher = {Friedr. Vieweg \& Sohn, Braunschweig},
      year = {1989},
      pages = {xii+229},
      isbn = {3-528-06317-3},
      mrclass = {11J82 (11-02 11G10 11J87 12H25)},
      mrnumber = {0990016},
      mrreviewer = {C. L. Stewart},
      doi = {10.1007/978-3-663-14108-2},
      url = {https://doi.org/10.1007/978-3-663-14108-2},
      zblnumber = {0688.10032},
      }
  • [GevreyI] Go to document Y. André, "Séries Gevrey de type arithmétique. I. Théorèmes de pureté et de dualité," Ann. of Math. (2), vol. 151, iss. 2, pp. 705-740, 2000.
    @ARTICLE{GevreyI,
      author = {André,
      Yves},
      title = {Séries {G}evrey de type arithmétique. {I}. {T}héorèmes de pureté et de dualité},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {151},
      year = {2000},
      number = {2},
      pages = {705--740},
      issn = {0003-486X},
      mrclass = {11J81 (34M99)},
      mrnumber = {1765707},
      mrreviewer = {P. Bundschuh},
      doi = {10.2307/121045},
      url = {https://doi.org/10.2307/121045},
      zblnumber = {1037.11049},
      }
  • [GevreyII] Go to document Y. André, "Séries Gevrey de type arithmétique. II. Transcendance sans transcendance," Ann. of Math. (2), vol. 151, iss. 2, pp. 741-756, 2000.
    @ARTICLE{GevreyII,
      author = {André,
      Yves},
      title = {Séries {G}evrey de type arithmétique. {II}. {T}ranscendance sans transcendance},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {151},
      year = {2000},
      number = {2},
      pages = {741--756},
      issn = {0003-486X},
      mrclass = {11J81 (34M99)},
      mrnumber = {1765708},
      mrreviewer = {P. Bundschuh},
      doi = {10.2307/121046},
      url = {https://doi.org/10.2307/121046},
      zblnumber = {1037.11050},
      }
  • [beukers] Go to document F. Beukers, "A refined version of the Siegel-Shidlovskii theorem," Ann. of Math. (2), vol. 163, iss. 1, pp. 369-379, 2006.
    @ARTICLE{beukers,
      author = {Beukers, F.},
      title = {A refined version of the {S}iegel-{S}hidlovskii theorem},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {163},
      year = {2006},
      number = {1},
      pages = {369--379},
      issn = {0003-486X},
      mrclass = {11J91 (11J81)},
      mrnumber = {2195138},
      mrreviewer = {R. Wallisser},
      doi = {10.4007/annals.2006.163.369},
      url = {https://doi.org/10.4007/annals.2006.163.369},
      zblnumber = {1133.11044},
      }
  • [BH] Go to document F. Beukers and G. Heckman, "Monodromy for the hypergeometric function $_nF_{n-1}$," Invent. Math., vol. 95, iss. 2, pp. 325-354, 1989.
    @ARTICLE{BH,
      author = {Beukers, F. and Heckman, G.},
      title = {Monodromy for the hypergeometric function {$_nF_{n-1}$}},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {95},
      year = {1989},
      number = {2},
      pages = {325--354},
      issn = {0020-9910},
      mrclass = {11F99 (12H05 20F38 20G20 33A35)},
      mrnumber = {0974906},
      mrreviewer = {A. L. Onishchik},
      doi = {10.1007/BF01393900},
      url = {https://doi.org/10.1007/BF01393900},
      zblnumber = {0663.30044},
      }
  • [BlochEsnault] Go to document S. Bloch and H. Esnault, "Gau\ss -Manin determinant connections and periods for irregular connections," in GAFA 2000 (Tel Aviv, 1999), , 2000, pp. 1-31.
    @INCOLLECTION{BlochEsnault,
      author = {Bloch, Spencer and Esnault, Hélène},
      title = {Gau\ss -{M}anin determinant connections and periods for irregular connections},
      booktitle = {GAFA 2000 (Tel Aviv, 1999)},
      series = {Geom. Funct. Anal.},
      year = {2000},
      number = {Special Volume, Part I},
      pages = {1--31},
      issn = {1016-443X},
      mrclass = {14C40 (14D05 14F40)},
      mrnumber = {1826247},
      doi = {10.1007/978-3-0346-0422-2_1},
      url = {https://doi.org/10.1007/978-3-0346-0422-2_1},
      zblnumber = {0990.14003},
      }
  • [BlochEsnault2] Go to document S. Bloch and H. Esnault, "Homology for irregular connections," J. Théor. Nombres Bordeaux, vol. 16, iss. 2, pp. 357-371, 2004.
