The Polynomial Carleson operator

Abstract

We prove affirmatively the one-dimensional case of a conjecture of Stein regarding the $L^p$-boundedness of the Polynomial Carleson operator for $1\lt p\lt \infty $. \par Our proof relies on two new ideas: (i) we develop a framework for \emph higher-order wave-packet analysis that is consistent with the time-frequency analysis of the (generalized) Carleson operator, and (ii) we introduce a \emph local analysis adapted to the concepts of mass and counting function, which yields a new tile discretization of the time-frequency plane that has the major consequence of eliminating the exceptional sets from the analysis of the Carleson operator. As a further consequence, we are able to deliver the full $L^p$-boundedness range and prove directly—without interpolation techniques—the strong $L^2$ bound for the (generalized) Carleson operator, answering a question raised by C. Fefferman.

  • [MR2113017] Go to document L. Grafakos and X. Li, "Uniform bounds for the bilinear Hilbert transforms. I," Ann. of Math. (2), vol. 159, iss. 3, pp. 889-933, 2004.
    @article {MR2113017,
      author = {Grafakos, Loukas and Li, Xiaochun},
      TITLE = {Uniform bounds for the bilinear {H}ilbert transforms. {I}},
      JOURNAL = {Ann. of Math. (2)},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {159},
      YEAR = {2004},
      NUMBER = {3},
      PAGES = {889--933},
      ISSN = {0003-486X},
      MRCLASS = {42A50 (47G10)},
      MRNUMBER = {2113017},
      MRREVIEWER = {Ahmed I. Zayed},
      DOI = {10.4007/annals.2004.159.889},
      URL = {https://doi.org/10.4007/annals.2004.159.889},
      zblnumber = {1071.44004},
      }
  • [stein1993] Go to document E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993, vol. 43.
    @BOOK{stein1993,
      author = {Stein, Elias M.},
      TITLE = {Harmonic {A}nalysis: {R}eal-{V}ariable {M}ethods, {O}rthogonality, and {O}scillatory {I}ntegrals},
      SERIES = {Princeton {M}athematical {S}eries},
      VOLUME = {43},
      NOTE = {With the assistance of Timothy S. Murphy, {M}onographs in {H}armonic {A}nalysis, {III}},
      PUBLISHER = {Princeton University Press, Princeton, NJ},
      YEAR = {1993},
      PAGES = {xiv+695},
      ISBN = {0-691-03216-5},
      MRCLASS = {42-02 (35Sxx 43-02 47G30)},
      MRNUMBER = {1232192},
      MRREVIEWER = {Michael Cowling},
      DOI = {10.1515/9781400883929},
      URL = {https://doi.org/10.1515/9781400883929},
      ZBLNUMBER = {0821.42001},
      }
  • [Alpar] L. Alpár, "Sur certaines transformées des séries de puissance absolument convergentes sur la frontière de leur cercle de convergence," Magyar Tud. Akad. Mat. Kutató Int. Közl., vol. 7, pp. 287-316, 1962.
    @ARTICLE{Alpar,
      author = {Alp{\'{a}}r, L{\'{a}}szl{ó}},
      title = {Sur certaines transform{é}es des s{é}ries de puissance absolument convergentes sur la fronti{è}re de leur cercle de convergence},
      journal = {Magyar Tud. Akad. Mat. Kutató Int. Közl.},
      fjournal = {A Magyar Tudom\'{a}nyos Akadémia. Matematikai Kutató Intézetének Közleményei},
      volume = {7},
      year = {1962},
      pages = {287--316},
      issn = {0541-9514},
      mrclass = {30.21},
      mrnumber = {0152640},
      mrreviewer = {G. Piranian},
      zblnumber = {0115.28601},
      }
  • [An] Y. N. Antonov, "Convergence of Fourier series," in Proceedings of the XX Workshop on Function Theory (Moscow, 1995), 1996, pp. 187-196.
    @INPROCEEDINGS{An,
      author = {Antonov, N. Yu.},
      title = {Convergence of {F}ourier series},
      booktitle = {Proceedings of the {XX} {W}orkshop on {F}unction {T}heory ({M}oscow, 1995)},
      series = {East J. Approx.},
      volume = {2},
      year = {1996},
      number = {2},
      pages = {187--196},
      issn = {1310-6236},
      mrclass = {42A20},
      mrnumber = {1407066},
      mrreviewer = {S. Baron},
      zblnumber = {0919.42004},
      }
  • [Ar] Go to document J. Arias-de-Reyna, "Pointwise convergence of Fourier series," J. London Math. Soc. (2), vol. 65, iss. 1, pp. 139-153, 2002.
    @ARTICLE{Ar,
      author = {{Arias-de-Reyna},
      J.},
      title = {Pointwise convergence of {F}ourier series},
      journal = {J. London Math. Soc. (2)},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      volume = {65},
      year = {2002},
      number = {1},
      pages = {139--153},
      issn = {0024-6107},
      mrclass = {42A20 (46E99)},
      mrnumber = {1875141},
      doi = {10.1112/S0024610701002824},
      url = {https://doi.org/10.1112/S0024610701002824},
      zblnumber = {1017.42002},
      }
  • [Aust] Go to document T. Austin, "On the norm convergence of non-conventional ergodic averages," Ergodic Theory Dynam. Systems, vol. 30, iss. 2, pp. 321-338, 2010.
    @ARTICLE{Aust,
      author = {Austin, Tim},
      title = {On the norm convergence of non-conventional ergodic averages},
      journal = {Ergodic Theory Dynam. Systems},
      fjournal = {Ergodic Theory and Dynamical Systems},
      volume = {30},
      year = {2010},
      number = {2},
      pages = {321--338},
      issn = {0143-3857},
      mrclass = {37A30 (28D05 47A35)},
      mrnumber = {2599882},
      mrreviewer = {Artur Siemaszko},
      doi = {10.1017/S014338570900011X},
      url = {https://doi.org/10.1017/S014338570900011X},
      zblnumber = {1206.37003},
      }
  • [Bat] Go to document M. Bateman, "Single annulus $L^p$ estimates for Hilbert transforms along vector fields," Rev. Mat. Iberoam., vol. 29, iss. 3, pp. 1021-1069, 2013.
    @ARTICLE{Bat,
      author = {Bateman, Michael},
      title = {Single annulus {$L^p$} estimates for {H}ilbert transforms along vector fields},
      journal = {Rev. Mat. Iberoam.},
      fjournal = {Revista Matem\'{a}tica Iberoamericana},
      volume = {29},
      year = {2013},
      number = {3},
      pages = {1021--1069},
      issn = {0213-2230},
      mrclass = {42B20 (42B25)},
      mrnumber = {3090145},
      mrreviewer = {Juan Luis Varona},
      doi = {10.4171/RMI/748},
      url = {https://doi.org/10.4171/RMI/748},
      zblnumber = {1283.42019},
      }
  • [BT] Go to document M. Bateman and C. Thiele, "$L^p$ estimates for the Hilbert transforms along a one-variable vector field," Anal. PDE, vol. 6, iss. 7, pp. 1577-1600, 2013.
    @ARTICLE{BT,
      author = {Bateman, Michael and Thiele, Christoph},
      title = {{$L^p$} estimates for the {H}ilbert transforms along a one-variable vector field},
      journal = {Anal. PDE},
      fjournal = {Analysis \& PDE},
      volume = {6},
      year = {2013},
      number = {7},
      pages = {1577--1600},
      issn = {2157-5045},
      mrclass = {42B20 (42B25)},
      mrnumber = {3148061},
      mrreviewer = {Lasha Ephremidze},
      doi = {10.2140/apde.2013.6.1577},
      url = {https://doi.org/10.2140/apde.2013.6.1577},
      zblnumber = {1285.42014},
      }
  • [BM16] Go to document C. Benea and C. Muscalu, "Multiple vector-valued inequalities via the helicoidal method," Anal. PDE, vol. 9, iss. 8, pp. 1931-1988, 2016.
    @ARTICLE{BM16,
      author = {Benea, Cristina and Muscalu, Camil},
      title = {Multiple vector-valued inequalities via the helicoidal method},
      journal = {Anal. PDE},
      fjournal = {Analysis \& PDE},
      volume = {9},
      year = {2016},
      number = {8},
      pages = {1931--1988},
      issn = {2157-5045},
      mrclass = {42A45 (42B15 42B25 42B37)},
      mrnumber = {3599522},
      mrreviewer = {Sundaram Thangavelu},
      doi = {10.2140/apde.2016.9.1931},
      url = {https://doi.org/10.2140/apde.2016.9.1931},
      zblnumber = {1361.42005},
      }
  • [BM17a] Go to document C. Benea and C. Muscalu, "Quasi-Banach valued inequalities via the helicoidal method," J. Funct. Anal., vol. 273, iss. 4, pp. 1295-1353, 2017.
    @ARTICLE{BM17a,
      author = {Benea, Cristina and Muscalu, Camil},
      title = {Quasi-{B}anach valued inequalities via the helicoidal method},
      journal = {J. Funct. Anal.},
      fjournal = {Journal of Functional Analysis},
      volume = {273},
      year = {2017},
      number = {4},
      pages = {1295--1353},
      issn = {0022-1236},
      mrclass = {42B37 (46B20)},
      mrnumber = {3661402},
      mrreviewer = {Manuel Alejandro Sanabria Garc\'ıa},
      doi = {10.1016/j.jfa.2017.04.014},
      url = {https://doi.org/10.1016/j.jfa.2017.04.014},
      zblnumber = {1392.42024},
      }
  • [BM17b] C. Benea and C. Muscalu, Sparse domination via the helicoidal method, 2017.
    @misc{BM17b,
      author = {Benea, Cristina and Muscalu, Camil},
      title = {Sparse domination via the helicoidal method},
      arxiv={1707.05484},
      year={2017},
     }
  • [Birk] Go to document G. D. Birkhoff, "Proof of the ergodic theorem," Proc. Nat. Acad. Sci. U.S.A., vol. 17, iss. 12, pp. 656-660, 1931.
    @article{Birk,
      author = {Birkhoff, G. D.},
      title = {Proof of the ergodic theorem},
      journal = {Proc. Nat. Acad. Sci. U.S.A.},
      volume = {17},
      number = {12},
      pages = {656--660},
      year = {1931},
      zblnumber = {57.1011.02},
      doi = {10.1073/pnas.17.2.656},
      url = {https://doi.org/10.1073/pnas.17.2.656},
     }
  • [Boret] J. Bourgain, "Temps de retour pour les systèmes dynamiques (Return times of dynamical systems)," C. R. Acad. Sci. Paris Sér. I Math., vol. 306, iss. 12, pp. 483-485, 1988.
    @ARTICLE{Boret,
      author = {Bourgain, Jean},
      title = {Temps de retour pour les systèmes dynamiques (Return times of dynamical systems)},
      journal = {C. R. Acad. Sci. Paris Sér. I Math.},
      fjournal = {Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique},
      volume = {306},
      year = {1988},
      number = {12},
      pages = {483--485},
      issn = {0249-6291},
      mrclass = {28D05},
      mrnumber = {0939436},
      zblnumber = {0655.58022},
      }
  • [Bolip] Go to document J. Bourgain, "A remark on the maximal function associated to an analytic vector field," in Analysis at Urbana, Vol. I, Cambridge Univ. Press, Cambridge, 1989, vol. 137, pp. 111-132.
    @INCOLLECTION{Bolip,
      author = {Bourgain, Jean},
      title = {A remark on the maximal function associated to an analytic vector field},
      booktitle = {Analysis at {U}rbana, {V}ol. {I}},
      venue = {{U}rbana, {IL},
      1986--1987},
      series = {London Math. Soc. Lecture Note Ser.},
      volume = {137},
      pages = {111--132},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {1989},
      mrclass = {42B25},
      mrnumber = {1009171},
      mrreviewer = {J. A. Chao},
      doi = {10.1017/CBO9780511662294.006},
      url = {https://doi.org/10.1017/CBO9780511662294.006},
      zblnumber = {0692.42006},
      }
  • [Borec] Go to document J. Bourgain, "Double recurrence and almost sure convergence," J. Reine Angew. Math., vol. 404, pp. 140-161, 1990.
    @ARTICLE{Borec,
      author = {Bourgain, Jean},
      title = {Double recurrence and almost sure convergence},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {404},
      year = {1990},
      pages = {140--161},
      issn = {0075-4102},
      mrclass = {28D05 (11K99 47A35)},
      mrnumber = {1037434},
      mrreviewer = {Anzelm Iwanik},
      doi = {10.1515/crll.1990.404.140},
      url = {https://doi.org/10.1515/crll.1990.404.140},
      zblnumber = {0685.28008},
      }
  • [Cal] Go to document A. -P. Calderón, "Cauchy integrals on Lipschitz curves and related operators," Proc. Nat. Acad. Sci. U.S.A., vol. 74, iss. 4, pp. 1324-1327, 1977.
