Lie algebras and $v_n$-periodic spaces

Abstract

We consider a homotopy theory obtained from that of pointed spaces by inverting the maps inducing isomorphisms in $v_n$-periodic homotopy groups. The case $n=0$ corresponds to rational homotopy theory. In analogy with Quillen’s results in the rational case, we prove that this $v_n$-periodic homotopy theory is equivalent to the homotopy theory of Lie algebras in $T(n)$-local spectra. We also compare it to the homotopy theory of commutative coalgebras in $T(n)$-local spectra, where it turns out there is only an equivalence up to a certain convergence issue of the Goodwillie tower of the identity.

  • [aroneching] G. Arone and M. Ching, "Operads and chain rules for the calculus of functors," Astérisque, vol. 338, p. vi, 2011.
    @ARTICLE{aroneching,
      author = {Arone, Greg and Ching, Michael},
      title = {Operads and chain rules for the calculus of functors},
      journal = {Astérisque},
      fjournal = {Astérisque},
      volume = {338},
      year = {2011},
      pages = {vi+158},
      issn = {0303-1179},
      isbn = {978-2-85629-308-9},
      mrclass = {55P65 (18D50 55P42 55P48 55U35)},
      mrnumber = {2840569},
      mrreviewer = {Beno\^ıt Fresse},
      zblnumber = {1239.55004},
      }
  • [aronedwyer] Go to document G. Z. Arone and W. G. Dwyer, "Partition complexes, Tits buildings and symmetric products," Proc. London Math. Soc. (3), vol. 82, iss. 1, pp. 229-256, 2001.
    @ARTICLE{aronedwyer,
      author = {Arone, G. Z. and Dwyer, W. G.},
      title = {Partition complexes, {T}its buildings and symmetric products},
      journal = {Proc. London Math. Soc. (3)},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      volume = {82},
      year = {2001},
      number = {1},
      pages = {229--256},
      issn = {0024-6115},
      mrclass = {55N25 (20E42 55P25 55S15)},
      mrnumber = {1794263},
      mrreviewer = {Donald W. Kahn},
      doi = {10.1112/S0024611500012715},
      url = {https://doi.org/10.1112/S0024611500012715},
      zblnumber = {1028.55008},
      }
  • [aronemahowald] Go to document G. Arone and M. Mahowald, "The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres," Invent. Math., vol. 135, iss. 3, pp. 743-788, 1999.
    @ARTICLE{aronemahowald,
      author = {Arone, Greg and Mahowald, Mark},
      title = {The {G}oodwillie tower of the identity functor and the unstable periodic homotopy of spheres},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {135},
      year = {1999},
      number = {3},
      pages = {743--788},
      issn = {0020-9910},
      mrclass = {55Q40 (55N91 55Q10 55Q51)},
      mrnumber = {1669268},
      mrreviewer = {N. J. Kuhn},
      doi = {10.1007/s002220050300},
      url = {https://doi.org/10.1007/s002220050300},
      zblnumber = {0997.55016},
      }
  • [aronekankaanrinta2] Go to document G. Arone and M. Kankaanrinta, "The homology of certain subgroups of the symmetric group with coefficients in Lie$(n)$," J. Pure Appl. Algebra, vol. 127, iss. 1, pp. 1-14, 1998.
    @ARTICLE{aronekankaanrinta2,
      author = {Arone, Greg and Kankaanrinta, Marja},
      title = {The homology of certain subgroups of the symmetric group with coefficients in {L}ie{$(n)$}},
      journal = {J. Pure Appl. Algebra},
      fjournal = {Journal of Pure and Applied Algebra},
      volume = {127},
      year = {1998},
      number = {1},
      pages = {1--14},
      issn = {0022-4049},
      mrclass = {57T10 (20J06 55P15)},
      mrnumber = {1609516},
      doi = {10.1016/S0022-4049(97)00050-9},
      url = {https://doi.org/10.1016/S0022-4049(97)00050-9},
      zblnumber = {0921.55012},
      }
  • [basterramandell] Go to document M. Basterra and M. A. Mandell, "Homology and cohomology of $E_\infty$ ring spectra," Math. Z., vol. 249, iss. 4, pp. 903-944, 2005.
    @ARTICLE{basterramandell,
      author = {Basterra, Maria and Mandell, Michael A.},
      title = {Homology and cohomology of {$E_\infty$} ring spectra},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {249},
      year = {2005},
      number = {4},
      pages = {903--944},
      issn = {0025-5874},
      mrclass = {55P43 (55P48 55U35)},
      mrnumber = {2126222},
      mrreviewer = {Birgit Richter},
      doi = {10.1007/s00209-004-0744-y},
      url = {https://doi.org/10.1007/s00209-004-0744-y},
      zblnumber = {1071.55006},
      }
  • [behrensehp] Go to document M. Behrens, "The Goodwillie tower and the EHP sequence," Mem. Amer. Math. Soc., vol. 218, iss. 1026, p. xii, 2012.