    @ARTICLE{BlochEsnault2,
      author = {Bloch, Spencer and Esnault, Hélène},
      title = {Homology for irregular connections},
      journal = {J. Théor. Nombres Bordeaux},
      fjournal = {Journal de Théorie des Nombres de Bordeaux},
      volume = {16},
      year = {2004},
      number = {2},
      pages = {357--371},
      issn = {1246-7405},
      mrclass = {32S40 (14F40 33C60)},
      mrnumber = {2143558},
      mrreviewer = {Nobuo Tsuzuki},
      doi = {10.10.5802/jtnb.450},
      url = {https://doi.org/10.5802/jtnb.450},
      zblnumber = {1075.14016},
      }
  • [chudnovsky] Go to document D. V. Chudnovsky and G. V. Chudnovsky, "Applications of Padé approximations to diophantine inequalities in values of $G$-functions," in Number theory (New York, 1983–84), Springer, Berlin, 1985, vol. 1135, pp. 9-51.
    @INCOLLECTION{chudnovsky,
      author = {Chudnovsky, D. V. and Chudnovsky, G. V.},
      title = {Applications of {P}adé approximations to diophantine inequalities in values of {$G$}-functions},
      booktitle = {Number theory ({N}ew {Y}ork, 1983--84)},
      series = {Lecture Notes in Math.},
      volume = {1135},
      pages = {9--51},
      publisher = {Springer, Berlin},
      year = {1985},
      mrclass = {11J25 (11J87 11J91)},
      mrnumber = {0803349},
      mrreviewer = {William W. Adams},
      doi = {10.1007/BFb0074600},
      url = {https://doi.org/10.1007/BFb0074600},
      zblnumber = {0561.10016},
      }
  • [DMR] P. Deligne, B. Malgrange, and J. Ramis, Singularités Irrégulières, Soc, Math. France, Paris, 2007, vol. 5.
    @BOOK{DMR,
      author = {Deligne, Pierre and Malgrange, Bernard and Ramis, Jean-Pierre},
      title = {Singularités Irrégulières},
      series = {Doc. Math. (Paris)},
      volume = {5},
      note = {correspondance et documents},
      publisher = {Soc, Math. France, Paris},
      year = {2007},
      pages = {xii+188},
      isbn = {978-2-85629-241-9},
      mrclass = {32S40 (01A60 34-06 34M35 34M40)},
      mrnumber = {2387754},
      mrreviewer = {Jan Stevens},
      zblnumber = {1130.14001},
      }
  • [Dwork] Go to document B. Dwork, G. Gerotto, and F. J. Sullivan, An Introduction to $G$-Functions, Princeton Univ. Press, Princeton, NJ, 1994, vol. 133.
    @BOOK{Dwork,
      author = {Dwork, Bernard and Gerotto, Giovanni and Sullivan, Francis J.},
      title = {An Introduction to {$G$}-Functions},
      series = {Ann. of Math. Stud.},
      volume = {133},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {1994},
      pages = {xxii+323},
      isbn = {0-691-03681-0},
      mrclass = {12H25 (11S80 12J25 13F25 14G20 34A99)},
      mrnumber = {1274045},
      mrreviewer = {Adolfo Quirós},
      doi = {10.1515/9781400882540},
      url = {https://doi.org/10.1515/9781400882540},
      zblnumber = {0830.12004},
      }
  • [Eisenstein] G. Eisenstein, "Über eine allgemeine Eigenschaft der Reihen-Entwicklungen aller algebraischen Funktionen," Bericht Königl. Preuss. Akad. Wiss. Berlin, pp. 441-443, 1852.
