Abstract
Consider a Riemannian manifold with bounded Ricci curvature $|\mathrm{Ric}|\leq n-1$ and the noncollapsing lower volume bound $\mathrm{Vol}(B_1(p))>\mathrm{v}>0$. The first main result of this paper is to prove that we have the $L^2$ curvature bound $⨏_{B_1(p)}|\mathrm{Rm}|^2(x)\, dx < C(n,\mathrm{v})$,which proves the $L^2$ conjecture. In order to prove this, we will need to first show the following structural result for limits. Namely, if $(M^n_j,d_j,p_j) \longrightarrow (X,d,p)$ is a $\mathrm{GH}$-limit of noncollapsed manifolds with bounded Ricci curvature, then the singular set $\mathcal{S}(X)$ is $n-4$ rectifiable with the uniform Hausdorff measure estimates $H^{n-4}(\mathcal{S}(X)\cap B_1) < C(n,\mathrm{v})$ which, in particular, proves the $n-4$-finiteness conjecture of Cheeger-Colding. We will see as a consequence of the proof that for $n-4$ a.e. $x\in \mathcal{S}(X)$, the tangent cone of $X$ at $x$ is unique and isometric to $\mathbb{R}^{n-4}\times C(S^3/\Gamma_x)$ for some $\Gamma_x\subseteq O(4)$ that acts freely away from the origin.
-
[NaVa_Rect_harmonicmap]
A. Naber and D. Valtorta, "Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps," Ann. of Math. (2), vol. 185, iss. 1, pp. 131-227, 2017.
@ARTICLE{NaVa_Rect_harmonicmap,
author = {Naber, Aaron and Valtorta, Daniele},
title = {Rectifiable-{R}eifenberg and the regularity of stationary and minimizing harmonic maps},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {185},
year = {2017},
number = {1},
pages = {131--227},
issn = {0003-486X},
mrclass = {58E20 (53C43)},
mrnumber = {3583353},
mrreviewer = {Andreas Gastel},
doi = {10.4007/annals.2017.185.1.3},
url = {https://doi.org/10.4007/annals.2017.185.1.3},
zblnumber = {1393.58009},
} -
[A89]
M. T. Anderson, "Ricci curvature bounds and Einstein metrics on compact manifolds," J. Amer. Math. Soc., vol. 2, iss. 3, pp. 455-490, 1989.
@ARTICLE{A89,
author = {Anderson, Michael T.},
title = {Ricci curvature bounds and {E}instein metrics on compact manifolds},
journal = {J. Amer. Math. Soc.},
fjournal = {Journal of the American Mathematical Society},
volume = {2},
year = {1989},
number = {3},
pages = {455--490},
issn = {0894-0347},
mrclass = {53C20 (53C25 58D17 58G30)},
mrnumber = {0999661},
mrreviewer = {Maung Min-Oo},
doi = {10.2307/1990939},
url = {https://doi.org/10.2307/1990939},
zblnumber = {0694.53045},
} -
[Anderson_Einstein]
M. T. Anderson, "Convergence and rigidity of manifolds under Ricci curvature bounds," Invent. Math., vol. 102, iss. 2, pp. 429-445, 1990.
@ARTICLE{Anderson_Einstein,
author = {Anderson, Michael T.},
title = {Convergence and rigidity of manifolds under {R}icci curvature bounds},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {102},
year = {1990},
number = {2},
pages = {429--445},
issn = {0020-9910},
mrclass = {53C23 (53C21 58D27)},
mrnumber = {1074481},
mrreviewer = {Gudlaugur Thorbergsson},
doi = {10.1007/BF01233434},
url = {https://doi.org/10.1007/BF01233434},
zblnumber = {0711.53038},
} -
[Anderson_Hausdorff]
M. T. Anderson, "Hausdorff perturbations of Ricci-flat manifolds and the splitting theorem," Duke Math. J., vol. 68, iss. 1, pp. 67-82, 1992.