    @ARTICLE{Cal,
      author = {Calderón, A.-P.},
      title = {Cauchy integrals on {L}ipschitz curves and related operators},
      journal = {Proc. Nat. Acad. Sci. U.S.A.},
      fjournal = {Proceedings of the National Academy of Sciences of the United States of America},
      volume = {74},
      year = {1977},
      number = {4},
      pages = {1324--1327},
      issn = {0027-8424},
      mrclass = {30A86 (42A92)},
      mrnumber = {0466568},
      mrreviewer = {Yves Meyer},
      doi = {10.1073/pnas.74.4.1324},
      url = {https://doi.org/10.1073/pnas.74.4.1324},
      zblnumber = {0373.44003},
      }
  • [c1] Go to document L. Carleson, "On convergence and growth of partial sums of Fourier series," Acta Math., vol. 116, pp. 135-157, 1966.
    @ARTICLE{c1,
      author = {Carleson, Lennart},
      title = {On convergence and growth of partial sums of {F}ourier series},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {116},
      year = {1966},
      pages = {135--157},
      issn = {0001-5962},
      mrclass = {42.11},
      mrnumber = {0199631},
      mrreviewer = {J.-P. Kahane},
      doi = {10.1007/BF02392815},
      url = {https://doi.org/10.1007/BF02392815},
      zblnumber = {0144.06402},
      }
  • [ch] Go to document Y. M. Chen, "An almost everywhere divergent Fourier series of the class $L(\log^{+}\log^{+}L) ^{1-\varepsilon }$," J. London Math. Soc., vol. 44, pp. 643-654, 1969.
    @ARTICLE{ch,
      author = {Chen, Y. M.},
      title = {An almost everywhere divergent {F}ourier series of the class {$L(\log\sp{+}\log\sp{+}L) \sp{1-\varepsilon }$}},
      journal = {J. London Math. Soc.},
      fjournal = {The Journal of the London Mathematical Society},
      volume = {44},
      year = {1969},
      pages = {643--654},
      issn = {0024-6107},
      mrclass = {42.11},
      mrnumber = {0240539},
      mrreviewer = {J.-P. Kahane},
      doi = {10.1112/jlms/s1-44.1.643},
      url = {https://doi.org/10.1112/jlms/s1-44.1.643},
      zblnumber = {0169.39703},
      }
  • [Chhilb] Go to document M. Christ, "Hilbert transforms along curves. I. Nilpotent groups," Ann. of Math. (2), vol. 122, iss. 3, pp. 575-596, 1985.
    @ARTICLE{Chhilb,
      author = {Christ, Michael},
      title = {Hilbert transforms along curves. {I}. {N}ilpotent groups},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {122},
      year = {1985},
      number = {3},
      pages = {575--596},
      issn = {0003-486X},
      mrclass = {42B20 (42B25 43A80)},
      mrnumber = {0819558},
      mrreviewer = {Gerald B. Folland},
      doi = {10.2307/1971330},
      url = {https://doi.org/10.2307/1971330},
      zblnumber = {0593.43011},
      }
  • [CNSW] Go to document M. Christ, A. Nagel, E. M. Stein, and S. Wainger, "Singular and maximal Radon transforms: analysis and geometry," Ann. of Math. (2), vol. 150, iss. 2, pp. 489-577, 1999.
    @ARTICLE{CNSW,
      author = {Christ, Michael and Nagel, Alexander and Stein, Elias M. and Wainger, Stephen},
      title = {Singular and maximal {R}adon transforms: analysis and geometry},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {150},
      year = {1999},
      number = {2},
      pages = {489--577},
      issn = {0003-486X},
      mrclass = {42B20 (22E25 42B25 44A12)},
      mrnumber = {1726701},
      mrreviewer = {Detlef H. Müller},
      doi = {10.2307/121088},
      url = {https://doi.org/10.2307/121088},
      zblnumber = {0960.44001},
      }
  • [CPO] Go to document A. Culiuc, F. Di Plinio, and Y. Ou, "Domination of multilinear singular integrals by positive sparse forms," J. Lond. Math. Soc. (2), vol. 98, iss. 2, pp. 369-392, 2018.
    @ARTICLE{CPO,
      author = {Culiuc, Amalia and Di Plinio, Francesco and Ou, Yumeng},
      title = {Domination of multilinear singular integrals by positive sparse forms},
      journal = {J. Lond. Math. Soc. (2)},
      fjournal = {Journal of the London Mathematical Society. Second Series},
      volume = {98},
      year = {2018},
      number = {2},
      pages = {369--392},
      issn = {0024-6107},
      mrclass = {42B20 (42B25)},
      mrnumber = {3873113},
      mrreviewer = {Luc Deléaval},
      doi = {10.1112/jlms.12139},
      url = {https://doi.org/10.1112/jlms.12139},
      zblnumber = {1402.42013},
      }
  • [CLe] Go to document J. Conze and E. Lesigne, "Théorèmes ergodiques pour des mesures diagonales," Bull. Soc. Math. France, vol. 112, iss. 2, pp. 143-175, 1984.
    @ARTICLE{CLe,
      author = {Conze, Jean-Pierre and Lesigne, Emmanuel},
      title = {Théorèmes ergodiques pour des mesures diagonales},
      journal = {Bull. Soc. Math. France},
      fjournal = {Bulletin de la Société Mathématique de France},
      volume = {112},
      year = {1984},
      number = {2},
      pages = {143--175},
      issn = {0037-9484},
      mrclass = {28D05 (22D40)},
      mrnumber = {0788966},
      mrreviewer = {Karl David},
      doi = {10.24033/bsmf.2003},
      url = {https://doi.org/10.24033/bsmf.2003},
      zblnumber = {0595.28018},
      }
  • [dem0] Go to document C. Demeter, "Pointwise convergence of the ergodic bilinear Hilbert transform," Illinois J. Math., vol. 51, iss. 4, pp. 1123-1158, 2007.
    @ARTICLE{dem0,
      author = {Demeter, Ciprian},
      title = {Pointwise convergence of the ergodic bilinear {H}ilbert transform},
      journal = {Illinois J. Math.},
      fjournal = {Illinois Journal of Mathematics},
      volume = {51},
      year = {2007},
      number = {4},
      pages = {1123--1158},
      issn = {0019-2082},
      mrclass = {47A35 (28D05 37A30 42B20 47B38)},
      mrnumber = {2417419},
      mrreviewer = {Joseph Max Rosenblatt},
      doi = {10.1215/ijm/1258138536},
      url = {https://doi.org/10.1215/ijm/1258138536},
      zblnumber = {1175.37013},
      }
  • [dem1] Go to document C. Demeter, "Divergence of combinatorial averages and the unboundedness of the trilinear Hilbert transform," Ergodic Theory Dynam. Systems, vol. 28, iss. 5, pp. 1453-1464, 2008.
    @ARTICLE{dem1,
      author = {Demeter, Ciprian},
      title = {Divergence of combinatorial averages and the unboundedness of the trilinear {H}ilbert transform},
      journal = {Ergodic Theory Dynam. Systems},
      fjournal = {Ergodic Theory and Dynamical Systems},
      volume = {28},
      year = {2008},
      number = {5},
      pages = {1453--1464},
      issn = {0143-3857},
      mrclass = {47A35 (37A45 47B38)},
      mrnumber = {2449537},
      mrreviewer = {Bryna Kra},
      doi = {10.1017/S0143385707001101},
      url = {https://doi.org/10.1017/S0143385707001101},
      zblnumber = {1168.42007},
      }
  • [dltt] Go to document C. Demeter, M. T. Lacey, T. Tao, and C. Thiele, "Breaking the duality in the return times theorem," Duke Math. J., vol. 143, iss. 2, pp. 281-355, 2008.
    @ARTICLE{dltt,
      author = {Demeter, Ciprian and Lacey, Michael T. and Tao, Terence and Thiele, Christoph},
      title = {Breaking the duality in the return times theorem},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {143},
      year = {2008},
      number = {2},
      pages = {281--355},
      issn = {0012-7094},
      mrclass = {42B25 (28D05 37A25 37A45)},
      mrnumber = {2420509},
      mrreviewer = {Joseph Max Rosenblatt},
      doi = {10.1215/00127094-2008-020},
      url = {https://doi.org/10.1215/00127094-2008-020},
      zblnumber = {1213.42064},
      }
  • [dtt] Go to document C. Demeter, T. Tao, and C. Thiele, "Maximal multilinear operators," Trans. Amer. Math. Soc., vol. 360, iss. 9, pp. 4989-5042, 2008.
    @ARTICLE{dtt,
      author = {Demeter, Ciprian and Tao, Terence and Thiele, Christoph},
      title = {Maximal multilinear operators},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the Amer. Math. Soc.},
      volume = {360},
      year = {2008},
      number = {9},
      pages = {4989--5042},
      issn = {0002-9947},
      mrclass = {42B25 (37A45 47A35 47G10)},
      mrnumber = {2403711},
      mrreviewer = {Joseph Max Rosenblatt},
      doi = {10.1090/S0002-9947-08-04474-7},
      url = {https://doi.org/10.1090/S0002-9947-08-04474-7},
      zblnumber = {1268.42034},
      }
  • [DT10] Go to document C. Demeter and C. Thiele, "On the two-dimensional bilinear Hilbert transform," Amer. J. Math., vol. 132, iss. 1, pp. 201-256, 2010.
    @ARTICLE{DT10,
      author = {Demeter, Ciprian and Thiele, Christoph},
      title = {On the two-dimensional bilinear {H}ilbert transform},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {132},
      year = {2010},
      number = {1},
      pages = {201--256},
      issn = {0002-9327},
      mrclass = {42B20 (47A35)},
      mrnumber = {2597511},
      doi = {10.1353/ajm.0.0101},
      url = {https://doi.org/10.1353/ajm.0.0101},
      zblnumber = {1206.42010},
      }
  • [DiP] Go to document F. Di Plinio, "Lacunary Fourier and Walsh-Fourier series near $L^1$," Collect. Math., vol. 65, iss. 2, pp. 219-232, 2014.
    @ARTICLE{DiP,
      author = {Di Plinio, Francesco},
      title = {Lacunary {F}ourier and {W}alsh-{F}ourier series near {$L^1$}},
      journal = {Collect. Math.},
      fjournal = {Collectanea Mathematica},
      volume = {65},
      year = {2014},
      number = {2},
      pages = {219--232},
      issn = {0010-0757},
      mrclass = {42B20},
      mrnumber = {3189278},
      mrreviewer = {Sanjiv Kumar Gupta},
      doi = {10.1007/s13348-013-0094-3},
      url = {https://doi.org/10.1007/s13348-013-0094-3},
      zblnumber = {1311.42008},
      }
  • [DPU] Go to document F. Di Plinio, Y. Q. Do, and G. N. Uraltsev, "Positive sparse domination of variational Carleson operators," Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), vol. 18, iss. 4, pp. 1443-1458, 2018.
    @ARTICLE{DPU,
      author = {Di Plinio, Francesco and Do, Yen Q. and Uraltsev, Gennady N.},
      title = {Positive sparse domination of variational {C}arleson operators},
      journal = {Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)},
      fjournal = {Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V},
      volume = {18},
      year = {2018},
      number = {4},
      pages = {1443--1458},
      issn = {0391-173X},
      mrclass = {42B20 (42B25)},
      mrnumber = {3829751},
      mrreviewer = {Michael T. Lacey},
      zblnumber = {1403.42010},
      doi = {10.2422/2036-2145.201612_009},
      url = {https://doi.org/10.2422/2036-2145.201612_009},
     }
  • [PGTZ] Go to document F. Di Plinio, S. Guo, C. Thiele, and P. Zorin-Kranich, "Square functions for bi-Lipschitz maps and directional operators," J. Funct. Anal., vol. 275, iss. 8, pp. 2015-2058, 2018.
    @ARTICLE{PGTZ,
      author = {Di Plinio, Francesco and Guo, Shaoming and Thiele, Christoph and Zorin-Kranich, Pavel},
      title = {Square functions for bi-{L}ipschitz maps and directional operators},
      journal = {J. Funct. Anal.},
      fjournal = {Journal of Functional Analysis},
      volume = {275},
      year = {2018},
      number = {8},
      pages = {2015--2058},
      issn = {0022-1236},
      mrclass = {42B25},
      mrnumber = {3841536},
      mrreviewer = {Sundaram Thangavelu},
      doi = {10.1016/j.jfa.2018.07.005},
      url = {https://doi.org/10.1016/j.jfa.2018.07.005},
      zblnumber = {1400.42023},
      }
  • [DoLa] Go to document Y. Do and M. T. Lacey, "On the convergence of lacunacy Walsh-Fourier series," Bull. Lond. Math. Soc., vol. 44, iss. 2, pp. 241-254, 2012.