    @ARTICLE{Eisenstein,
      author = {Eisenstein, G.},
      journal = {Bericht K{ö}nigl. Preuss. Akad. Wiss. Berlin},
      pages = {441--443},
      title = {{Ü}ber eine allgemeine {E}igenschaft der {R}eihen-{E}ntwicklungen aller algebraischen {F}unktionen},
      year = {1852},
      zblnumber = {},
      }
  • [RivoalFischlerMicro] Go to document S. Fischler and T. Rivoal, "Microsolutions of differential operators and values of arithmetic Gevrey series," Amer. J. Math., vol. 140, iss. 2, pp. 317-348, 2018.
    @ARTICLE{RivoalFischlerMicro,
      author = {Fischler, S. and Rivoal, T.},
      title = {Microsolutions of differential operators and values of arithmetic {G}evrey series},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {140},
      year = {2018},
      number = {2},
      pages = {317--348},
      issn = {0002-9327},
      mrclass = {11J91 (32C38 33E30 35A27 44A10 47F05)},
      mrnumber = {3783211},
      mrreviewer = {Michel Waldschmidt},
      doi = {10.1353/ajm.2018.0007},
      url = {https://doi.org/10.1353/ajm.2018.0007},
      zblnumber = {1431.11093},
      }
  • [RivoalFischler] S. Fischler and T. Rivoal, On Siegel’s problem for $E$-functions, 2019.
    @MISC{RivoalFischler,
      author = {Fischler, S. and Rivoal, T.},
      arxiv = {1910.06817},
      year = {2019},
      title = {On {S}iegel's problem for {$E$}-functions},
      note = {{\em Rend. Semin. Math. Univ. Padova},
      to appear},
      sortyear = {2021},
      zblnumber = {},
      }
  • [FJ] J. Fresán and P. Jossen, Exponential motives.
    @MISC{FJ,
      author = {Fres{á}n, J. and Jossen, P.},
      title = {Exponential motives},
      note = {available on authors' webpages},
      zblnumber = {},
      }
  • [galoshkin] A. I. Galovckin, "Criterion for membership of hypergeometric Siegel functions in a class of $E$-functions," Mat. Zametki, vol. 29, iss. 1, pp. 3-14, 154, 1981.
    @ARTICLE{galoshkin,
      author = {Galo\v{c}kin, A. I.},
      title = {Criterion for membership of hypergeometric {S}iegel functions in a class of {$E$}-functions},
      journal = {Mat. Zametki},
      fjournal = {Akademiya Nauk SSSR. Matematicheskie Zametki},
      volume = {29},
      year = {1981},
      number = {1},
      pages = {3--14, 154},
      issn = {0025-567X},
      mrclass = {10F35 (33A35)},
      mrnumber = {0604144},
      mrreviewer = {Daniel Bertrand},
      zblnumber = {0456.10017},
      }
  • [gorelov1] Go to document V. A. Gorelov, "On the Siegel conjecture for the case of second-order linear homogeneous differential equations," Mat. Zametki, vol. 75, iss. 4, pp. 549-565, 2004.
    @ARTICLE{gorelov1,
      author = {Gorelov, V. A.},
      title = {On the {S}iegel conjecture for the case of second-order linear homogeneous differential equations},
      journal = {Mat. Zametki},
      fjournal = {Matematicheskie Zametki},
      volume = {75},
      year = {2004},
      number = {4},
      pages = {549--565},
      issn = {0025-567X},
      mrclass = {34M05 (30D15)},
      mrnumber = {2068765},
      mrreviewer = {Vassili G. Gelfreich},
      doi = {10.1023/B:MATN.0000023333.36063.12},
      url = {https://doi.org/10.1023/B:MATN.0000023333.36063.12},
      zblnumber = {1062.34096},
      }
  • [gorelov2] Go to document V. A. Gorelov, "On the structure of the set of $E$-functions satisfying second-order linear differential equations," Mat. Zametki, vol. 78, iss. 3, pp. 331-348, 2005.
    @ARTICLE{gorelov2,
      author = {Gorelov, V. A.},
      title = {On the structure of the set of {$E$}-functions satisfying second-order linear differential equations},
      journal = {Mat. Zametki},
      fjournal = {Matematicheskie Zametki},
      volume = {78},
      year = {2005},
      number = {3},
      pages = {331--348},
      issn = {0025-567X},
      mrclass = {30D05 (30D10 33C70 34M05)},
      mrnumber = {2227507},
      mrreviewer = {Benharrat Belaïdi},
      doi = {10.1007/s11006-005-0130-z},
      url = {https://doi.org/10.1007/s11006-005-0130-z},
      zblnumber = {1112.33013},
      }
  • [Ince] E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944.