@ARTICLE{Anderson_Hausdorff,
author = {Anderson, Michael T.},
title = {Hausdorff perturbations of {R}icci-flat manifolds and the splitting theorem},
journal = {Duke Math. J.},
fjournal = {Duke Mathematical Journal},
volume = {68},
year = {1992},
number = {1},
pages = {67--82},
issn = {0012-7094},
mrclass = {53C21 (53C20)},
mrnumber = {1185818},
doi = {10.1215/S0012-7094-92-06803-7},
url = {https://doi.org/10.1215/S0012-7094-92-06803-7},
zblnumber = {0767.53029},
} -
[Anderson_ICM94]
M. T. Anderson, "Einstein metrics and metrics with bounds on Ricci curvature," in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 1995, pp. 443-452.
@INPROCEEDINGS{Anderson_ICM94,
author = {Anderson, Michael T.},
title = {Einstein metrics and metrics with bounds on {R}icci curvature},
booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. 1, 2 ({Z}ürich, 1994)},
pages = {443--452},
publisher = {Birkhäuser, Basel},
year = {1995},
mrclass = {53C21 (53C23 53C25)},
mrnumber = {1403944},
mrreviewer = {Zhongmin Shen},
doi = {10.1007/978-3-0348-9078-6_37},
url = {https://doi.org/10.1007/978-3-0348-9078-6_37},
zblnumber = {0840.53036},
} -
[BKN89]
S. Bando, A. Kasue, and H. Nakajima, "On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth," Invent. Math., vol. 97, iss. 2, pp. 313-349, 1989.
@ARTICLE{BKN89,
author = {Bando, Shigetoshi and Kasue, Atsushi and Nakajima, Hiraku},
title = {On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {97},
year = {1989},
number = {2},
pages = {313--349},
issn = {0020-9910},
mrclass = {53C20 (53C25)},
mrnumber = {1001844},
mrreviewer = {Thomas H. Otway},
doi = {10.1007/BF01389045},
url = {https://doi.org/10.1007/BF01389045},
zblnumber = {0682.53045},
} -
[Cheeger01] J. Cheeger, Degeneration of Riemannian Metrics Under Ricci Curvature Bounds, Scuola Normale Superiore, Pisa, 2001.
@BOOK{Cheeger01,
author = {Cheeger, Jeff},
title = {Degeneration of {R}iemannian Metrics Under {R}icci Curvature Bounds},
series = {Lezioni Fermiane. [Fermi Lectures]},
publisher = {Scuola Normale Superiore, Pisa},
year = {2001},
pages = {ii+77},
mrclass = {53C21 (53C20 53C23)},
mrnumber = {2006642},
mrreviewer = {Vitali Kapovitch},
zblnumber = {1055.53024},
} -
[Cheeger]
J. Cheeger, "Integral bounds on curvature elliptic estimates and rectifiability of singular sets," Geom. Funct. Anal., vol. 13, iss. 1, pp. 20-72, 2003.
@ARTICLE{Cheeger,
author = {Cheeger, Jeff},
title = {Integral bounds on curvature elliptic estimates and rectifiability of singular sets},
journal = {Geom. Funct. Anal.},
fjournal = {Geometric and Functional Analysis},
volume = {13},
year = {2003},
number = {1},
pages = {20--72},
issn = {1016-443X},
mrclass = {53C21 (49Q99 53C20)},
mrnumber = {1978491},
mrreviewer = {Silvano Delladio},
doi = {10.1007/s000390300001},
url = {https://doi.org/10.1007/s000390300001},
zblnumber = {1086.53051},
} -
[ChC1]
J. Cheeger and T. H. Colding, "Lower bounds on Ricci curvature and the almost rigidity of warped products," Ann. of Math. (2), vol. 144, iss. 1, pp. 189-237, 1996.
@ARTICLE{ChC1,
author = {Cheeger, Jeff and Colding, Tobias H.},
title = {Lower bounds on {R}icci curvature and the almost rigidity of warped products},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {144},
year = {1996},
number = {1},
pages = {189--237},
issn = {0003-486X},
mrclass = {53C21 (53C20 53C23)},
mrnumber = {1405949},
mrreviewer = {Joseph E. Borzellino},
doi = {10.2307/2118589},
url = {https://doi.org/10.2307/2118589},
zblnumber = {0865.53037},
} -
[ChC2]
J. Cheeger and T. H. Colding, "On the structure of spaces with Ricci curvature bounded below. I," J. Differential Geom., vol. 46, iss. 3, pp. 406-480, 1997.