    @ARTICLE{behrensehp,
      author = {Behrens, Mark},
      title = {The {G}oodwillie tower and the {EHP} sequence},
      journal = {Mem. Amer. Math. Soc.},
      fjournal = {Memoirs of the American Mathematical Society},
      volume = {218},
      year = {2012},
      number = {1026},
      pages = {xii+90},
      issn = {0065-9266},
      isbn = {978-0-8218-6902-4},
      mrclass = {55Q40 (55Q10 55Q15)},
      mrnumber = {2976788},
      mrreviewer = {Gregory Z. Arone},
      doi = {10.1090/S0065-9266-2011-00645-3},
      url = {https://doi.org/10.1090/S0065-9266-2011-00645-3},
      zblnumber = {1330.55012},
      }
  • [behrensrezk] Go to document M. Behrens and C. Rezk, "The Bousfield-Kuhn functor and topological André-Quillen cohomology," Invent. Math., vol. 220, iss. 3, pp. 949-1022, 2020.
    @ARTICLE{behrensrezk,
      author = {Behrens, Mark and Rezk, Charles},
      title = {The {B}ousfield-{K}uhn functor and topological {A}ndré-{Q}uillen cohomology},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {220},
      year = {2020},
      number = {3},
      pages = {949--1022},
      issn = {0020-9910},
      mrclass = {55S25 (55P43 55Q51)},
      mrnumber = {4094969},
      doi = {10.1007/s00222-019-00941-x},
      url = {https://doi.org/10.1007/s00222-019-00941-x},
      zblnumber = {07207176},
      }
  • [behrensrezk2] Go to document M. Behrens and C. Rezk, "Spectral algebra models of unstable $v_n$-periodic homotopy theory," in Bousfield Classes and Ohkawa’s Theorem, 2020, pp. 275-323.
    @inproceedings{behrensrezk2,
      author = {Behrens, Mark and Rezk, Charles},
      title = {Spectral algebra models of unstable $v_n$-periodic homotopy theory},
      booktitle={Bousfield {C}lasses and {O}hkawa's {T}heorem},
      year={2020},
      publisher={Springer Singapore, Singapore},
      pages={275--323},
      zblnumber = {07261950},
      doi = {10.1007/978-981-15-1588-0_10},
      url = {https://doi.org/10.1007/978-981-15-1588-0_10},
      }
  • [bousfieldlocalization] Go to document A. K. Bousfield, "Localization and periodicity in unstable homotopy theory," J. Amer. Math. Soc., vol. 7, iss. 4, pp. 831-873, 1994.
    @ARTICLE{bousfieldlocalization,
      author = {Bousfield, A. K.},
      title = {Localization and periodicity in unstable homotopy theory},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {7},
      year = {1994},
      number = {4},
      pages = {831--873},
      issn = {0894-0347},
      mrclass = {55P60 (55N15 55N20 55Q05 55U10)},
      mrnumber = {1257059},
      mrreviewer = {N. J. Kuhn},
      doi = {10.2307/2152734},
      url = {https://doi.org/10.2307/2152734},
      zblnumber = {0839.55008},
      }
  • [bousfieldHspace] Go to document A. K. Bousfield, "The $K$-theory localizations and $v_1$-periodic homotopy groups of $H$-spaces," Topology, vol. 38, iss. 6, pp. 1239-1264, 1999.
    @ARTICLE{bousfieldHspace,
      author = {Bousfield, A. K.},
      title = {The {$K$}-theory localizations and {$v_1$}-periodic homotopy groups of {$H$}-spaces},
      journal = {Topology},
      fjournal = {Topology. An International Journal of Mathematics},
      volume = {38},
      year = {1999},
      number = {6},
      pages = {1239--1264},
      issn = {0040-9383},
      mrclass = {55P60 (55P45 55Q51)},
      mrnumber = {1690156},
      doi = {10.1016/S0040-9383(98)00052-4},
      url = {https://doi.org/10.1016/S0040-9383(98)00052-4},
      zblnumber = {0933.57034},
      }
  • [bousfieldtelescopic] Go to document A. K. Bousfield, "On the telescopic homotopy theory of spaces," Trans. Amer. Math. Soc., vol. 353, iss. 6, pp. 2391-2426, 2001.
    @ARTICLE{bousfieldtelescopic,
      author = {Bousfield, A. K.},
      title = {On the telescopic homotopy theory of spaces},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {353},
      year = {2001},
      number = {6},
      pages = {2391--2426},
      issn = {0002-9947},
      mrclass = {55P60 (55N20 55P42 55P65 55U35)},
      mrnumber = {1814075},
      mrreviewer = {Edgar H. Brown, Jr.},
      doi = {10.1090/S0002-9947-00-02649-0},
      url = {https://doi.org/10.1090/S0002-9947-00-02649-0},
      zblnumber = {0971.55016},
      }
  • [brantnerheuts] Go to document L. Brantner and G. Heuts, "The $v_n$-periodic Goodwillie tower on wedges and cofibres," Homology Homotopy Appl., vol. 22, iss. 1, pp. 167-184, 2020.