    @ARTICLE{DoLa,
      author = {Do, Yen and Lacey, Michael T.},
      title = {On the convergence of lacunacy {W}alsh-{F}ourier series},
      journal = {Bull. Lond. Math. Soc.},
      fjournal = {Bulletin of the London Mathematical Society},
      volume = {44},
      year = {2012},
      number = {2},
      pages = {241--254},
      issn = {0024-6093},
      mrclass = {42A20 (42B20 42B25 42B35)},
      mrnumber = {2914604},
      mrreviewer = {Christoph Aistleitner},
      doi = {10.1112/blms/bdr088},
      url = {https://doi.org/10.1112/blms/bdr088},
      zblnumber = {1241.42005},
      }
  • [Dir] Go to document G. Lejeune Dirichlet, "Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données," J. Reine Angew. Math., vol. 4, pp. 157-169, 1829.
    @ARTICLE{Dir,
      author = {Lejeune Dirichlet, G.},
      title = {Sur la convergence des s{é}ries trigonom{é}triques qui servent à repr{é}senter une fonction arbitraire entre des limites données},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {4},
      year = {1829},
      pages = {157--169},
      issn = {0075-4102},
      mrclass = {DML},
      mrnumber = {1577724},
      doi = {10.1515/crll.1829.4.157},
      url = {https://doi.org/10.1515/crll.1829.4.157},
      zblnumber = {004.0148cj},
      }
  • [DoTh] Go to document Y. Do and C. Thiele, "$L^p$ theory for outer measures and two themes of Lennart Carleson united," Bull. Amer. Math. Soc. (N.S.), vol. 52, iss. 2, pp. 249-296, 2015.
    @ARTICLE{DoTh,
      author = {Do, Yen and Thiele, Christoph},
      title = {{$L^p$} theory for outer measures and two themes of {L}ennart {C}arleson united},
      journal = {Bull. Amer. Math. Soc. (N.S.)},
      fjournal = {Amer. Math. Soc.. Bulletin. New Series},
      volume = {52},
      year = {2015},
      number = {2},
      pages = {249--296},
      issn = {0273-0979},
      mrclass = {42B20 (28C15 42B35)},
      mrnumber = {3312633},
      mrreviewer = {Elijah Liflyand},
      doi = {10.1090/S0273-0979-2014-01474-0},
      url = {https://doi.org/10.1090/S0273-0979-2014-01474-0},
      zblnumber = {1318.42016},
      }
  • [DOP] Go to document Y. Do, R. Oberlin, and E. A. Palsson, "Variation-norm and fluctuation estimates for ergodic bilinear averages," Indiana Univ. Math. J., vol. 66, iss. 1, pp. 55-99, 2017.
    @ARTICLE{DOP,
      author = {Do, Yen and Oberlin, Richard and Palsson, Eyvindur A.},
      title = {Variation-norm and fluctuation estimates for ergodic bilinear averages},
      journal = {Indiana Univ. Math. J.},
      fjournal = {Indiana University Mathematics Journal},
      volume = {66},
      year = {2017},
      number = {1},
      pages = {55--99},
      issn = {0022-2518},
      mrclass = {37A05 (37A30 42B10)},
      mrnumber = {3623404},
      mrreviewer = {Christophe Cuny},
      doi = {10.1512/iumj.2017.66.5983},
      url = {https://doi.org/10.1512/iumj.2017.66.5983},
      zblnumber = {1368.42005},
      }
  • [Bois] P. du Bois-Reymond, "Untersuchungen über die Convergenz und Divergenz der Fourierschen Darstellungsformeln.," Münch. Abh., vol. 12, iss. II, pp. 1-102, 1876.
    @ARTICLE{Bois,
      author = {{du Bois-Reymond},
      Paul},
      title = {Untersuchungen {ü}ber die {C}onvergenz und {D}ivergenz der {F}ourierschen {D}arstellungsformeln.},
      fjournal = {Abhandlungen der Bayerischen Akademie der Wissenschaften},
      journal = {M{ü}nch. Abh.},
      volume = {12},
      number = {II},
      pages = {1--102},
      year = {1876},
      zblnumber = {09.0298.01},
     }
  • [DKST] Go to document P. Durcik, V. Kovavc, K. A. vSkreb, and C. Thiele, "Norm variation of ergodic averages with respect to two commuting transformations," Ergodic Theory Dynam. Systems, vol. 39, iss. 3, pp. 658-688, 2019.
    @ARTICLE{DKST,
      author = {Durcik, Polona and Kova{\v{c}},
      Vjekoslav and {Š}kreb, Kristina Ana and Thiele, Christoph},
      title = {Norm variation of ergodic averages with respect to two commuting transformations},
      journal = {Ergodic Theory Dynam. Systems},
      fjournal = {Ergodic Theory and Dynamical Systems},
      volume = {39},
      year = {2019},
      number = {3},
      pages = {658--688},
      issn = {0143-3857},
      mrclass = {37A25},
      mrnumber = {3904183},
      mrreviewer = {Jakub Michal Konieczny},
      doi = {10.1017/etds.2017.48},
      url = {https://doi.org/10.1017/etds.2017.48},
      zblnumber = {1416.37007},
      }
  • [fr] Go to document E. B. Fabes and N. M. Rivière, "Singular integrals with mixed homogeneity," Studia Math., vol. 27, pp. 19-38, 1966.
    @ARTICLE{fr,
      author = {Fabes, Eugene B. and Rivi{è}re, N. M.},
      title = {Singular integrals with mixed homogeneity},
      journal = {Studia Math.},
      fjournal = {Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica},
      volume = {27},
      year = {1966},
      pages = {19--38},
      issn = {0039-3223},
      mrclass = {45.15},
      mrnumber = {0209787},
      mrreviewer = {B. Frank Jones, Jr.},
      doi = {10.4064/sm-27-1-19-38},
      url = {https://doi.org/10.4064/sm-27-1-19-38},
      zblnumber = {0161.32403},
      }
  • [Fabe] Go to document E. B. Fabes, "Singular integrals and partial differential equations of parabolic type," Studia Math., vol. 28, pp. 81-131, 1966/67.
    @ARTICLE{Fabe,
      author = {Fabes, Eugene B.},
      title = {Singular integrals and partial differential equations of parabolic type},
      journal = {Studia Math.},
      fjournal = {Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica},
      volume = {28},
      year = {1966/67},
      pages = {81--131},
      issn = {0039-3223},
      mrclass = {35.63 (45.00)},
      mrnumber = {0213744},
      mrreviewer = {P. C. Fife},
      doi = {10.4064/sm-28-1-81-131},
      url = {https://doi.org/10.4064/sm-28-1-81-131},
      zblnumber = {0144.35002},
      }
  • [f] Go to document C. Fefferman, "Pointwise convergence of Fourier series," Ann. of Math. (2), vol. 98, pp. 551-571, 1973.
    @ARTICLE{f,
      author = {Fefferman, Charles},
      title = {Pointwise convergence of {F}ourier series},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {98},
      year = {1973},
      pages = {551--571},
      issn = {0003-486X},
      mrclass = {42A20},
      mrnumber = {0340926},
      mrreviewer = {P. Sjölin},
      doi = {10.2307/1970917},
      url = {https://doi.org/10.2307/1970917},
      zblnumber = {0268.42009},
      }
  • [Fefunc] Go to document C. L. Fefferman, "The uncertainty principle," Bull. Amer. Math. Soc. (N.S.), vol. 9, iss. 2, pp. 129-206, 1983.
    @ARTICLE{Fefunc,
      author = {Fefferman, Charles L.},
      title = {The uncertainty principle},
      journal = {Bull. Amer. Math. Soc. (N.S.)},
      fjournal = {Amer. Math. Soc.. Bulletin. New Series},
      volume = {9},
      year = {1983},
      number = {2},
      pages = {129--206},
      issn = {0273-0979},
      mrclass = {35-02 (35H05 35P20 35S05 42B20 42B25)},
      mrnumber = {0707957},
      mrreviewer = {Yu. V. Egorov},
      doi = {10.1090/S0273-0979-1983-15154-6},
      url = {https://doi.org/10.1090/S0273-0979-1983-15154-6},
      zblnumber = {0526.35080},
      }
  • [Fou] J. Fourier, Théorie Analytique de la Chaleur, Éditions Jacques Gabay, Paris, 1988.
    @BOOK{Fou,
      author = {Fourier, Joseph},
      title = {Théorie Analytique de la Chaleur},
      note = {reprint of the 1822 original},
      publisher = {\'{E}ditions Jacques Gabay, Paris},
      year = {1988},
      pages = {xxii+644},
      isbn = {2-87647-046-2},
      mrclass = {01A75 (01A55)},
      mrnumber = {1414430},
      mrreviewer = {Peter M. Harman},
      zblnumber = {},
      }
  • [Fr1] G. A. Freuiman, Foundations of a Structural Theory of Set Addition, Kazan Gos. Ped. Inst., Kazan, 1966.
    @BOOK{Fr1,
      author = {Freĭman, G. A.},
      title = {Foundations of a Structural Theory of Set Addition},
      titlenote = {(in Russian)},
      publisher = {Kazan Gos. Ped. Inst., Kazan},
      year = {1966},
      pages = {140},
      mrclass = {10J99 (10AXX)},
      mrnumber = {0360495},
      mrreviewer = {A. Postnikov},
      zblnumber = {0203.35305},
      }
  • [Fr2] Go to document G. A. Freuiman, Foundations of a Structural Theory of Set Addition, Amer. Math. Soc., Providence, R. I., 1973, vol. 37.
    @BOOK{Fr2,
      author = {Freĭman, G. A.},
      title = {Foundations of a Structural Theory of Set Addition},
      note = {translated from the Russian},
      series = {Trans. Math. Monogr.},
      volume = {37},
      publisher = {Amer. Math. Soc., Providence, R. I.},
      year = {1973},
      pages = {vii+108},
      mrclass = {10J99 (10AXX)},
      mrnumber = {0360496},
      doi = {10.1090/mmono/037},
      url = {https://doi.org/10.1090/mmono/037},
      zblnumber = {0271.10044},
      }
  • [Fust] Go to document H. Furstenberg, "Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions," J. Analyse Math., vol. 31, pp. 204-256, 1977.
    @ARTICLE{Fust,
      author = {Furstenberg, Harry},
      title = {Ergodic behavior of diagonal measures and a theorem of {S}zemerédi on arithmetic progressions},
      journal = {J. Analyse Math.},
      fjournal = {Journal d'Analyse Mathématique},
      volume = {31},
      year = {1977},
      pages = {204--256},
      issn = {0021-7670},
      mrclass = {10L10 (10K10 28A65)},
      mrnumber = {0498471},
      mrreviewer = {François Aribaud},
      doi = {10.1007/BF02813304},
      url = {https://doi.org/10.1007/BF02813304},
      zblnumber = {0347.28016},
      }
  • [GeSt] Go to document D. Geller and E. M. Stein, "Estimates for singular convolution operators on the Heisenberg group," Math. Ann., vol. 267, iss. 1, pp. 1-15, 1984.
    @ARTICLE{GeSt,
      author = {Geller, D. and Stein, E. M.},
      title = {Estimates for singular convolution operators on the {H}eisenberg group},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {267},
      year = {1984},
      number = {1},
      pages = {1--15},
      issn = {0025-5831},
      mrclass = {43A80 (22E30 43A30 47B38)},
      mrnumber = {0737332},
      mrreviewer = {Gerald B. Folland},
      doi = {10.1007/BF01458467},
      url = {https://doi.org/10.1007/BF01458467},
      zblnumber = {0537.43005},
      }
  • [GrTa1] Go to document B. Green and T. Tao, "An inverse theorem for the Gowers $U^3(G)$ norm," Proc. Edinb. Math. Soc. (2), vol. 51, iss. 1, pp. 73-153, 2008.
    @ARTICLE{GrTa1,
      author = {Green, Ben and Tao, Terence},
      title = {An inverse theorem for the {G}owers {$U^3(G)$} norm},
      journal = {Proc. Edinb. Math. Soc. (2)},
      fjournal = {Proceedings of the Edinburgh Mathematical Society. Series II},
      volume = {51},
      year = {2008},
      number = {1},
      pages = {73--153},
      issn = {0013-0915},
      mrclass = {11B25 (11B75 11P55 11P70)},
      mrnumber = {2391635},
      mrreviewer = {Sergeĭ V. Konyagin},
      doi = {10.1017/S0013091505000325},
      url = {https://doi.org/10.1017/S0013091505000325},
      zblnumber = {1202.11013},
      }
  • [GrTaZ] Go to document B. Green, T. Tao, and T. Ziegler, "An inverse theorem for the Gowers $U^{s+1}[N]$-norm," Ann. of Math. (2), vol. 176, iss. 2, pp. 1231-1372, 2012.
    @ARTICLE{GrTaZ,
      author = {Green, Ben and Tao, Terence and Ziegler, Tamar},
      title = {An inverse theorem for the {G}owers {$U^{s+1}[N]$}-norm},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {176},
      year = {2012},
      number = {2},
      pages = {1231--1372},
      issn = {0003-486X},
      mrclass = {11B30},
      mrnumber = {2950773},
      mrreviewer = {Julia Wolf},
      doi = {10.4007/annals.2012.176.2.11},
      url = {https://doi.org/10.4007/annals.2012.176.2.11},
      zblnumber = {1282.11007},
      }
  • [Gow1] Go to document W. T. Gowers, "A new proof of Szemerédi’s theorem for arithmetic progressions of length four," Geom. Funct. Anal., vol. 8, iss. 3, pp. 529-551, 1998.