    @BOOK{Ince,
      author = {Ince, E. L.},
      title = {Ordinary {D}ifferential {E}quations},
      publisher = {Dover Publications, New York},
      year = {1944},
      pages = {viii+558},
      mrclass = {36.0X},
      mrnumber = {0010757},
      zblnumber = {0063.02971},
      }
  • [KatzGalois] Go to document N. M. Katz, "On the calculation of some differential Galois groups," Invent. Math., vol. 87, iss. 1, pp. 13-61, 1987.
    @ARTICLE{KatzGalois,
      author = {Katz, Nicholas M.},
      title = {On the calculation of some differential {G}alois groups},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {87},
      year = {1987},
      number = {1},
      pages = {13--61},
      issn = {0020-9910},
      mrclass = {12H05 (14E20 14F20 34B30)},
      mrnumber = {0862711},
      mrreviewer = {F. Baldassarri},
      doi = {10.1007/BF01389152},
      url = {https://doi.org/10.1007/BF01389152},
      zblnumber = {0609.12025},
      }
  • [Katz] Go to document N. M. Katz, Exponential Sums and Differential Equations, Princeton Univ. Press, Princeton, NJ, 1990, vol. 124.
    @BOOK{Katz,
      author = {Katz, Nicholas M.},
      title = {Exponential Sums and Differential Equations},
      series = {Ann. of Math. Stud.},
      volume = {124},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {1990},
      pages = {xii+430},
      isbn = {0-691-08598-6; 0-691-08599-4},
      mrclass = {14D10 (11L03 11T23 14G15)},
      mrnumber = {1081536},
      mrreviewer = {Hernando Enrique Sierra-Morales},
      doi = {10.1515/9781400882434},
      url = {https://doi.org/10.1515/9781400882434},
      zblnumber = {0731.14008},
      }
  • [Lang] Go to document S. Lang, Algebra, third ed., Springer-Verlag, New York, 2002, vol. 211.
    @BOOK{Lang,
      author = {Lang, Serge},
      title = {Algebra},
      series = {Grad. Texts in Math.},
      volume = {211},
      edition = {third},
      publisher = {Springer-Verlag, New York},
      year = {2002},
      pages = {xvi+914},
      isbn = {0-387-95385-X},
      mrclass = {00A05 (15-02)},
      mrnumber = {1878556},
      doi = {10.1007/978-1-4613-0041-0},
      url = {https://doi.org/10.1007/978-1-4613-0041-0},
      zblnumber = {0984.00001},
      }
  • [Rivoal] T. Rivoal, Les $E$-fonctions et $G$-fonctions de Siegel.
    @MISC{Rivoal,
      author = {Rivoal, T.},
      title = {Les {$E$}-fonctions et {$G$}-fonctions de {S}iegel},
      note = {\emph{P{é}riodes et transcendance, Journée mathématiques X-UPS},
      2019, to appear; available on author's webpage},
      sortyear={2019},
      zblnumber = {},
      }
  • [RivRoq] Go to document T. Rivoal and J. Roques, "Siegel’s problem for $E$-functions of order $2$," in Transcendence in Algebra, Combinatorics, Geometry and Number Theory, , vol. 373, pp. 473-488.
    @incollection{RivRoq,
      author = {Rivoal, T. and Roques, J.},
      title = {Siegel's problem for {$E$}-functions of order $2$},
      series={Springer Proc. Math. Stat.},
      volume={373},
      pages={473--488},
      booktitle={Transcendence in Algebra, Combinatorics, Geometry and Number Theory},
      note = {(A. Bostan and K. Raschel, eds.), to appear},
      url={https://hal.archives-ouvertes.fr/hal-03327786},
      sortyear={2022},
      }
  • [SiegelShidlovsky] A. B. vSidlovskiui, "A criterion for algebraic independence of the values of a class of entire functions," Izv. Akad. Nauk SSSR. Ser. Mat., vol. 23, pp. 35-66, 1959.