    @ARTICLE{brantnerheuts,
      author = {Brantner, Lukas and Heuts, Gijs},
      title = {The {$v_n$}-periodic {G}oodwillie tower on wedges and cofibres},
      journal = {Homology Homotopy Appl.},
      fjournal = {Homology, Homotopy and Applications},
      volume = {22},
      year = {2020},
      number = {1},
      pages = {167--184},
      issn = {1532-0073},
      mrclass = {55Q20 (55Q51)},
      mrnumber = {4031997},
      doi = {10.4310/HHA.2020.v22.n1.a10},
      url = {https://doi.org/10.4310/HHA.2020.v22.n1.a10},
      zblnumber = {1431.55013},
      }
  • [ching] Go to document M. Ching, "Bar constructions for topological operads and the Goodwillie derivatives of the identity," Geom. Topol., vol. 9, pp. 833-933, 2005.
    @ARTICLE{ching,
      author = {Ching, Michael},
      title = {Bar constructions for topological operads and the {G}oodwillie derivatives of the identity},
      journal = {Geom. Topol.},
      fjournal = {Geometry and Topology},
      volume = {9},
      year = {2005},
      pages = {833--933},
      issn = {1465-3060},
      mrclass = {55P48 (18D50 55P43)},
      mrnumber = {2140994},
      mrreviewer = {Beno\^ıt Fresse},
      doi = {10.2140/gt.2005.9.833},
      url = {https://doi.org/10.2140/gt.2005.9.833},
      zblnumber = {1153.55006},
      }
  • [chingbar] Go to document M. Ching, "Bar-cobar duality for operads in stable homotopy theory," J. Topol., vol. 5, iss. 1, pp. 39-80, 2012.
    @ARTICLE{chingbar,
      author = {Ching, Michael},
      title = {Bar-cobar duality for operads in stable homotopy theory},
      journal = {J. Topol.},
      fjournal = {Journal of Topology},
      volume = {5},
      year = {2012},
      number = {1},
      pages = {39--80},
      issn = {1753-8416},
      mrclass = {55P48 (18D50 55P42)},
      mrnumber = {2897049},
      mrreviewer = {Beno\^ıt Fresse},
      doi = {10.1112/jtopol/jtr027},
      url = {https://doi.org/10.1112/jtopol/jtr027},
      zblnumber = {1319.55003},
      }
  • [haugsengchu] Go to document H. Chu and R. Haugseng, "Enriched $\infty$-operads," Adv. Math., vol. 361, p. 106913, 2020.
    @ARTICLE{haugsengchu,
      author = {Chu, Hongyi and Haugseng, Rune},
      title = {Enriched {$\infty$}-operads},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {361},
      year = {2020},
      pages = {106913, 85},
      issn = {0001-8708},
      mrclass = {18D50 (18D20 18F20)},
      mrnumber = {4038556},
      doi = {10.1016/j.aim.2019.106913},
      url = {https://doi.org/10.1016/j.aim.2019.106913},
      zblnumber = {07152648},
      }
  • [cisinskimoerdijk1] Go to document D. Cisinski and I. Moerdijk, "Dendroidal sets as models for homotopy operads," J. Topol., vol. 4, iss. 2, pp. 257-299, 2011.
    @ARTICLE{cisinskimoerdijk1,
      author = {Cisinski, Denis-Charles and Moerdijk, Ieke},
      title = {Dendroidal sets as models for homotopy operads},
      journal = {J. Topol.},
      fjournal = {Journal of Topology},
      volume = {4},
      year = {2011},
      number = {2},
      pages = {257--299},
      issn = {1753-8416},
      mrclass = {55P48 (18D10 18G30 18G55 55U10 55U40)},
      mrnumber = {2805991},
      mrreviewer = {Julia Bergner},
      doi = {10.1112/jtopol/jtq039},
      url = {https://doi.org/10.1112/jtopol/jtq039},
      zblnumber = {1221.55011},
      }
  • [mathewclausen] Go to document D. Clausen and A. Mathew, "A short proof of telescopic Tate vanishing," Proc. Amer. Math. Soc., vol. 145, iss. 12, pp. 5413-5417, 2017.
    @ARTICLE{mathewclausen,
      author = {Clausen, Dustin and Mathew, Akhil},
      title = {A short proof of telescopic {T}ate vanishing},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the American Mathematical Society},
      volume = {145},
      year = {2017},
      number = {12},
      pages = {5413--5417},
      issn = {0002-9939},
      mrclass = {55P42 (55P47)},
      mrnumber = {3717967},
      mrreviewer = {Martin Frankland},
      doi = {10.1090/proc/13648},
      url = {https://doi.org/10.1090/proc/13648},
      zblnumber = {1378.55005},
      }
  • [devinatzhopkinssmith] Go to document E. S. Devinatz, M. J. Hopkins, and J. H. Smith, "Nilpotence and stable homotopy theory. I," Ann. of Math. (2), vol. 128, iss. 2, pp. 207-241, 1988.