    @ARTICLE{Gow1,
      author = {Gowers, W. T.},
      title = {A new proof of {S}zemerédi's theorem for arithmetic progressions of length four},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {8},
      year = {1998},
      number = {3},
      pages = {529--551},
      issn = {1016-443X},
      mrclass = {11B25 (11N13)},
      mrnumber = {1631259},
      mrreviewer = {D. R. Heath-Brown},
      doi = {10.1007/s000390050065},
      url = {https://doi.org/10.1007/s000390050065},
      zblnumber = {0907.11005},
      }
  • [Gow2] Go to document W. T. Gowers, "A new proof of Szemerédi’s theorem," Geom. Funct. Anal., vol. 11, iss. 3, pp. 465-588, 2001.
    @ARTICLE{Gow2,
      author = {Gowers, W. T.},
      title = {A new proof of {S}zemerédi's theorem},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {11},
      year = {2001},
      number = {3},
      pages = {465--588},
      issn = {1016-443X},
      mrclass = {11B25 (11K38 11K45)},
      mrnumber = {1844079},
      mrreviewer = {Hillel Furstenberg},
      doi = {10.1007/s00039-001-0332-9},
      url = {https://doi.org/10.1007/s00039-001-0332-9},
      zblnumber = {1028.11005},
      }
  • [GTT] Go to document L. Grafakos, T. Tao, and E. Terwilleger, "$L^p$ bounds for a maximal dyadic sum operator," Math. Z., vol. 246, iss. 1-2, pp. 321-337, 2004.
    @ARTICLE{GTT,
      author = {Grafakos, Loukas and Tao, Terence and Terwilleger, Erin},
      title = {{$L^p$} bounds for a maximal dyadic sum operator},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {246},
      year = {2004},
      number = {1-2},
      pages = {321--337},
      issn = {0025-5874},
      mrclass = {42A20 (42A24)},
      mrnumber = {2031458},
      mrreviewer = {Walter R. Bloom},
      doi = {10.1007/s00209-003-0601-4},
      url = {https://doi.org/10.1007/s00209-003-0601-4},
      zblnumber = {1076.42013},
      }
  • [GMF] Go to document L. Grafakos, J. M. Martell, and F. Soria, "Weighted norm inequalities for maximally modulated singular integral operators," Math. Ann., vol. 331, iss. 2, pp. 359-394, 2005.
    @ARTICLE{GMF,
      author = {Grafakos, Loukas and Martell, José Mar\'ıa and Soria, Fernando},
      title = {Weighted norm inequalities for maximally modulated singular integral operators},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {331},
      year = {2005},
      number = {2},
      pages = {359--394},
      issn = {0025-5831},
      mrclass = {42B20 (47G10)},
      mrnumber = {2115460},
      mrreviewer = {Xavier Tolsa},
      doi = {10.1007/s00208-004-0586-2},
      url = {https://doi.org/10.1007/s00208-004-0586-2},
      zblnumber = {1133.42019},
      }
  • [GrUh] Go to document A. Greenleaf and G. Uhlmann, "Estimates for singular Radon transforms and pseudodifferential operators with singular symbols," J. Funct. Anal., vol. 89, iss. 1, pp. 202-232, 1990.
    @ARTICLE{GrUh,
      author = {Greenleaf, Allan and Uhlmann, Gunther},
      title = {Estimates for singular {R}adon transforms and pseudodifferential operators with singular symbols},
      journal = {J. Funct. Anal.},
      fjournal = {Journal of Functional Analysis},
      volume = {89},
      year = {1990},
      number = {1},
      pages = {202--232},
      issn = {0022-1236},
      mrclass = {58G15 (44A12)},
      mrnumber = {1040963},
      mrreviewer = {Eric Grinberg},
      doi = {10.1016/0022-1236(90)90011-9},
      url = {https://doi.org/10.1016/0022-1236(90)90011-9},
      zblnumber = {0717.44001},
      }
  • [Gu1] Go to document S. Guo, "Hilbert transform along measurable vector fields constant on Lipschitz curves: $L^2$ boundedness," Anal. PDE, vol. 8, iss. 5, pp. 1263-1288, 2015.
    @ARTICLE{Gu1,
      author = {Guo, Shaoming},
      title = {Hilbert transform along measurable vector fields constant on {L}ipschitz curves: {$L^2$} boundedness},
      journal = {Anal. PDE},
      fjournal = {Analysis \& PDE},
      volume = {8},
      year = {2015},
      number = {5},
      pages = {1263--1288},
      issn = {2157-5045},
      mrclass = {42B20 (42B25)},
      mrnumber = {3393679},
      doi = {10.2140/apde.2015.8.1263},
      url = {https://doi.org/10.2140/apde.2015.8.1263},
      zblnumber = {1323.42013},
      }
  • [Gu2] Go to document S. Guo, "Hilbert transform along measurable vector fields constant on Lipschitz curves: $L^p$ boundedness," Trans. Amer. Math. Soc., vol. 369, iss. 4, pp. 2493-2519, 2017.
    @ARTICLE{Gu2,
      author = {Guo, Shaoming},
      title = {Hilbert transform along measurable vector fields constant on {L}ipschitz curves: {$L^p$} boundedness},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the Amer. Math. Soc.},
      volume = {369},
      year = {2017},
      number = {4},
      pages = {2493--2519},
      issn = {0002-9947},
      mrclass = {42B20 (42B25)},
      mrnumber = {3592519},
      mrreviewer = {Dachun Yang},
      doi = {10.1090/tran/6750},
      url = {https://doi.org/10.1090/tran/6750},
      zblnumber = {1356.42007},
      }
  • [GHLR] Go to document S. Guo, J. Hickman, V. Lie, and J. Roos, "Maximal operators and Hilbert transforms along variable non-flat homogeneous curves," Proc. Lond. Math. Soc. (3), vol. 115, iss. 1, pp. 177-219, 2017.
    @ARTICLE{GHLR,
      author = {Guo, Shaoming and Hickman, Jonathan and Lie, Victor and Roos, Joris},
      title = {Maximal operators and {H}ilbert transforms along variable non-flat homogeneous curves},
      journal = {Proc. Lond. Math. Soc. (3)},
      fjournal = {Proceedings of the London Mathematical Society. Third Series},
      volume = {115},
      year = {2017},
      number = {1},
      pages = {177--219},
      issn = {0024-6115},
      mrclass = {42B25 (44A15)},
      mrnumber = {3669936},
      mrreviewer = {Joseph Feneuil},
      doi = {10.1112/plms.12037},
      url = {https://doi.org/10.1112/plms.12037},
      zblnumber = {1388.42039},
      }
  • [Hala] G. Halász, "On a theorem of L. Alpár concerning Fourier series of powers of certain functions," Studia Sci. Math. Hungar., vol. 2, pp. 67-72, 1967.
    @ARTICLE{Hala,
      author = {Hal{\'{a}}sz, G.},
      title = {On a theorem of {L}. {A}lp{\'{a}}r concerning {F}ourier series of powers of certain functions},
      journal = {Studia Sci. Math. Hungar.},
      fjournal = {Studia Scientiarum Mathematicarum Hungarica. A Quarterly of the Hungarian Academy of Sciences},
      volume = {2},
      year = {1967},
      pages = {67--72},
      issn = {0081-6906},
      mrclass = {42.11},
      mrnumber = {0211184},
      mrreviewer = {F. C. Hsiang},
      zblnumber = {0214.32001},
      }
  • [HK] Go to document B. Host and B. Kra, "Nonconventional ergodic averages and nilmanifolds," Ann. of Math. (2), vol. 161, iss. 1, pp. 397-488, 2005.
    @ARTICLE{HK,
      author = {Host, Bernard and Kra, Bryna},
      title = {Nonconventional ergodic averages and nilmanifolds},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {161},
      year = {2005},
      number = {1},
      pages = {397--488},
      issn = {0003-486X},
      mrclass = {37A05 (28D05)},
      mrnumber = {2150389},
      mrreviewer = {Randall McCutcheon},
      doi = {10.4007/annals.2005.161.397},
      url = {https://doi.org/10.4007/annals.2005.161.397},
      zblnumber = {1077.37002},
      }
  • [hu] R. A. Hunt, "On the convergence of Fourier series," in Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), 1968, pp. 235-255.
    @INPROCEEDINGS{hu,
      author = {Hunt, Richard A.},
      title = {On the convergence of {F}ourier series},
      booktitle = {Orthogonal {E}xpansions and their {C}ontinuous {A}nalogues ({P}roc. {C}onf., {E}dwardsville, {I}ll., 1967)},
      pages = {235--255},
      publisher = {Southern Illinois Univ. Press, Carbondale, Ill.},
      year = {1968},
      mrclass = {42.11},
      mrnumber = {0238019},
      mrreviewer = {J.-P. Kahane},
      zblnumber = {0159.35701},
      }
  • [Jon] Go to document F. B. Jones Jr., "A class of singular integrals," Amer. J. Math., vol. 86, pp. 441-462, 1964.
    @ARTICLE{Jon,
      author = {Jones, Jr., B. Frank},
      title = {A class of singular integrals},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {86},
      year = {1964},
      pages = {441--462},
      issn = {0002-9327},
      mrclass = {42.40 (44.00)},
      mrnumber = {0161099},
      mrreviewer = {A. C. Zaanen},
      doi = {10.2307/2373175},
      url = {https://doi.org/10.2307/2373175},
      zblnumber = {0123.08501},
      }
  • [Kar] Go to document G. A. Karagulyan, "On unboundedness of maximal operators for directional Hilbert transforms," Proc. Amer. Math. Soc., vol. 135, iss. 10, pp. 3133-3141, 2007.
    @ARTICLE{Kar,
      author = {Karagulyan, G. A.},
      title = {On unboundedness of maximal operators for directional {H}ilbert transforms},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the Amer. Math. Soc.},
      volume = {135},
      year = {2007},
      number = {10},
      pages = {3133--3141},
      issn = {0002-9939},
      mrclass = {42B25 (42B20)},
      mrnumber = {2322743},
      mrreviewer = {Jan-Olav Rönning},
      doi = {10.1090/S0002-9939-07-08731-X},
      url = {https://doi.org/10.1090/S0002-9939-07-08731-X},
      zblnumber = {1162.42009},
      }
  • [Kat] Go to document Y. Katznelson, An introduction to harmonic analysis, Third ed., Cambridge University Press, Cambridge, 2004.
    @BOOK{Kat,
      author = {Katznelson, Yitzhak},
      title = {An introduction to harmonic analysis},
      series = {Cambridge Mathematical Library},
      edition = {Third},
      publisher = {Cambridge University Press, Cambridge},
      year = {2004},
      pages = {xviii+314},
      isbn = {0-521-83829-0; 0-521-54359-2},
      mrclass = {43-01 (42-02 43-02)},
      mrnumber = {2039503},
      doi = {10.1017/CBO9781139165372},
      url = {https://doi.org/10.1017/CBO9781139165372},
      zblnumber = {1055.43001},
      }
  • [Kauf] R. Kaufman, "Uniform convergence of Fourier series in harmonic analysis," Studia Sci. Math. Hungar., vol. 10, iss. 1-2, pp. 81-83, 1975.
    @ARTICLE{Kauf,
      author = {Kaufman, R.},
      title = {Uniform convergence of {F}ourier series in harmonic analysis},
      journal = {Studia Sci. Math. Hungar.},
      fjournal = {Studia Scientiarum Mathematicarum Hungarica. A Quarterly of the Hungarian Academy of Sciences},
      volume = {10},
      year = {1975},
      number = {1-2},
      pages = {81--83},
      issn = {0081-6906},
      mrclass = {42A20},
      mrnumber = {0435710},
      mrreviewer = {Colin C. Graham},
      zblnumber = {0354.42004},
      }
  • [Kol1] Go to document A. N. Kolmogorov, "Une serie de Fourier-Lebesgue divergente presque partout," Fund. Math., vol. 4, pp. 324-328, 1923.
    @ARTICLE{Kol1,
      author = {Kolmogorov, A. N.},
      title = {Une serie de {F}ourier-{L}ebesgue divergente presque partout},
      journal = {Fund. Math.},
      volume = {4},
      pages = {324--328},
      year = {1923},
      doi = {10.4064/fm-4-1-324-328},
      url = {https://doi.org/10.4064/fm-4-1-324-328},
      zblnumber = {49.0205.02},
      }
  • [Kol2] A. N. Kolmogorov, "Une serie de Fourier-Lebesgue divergente partout," C. R. Acad. Sci. Paris, vol. 183, pp. 1327-1329, 1926.