@ARTICLE{ChC2,
author = {Cheeger, Jeff and Colding, Tobias H.},
title = {On the structure of spaces with {R}icci curvature bounded below. {I}},
journal = {J. Differential Geom.},
fjournal = {Journal of Differential Geometry},
volume = {46},
year = {1997},
number = {3},
pages = {406--480},
issn = {0022-040X},
mrclass = {53C21 (53C20)},
mrnumber = {1484888},
mrreviewer = {William P. Minicozzi, II},
doi = {10.4310/jdg/1214459974},
url = {https://doi.org/10.4310/jdg/1214459974},
zblnumber = {0902.53034},
} -
[CCTi_eps_reg]
J. Cheeger, T. H. Colding, and G. Tian, "On the singularities of spaces with bounded Ricci curvature," Geom. Funct. Anal., vol. 12, iss. 5, pp. 873-914, 2002.
@ARTICLE{CCTi_eps_reg,
author = {Cheeger, Jeff and Colding, Tobias H. and Tian, G.},
title = {On the singularities of spaces with bounded {R}icci curvature},
journal = {Geom. Funct. Anal.},
fjournal = {Geometric and Functional Analysis},
volume = {12},
year = {2002},
number = {5},
pages = {873--914},
issn = {1016-443X},
mrclass = {53C21 (53C20)},
mrnumber = {1937830},
mrreviewer = {Zhongmin Shen},
doi = {10.1007/PL00012649},
url = {https://doi.org/10.1007/PL00012649},
zblnumber = {1030.53046},
} -
[CheegerNaber_Ricci]
J. Cheeger and A. Naber, "Lower bounds on Ricci curvature and quantitative behavior of singular sets," Invent. Math., vol. 191, iss. 2, pp. 321-339, 2013.
@ARTICLE{CheegerNaber_Ricci,
author = {Cheeger, Jeff and Naber, Aaron},
title = {Lower bounds on {R}icci curvature and quantitative behavior of singular sets},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {191},
year = {2013},
number = {2},
pages = {321--339},
issn = {0020-9910},
mrclass = {53C21 (32Q20 53C23 53C25)},
mrnumber = {3010378},
mrreviewer = {Leonid V. Kovalev},
doi = {10.1007/s00222-012-0394-3},
url = {https://doi.org/10.1007/s00222-012-0394-3},
zblnumber = {1268.53053},
} -
[CheegerNaber_Codimensionfour]
J. Cheeger and A. Naber, "Regularity of Einstein manifolds and the codimension 4 conjecture," Ann. of Math. (2), vol. 182, iss. 3, pp. 1093-1165, 2015.
@ARTICLE{CheegerNaber_Codimensionfour,
author = {Cheeger, Jeff and Naber, Aaron},
title = {Regularity of {E}instein manifolds and the codimension 4 conjecture},
journal = {Ann. of Math. (2)},
fjournal = {Annals of Mathematics. Second Series},
volume = {182},
year = {2015},
number = {3},
pages = {1093--1165},
issn = {0003-486X},
mrclass = {53C25 (53C23)},
mrnumber = {3418535},
mrreviewer = {Luis Guijarro},
doi = {10.4007/annals.2015.182.3.5},
url = {https://doi.org/10.4007/annals.2015.182.3.5},
zblnumber = {1335.53057},
} -
[CheegerTian05]
J. Cheeger and G. Tian, "Anti-self-duality of curvature and degeneration of metrics with special holonomy," Comm. Math. Phys., vol. 255, iss. 2, pp. 391-417, 2005.