    @ARTICLE{devinatzhopkinssmith,
      author = {Devinatz, Ethan S. and Hopkins, Michael J. and Smith, Jeffrey H.},
      title = {Nilpotence and stable homotopy theory. {I}},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {128},
      year = {1988},
      number = {2},
      pages = {207--241},
      issn = {0003-486X},
      mrclass = {55Q10 (55P42 55Q52)},
      mrnumber = {0960945},
      mrreviewer = {Frederick Cohen},
      doi = {10.2307/1971440},
      url = {https://doi.org/10.2307/1971440},
      zblnumber = {0673.55008},
      }
  • [ehmm] Go to document R. Eldred, G. Heuts, A. Mathew, and L. Meier, "Monadicity of the Bousfield-Kuhn functor," Proc. Amer. Math. Soc., vol. 147, iss. 4, pp. 1789-1796, 2019.
    @ARTICLE{ehmm,
      author = {Eldred, Rosona and Heuts, Gijs and Mathew, Akhil and Meier, Lennart},
      title = {Monadicity of the {B}ousfield-{K}uhn functor},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the American Mathematical Society},
      volume = {147},
      year = {2019},
      number = {4},
      pages = {1789--1796},
      issn = {0002-9939},
      mrclass = {55Q51 (18D05)},
      mrnumber = {3910443},
      mrreviewer = {Donald M. Davis},
      doi = {10.1090/proc/14331},
      url = {https://doi.org/10.1090/proc/14331},
      zblnumber = {1416.55002},
      }
  • [farjoun] Go to document E. D. Farjoun, Cellular Spaces, Null Spaces and Homotopy Localization, Springer-Verlag, Berlin, 1996, vol. 1622.
    @BOOK{farjoun,
      author = {Farjoun, Emmanuel Dror},
      title = {Cellular Spaces, Null Spaces and Homotopy Localization},
      series = {Lecture Notes in Math.},
      volume = {1622},
      publisher = {Springer-Verlag, Berlin},
      year = {1996},
      pages = {xiv+199},
      isbn = {3-540-60604-1},
      mrclass = {55P60 (55-02 55P65)},
      mrnumber = {1392221},
      mrreviewer = {Carles Casacuberta},
      doi = {10.1007/BFb0094429},
      url = {https://doi.org/10.1007/BFb0094429},
      zblnumber = {0842.55001},
      }
  • [francisgaitsgory] Go to document J. Francis and D. Gaitsgory, "Chiral Koszul duality," Selecta Math. (N.S.), vol. 18, iss. 1, pp. 27-87, 2012.
    @ARTICLE{francisgaitsgory,
      author = {Francis, John and Gaitsgory, Dennis},
      title = {Chiral {K}oszul duality},
      journal = {Selecta Math. (N.S.)},
      fjournal = {Selecta Mathematica. New Series},
      volume = {18},
      year = {2012},
      number = {1},
      pages = {27--87},
      issn = {1022-1824},
      mrclass = {14F10 (14F05 14H81 17B55 18D10 18D50)},
      mrnumber = {2891861},
      mrreviewer = {Beno\^ıt Fresse},
      doi = {10.1007/s00029-011-0065-z},
      url = {https://doi.org/10.1007/s00029-011-0065-z},
      zblnumber = {1248.81198},
      }
  • [getzlerjones] Go to document E. Getzler and J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces.
    @MISC{getzlerjones,
      author = {Getzler, E. and Jones, J.D.S.},
      title = {Operads, homotopy algebra and iterated integrals for double loop spaces},
      url={https://arxiv.org/abs/hep-th/9403055},
      zblnumber = {},
      }
  • [ginzburgkapranov] Go to document V. Ginzburg and M. Kapranov, "Koszul duality for operads," Duke Math. J., vol. 76, iss. 1, pp. 203-272, 1994.
    @ARTICLE{ginzburgkapranov,
      author = {Ginzburg, Victor and Kapranov, Mikhail},
      title = {Koszul duality for operads},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {76},
      year = {1994},
      number = {1},
      pages = {203--272},
      issn = {0012-7094},
      mrclass = {18D10 (14H10 16S99 18G50 55P47)},
      mrnumber = {1301191},
      mrreviewer = {Igor K\v{r}\'ıž},
      doi = {10.1215/S0012-7094-94-07608-4},
      url = {https://doi.org/10.1215/S0012-7094-94-07608-4},
      zblnumber = {0855.18006},
      }
  • [goodwillie3] Go to document T. G. Goodwillie, "Calculus. III. Taylor series," Geom. Topol., vol. 7, pp. 645-711, 2003.