    @ARTICLE{Kol2,
      author = {Kolmogorov, A. N.},
      title = {Une serie de {F}ourier-{L}ebesgue divergente partout},
      journal = {C. R. Acad. Sci. Paris},
      volume = {183},
      pages = {1327--1329},
      year = {1926},
      zblnumber = {52.0269.02},
      }
  • [koDivff] Go to document S. V. Konyagin, "On the divergence everywhere of trigonometric Fourier series," Mat. Sb., vol. 191, iss. 1, pp. 103-126, 2000.
    @ARTICLE{koDivff,
      author = {Konyagin, Sergei V.},
      title = {On the divergence everywhere of trigonometric {F}ourier series},
      journal = {Mat. Sb.},
      fjournal = {Matematicheskiĭ Sbornik},
      volume = {191},
      year = {2000},
      number = {1},
      pages = {103--126},
      issn = {0368-8666},
      mrclass = {42A20},
      mrnumber = {1753494},
      mrreviewer = {J. Marshall Ash},
      doi = {10.1070/SM2000v191n01ABEH000449},
      url = {https://doi.org/10.1070/SM2000v191n01ABEH000449},
      zblnumber = {0967.42004},
      }
  • [koDivf] Go to document S. V. Konyagin, "On divergence of trigonometric Fourier series everywhere," C. R. Acad. Sci. Paris Sér. I Math., vol. 329, iss. 8, pp. 693-697, 1999.
    @ARTICLE{koDivf,
      author = {Konyagin, Sergei V.},
      title = {On divergence of trigonometric {F}ourier series everywhere},
      journal = {C. R. Acad. Sci. Paris Sér. I Math.},
      fjournal = {Comptes Rendus de l'Académie des Sciences. Série I. Mathématique},
      volume = {329},
      year = {1999},
      number = {8},
      pages = {693--697},
      issn = {0764-4442},
      mrclass = {42A20},
      mrnumber = {1724074},
      doi = {10.1016/S0764-4442(00)88219-1},
      url = {https://doi.org/10.1016/S0764-4442(00)88219-1},
      zblnumber = {0942.42002},
      }
  • [Kor] Go to document T. W. Körner, "Everywhere divergent Fourier series," Colloq. Math., vol. 45, iss. 1, pp. 103-118 (1982), 1981.
    @ARTICLE{Kor,
      author = {K{ö}rner, T. W.},
      title = {Everywhere divergent {F}ourier series},
      journal = {Colloq. Math.},
      fjournal = {Colloquium Mathematicum},
      volume = {45},
      year = {1981},
      number = {1},
      pages = {103--118 (1982)},
      issn = {0010-1354},
      mrclass = {42A20},
      mrnumber = {0652607},
      mrreviewer = {Satoru Igari},
      doi = {10.4064/cm-45-1-103-118},
      url = {https://doi.org/10.4064/cm-45-1-103-118},
      zblnumber = {0491.42011},
      }
  • [KTZ] Go to document V. Kovavc, C. Thiele, and P. Zorin-Kranich, "Dyadic triangular Hilbert transform of two general functions and one not too general function," Forum Math. Sigma, vol. 3, p. 25, 2015.
    @ARTICLE{KTZ,
      author = {Kova{\v{c}},
      Vjekoslav and Thiele, Christoph and Zorin-Kranich, Pavel},
      title = {Dyadic triangular {H}ilbert transform of two general functions and one not too general function},
      journal = {Forum Math. Sigma},
      fjournal = {Forum of Mathematics. Sigma},
      volume = {3},
      year = {2015},
      pages = {e25, 27},
      mrclass = {42B20},
      mrnumber = {3482272},
      mrreviewer = {Michael T. Lacey},
      doi = {10.1017/fms.2015.25},
      url = {https://doi.org/10.1017/fms.2015.25},
      zblnumber = {1335.42009},
      }
  • [lt1] Go to document M. Lacey and C. Thiele, "$L^p$ estimates on the bilinear Hilbert transform for $2<p<\infty$," Ann. of Math. (2), vol. 146, iss. 3, pp. 693-724, 1997.
    @ARTICLE{lt1,
      author = {Lacey, Michael and Thiele, Christoph},
      title = {{$L^p$} estimates on the bilinear {H}ilbert transform for {$2   journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {146},
      year = {1997},
      number = {3},
      pages = {693--724},
      issn = {0003-486X},
      mrclass = {42A50 (42B20)},
      mrnumber = {1491450},
      mrreviewer = {Loukas Grafakos},
      doi = {10.2307/2952458},
      url = {https://doi.org/10.2307/2952458},
      zblnumber = {0914.46034},
      }
  • [lt2] Go to document M. Lacey and C. Thiele, "On Calderón’s conjecture," Ann. of Math. (2), vol. 149, iss. 2, pp. 475-496, 1999.
    @ARTICLE{lt2,
      author = {Lacey, Michael and Thiele, Christoph},
      title = {On {C}alder{ó}n's conjecture},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {149},
      year = {1999},
      number = {2},
      pages = {475--496},
      issn = {0003-486X},
      mrclass = {42A50 (42B20 46M35 47B38 47G10)},
      mrnumber = {1689336},
      mrreviewer = {Loukas Grafakos},
      doi = {10.2307/120971},
      url = {https://doi.org/10.2307/120971},
      zblnumber = {0934.42012},
      }
  • [lt3] Go to document M. Lacey and C. Thiele, "A proof of boundedness of the Carleson operator," Math. Res. Lett., vol. 7, iss. 4, pp. 361-370, 2000.
    @ARTICLE{lt3,
      author = {Lacey, Michael and Thiele, Christoph},
      title = {A proof of boundedness of the {C}arleson operator},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {7},
      year = {2000},
      number = {4},
      pages = {361--370},
      issn = {1073-2780},
      mrclass = {42A20 (42B10 42B25 47B38)},
      mrnumber = {1783613},
      mrreviewer = {Loukas Grafakos},
      doi = {10.4310/MRL.2000.v7.n4.a1},
      url = {https://doi.org/10.4310/MRL.2000.v7.n4.a1},
      zblnumber = {0966.42009},
      }
  • [Lamax] Go to document M. Lacey, "The bilinear maximal functions map into $L^p$ for $2/3<p\leq 1$," Ann. of Math. (2), vol. 151, iss. 1, pp. 35-57, 2000.
    @ARTICLE{Lamax,
      author = {Lacey, Michael},
      title = {The bilinear maximal functions map into {$L^p$} for {$2/3   journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {151},
      year = {2000},
      number = {1},
      pages = {35--57},
      issn = {0003-486X},
      mrclass = {42B20 (42B25)},
      mrnumber = {1745019},
      mrreviewer = {Loukas Grafakos},
      doi = {10.2307/121111},
      url = {https://doi.org/10.2307/121111},
      zblnumber = {0967.47031},
      }
  • [laCth] Go to document M. Lacey, "Carleson’s theorem: proof, complements, variations," Publ. Mat., vol. 48, iss. 2, pp. 251-307, 2004.
    @ARTICLE{laCth,
      author = {Lacey, Michael},
      title = {Carleson's theorem: proof, complements, variations},
      journal = {Publ. Mat.},
      fjournal = {Publicacions Matemàtiques},
      volume = {48},
      year = {2004},
      number = {2},
      pages = {251--307},
      issn = {0214-1493},
      mrclass = {42A20 (42B10 42B25 47B38)},
      mrnumber = {2091007},
      mrreviewer = {Colin C. Graham},
      doi = {10.5565/PUBLMAT_48204_01},
      url = {https://doi.org/10.5565/PUBLMAT_48204_01},
      zblnumber = {1066.42003},
      }
  • [LL1] Go to document M. Lacey and X. Li, "Maximal theorems for the directional Hilbert transform on the plane," Trans. Amer. Math. Soc., vol. 358, iss. 9, pp. 4099-4117, 2006.
    @ARTICLE{LL1,
      author = {Lacey, Michael and Li, Xiaochun},
      title = {Maximal theorems for the directional {H}ilbert transform on the plane},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the Amer. Math. Soc.},
      volume = {358},
      year = {2006},
      number = {9},
      pages = {4099--4117},
      issn = {0002-9947},
      mrclass = {42B10 (42B20)},
      mrnumber = {2219012},
      mrreviewer = {Andrey B. Muravnik},
      doi = {10.1090/S0002-9947-06-03869-4},
      url = {https://doi.org/10.1090/S0002-9947-06-03869-4},
      zblnumber = {1095.42010},
      }
  • [LL2] Go to document M. Lacey and X. Li, "On a conjecture of E. M. Stein on the Hilbert transform on vector fields," Mem. Amer. Math. Soc., vol. 205, iss. 965, p. viii, 2010.
    @ARTICLE{LL2,
      author = {Lacey, Michael and Li, Xiaochun},
      title = {On a conjecture of {E}. {M}. {S}tein on the {H}ilbert transform on vector fields},
      journal = {Mem. Amer. Math. Soc.},
      fjournal = {Memoirs of the Amer. Math. Soc.},
      volume = {205},
      year = {2010},
      number = {965},
      pages = {viii+72},
      issn = {0065-9266},
      isbn = {978-0-8218-4540-0},
      mrclass = {42A50 (42B25)},
      mrnumber = {2654385},
      mrreviewer = {Steven George Krantz},
      doi = {10.1090/S0065-9266-10-00572-7},
      url = {https://doi.org/10.1090/S0065-9266-10-00572-7},
      zblnumber = {1190.42005},
      }
  • [Leb0] H. Lebesgue, "Sur la divergence et la convergence non uniforme des séries de Fourier," C. R. Acad. Sci. Paris, vol. 141, pp. 875-877, 1906.
    @ARTICLE{Leb0,
      author = {Lebesgue, Henri},
      title={Sur la divergence et la convergence non uniforme des s{é}ries de Fourier},
      journal={C. R. Acad. Sci. Paris},
      volume={141},
      year={1906},
      pages={875--877},
      zblnumber = {36.0331.02},
     }
  • [Leb] Go to document H. Lebesgue, "Sur les intégrales singulières," Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3), vol. 1, pp. 25-117, 1909.
    @ARTICLE{Leb,
      author = {Lebesgue, Henri},
      title = {Sur les int{é}grales singuli{è}res},
      journal = {Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3)},
      fjournal = {Annales de la Faculté des Sciences de Toulouse pour les Sciences Mathématiques et les Sciences Physiques. Série 3},
      volume = {1},
      year = {1909},
      pages = {25--117},
      issn = {0996-0481},
      mrclass = {DML},
      mrnumber = {1508308},
      url = {http://www.numdam.org/item?id=AFST_1909_3_1__25_0},
      zblnumber = {41.0327.02},
      }
  • [Ler1] Go to document A. K. Lerner, "A pointwise estimate for the local sharp maximal function with applications to singular integrals," Bull. Lond. Math. Soc., vol. 42, iss. 5, pp. 843-856, 2010.
    @ARTICLE{Ler1,
      author = {Lerner, Andrei K.},
      title = {A pointwise estimate for the local sharp maximal function with applications to singular integrals},
      journal = {Bull. Lond. Math. Soc.},
      fjournal = {Bulletin of the London Mathematical Society},
      volume = {42},
      year = {2010},
      number = {5},
      pages = {843--856},
      issn = {0024-6093},
      mrclass = {42B20 (42B25 46E30)},
      mrnumber = {2721744},
      mrreviewer = {Vladimir D. Stepanov},
      doi = {10.1112/blms/bdq042},
      url = {https://doi.org/10.1112/blms/bdq042},
      zblnumber = {1203.42023},
      }
  • [Ler2] Go to document A. K. Lerner, "On an estimate of Calderón-Zygmund operators by dyadic positive operators," J. Anal. Math., vol. 121, pp. 141-161, 2013.
    @ARTICLE{Ler2,
      author = {Lerner, Andrei K.},
      title = {On an estimate of {C}alder{ó}n-{Z}ygmund operators by dyadic positive operators},
      journal = {J. Anal. Math.},
      fjournal = {Journal d'Analyse Mathématique},
      volume = {121},
      year = {2013},
      pages = {141--161},
      issn = {0021-7670},
      mrclass = {42B20 (42B25)},
      mrnumber = {3127380},
      mrreviewer = {\'{A}rp\'{a}d Bényi},
      doi = {10.1007/s11854-013-0030-1},
      url = {https://doi.org/10.1007/s11854-013-0030-1},
      zblnumber = {1285.42015},
      }
  • [Ler3] Go to document A. K. Lerner, "A simple proof of the $A_2$ conjecture," Int. Math. Res. Not. IMRN, iss. 14, pp. 3159-3170, 2013.
    @ARTICLE{Ler3,
      author = {Lerner, Andrei K.},
      title = {A simple proof of the {$A_2$} conjecture},
      journal = {Int. Math. Res. Not. IMRN},
      fjournal = {International Mathematics Research Notices. IMRN},
      year = {2013},
      number = {14},
      pages = {3159--3170},
      issn = {1073-7928},
      mrclass = {42B20 (42B25)},
      mrnumber = {3085756},
      mrreviewer = {Alberto Fiorenza},
      doi = {10.1093/imrn/rns145},
      url = {https://doi.org/10.1093/imrn/rns145},
      zblnumber = {1318.42018},
      }
  • [Li06] Go to document X. Li, "Uniform bounds for the bilinear Hilbert transforms. II," Rev. Mat. Iberoam., vol. 22, iss. 3, pp. 1069-1126, 2006.