@ARTICLE{CheegerTian05,
author = {Cheeger, Jeff and Tian, Gang},
title = {Anti-self-duality of curvature and degeneration of metrics with special holonomy},
journal = {Comm. Math. Phys.},
fjournal = {Communications in Mathematical Physics},
volume = {255},
year = {2005},
number = {2},
pages = {391--417},
issn = {0010-3616},
mrclass = {53C23 (53C29)},
mrnumber = {2129951},
mrreviewer = {Lorenz J. Schwachhöfer},
doi = {10.1007/s00220-004-1279-0},
url = {https://doi.org/10.1007/s00220-004-1279-0},
zblnumber = {1081.53038},
} -
[Chen_Donaldson14]
X. -X. Chen and S. K. Donaldson, "Integral bounds on curvature and Gromov-Hausdorff limits," J. Topol., vol. 7, iss. 2, pp. 543-556, 2014.
@ARTICLE{Chen_Donaldson14,
author = {Chen, X.-X. and Donaldson, S. K.},
title = {Integral bounds on curvature and {G}romov-{H}ausdorff limits},
journal = {J. Topol.},
fjournal = {Journal of Topology},
volume = {7},
year = {2014},
number = {2},
pages = {543--556},
issn = {1753-8416},
mrclass = {53C23 (53C20 53C21)},
mrnumber = {3217630},
mrreviewer = {Yu Ding},
doi = {10.1112/jtopol/jtt037},
url = {https://doi.org/10.1112/jtopol/jtt037},
zblnumber = {1308.53057},
} -
[ColdingMinicozzi_tangentcone]
T. H. Colding and W. P. Minicozzi II, "On uniqueness of tangent cones for Einstein manifolds," Invent. Math., vol. 196, iss. 3, pp. 515-588, 2014.
@ARTICLE{ColdingMinicozzi_tangentcone,
author = {Colding, Tobias Holck and Minicozzi, II, William P.},
title = {On uniqueness of tangent cones for {E}instein manifolds},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {196},
year = {2014},
number = {3},
pages = {515--588},
issn = {0020-9910},
mrclass = {53C25 (53C21 53C23)},
mrnumber = {3211041},
mrreviewer = {Megan M. Kerr},
doi = {10.1007/s00222-013-0474-z},
url = {https://doi.org/10.1007/s00222-013-0474-z},
zblnumber = {1302.53048},
} -
[Fed] H. Federer, Geometric Measure Theory, Springer-Verlag New York Inc., New York, 1969, vol. 153.
@BOOK{Fed,
author = {Federer, Herbert},
title = {Geometric Measure Theory},
series = {Grundlehren math. Wiss.},
volume = {153},
publisher = {Springer-Verlag New York Inc., New York},
year = {1969},
pages = {xiv+676},
mrclass = {28.80 (26.00)},
mrnumber = {0257325},
mrreviewer = {J. E. Brothers},
zblnumber = {0176.00801},
} -
[FOT_Dirichlet] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, extended ed., Walter de Gruyter & Co., Berlin, 2011, vol. 19.
@BOOK{FOT_Dirichlet,
author = {Fukushima, Masatoshi and Oshima, Yoichi and Takeda, Masayoshi},
title = {Dirichlet Forms and Symmetric {M}arkov Processes},
series = {de Gruyter Stud. Math.},
volume = {19},
edition = {extended},
publisher = {Walter de Gruyter \& Co., Berlin},
year = {2011},
pages = {x+489},
isbn = {978-3-11-021808-4},
mrclass = {60J25 (28A12 31C45 60F10 60J40 60J45 60J55)},
mrnumber = {2778606},
zblnumber = {1227.31001},
} -
[Hamilton_gradient]
R. S. Hamilton, "A matrix Harnack estimate for the heat equation," Comm. Anal. Geom., vol. 1, iss. 1, pp. 113-126, 1993.
@ARTICLE{Hamilton_gradient,
author = {Hamilton, Richard S.},
title = {A matrix {H}arnack estimate for the heat equation},
journal = {Comm. Anal. Geom.},
fjournal = {Communications in Analysis and Geometry},
volume = {1},
year = {1993},
number = {1},
pages = {113--126},
issn = {1019-8385},
mrclass = {58G11 (35K05)},
mrnumber = {1230276},
mrreviewer = {Wei Yue Ding},
doi = {10.4310/CAG.1993.v1.n1.a6},
url = {https://doi.org/10.4310/CAG.1993.v1.n1.a6},
zblnumber = {0799.53048},
} -
[Kot_hamilton_gradient]
B. L. Kotschwar, "Hamilton’s gradient estimate for the heat kernel on complete manifolds," Proc. Amer. Math. Soc., vol. 135, iss. 9, pp. 3013-3019, 2007.