    @ARTICLE{goodwillie3,
      author = {Goodwillie, Thomas G.},
      title = {Calculus. {III}. {T}aylor series},
      journal = {Geom. Topol.},
      fjournal = {Geometry and Topology},
      volume = {7},
      year = {2003},
      pages = {645--711},
      issn = {1465-3060},
      mrclass = {55P65 (19D10 55P42 55U35)},
      mrnumber = {2026544},
      mrreviewer = {Daniel C. Isaksen},
      doi = {10.2140/gt.2003.7.645},
      url = {https://doi.org/10.2140/gt.2003.7.645},
      zblnumber = {1067.55006},
      }
  • [heutsgoodwillie] Go to document G. Heuts, Goodwillie approximations to higher categories, ProQuest LLC, Ann Arbor, MI, 2015.
    @BOOK{heutsgoodwillie,
      author = {Heuts, Gijsbert},
      title = {Goodwillie approximations to higher categories},
      note = {thesis (Ph.D.)--Harvard University},
      publisher = {ProQuest LLC, Ann Arbor, MI},
      year = {2015},
      pages = {115},
      isbn = {978-1339-29315-8},
      mrclass = {Thesis},
      mrnumber = {3450458},
      url = {http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3738812},
      zblnumber = {},
      }
  • [hopkinssmith] Go to document M. J. Hopkins and J. H. Smith, "Nilpotence and stable homotopy theory. II," Ann. of Math. (2), vol. 148, iss. 1, pp. 1-49, 1998.
    @ARTICLE{hopkinssmith,
      author = {Hopkins, Michael J. and Smith, Jeffrey H.},
      title = {Nilpotence and stable homotopy theory. {II}},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {148},
      year = {1998},
      number = {1},
      pages = {1--49},
      issn = {0003-486X},
      mrclass = {55P42 (55N20 55Q10)},
      mrnumber = {1652975},
      mrreviewer = {David A. Blanc},
      doi = {10.2307/120991},
      url = {https://doi.org/10.2307/120991},
      zblnumber = {0924.55010},
      }
  • [joyalpaper] Go to document A. Joyal, "Quasi-categories and Kan complexes," J. Pure Appl. Algebra, vol. 175, iss. 1-3, pp. 207-222, 2002.
    @article{joyalpaper,
      author = {Joyal, A.},
      title = {Quasi-categories and {K}an complexes},
      note = {Special volume celebrating the 70th birthday of Professor Max Kelly},
      journal = {J. Pure Appl. Algebra},
      fjournal = {Journal of Pure and Applied Algebra},
      volume = {175},
      year = {2002},
      number = {1-3},
      pages = {207--222},
      issn = {0022-4049},
      mrclass = {55U10 (18G55)},
      mrnumber = {1935979},
      mrreviewer = {Donald M. Davis},
      doi = {10.1016/S0022-4049(02)00135-4},
      url = {https://doi.org/10.1016/S0022-4049(02)00135-4},
      zblnumber = {1015.18008},
      }
  • [joyal] A. Joyal, The theory of quasi-categories I, 2008.
    @MISC{joyal,
      author = {Joyal, A.},
      title = {The theory of quasi-categories {I}},
      note={preprint},
      year={2008},
      }
  • [kuhninfiniteloop] Go to document N. J. Kuhn, "Morava K-theories and infinite loop spaces," in Algebraic topology (Arcata, CA, 1986), Springer, Berlin, 1989, vol. 1370, pp. 243-257.
    @INCOLLECTION{kuhninfiniteloop,
      author = {Kuhn, Nicholas J.},
      title = {Morava {K}-theories and infinite loop spaces},
      booktitle = {Algebraic topology ({A}rcata, {CA},
      1986)},
      series = {Lecture Notes in Math.},
      volume = {1370},
      pages = {243--257},
      publisher = {Springer, Berlin},
      year = {1989},
      mrclass = {55P47 (55N20)},
      mrnumber = {1000381},
      mrreviewer = {Richard John Steiner},
      doi = {10.1007/BFb0085232},
      url = {https://doi.org/10.1007/BFb0085232},
      zblnumber = {0692.55005},
      }
  • [kuhnmccord] N. J. Kuhn, "The McCord model for the tensor product of a space and a commutative ring spectrum," in Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), Birkhäuser, Basel, 2004, vol. 215, pp. 213-236.
    @INCOLLECTION{kuhnmccord,
      author = {Kuhn, Nicholas J.},
      title = {The {M}c{C}ord model for the tensor product of a space and a commutative ring spectrum},
      booktitle = {Categorical decomposition techniques in algebraic topology ({I}sle of {S}kye, 2001)},
      series = {Progr. Math.},
      volume = {215},
      pages = {213--236},
      publisher = {Birkhäuser, Basel},
      year = {2004},
      mrclass = {55P43 (18G55)},
      mrnumber = {2039768},
      mrreviewer = {Birgit Richter},
      zblnumber = {1063.55009},
      }
  • [kuhntate] Go to document N. J. Kuhn, "Tate cohomology and periodic localization of polynomial functors," Invent. Math., vol. 157, iss. 2, pp. 345-370, 2004.