    @ARTICLE{Li06,
      author = {Li, Xiaochun},
      title = {Uniform bounds for the bilinear {H}ilbert transforms. {II}},
      journal = {Rev. Mat. Iberoam.},
      fjournal = {Revista Matem\'{a}tica Iberoamericana},
      volume = {22},
      year = {2006},
      number = {3},
      pages = {1069--1126},
      issn = {0213-2230},
      mrclass = {42B20 (47B38 47G10)},
      mrnumber = {2320411},
      mrreviewer = {Ahmed I. Zayed},
      doi = {10.4171/RMI/483},
      url = {https://doi.org/10.4171/RMI/483},
      zblnumber = {1133.42022},
      }
  • [q] Go to document V. Lie, "The (weak-$L^2$) boundedness of the quadratic Carleson operator," Geom. Funct. Anal., vol. 19, iss. 2, pp. 457-497, 2009.
    @ARTICLE{q,
      author = {Lie, Victor},
      title = {The (weak-{$L^2$}) boundedness of the quadratic {C}arleson operator},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {19},
      year = {2009},
      number = {2},
      pages = {457--497},
      issn = {1016-443X},
      mrclass = {42A50 (42A20)},
      mrnumber = {2545246},
      mrreviewer = {Javier Duoandikoetxea},
      doi = {10.1007/s00039-009-0010-x},
      url = {https://doi.org/10.1007/s00039-009-0010-x},
      zblnumber = {1178.42007},
      }
  • [lv6] Go to document V. Lie, "On the pointwise convergence of the sequence of partial Fourier sums along lacunary subsequences," J. Funct. Anal., vol. 263, iss. 11, pp. 3391-3411, 2012.
    @ARTICLE{lv6,
      author = {Lie, Victor},
      title = {On the pointwise convergence of the sequence of partial {F}ourier sums along lacunary subsequences},
      journal = {J. Funct. Anal.},
      fjournal = {Journal of Functional Analysis},
      volume = {263},
      year = {2012},
      number = {11},
      pages = {3391--3411},
      issn = {0022-1236},
      mrclass = {42A20 (42A16 42A32 42A38)},
      mrnumber = {2984070},
      mrreviewer = {J. Németh},
      doi = {10.1016/j.jfa.2012.08.013},
      url = {https://doi.org/10.1016/j.jfa.2012.08.013},
      zblnumber = {1259.42005},
      }
  • [lv7] Go to document V. Lie, "On the boundedness of the Carleson operator near $L^1$," Rev. Mat. Iberoam., vol. 29, iss. 4, pp. 1239-1262, 2013.
    @ARTICLE{lv7,
      author = {Lie, Victor},
      title = {On the boundedness of the {C}arleson operator near {$L^1$}},
      journal = {Rev. Mat. Iberoam.},
      fjournal = {Revista Matem\'{a}tica Iberoamericana},
      volume = {29},
      year = {2013},
      number = {4},
      pages = {1239--1262},
      issn = {0213-2230},
      mrclass = {42B20 (47A30)},
      mrnumber = {3148602},
      mrreviewer = {Adam Sikora},
      doi = {10.4171/RMI/755},
      url = {https://doi.org/10.4171/RMI/755},
      zblnumber = {1297.42011},
      }
  • [lv9] Go to document V. Lie, "Pointwise convergence of Fourier series (I). On a conjecture of Konyagin," J. Eur. Math. Soc. (JEMS), vol. 19, iss. 6, pp. 1655-1728, 2017.
    @ARTICLE{lv9,
      author = {Lie, Victor},
      title = {Pointwise convergence of {F}ourier series ({I}). {O}n a conjecture of {K}onyagin},
      journal = {J. Eur. Math. Soc. (JEMS)},
      fjournal = {Journal of the European Mathematical Society (JEMS)},
      volume = {19},
      year = {2017},
      number = {6},
      pages = {1655--1728},
      issn = {1435-9855},
      mrclass = {42A16 (42A32 46E30)},
      mrnumber = {3646873},
      mrreviewer = {Elijah Liflyand},
      doi = {10.4171/JEMS/703},
      url = {https://doi.org/10.4171/JEMS/703},
      zblnumber = {1372.42001},
      }
  • [lvLac] Go to document V. Lie, "The pointwise convergence of Fourier series (II). Strong $L^1$ case for the lacunary Carleson operator," Adv. Math., vol. 357, p. 106831, 2019.
    @ARTICLE{lvLac,
      author = {Lie, Victor},
      title = {The pointwise convergence of {F}ourier series ({II}). {S}trong {$L^1$} case for the lacunary {C}arleson operator},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {357},
      year = {2019},
      pages = {106831, 84},
      issn = {0001-8708},
      mrclass = {42A20 (42A50 42A55 42C10)},
      mrnumber = {4017921},
      mrreviewer = {Elijah Liflyand},
      doi = {10.1016/j.aim.2019.106831},
      url = {https://doi.org/10.1016/j.aim.2019.106831},
      zblnumber = {1429.42003},
      }
  • [lv9b] V. Lie, A Note on the Polynomial Carleson Operator in higher dimensions, 2017.
    @MISC{lv9b,
      author = {Lie, Victor},
      title = {A Note on the Polynomial {C}arleson Operator in higher dimensions},
      arxiv = {1712.03092},
      year = {2017},
      zblnumber = {},
      }
  • [lv10] V. Lie, A unified approach to three themes in harmonic analysis (I$\,&\,$II), 2019.
    @MISC{lv10,
      author = {Lie, Victor},
      title = {A unified approach to three themes in harmonic analysis ({I}$\,\&\,${II})},
      arxiv = {1902.03807},
      year = {2019},
      zblnumber = {},
      }
  • [LP] Go to document J. E. Littlewood and R. E. A. C. Paley, "Theorems on Fourier series and power series," J. London Math. Soc., vol. 6, iss. 3, pp. 230-233, 1931.
    @ARTICLE{LP,
      author = {Littlewood, J. E. and Paley, R. E. A. C.},
      title = {Theorems on {F}ourier series and power series},
      journal = {J. London Math. Soc.},
      fjournal = {The Journal of the London Mathematical Society},
      volume = {6},
      year = {1931},
      number = {3},
      pages = {230--233},
      issn = {0024-6107},
      mrclass = {DML},
      mrnumber = {1574750},
      doi = {10.1112/jlms/s1-6.3.230},
      url = {https://doi.org/10.1112/jlms/s1-6.3.230},
      zblnumber = {0002.18803},
      }
  • [Luz] N. N. Luzin, Integral i trigonometri\vceskiĭ ryad, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1951.
    @BOOK{Luz,
      author = {Luzin, N. N.},
      title = {Integral i trigonometri\v{c}eskiĭ ryad},
      note = {editing and commentary by N. K. Bari and D. E. Men\cprime{š}ov},
      publisher = {Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad},
      year = {1951},
      pages = {550},
      mrclass = {01.0X},
      mrnumber = {0048364},
      zblnumber = {0045.33101},
      }
  • [MRi] Go to document G. Marletta and F. Ricci, "Two-parameter maximal functions associated with homogeneous surfaces in $\Bbb R^n$," Studia Math., vol. 130, iss. 1, pp. 53-65, 1998.
    @ARTICLE{MRi,
      author = {Marletta, Gianfranco and Ricci, Fulvio},
      title = {Two-parameter maximal functions associated with homogeneous surfaces in {$\bold R^n$}},
      journal = {Studia Math.},
      fjournal = {Studia Mathematica},
      volume = {130},
      year = {1998},
      number = {1},
      pages = {53--65},
      issn = {0039-3223},
      mrclass = {42B25},
      mrnumber = {1623004},
      mrreviewer = {Detlef H. Müller},
      url = {http://matwbn.icm.edu.pl/ksiazki/sm/sm130/sm13014.pdf},
      zblnumber = {0921.42014},
      }
  • [MPR] Go to document G. Mauceri, M. A. Picardello, and F. Ricci, "A Hardy space associated with twisted convolution," Adv. in Math., vol. 39, iss. 3, pp. 270-288, 1981.
    @ARTICLE{MPR,
      author = {Mauceri, Giancarlo and Picardello, Massimo A. and Ricci, Fulvio},
      title = {A {H}ardy space associated with twisted convolution},
      journal = {Adv. in Math.},
      fjournal = {Advances in Mathematics},
      volume = {39},
      year = {1981},
      number = {3},
      pages = {270--288},
      issn = {0001-8708},
      mrclass = {42B30 (32A35 81D05)},
      mrnumber = {0614164},
      mrreviewer = {C. Carton-Lebrun},
      doi = {10.1016/0001-8708(81)90004-9},
      url = {https://doi.org/10.1016/0001-8708(81)90004-9},
      zblnumber = {0503.46037},
      }
  • [Mul] Go to document D. Müller, "Singular kernels supported by homogeneous submanifolds," J. Reine Angew. Math., vol. 356, pp. 90-118, 1985.
    @ARTICLE{Mul,
      author = {M{ü}ller, Detlef},
      title = {Singular kernels supported by homogeneous submanifolds},
      journal = {J. Reine Angew. Math.},
      fjournal = {Journal für die Reine und Angewandte Mathematik. [Crelle's Journal]},
      volume = {356},
      year = {1985},
      pages = {90--118},
      issn = {0075-4102},
      mrclass = {43A80 (22E30 47G05)},
      mrnumber = {0779377},
      mrreviewer = {Michael Cowling},
      doi = {10.1515/crll.1985.356.90},
      url = {https://doi.org/10.1515/crll.1985.356.90},
      zblnumber = {0551.43005},
      }
  • [MPTT] Go to document C. Muscalu, J. Pipher, T. Tao, and C. Thiele, "Bi-parameter paraproducts," Acta Math., vol. 193, iss. 2, pp. 269-296, 2004.
    @ARTICLE{MPTT,
      author = {Muscalu, Camil and Pipher, Jill and Tao, Terence and Thiele, Christoph},
      title = {Bi-parameter paraproducts},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {193},
      year = {2004},
      number = {2},
      pages = {269--296},
      issn = {0001-5962},
      mrclass = {42B25 (26D15 47G10)},
      mrnumber = {2134868},
      mrreviewer = {Oscar Blasco},
      doi = {10.1007/BF02392566},
      url = {https://doi.org/10.1007/BF02392566},
      zblnumber = {1087.42016},
      }
  • [MTT1] Go to document C. Muscalu, T. Tao, and C. Thiele, "$L^p$ estimates for the biest. I. The Walsh case," Math. Ann., vol. 329, iss. 3, pp. 401-426, 2004.
    @ARTICLE{MTT1,
      author = {Muscalu, Camil and Tao, Terence and Thiele, Christoph},
      title = {{$L^p$} estimates for the biest. {I}. {T}he {W}alsh case},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {329},
      year = {2004},
      number = {3},
      pages = {401--426},
      issn = {0025-5831},
      mrclass = {42B25 (42B30)},
      mrnumber = {2127984},
      mrreviewer = {Donald Krug},
      doi = {10.1007/s00208-004-0518-1},
      url = {https://doi.org/10.1007/s00208-004-0518-1},
      zblnumber = {1073.42009},
      }
  • [MTT2] Go to document C. Muscalu, T. Tao, and C. Thiele, "$L^p$ estimates for the biest. II. The Fourier case," Math. Ann., vol. 329, iss. 3, pp. 427-461, 2004.
    @ARTICLE{MTT2,
      author = {Muscalu, Camil and Tao, Terence and Thiele, Christoph},
      title = {{$L^p$} estimates for the biest. {II}. {T}he {F}ourier case},
      journal = {Math. Ann.},
      fjournal = {Mathematische Annalen},
      volume = {329},
      year = {2004},
      number = {3},
      pages = {427--461},
      issn = {0025-5831},
      mrclass = {42B25 (42B30)},
      mrnumber = {2127985},
      mrreviewer = {Donald Krug},
      doi = {10.1007/s00208-003-0508-8},
      url = {https://doi.org/10.1007/s00208-003-0508-8},
      zblnumber = {1073.42010},
      }
  • [NRW1] Go to document A. Nagel, N. Rivière, and S. Wainger, "On Hilbert transforms along curves," Bull. Amer. Math. Soc., vol. 80, pp. 106-108, 1974.
    @ARTICLE{NRW1,
      author = {Nagel, Alexander and Rivi{è}re, N{é}stor and Wainger, Stephen},
      title = {On {H}ilbert transforms along curves},
      journal = {Bull. Amer. Math. Soc.},
      fjournal = {Bulletin of the Amer. Math. Soc.},
      volume = {80},
      year = {1974},
      pages = {106--108},
      issn = {0002-9904},
      mrclass = {44A25 (42A40)},
      mrnumber = {0450899},
      mrreviewer = {S. Izumi},
      doi = {10.1090/S0002-9904-1974-13374-4},
      url = {https://doi.org/10.1090/S0002-9904-1974-13374-4},
      zblnumber = {0293.44002},
      }
  • [NRW2] Go to document A. Nagel, N. M. Rivière, and S. Wainger, "On Hilbert transforms along curves. II," Amer. J. Math., vol. 98, iss. 2, pp. 395-403, 1976.