    @ARTICLE{SiegelShidlovsky,
      author = {Šidlovskiĭ,
      A. B.},
      title = {A criterion for algebraic independence of the values of a class of entire functions},
      journal = {Izv. Akad. Nauk SSSR. Ser. Mat.},
      fjournal = {Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya},
      volume = {23},
      year = {1959},
      pages = {35--66},
      issn = {0373-2436},
      mrclass = {10.00 (30.00)},
      mrnumber = {0102503},
      mrreviewer = {K. Mahler},
      zblnumber = {0085.27301},
      }
  • [Shidlovsky] Go to document A. B. Shidlovskii, Transcendental Numbers, Walter de Gruyter & Co., Berlin, 1989, vol. 12.
    @BOOK{Shidlovsky,
      author = {Shidlovskii, Andrei Borisovich},
      title = {Transcendental Numbers},
      series = {De Gruyter Stud. Math.},
      volume = {12},
      note = {translated from the Russian by Neal Koblitz; with a foreword by W. Dale Brownawell},
      publisher = {Walter de Gruyter \& Co., Berlin},
      year = {1989},
      pages = {xx+466},
      isbn = {3-11-011568-9},
      mrclass = {11J81},
      mrnumber = {1033015},
      doi = {10.1515/9783110889055},
      url = {https://doi.org/10.1515/9783110889055},
      zblnumber = {0689.10043},
      }
  • [Siegel1929] C. L. Siegel, "Über einige Anwendungen diophantischer Approximationen," Abhandlungen der Preu\ss ischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, vol. 1, 1929.
    @ARTICLE{Siegel1929,
      author = {Siegel, Carl Ludwig},
      title = {{Ü}ber einige {A}nwendungen diophantischer {A}pproximationen},
      journal = {{A}bhandlungen der {P}reu\ss ischen {A}kademie der {W}issenschaften, {P}hysikalisch-mathematische {K}lasse},
      volume = {1},
      year = {1929},
      note = {reprinted in \emph{Gesammelte Abhandlungen} {\bf I},
      209--266},
      jfmnumber = {56.0180.05},
      }
  • [Siegel] Go to document C. L. Siegel, Transcendental Numbers, Princeton Univ. Press, Princeton, N. J., 1949, vol. 16.
    @BOOK{Siegel,
      author = {Siegel, Carl Ludwig},
      title = {Transcendental {N}umbers},
      series = {Ann. of Math. Stud.},
      volume = {16},
      publisher = {Princeton Univ. Press, Princeton, N. J.},
      year = {1949},
      pages = {viii+102},
      mrclass = {10.0X},
      mrnumber = {0032684},
      mrreviewer = {K. Mahler},
      doi = {10.1515/9781400882359},
      url = {https://doi.org/10.1515/9781400882359},
      zblnumber = {1283.11003},
      }
  • [SingerVanDerPut] Go to document M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, Springer-Verlag, Berlin, 2003, vol. 328.
    @BOOK{SingerVanDerPut,
      author = {van der Put, Marius and Singer, Michael F.},
      title = {Galois Theory of Linear Differential Equations},
      series = {Grundlehren Math. Wissen.},
      volume = {328},
      publisher = {Springer-Verlag, Berlin},
      year = {2003},
      pages = {xviii+438},
      isbn = {3-540-44228-6},
      mrclass = {12H05 (12H20 34A99 34M15)},
      mrnumber = {1960772},
      mrreviewer = {Pedro Fortuny Ayuso},
      doi = {10.1007/978-3-642-55750-7},
      url = {https://doi.org/10.1007/978-3-642-55750-7},
      zblnumber = {1036.12008},
      }
  • [Vovkodav] Go to document I. F. Vovkodav, "Logarithmic solutions of higher-order hypergeometric differential equations," Ukrainian Math. J., vol. 19, iss. 4, pp. 478-482, 1967.
    @ARTICLE{Vovkodav,
      author = {Vovkodav, I. F.},
      title = {Logarithmic solutions of higher-order hypergeometric differential equations},
      journal = {Ukrainian Math. J.},
      volume = {19},
      number = {4},
      year = {1967},
      pages = {478--482},
      doi = {10.1007/BF01090408},
      url = {https://doi.org/10.1007/BF01090408},
      zblnumber = {0208.32702},
      }

Authors

Javier Fresán

CMLS, École polytechnique, Palaiseau, France

Peter Jossen

ETH Zürich, Zürich, Switzerland and King's College, London, England