    @ARTICLE{kuhntate,
      author = {Kuhn, Nicholas J.},
      title = {Tate cohomology and periodic localization of polynomial functors},
      journal = {Invent. Math.},
      fjournal = {Inventiones Mathematicae},
      volume = {157},
      year = {2004},
      number = {2},
      pages = {345--370},
      issn = {0020-9910},
      mrclass = {55P60 (55N22 55P65 55P91 55P92)},
      mrnumber = {2076926},
      mrreviewer = {J. P. C. Greenlees},
      doi = {10.1007/s00222-003-0354-z},
      url = {https://doi.org/10.1007/s00222-003-0354-z},
      zblnumber = {1069.55007},
      }
  • [kuhnAQ] Go to document N. J. Kuhn, "Localization of André-Quillen-Goodwillie towers, and the periodic homology of infinite loopspaces," Adv. Math., vol. 201, iss. 2, pp. 318-378, 2006.
    @ARTICLE{kuhnAQ,
      author = {Kuhn, Nicholas J.},
      title = {Localization of {A}ndré-{Q}uillen-{G}oodwillie towers, and the periodic homology of infinite loopspaces},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {201},
      year = {2006},
      number = {2},
      pages = {318--378},
      issn = {0001-8708},
      mrclass = {55N22 (18G55 55N20 55P43 55P47 55P60)},
      mrnumber = {2211532},
      mrreviewer = {J. P. C. Greenlees},
      doi = {10.1016/j.aim.2005.02.005},
      url = {https://doi.org/10.1016/j.aim.2005.02.005},
      zblnumber = {1103.55007},
      }
  • [kuhntelescopic] Go to document N. J. Kuhn, "A guide to telescopic functors," Homology Homotopy Appl., vol. 10, iss. 3, pp. 291-319, 2008.
    @ARTICLE{kuhntelescopic,
      author = {Kuhn, Nicholas J.},
      title = {A guide to telescopic functors},
      journal = {Homology Homotopy Appl.},
      fjournal = {Homology, Homotopy and Applications},
      volume = {10},
      year = {2008},
      number = {3},
      pages = {291--319},
      issn = {1532-0073},
      mrclass = {55Q51 (55N20 55P60 55P65)},
      mrnumber = {2475626},
      mrreviewer = {Keith Peter Johnson},
      doi = {10.4310/HHA.2008.v10.n3.a13},
      url = {https://doi.org/10.4310/HHA.2008.v10.n3.a13},
      zblnumber = {1169.55007},
      }
  • [kuhnpereira] Go to document N. J. Kuhn and L. A. Pereira, "Operad bimodules and composition products on André-Quillen filtrations of algebras," Algebr. Geom. Topol., vol. 17, iss. 2, pp. 1105-1130, 2017.
    @ARTICLE{kuhnpereira,
      author = {Kuhn, Nicholas J. and Pereira, Lu\'ıs Alexandre},
      title = {Operad bimodules and composition products on {A}ndré-{Q}uillen filtrations of algebras},
      journal = {Algebr. Geom. Topol.},
      fjournal = {Algebraic \& Geometric Topology},
      volume = {17},
      year = {2017},
      number = {2},
      pages = {1105--1130},
      issn = {1472-2747},
      mrclass = {55P43 (18D50)},
      mrnumber = {3623683},
      mrreviewer = {Javier J. Gutiérrez},
      doi = {10.2140/agt.2017.17.1105},
      url = {https://doi.org/10.2140/agt.2017.17.1105},
      zblnumber = {1362.55008},
      }
  • [htt] Go to document J. Lurie, Higher Topos Theory, Princeton Univ. Press, Princeton, NJ, 2009, vol. 170.
    @BOOK{htt,
      author = {Lurie, Jacob},
      title = {Higher Topos Theory},
      series = {Ann. of Math. Stud.},
      volume = {170},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {2009},
      pages = {xviii+925},
      isbn = {978-0-691-14049-0; 0-691-14049-9},
      mrclass = {18-02 (18B25 18E35 18G30 18G55 55U40)},
      mrnumber = {2522659},
      mrreviewer = {Mark Hovey},
      doi = {10.1515/9781400830558},
      url = {https://doi.org/10.1515/9781400830558},
      zblnumber = {1175.18001},
      }
  • [higheralgebra] J. Lurie, Higher algebra, 2014.
    @MISC{higheralgebra,
      author = {Lurie, Jacob},
      title = {Higher algebra},
      note = {available on author's webpage},
      year = {2014},
      zblnumber = {},
      }
  • [lurieelliptic] J. Lurie, Elliptic cohomology I: Spectral Abelian varieties, 2016.