    @ARTICLE{NRW2,
      author = {Nagel, Alexander and Rivi{è}re, N{é}stor M. and Wainger, Stephen},
      title = {On {H}ilbert transforms along curves. {II}},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {98},
      year = {1976},
      number = {2},
      pages = {395--403},
      issn = {0002-9327},
      mrclass = {44A25 (42A40)},
      mrnumber = {0450900},
      mrreviewer = {S. Izumi},
      doi = {10.2307/2373893},
      url = {https://doi.org/10.2307/2373893},
      zblnumber = {0334.44012},
      }
  • [NSWvarcurv] Go to document A. Nagel, E. M. Stein, and S. Wainger, "Hilbert transforms and maximal functions related to variable curves," in Harmonic Analysis in Euclidean Spaces, 1979, pp. 95-98.
    @INPROCEEDINGS{NSWvarcurv,
      author = {Nagel, Alexander and Stein, Elias M. and Wainger, Stephen},
      title = {Hilbert transforms and maximal functions related to variable curves},
      booktitle = {Harmonic Analysis in {E}uclidean Spaces},
      venue = {{P}roc. {S}ympos. {P}ure {M}ath., {W}illiams {C}oll., {W}illiamstown, {M}ass., 1978, {P}art 1},
      series = {Proc. Sympos. Pure Math., XXXV, Part},
      pages = {95--98},
      publisher = {Amer. Math. Soc., Providence, R.I.},
      year = {1979},
      mrclass = {42B25},
      mrnumber = {0545242},
      mrreviewer = {Hans P. Heinig},
      doi = {10.1090/pspum/035.1},
      url = {https://doi.org/10.1090/pspum/035.1},
      zblnumber = {0463.42008},
      }
  • [Neu] Go to document J. von Neumann, "Proof of the quasi-ergodic hypothesis," Proc. Nat. Acad. Sci. U.S.A., vol. 18, iss. 1, pp. 70-82, 1932.
    @ARTICLE{Neu,
      author = {von Neumann, J.},
      title = {Proof of the quasi-ergodic hypothesis},
      journal = {Proc. Nat. Acad. Sci. U.S.A.},
      volume = {18},
      number = {1},
      pages = {70--82},
      year = {1932},
      doi = {10.1073/pnas.18.1.70},
      url = {https://doi.org/10.1073/pnas.18.1.70},
      zblnumber = {58.1271.03},
      }
  • [PhSt1] Go to document D. H. Phong and E. M. Stein, "Singular integrals related to the Radon transform and boundary value problems," Proc. Nat. Acad. Sci. U.S.A., vol. 80, iss. 24, , Phys. Sci., pp. 7697-7701, 1983.
    @ARTICLE{PhSt1,
      author = {Phong, D. H. and Stein, E. M.},
      title = {Singular integrals related to the {R}adon transform and boundary value problems},
      journal = {Proc. Nat. Acad. Sci. U.S.A.},
      fjournal = {Proceedings of the National Academy of Sciences of the United States of America},
      volume = {80},
      year = {1983},
      number = {24, , Phys. Sci.},
      pages = {7697--7701},
      issn = {0027-8424},
      mrclass = {42B20 (42B25 43A80 44A15 45E99)},
      mrnumber = {0728667},
      mrreviewer = {Steven George Krantz},
      doi = {10.1073/pnas.80.24.7697},
      url = {https://doi.org/10.1073/pnas.80.24.7697},
      zblnumber = {0567.42010},
      }
  • [PhSt2] Go to document D. H. Phong and E. M. Stein, "Hilbert integrals, singular integrals, and Radon transforms. I," Acta Math., vol. 157, iss. 1-2, pp. 99-157, 1986.
    @ARTICLE{PhSt2,
      author = {Phong, D. H. and Stein, E. M.},
      title = {Hilbert integrals, singular integrals, and {R}adon transforms. {I}},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {157},
      year = {1986},
      number = {1-2},
      pages = {99--157},
      issn = {0001-5962},
      mrclass = {42B20 (35N15 47G05)},
      mrnumber = {0857680},
      mrreviewer = {Gerald B. Folland},
      doi = {10.1007/BF02392592},
      url = {https://doi.org/10.1007/BF02392592},
      zblnumber = {0622.42011},
      }
  • [PT] Go to document M. Pramanik and E. Terwilleger, "A weak $L^2$ estimate for a maximal dyadic sum operator on ${\Bbb R}^n$," Illinois J. Math., vol. 47, iss. 3, pp. 775-813, 2003.
    @ARTICLE{PT,
      author = {Pramanik, Malabika and Terwilleger, Erin},
      title = {A weak {$L^2$} estimate for a maximal dyadic sum operator on {${\Bbb R}^n$}},
      journal = {Illinois J. Math.},
      fjournal = {Illinois Journal of Mathematics},
      volume = {47},
      year = {2003},
      number = {3},
      pages = {775--813},
      issn = {0019-2082},
      mrclass = {42B30 (47B38)},
      mrnumber = {2007237},
      mrreviewer = {Christoph M. Thiele},
      doi = {10.1215/ijm/1258138194},
      url = {https://doi.org/10.1215/ijm/1258138194},
      zblnumber = {1040.42014},
      }
  • [P] Go to document V. I. Prohorenko, "Divergent Fourier series," Mat. Sb. (N.S.), vol. 75 (117), pp. 185-198, 1968.
    @ARTICLE{P,
      author = {Prohorenko, V. I.},
      title = {Divergent {F}ourier series},
      journal = {Mat. Sb. (N.S.)},
      volume = {75 (117)},
      year = {1968},
      pages = {185--198},
      mrclass = {42.11},
      mrnumber = {0223815},
      mrreviewer = {I. M. Sheffer},
      doi = {10.1070/SM1968v004n02ABEH002786},
      url = {https://doi.org/10.1070/SM1968v004n02ABEH002786},
      zblnumber = {},
      }
  • [RS1] Go to document F. Ricci and E. M. Stein, "Oscillatory singular integrals and harmonic analysis on nilpotent groups," Proc. Nat. Acad. Sci. U.S.A., vol. 83, iss. 1, pp. 1-3, 1986.
    @ARTICLE{RS1,
      author = {Ricci, F. and Stein, E. M.},
      title = {Oscillatory singular integrals and harmonic analysis on nilpotent groups},
      journal = {Proc. Nat. Acad. Sci. U.S.A.},
      fjournal = {Proceedings of the National Academy of Sciences of the United States of America},
      volume = {83},
      year = {1986},
      number = {1},
      pages = {1--3},
      issn = {0027-8424},
      mrclass = {22E30 (42B20 43A80)},
      mrnumber = {0822187},
      doi = {10.1073/pnas.83.1.1},
      url = {https://doi.org/10.1073/pnas.83.1.1},
      zblnumber = {0583.43010},
      }
  • [RS2] Go to document F. Ricci and E. M. Stein, "Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals," J. Funct. Anal., vol. 73, iss. 1, pp. 179-194, 1987.
    @ARTICLE{RS2,
      author = {Ricci, Fulvio and Stein, E. M.},
      title = {Harmonic analysis on nilpotent groups and singular integrals. {I}. {O}scillatory integrals},
      journal = {J. Funct. Anal.},
      fjournal = {Journal of Functional Analysis},
      volume = {73},
      year = {1987},
      number = {1},
      pages = {179--194},
      issn = {0022-1236},
      mrclass = {42B20 (22E30 43A80 58G15)},
      mrnumber = {0890662},
      mrreviewer = {Detlef H. Müller},
      doi = {10.1016/0022-1236(87)90064-4},
      url = {https://doi.org/10.1016/0022-1236(87)90064-4},
      zblnumber = {0622.42010},
      }
  • [RS3] Go to document F. Ricci and E. M. Stein, "Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds," J. Funct. Anal., vol. 86, iss. 2, pp. 360-389, 1989.
    @ARTICLE{RS3,
      author = {Ricci, Fulvio and Stein, Elias M.},
      title = {Harmonic analysis on nilpotent groups and singular integrals. {III}. {F}ractional integration along manifolds},
      journal = {J. Funct. Anal.},
      fjournal = {Journal of Functional Analysis},
      volume = {86},
      year = {1989},
      number = {2},
      pages = {360--389},
      issn = {0022-1236},
      mrclass = {22E30 (42B20 47G05)},
      mrnumber = {1021141},
      mrreviewer = {Detlef H. Müller},
      doi = {10.1016/0022-1236(89)90057-8},
      url = {https://doi.org/10.1016/0022-1236(89)90057-8},
      zblnumber = {0684.22006},
      }
  • [Rie] Go to document M. Riesz, "Sur les fonctions conjuguées," Math. Z., vol. 27, iss. 1, pp. 218-244, 1928.
    @ARTICLE{Rie,
      author = {Riesz, Marcel},
      title = {Sur les fonctions conjuguées},
      journal = {Math. Z.},
      fjournal = {Mathematische Zeitschrift},
      volume = {27},
      year = {1928},
      number = {1},
      pages = {218--244},
      issn = {0025-5874},
      mrclass = {DML},
      mrnumber = {1544909},
      doi = {10.1007/BF01171098},
      url = {https://doi.org/10.1007/BF01171098},
      zblnumber = {53.0259.02},
      }
  • [Rot] Go to document K. F. Roth, "On certain sets of integers," J. London Math. Soc., vol. 28, pp. 104-109, 1953.
    @ARTICLE{Rot,
      author = {Roth, K. F.},
      title = {On certain sets of integers},
      journal = {J. London Math. Soc.},
      fjournal = {The Journal of the London Mathematical Society},
      volume = {28},
      year = {1953},
      pages = {104--109},
      issn = {0024-6107},
      mrclass = {10.0X},
      mrnumber = {0051853},
      mrreviewer = {P. Erdős},
      doi = {10.1112/jlms/s1-28.1.104},
      url = {https://doi.org/10.1112/jlms/s1-28.1.104},
      zblnumber = {0050.04002},
      }
  • [sj3] Go to document P. Sjölin, "An inequality of Paley and convergence a.e. of Walsh-Fourier series," Ark. Mat., vol. 7, pp. 551-570, 1969.
    @ARTICLE{sj3,
      author = {Sj{ö}lin, Per},
      title = {An inequality of {P}aley and convergence a.e. of {W}alsh-{F}ourier series},
      journal = {Ark. Mat.},
      fjournal = {Arkiv för Matematik},
      volume = {7},
      year = {1969},
      pages = {551--570},
      issn = {0004-2080},
      mrclass = {42.16},
      mrnumber = {0241885},
      mrreviewer = {R. A. Hunt},
      doi = {10.1007/BF02590894},
      url = {https://doi.org/10.1007/BF02590894},
      zblnumber = {0169.08203},
      }
  • [sj2] Go to document P. Sjölin, "Convergence almost everywhere of certain singular integrals and multiple Fourier series," Ark. Mat., vol. 9, pp. 65-90, 1971.
    @ARTICLE{sj2,
      author = {Sj{ö}lin, Per},
      title = {Convergence almost everywhere of certain singular integrals and multiple {F}ourier series},
      journal = {Ark. Mat.},
      fjournal = {Arkiv för Matematik},
      volume = {9},
      year = {1971},
      pages = {65--90},
      issn = {0004-2080},
      mrclass = {42A92},
      mrnumber = {0336222},
      mrreviewer = {W. C. Connett},
      doi = {10.1007/BF02383638},
      url = {https://doi.org/10.1007/BF02383638},
      zblnumber = {0212.41703},
      }
  • [Sjoconv] Go to document P. Sjölin, "Convolution with oscillating kernels," Indiana Univ. Math. J., vol. 30, iss. 1, pp. 47-55, 1981.
    @ARTICLE{Sjoconv,
      author = {Sj{ö}lin, Per},
      title = {Convolution with oscillating kernels},
      journal = {Indiana Univ. Math. J.},
      fjournal = {Indiana University Mathematics Journal},
      volume = {30},
      year = {1981},
      number = {1},
      pages = {47--55},
      issn = {0022-2518},
      mrclass = {42B30 (44A35)},
      mrnumber = {0600031},
      mrreviewer = {C. Carton-Lebrun},
      doi = {10.1512/iumj.1981.30.30004},
      url = {https://doi.org/10.1512/iumj.1981.30.30004},
      zblnumber = {0419.47020},
      }
  • [SS] Go to document P. Sjölin and F. Soria, "Remarks on a theorem by N. Yu. Antonov," Studia Math., vol. 158, iss. 1, pp. 79-97, 2003.