@ARTICLE{Kot_hamilton_gradient,
author = {Kotschwar, Brett L.},
title = {Hamilton's gradient estimate for the heat kernel on complete manifolds},
journal = {Proc. Amer. Math. Soc.},
fjournal = {Proceedings of the American Mathematical Society},
volume = {135},
year = {2007},
number = {9},
pages = {3013--3019},
issn = {0002-9939},
mrclass = {58J35},
mrnumber = {2317980},
mrreviewer = {Peng Lu},
doi = {10.1090/S0002-9939-07-08837-5},
url = {https://doi.org/10.1090/S0002-9939-07-08837-5},
zblnumber = {1127.58021},
} -
[LiYau_heatkernel86]
P. Li and S. Yau, "On the parabolic kernel of the Schrödinger operator," Acta Math., vol. 156, iss. 3-4, pp. 153-201, 1986.
@ARTICLE{LiYau_heatkernel86,
author = {Li, Peter and Yau, Shing-Tung},
title = {On the parabolic kernel of the {S}chrödinger operator},
journal = {Acta Math.},
fjournal = {Acta Mathematica},
volume = {156},
year = {1986},
number = {3-4},
pages = {153--201},
issn = {0001-5962},
mrclass = {58G11 (35J10)},
mrnumber = {0834612},
mrreviewer = {Harold Donnelly},
doi = {10.1007/BF02399203},
url = {https://doi.org/10.1007/BF02399203},
zblnumber = {0611.58045},
} -
[Na_14ICM] A. Naber, "The geometry of Ricci curvature," in Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, 2014, pp. 911-937.
@INPROCEEDINGS{Na_14ICM,
author = {Naber, Aaron},
title = {The geometry of {R}icci curvature},
booktitle = {Proceedings of the {I}nternational {C}ongress of {M}athematicians---{S}eoul 2014. {V}ol. {II}},
pages = {911--937},
publisher = {Kyung Moon Sa, Seoul},
year = {2014},
mrclass = {53C21},
mrnumber = {3728645},
mrreviewer = {Shouhei Honda},
zblnumber = {1376.53003},
} -
[NaVa_CriticalSets]
A. Naber and D. Valtorta, "Volume estimates on the critical sets of solutions to elliptic PDEs," Comm. Pure Appl. Math., vol. 70, iss. 10, pp. 1835-1897, 2017.
@ARTICLE{NaVa_CriticalSets,
author = {Naber, Aaron and Valtorta, Daniele},
title = {Volume estimates on the critical sets of solutions to elliptic {PDE}s},
journal = {Comm. Pure Appl. Math.},
fjournal = {Communications on Pure and Applied Mathematics},
volume = {70},
year = {2017},
number = {10},
pages = {1835--1897},
issn = {0010-3640},
mrclass = {35J15 (35A20 35R01)},
mrnumber = {3688031},
mrreviewer = {Xinhua Ji},
doi = {10.1002/cpa.21708},
url = {https://doi.org/10.1002/cpa.21708},
zblnumber = {1376.35021},
} -
[Petersen_RiemannianGeometry]
P. Petersen, Riemannian Geometry, Third ed., Springer, Cham, 2016, vol. 171.
@BOOK{Petersen_RiemannianGeometry,
author = {Petersen, Peter},
title = {Riemannian Geometry},
series = {Grad. Texts in Math.},
volume = {171},
edition = {Third},
publisher = {Springer, Cham},
year = {2016},
pages = {xviii+499},
isbn = {978-3-319-26652-7; 978-3-319-26654-1},
mrclass = {53-01 (53C20 53C21 53C23)},
mrnumber = {3469435},
doi = {10.1007/978-3-319-26654-1},
url = {https://doi.org/10.1007/978-3-319-26654-1},
zblnumber = {1417.53001},
} -
[Reifenberg]
E. R. Reifenberg, "Solution of the Plateau Problem for $m$-dimensional surfaces of varying topological type," Acta Math., vol. 104, pp. 1-92, 1960.