    @MISC{lurieelliptic,
      author = {Lurie, Jacob},
      title = {Elliptic cohomology {I}: {S}pectral {A}belian varieties},
      note = {available on author's webpage},
      year = {2016},
      zblnumber = {},
      }
  • [thursday] J. Lurie, M. J. Hopkins, and relax et al., Unstable chromatic homotopy theory.
    @MISC{thursday,
      author = {Lurie, Jacob and Hopkins, M.J. and {\relax et~al.}},
      note = {available on J. Lurie's webpage},
      title = {Unstable chromatic homotopy theory},
      zblnumber = {},
      }
  • [mahowaldImJ] Go to document M. Mahowald, "The image of $J$ in the $EHP$ sequence," Ann. of Math. (2), vol. 116, iss. 1, pp. 65-112, 1982.
    @ARTICLE{mahowaldImJ,
      author = {Mahowald, Mark},
      title = {The image of {$J$} in the {$EHP$} sequence},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {116},
      year = {1982},
      number = {1},
      pages = {65--112},
      issn = {0003-486X},
      mrclass = {55Q40},
      mrnumber = {0662118},
      mrreviewer = {Donald M. Davis},
      doi = {10.2307/2007048},
      url = {https://doi.org/10.2307/2007048},
      zblnumber = {0504.55010},
      }
  • [mathew] Go to document A. Mathew, "Examples of descent up to nilpotence," in Geometric and Topological Aspects of the Representation Theory of Finite Groups, Springer, Cham, 2018, vol. 242, pp. 269-311.
    @INCOLLECTION{mathew,
      author = {Mathew, Akhil},
      title = {Examples of descent up to nilpotence},
      booktitle = {Geometric and Topological Aspects of the Representation Theory of Finite Groups},
      series = {Springer Proc. Math. Stat.},
      volume = {242},
      pages = {269--311},
      publisher = {Springer, Cham},
      year = {2018},
      mrclass = {18E30},
      mrnumber = {3901164},
      doi = {10.1007/978-3-319-94033-5_11},
      url = {https://doi.org/10.1007/978-3-319-94033-5_11},
      zblnumber = {},
      }
  • [mccarthy] Go to document R. McCarthy, "Dual calculus for functors to spectra," in Homotopy Methods in Algebraic Topology (Boulder, CO, 1999), Amer. Math. Soc., Providence, RI, 2001, vol. 271, pp. 183-215.
    @INCOLLECTION{mccarthy,
      author = {McCarthy, Randy},
      title = {Dual calculus for functors to spectra},
      booktitle = {Homotopy {M}ethods in {A}lgebraic {T}opology ({B}oulder, {CO},
      1999)},
      series = {Contemp. Math.},
      volume = {271},
      pages = {183--215},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2001},
      mrclass = {18F25 (19D55 55P42)},
      mrnumber = {1831354},
      doi = {10.1090/conm/271/04357},
      url = {https://doi.org/10.1090/conm/271/04357},
      zblnumber = {0996.19005},
      }
  • [moerdijkweiss] Go to document I. Moerdijk and I. Weiss, "On inner Kan complexes in the category of dendroidal sets," Adv. Math., vol. 221, iss. 2, pp. 343-389, 2009.
    @ARTICLE{moerdijkweiss,
      author = {Moerdijk, I. and Weiss, I.},
      title = {On inner {K}an complexes in the category of dendroidal sets},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {221},
      year = {2009},
      number = {2},
      pages = {343--389},
      issn = {0001-8708},
      mrclass = {55U10 (18D50 18G30 55U40)},
      mrnumber = {2508925},
      mrreviewer = {Julia Bergner},
      doi = {10.1016/j.aim.2008.12.015},
      url = {https://doi.org/10.1016/j.aim.2008.12.015},
      zblnumber = {1171.55009},
      }
  • [rationalhomotopy] Go to document D. Quillen, "Rational homotopy theory," Ann. of Math. (2), vol. 90, pp. 205-295, 1969.
    @ARTICLE{rationalhomotopy,
      author = {Quillen, Daniel},
      title = {Rational homotopy theory},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {90},
      year = {1969},
      pages = {205--295},
      issn = {0003-486X},
      mrclass = {55.40},
      mrnumber = {0258031},
      mrreviewer = {J. F. Adams},
      doi = {10.2307/1970725},
      url = {https://doi.org/10.2307/1970725},
      zblnumber = {0191.53702},
      }
  • [rezk] Go to document C. Rezk, "The units of a ring spectrum and a logarithmic cohomology operation," J. Amer. Math. Soc., vol. 19, iss. 4, pp. 969-1014, 2006.
    @ARTICLE{rezk,
      author = {Rezk, Charles},
      title = {The units of a ring spectrum and a logarithmic cohomology operation},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {19},
      year = {2006},
      number = {4},
      pages = {969--1014},
      issn = {0894-0347},
      mrclass = {55N22 (55P43 55S05)},
      mrnumber = {2219307},
      mrreviewer = {Keith Peter Johnson},
      doi = {10.1090/S0894-0347-06-00521-2},
      url = {https://doi.org/10.1090/S0894-0347-06-00521-2},
      zblnumber = {1106.55002},
      }
  • [riehlverity] Go to document E. Riehl and D. Verity, "Homotopy coherent adjunctions and the formal theory of monads," Adv. Math., vol. 286, pp. 802-888, 2016.