    @ARTICLE{SS,
      author = {Sj{ö}lin, Per and Soria, Fernando},
      title = {Remarks on a theorem by {N}. {Y}u. {A}ntonov},
      journal = {Studia Math.},
      fjournal = {Studia Mathematica},
      volume = {158},
      year = {2003},
      number = {1},
      pages = {79--97},
      issn = {0039-3223},
      mrclass = {42A20 (42B25 42B35)},
      mrnumber = {2014553},
      mrreviewer = {Elijah Liflyand},
      doi = {10.4064/sm158-1-7},
      url = {https://doi.org/10.4064/sm158-1-7},
      zblnumber = {1053.42005},
      }
  • [So1] Go to document F. Soria, "Note on differentiation of integrals and the halo conjecture," Studia Math., vol. 81, iss. 1, pp. 29-36, 1985.
    @ARTICLE{So1,
      author = {Soria, Fernando},
      title = {Note on differentiation of integrals and the halo conjecture},
      journal = {Studia Math.},
      fjournal = {Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica},
      volume = {81},
      year = {1985},
      number = {1},
      pages = {29--36},
      issn = {0039-3223},
      mrclass = {42B25 (42B05)},
      mrnumber = {0818168},
      doi = {10.4064/sm-81-1-29-36},
      url = {https://doi.org/10.4064/sm-81-1-29-36},
      zblnumber = {0526.28003},
      }
  • [So2] Go to document F. Soria, "On an extrapolation theorem of Carleson-Sjölin with applications to a.e. convergence of Fourier series," Studia Math., vol. 94, iss. 3, pp. 235-244, 1989.
    @ARTICLE{So2,
      author = {Soria, Fernando},
      title = {On an extrapolation theorem of {C}arleson-{S}j{ö}lin with applications to a.e. convergence of {F}ourier series},
      journal = {Studia Math.},
      fjournal = {Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica},
      volume = {94},
      year = {1989},
      number = {3},
      pages = {235--244},
      issn = {0039-3223},
      mrclass = {42A50},
      mrnumber = {1019791},
      mrreviewer = {Colin C. Graham},
      doi = {10.4064/sm-94-3-235-244},
      url = {https://doi.org/10.4064/sm-94-3-235-244},
      zblnumber = {0684.42001},
      }
  • [s1] Go to document E. M. Stein, "On limits of sequences of operators," Ann. of Math. (2), vol. 74, pp. 140-170, 1961.
    @ARTICLE{s1,
      author = {Stein, E. M.},
      title = {On limits of sequences of operators},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {74},
      year = {1961},
      pages = {140--170},
      issn = {0003-486X},
      mrclass = {42.11},
      mrnumber = {0125392},
      mrreviewer = {R. P. Boas},
      doi = {10.2307/1970308},
      url = {https://doi.org/10.2307/1970308},
      zblnumber = {0103.08903},
      }
  • [Stepois] Go to document E. M. Stein, "Maximal functions. I. Spherical means," Proc. Nat. Acad. Sci. U.S.A., vol. 73, iss. 7, pp. 2174-2175, 1976.
    @ARTICLE{Stepois,
      author = {Stein, Elias M.},
      title = {Maximal functions. {I}. {S}pherical means},
      journal = {Proc. Nat. Acad. Sci. U.S.A.},
      fjournal = {Proceedings of the National Academy of Sciences of the United States of America},
      volume = {73},
      year = {1976},
      number = {7},
      pages = {2174--2175},
      issn = {0027-8424},
      mrclass = {42A40 (43A85)},
      mrnumber = {0420116},
      mrreviewer = {Alberto Torchinsky},
      doi = {10.1073/pnas.73.7.2174},
      url = {https://doi.org/10.1073/pnas.73.7.2174},
      zblnumber = {0332.42018},
      }
  • [s2] E. M. Stein, "Oscillatory integrals related to Radon-like transforms," in Proceedings of the Conference in Honor of Jean-Pierre Kahane, 1995, pp. 535-551.
    @INPROCEEDINGS{s2,
      author = {Stein, Elias M.},
      title = {Oscillatory integrals related to {R}adon-like transforms},
      booktitle = {Proceedings of the {C}onference in {H}onor of {J}ean-{P}ierre {K}ahane},
      venue = {{O}rsay, 1993},
      journal = {J. Fourier Anal. Appl.},
      fjournal = {The Journal of Fourier Analysis and Applications},
      year = {1995},
      number = {Special Issue},
      pages = {535--551},
      issn = {1069-5869},
      mrclass = {42B20 (35S30 42B25)},
      mrnumber = {1364908},
      mrreviewer = {Andreas Seeger},
      zblnumber = {0971.42009},
      }
  • [STeWA] Go to document E. M. Stein and S. Wainger, "The estimation of an integral arising in multiplier transformations," Studia Math., vol. 35, pp. 101-104, 1970.
    @ARTICLE{STeWA,
      author = {Stein, Elias M. and Wainger, Stephen},
      title = {The estimation of an integral arising in multiplier transformations},
      journal = {Studia Math.},
      fjournal = {Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica},
      volume = {35},
      year = {1970},
      pages = {101--104},
      issn = {0039-3223},
      mrclass = {47.70 (42.00)},
      mrnumber = {0265995},
      mrreviewer = {S. Izumi},
      doi = {10.4064/sm-35-1-101-104},
      url = {https://doi.org/10.4064/sm-35-1-101-104},
      zblnumber = {0202.12401},
      }
  • [sw1] Go to document E. M. Stein and S. Wainger, "Problems in harmonic analysis related to curvature," Bull. Amer. Math. Soc., vol. 84, iss. 6, pp. 1239-1295, 1978.
    @ARTICLE{sw1,
      author = {Stein, Elias M. and Wainger, Stephen},
      title = {Problems in harmonic analysis related to curvature},
      journal = {Bull. Amer. Math. Soc.},
      fjournal = {Bulletin of the Amer. Math. Soc.},
      volume = {84},
      year = {1978},
      number = {6},
      pages = {1239--1295},
      issn = {0002-9904},
      mrclass = {42B20 (28A15)},
      mrnumber = {0508453},
      mrreviewer = {Alberto Torchinsky},
      doi = {10.1090/S0002-9904-1978-14554-6},
      url = {https://doi.org/10.1090/S0002-9904-1978-14554-6},
      zblnumber = {0393.42010},
      }
  • [sw] Go to document E. M. Stein and S. Wainger, "Oscillatory integrals related to Carleson’s theorem," Math. Res. Lett., vol. 8, iss. 5-6, pp. 789-800, 2001.
    @ARTICLE{sw,
      author = {Stein, Elias M. and Wainger, Stephen},
      title = {Oscillatory integrals related to {C}arleson's theorem},
      journal = {Math. Res. Lett.},
      fjournal = {Mathematical Research Letters},
      volume = {8},
      year = {2001},
      number = {5-6},
      pages = {789--800},
      issn = {1073-2780},
      mrclass = {42B20 (47G10)},
      mrnumber = {1879821},
      mrreviewer = {B. S. Rubin},
      doi = {10.4310/MRL.2001.v8.n6.a9},
      url = {https://doi.org/10.4310/MRL.2001.v8.n6.a9},
      zblnumber = {0998.42007},
      }
  • [Str] Go to document R. S. Strichartz, "Singular integrals supported on submanifolds," Studia Math., vol. 74, iss. 2, pp. 137-151, 1982.
    @ARTICLE{Str,
      author = {Strichartz, Robert S.},
      title = {Singular integrals supported on submanifolds},
      journal = {Studia Math.},
      fjournal = {Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica},
      volume = {74},
      year = {1982},
      number = {2},
      pages = {137--151},
      issn = {0039-3223},
      mrclass = {42B20 (44A15 58G99)},
      mrnumber = {0679830},
      doi = {10.4064/sm-74-2-137-151},
      url = {https://doi.org/10.4064/sm-74-2-137-151},
      zblnumber = {0501.43007},
      }
  • [Sz1] Go to document E. Szemerédi, "On sets of integers containing no four elements in arithmetic progression," Acta Math. Acad. Sci. Hungar., vol. 20, pp. 89-104, 1969.
    @ARTICLE{Sz1,
      author = {Szemerédi, E.},
      title = {On sets of integers containing no four elements in arithmetic progression},
      journal = {Acta Math. Acad. Sci. Hungar.},
      fjournal = {Acta Mathematica. Academiae Scientiarum Hungaricae},
      volume = {20},
      year = {1969},
      pages = {89--104},
      issn = {0001-5954},
      mrclass = {10.68},
      mrnumber = {0245555},
      mrreviewer = {H. Halberstam},
      doi = {10.1007/BF01894569},
      url = {https://doi.org/10.1007/BF01894569},
      zblnumber = {0175.04301},
      }
  • [Sz2] Go to document E. Szemerédi, "On sets of integers containing no $k$ elements in arithmetic progression," Acta Arith., vol. 27, pp. 199-245, 1975.
    @ARTICLE{Sz2,
      author = {Szemerédi, E.},
      title = {On sets of integers containing no {$k$} elements in arithmetic progression},
      journal = {Acta Arith.},
      fjournal = {Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica},
      volume = {27},
      year = {1975},
      pages = {199--245},
      issn = {0065-1036},
      mrclass = {10L10},
      mrnumber = {0369312},
      mrreviewer = {S. L. G. Choi},
      doi = {10.4064/aa-27-1-199-245},
      url = {https://doi.org/10.4064/aa-27-1-199-245},
      zblnumber = {0303.10056},
      }
  • [Tao] Go to document T. Tao, "Norm convergence of multiple ergodic averages for commuting transformations," Ergodic Theory Dynam. Systems, vol. 28, iss. 2, pp. 657-688, 2008.
    @ARTICLE{Tao,
      author = {Tao, Terence},
      title = {Norm convergence of multiple ergodic averages for commuting transformations},
      journal = {Ergodic Theory Dynam. Systems},
      fjournal = {Ergodic Theory and Dynamical Systems},
      volume = {28},
      year = {2008},
      number = {2},
      pages = {657--688},
      issn = {0143-3857},
      mrclass = {37A30 (28D05 47A35)},
      mrnumber = {2408398},
      mrreviewer = {Nikos Frantzikinakis},
      doi = {10.1017/S0143385708000011},
      url = {https://doi.org/10.1017/S0143385708000011},
      zblnumber = {1181.37004},
      }
  • [Wa] Go to document M. N. Walsh, "Norm convergence of nilpotent ergodic averages," Ann. of Math. (2), vol. 175, iss. 3, pp. 1667-1688, 2012.
    @ARTICLE{Wa,
      author = {Walsh, Miguel N.},
      title = {Norm convergence of nilpotent ergodic averages},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {175},
      year = {2012},
      number = {3},
      pages = {1667--1688},
      issn = {0003-486X},
      mrclass = {37A30 (37A05)},
      mrnumber = {2912715},
      mrreviewer = {Nikos Frantzikinakis},
      doi = {10.4007/annals.2012.175.3.15},
      url = {https://doi.org/10.4007/annals.2012.175.3.15},
      zblnumber = {1248.37008},
      }
  • [Zieg] Go to document T. Ziegler, "Universal characteristic factors and Furstenberg averages," J. Amer. Math. Soc., vol. 20, iss. 1, pp. 53-97, 2007.
    @ARTICLE{Zieg,
      author = {Ziegler, Tamar},
      title = {Universal characteristic factors and {F}urstenberg averages},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the Amer. Math. Soc.},
      volume = {20},
      year = {2007},
      number = {1},
      pages = {53--97},
      issn = {0894-0347},
      mrclass = {37A30 (28D05 37A25)},
      mrnumber = {2257397},
      mrreviewer = {Randall McCutcheon},
      doi = {10.1090/S0894-0347-06-00532-7},
      url = {https://doi.org/10.1090/S0894-0347-06-00532-7},
      zblnumber = {1198.37014},
      }
  • [Zo] P. Zorin-Kranich, Maximal polynomial modulations of singular integrals, 2017.
    @MISC{Zo,
      author = {Zorin-Kranich, P.},
      title = {Maximal polynomial modulations of singular integrals},
      arxiv = {1711.03524},
      year = {2017},
      zblnumber = {},
      }
  • [Zyg] A. Zygmund, Trigonometric Series. Vol. I, II, Third ed., Cambridge Univ. Press, Cambridge, 2002.
    @BOOK{Zyg,
      author = {Zygmund, A.},
      title = {Trigonometric Series. {V}ol. {I},
      {II}},
      series = {Cambridge Math. Library},
      edition = {{T}hird},
      note = {with a foreword by Robert A. Fefferman},
      publisher = {Cambridge Univ. Press, Cambridge},
      year = {2002},
      pages = {xii; Vol. I: xiv+383 pp.; Vol. II: viii+364},
      isbn = {0-521-89053-5},
      mrclass = {01A75 (42-02)},
      mrnumber = {1963498},
      zblnumber = {1084.42003},
      }

Authors

Victor Lie

Department of Mathematics, Purdue University, West Lafayette, IN 46907, USA
and
Institute of Mathematics of the Romanian Academy, Bucharest, RO 70700, P.O.Box 1-764, Romania