@ARTICLE{Reifenberg,
author = {Reifenberg, E. R.},
title = {Solution of the {P}lateau {P}roblem for {$m$}-dimensional surfaces of varying topological type},
journal = {Acta Math.},
fjournal = {Acta Mathematica},
volume = {104},
year = {1960},
pages = {1--92},
issn = {0001-5962},
mrclass = {49.00},
mrnumber = {0114145},
mrreviewer = {Wendell H. Fleming},
doi = {10.1007/BF02547186},
url = {https://doi.org/10.1007/BF02547186},
zblnumber = {0099.08503},
} -
[SY_Redbook] R. Schoen and S. -T. Yau, Lectures on Differential Geometry, International Press, Cambridge, MA, 1994.
@BOOK{SY_Redbook,
author = {Schoen, R. and Yau, S.-T.},
title = {Lectures on Differential Geometry},
series = {Conference Proceedings and Lecture Notes in Geometry and Topology, I},
note = {lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu, translated from the Chinese by Ding and S. Y. Cheng, with a preface translated from the Chinese by Kaising Tso},
publisher = {International Press, Cambridge, MA},
year = {1994},
pages = {v+235},
isbn = {1-57146-012-8},
mrclass = {53-01 (53-02 53C21 58G30)},
mrnumber = {1333601},
mrreviewer = {Man Chun Leung},
zblnumber = {0830.53001},
} -
[SoZha]
P. Souplet and Q. S. Zhang, "Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds," Bull. London Math. Soc., vol. 38, iss. 6, pp. 1045-1053, 2006.
@ARTICLE{SoZha,
author = {Souplet, Philippe and Zhang, Qi S.},
title = {Sharp gradient estimate and {Y}au's {L}iouville theorem for the heat equation on noncompact manifolds},
journal = {Bull. London Math. Soc.},
fjournal = {The Bulletin of the London Mathematical Society},
volume = {38},
year = {2006},
number = {6},
pages = {1045--1053},
issn = {0024-6093},
mrclass = {35K05 (35B40 58J35)},
mrnumber = {2285258},
doi = {10.1112/S0024609306018947},
url = {https://doi.org/10.1112/S0024609306018947},
zblnumber = {1109.58025},
} -
[T90]
G. Tian, "On Calabi’s conjecture for complex surfaces with positive first Chern class," Invent. Math., vol. 101, iss. 1, pp. 101-172, 1990.
@ARTICLE{T90,
author = {Tian, G.},
title = {On {C}alabi's conjecture for complex surfaces with positive first {C}hern class},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {101},
year = {1990},
number = {1},
pages = {101--172},
issn = {0020-9910},
mrclass = {32L07 (32F07 53C25 53C55)},
mrnumber = {1055713},
mrreviewer = {M. Kalka},
doi = {10.1007/BF01231499},
url = {https://doi.org/10.1007/BF01231499},
zblnumber = {0716.32019},
} -
[Topping]
P. Topping, Lectures on the Ricci Flow, Cambridge University Press, Cambridge, 2006, vol. 325.
@BOOK{Topping,
author = {Topping, Peter},
title = {Lectures on the {R}icci Flow},
series = {London Math. Soc. Lecture Note Ser.},
volume = {325},
publisher = {Cambridge University Press, Cambridge},
year = {2006},
pages = {x+113},
isbn = {978-0-521-68947-2; 0-521-68947-3},
mrclass = {53C44},
mrnumber = {2265040},
mrreviewer = {Peng Lu},
doi = {10.1017/CBO9780511721465},
url = {https://doi.org/10.1017/CBO9780511721465},
zblnumber = {1105.58013},
}