    @ARTICLE{riehlverity,
      author = {Riehl, Emily and Verity, Dominic},
      title = {Homotopy coherent adjunctions and the formal theory of monads},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {286},
      year = {2016},
      pages = {802--888},
      issn = {0001-8708},
      mrclass = {18G55 (18C15 55U10 55U35 55U40)},
      mrnumber = {3415698},
      mrreviewer = {R. H. Street},
      doi = {10.1016/j.aim.2015.09.011},
      url = {https://doi.org/10.1016/j.aim.2015.09.011},
      zblnumber = {1329.18020},
      }
  • [sullivan] Go to document D. Sullivan, "Infinitesimal computations in topology," Inst. Hautes Études Sci. Publ. Math., iss. 47, pp. 269-331, 1977.
    @ARTICLE{sullivan,
      author = {Sullivan, Dennis},
      title = {Infinitesimal computations in topology},
      journal = {Inst. Hautes \'{E}tudes Sci. Publ. Math.},
      fjournal = {Institut des Hautes \'{E}tudes Scientifiques. Publications Mathématiques},
      number = {47},
      year = {1977},
      pages = {269--331},
      issn = {0073-8301},
      mrclass = {57D99 (55D99 58A10)},
      mrnumber = {0646078},
      mrreviewer = {J. F. Adams},
      URL = {http://www.numdam.org/item/PMIHES_1977__47__269_0/},
      zblnumber = {0374.57002},
      }
  • [thompson] Go to document R. D. Thompson, "Unstable $v_1$-periodic homotopy groups of a Moore space," Proc. Amer. Math. Soc., vol. 107, iss. 3, pp. 833-845, 1989.
    @ARTICLE{thompson,
      author = {Thompson, Robert D.},
      title = {Unstable {$v_1$}-periodic homotopy groups of a {M}oore space},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the American Mathematical Society},
      volume = {107},
      year = {1989},
      number = {3},
      pages = {833--845},
      issn = {0002-9939},
      mrclass = {55Q52 (55T15)},
      mrnumber = {0976364},
      mrreviewer = {N. J. Kuhn},
      doi = {10.2307/2048186},
      url = {https://doi.org/10.2307/2048186},
      zblnumber = {0678.55010},
      }
  • [thompsonunstablesphere] Go to document R. D. Thompson, "The $v_1$-periodic homotopy groups of an unstable sphere at odd primes," Trans. Amer. Math. Soc., vol. 319, iss. 2, pp. 535-559, 1990.
    @ARTICLE{thompsonunstablesphere,
      author = {Thompson, Robert D.},
      title = {The {$v_1$}-periodic homotopy groups of an unstable sphere at odd primes},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {319},
      year = {1990},
      number = {2},
      pages = {535--559},
      issn = {0002-9947},
      mrclass = {55Q40},
      mrnumber = {1010890},
      mrreviewer = {Donald M. Davis},
      doi = {10.2307/2001253},
      url = {https://doi.org/10.2307/2001253},
      zblnumber = {0707.55010},
      }
  • [wang] Go to document G. Wang, Unstable Chromatic Homotopy Theory, ProQuest LLC, Ann Arbor, MI, 2015.
    @BOOK{wang,
      author = {Wang, Guozhen},
      title = {Unstable Chromatic Homotopy Theory},
      note = {thesis (Ph.D.)--Massachusetts Institute of Technology},
      publisher = {ProQuest LLC, Ann Arbor, MI},
      year = {2015},
      pages = {(no paging)},
      mrclass = {Thesis},
      mrnumber = {3427198},
      url = {http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:0831043},
      zblnumber = {},
      }
  • [zhu] Go to document Y. Zhu, "Morava $E$-homology of Bousfield-Kuhn functors on odd-dimensional spheres," Proc. Amer. Math. Soc., vol. 146, iss. 1, pp. 449-458, 2018.
    @ARTICLE{zhu,
      author = {Zhu, Yifei},
      title = {Morava {$E$}-homology of {B}ousfield-{K}uhn functors on odd-dimensional spheres},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the American Mathematical Society},
      volume = {146},
      year = {2018},
      number = {1},
      pages = {449--458},
      issn = {0002-9939},
      mrclass = {55S25 (55N20 55N34 55Q51)},
      mrnumber = {3723154},
      mrreviewer = {Vidhyanath K. Rao},
      doi = {10.1090/proc/13727},
      url = {https://doi.org/10.1090/proc/13727},
      zblnumber = {1422.55032},
      }

Authors

Gijs Heuts

Utrecht University, Utrecht, the Netherlands