Abstract
When is a topological branched self-cover of the sphere equivalent to a post-critically finite rational map on $\mathbb {C}\mathbb {P}^1$? William Thurston gave one answer in 1982, giving a negative criterion (an obstruction to a map being rational). We give a complementary, positive criterion: the branched self-cover is equivalent to a rational map if and only if there is an elastic graph spine for the complement of the post-critical set that gets “looser” under backwards iteration.
-
[FB18:Couch]
M. Fortier Bourque, "The holomorphic couch theorem," Invent. Math., vol. 212, iss. 2, pp. 319-406, 2018.
@ARTICLE{FB18:Couch,
author = {{Fortier Bourque},
Maxime},
key={FB18},
title = {The holomorphic couch theorem},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {212},
year = {2018},
number = {2},
pages = {319--406},
issn = {0020-9910},
mrclass = {30F60 (30C75 30F30 32H02)},
mrnumber = {3787830},
mrreviewer = {Matthew M. Jones},
doi = {10.1007/s00222-017-0769-6},
url = {https://doi.org/10.1007/s00222-017-0769-6},
zblnumber = {1394.30028},
} -
[BBLPP00:CensusRational]
E. Brezin, R. Byrne, J. Levy, K. Pilgrim, and K. Plummer, "A census of rational maps," Conform. Geom. Dyn., vol. 4, pp. 35-74, 2000.
@ARTICLE{BBLPP00:CensusRational,
author = {Brezin, Eva and Byrne, Rosemary and Levy, Joshua and Pilgrim, Kevin and Plummer, Kelly},
title = {A census of rational maps},
journal = {Conform. Geom. Dyn.},
fjournal = {Conformal Geometry and Dynamics. An Electronic Journal of the Amer. Math. Soc.},
volume = {4},
year = {2000},
pages = {35--74},
mrclass = {37F10 (13P10 30D05 30F40)},
mrnumber = {1749249},
mrreviewer = {Peter Haïssinsky},
doi = {10.1090/S1088-4173-00-00050-3},
url = {https://doi.org/10.1090/S1088-4173-00-00050-3},
zblnumber = {0989.37038},
} -
[BCT14:TeichHolo]
X. Buff, G. Cui, and L. Tan, "Teichmüller spaces and holomorphic dynamics," in Handbook of Teichmüller Theory. Vol. IV, Eur. Math. Soc., Zürich, 2014, vol. 19, pp. 717-756.
@INCOLLECTION{BCT14:TeichHolo,
author = {Buff, Xavier and Cui, Guizhen and Tan, Lei},
title = {Teichmüller spaces and holomorphic dynamics},
booktitle = {Handbook of {T}eichmüller Theory. {V}ol. {IV}},
series = {IRMA Lect. Math. Theor. Phys.},
volume = {19},
pages = {717--756},
publisher = {Eur. Math. Soc., Zürich},
year = {2014},
mrclass = {37F30 (30F60 37F20 37F45)},
mrnumber = {3289714},
mrreviewer = {Kevin M. Pilgrim},
doi = {10.4171/117-1/17},
url = {https://doi.org/10.4171/117-1/17},
zblnumber = {1314.30079},
} -
[CFKP03:Subdivision]
J. W. Cannon, W. J. Floyd, R. Kenyon, and W. R. Parry, "Constructing rational maps from subdivision rules," Conform. Geom. Dyn., vol. 7, pp. 76-102, 2003.
@ARTICLE{CFKP03:Subdivision,
author = {Cannon, J. W. and Floyd, W. J. and Kenyon, R. and Parry, W. R.},
title = {Constructing rational maps from subdivision rules},
journal = {Conform. Geom. Dyn.},
fjournal = {Conformal Geometry and Dynamics. An Electronic Journal of the Amer. Math. Soc.},
volume = {7},
year = {2003},
pages = {76--102},
mrclass = {37F20 (20F67 37F10 52C26 57M12)},
mrnumber = {1992038},
mrreviewer = {Kevin M. Pilgrim},
doi = {10.1090/S1088-4173-03-00082-1},
url = {https://doi.org/10.1090/S1088-4173-03-00082-1},
zblnumber = {1077.37037},
} -
[CP14:ConfDim]
M. Carrasco Piaggio, "Conformal dimension and canonical splittings of hyperbolic groups," Geom. Funct. Anal., vol. 24, iss. 3, pp. 922-945, 2014.
@ARTICLE{CP14:ConfDim,
author = {Carrasco Piaggio, Matias},
title = {Conformal dimension and canonical splittings of hyperbolic groups},
journal = {Geom. Funct. Anal.},
fjournal = {Geometric and Functional Analysis},
volume = {24},
year = {2014},
number = {3},
pages = {922--945},
issn = {1016-443X},
mrclass = {30L10 (20F67 28A78 30F40 57M07)},
mrnumber = {3213834},
doi = {10.1007/s00039-014-0282-7},
url = {https://doi.org/10.1007/s00039-014-0282-7},
zblnumber = {1300.30100},
} -
[CJS03:GeomFiniteI] G. Cui, Y. Jiang, and D. Sullivan, "On geometrically finite branched coverings. I. Locally combinatorial attracting," in Complex Dynamics and Related Topics: Lectures from the Morningside Center of Mathematics, Int. Press, Somerville, MA, 2003, vol. 5, pp. 1-14.
@INCOLLECTION{CJS03:GeomFiniteI,
author = {Cui, Guizhen and Jiang, Yunping and Sullivan, Dennis},
title = {On geometrically finite branched coverings. {I}. {L}ocally combinatorial attracting},
booktitle = {Complex Dynamics and Related Topics: Lectures from the {M}orningside {C}enter of {M}athematics},
series = {New Stud. Adv. Math.},
volume = {5},
pages = {1--14},
publisher = {Int. Press, Somerville, MA},
year = {2003},
mrclass = {37F10 (37F20)},
mrnumber = {2504307},
mrreviewer = {Petra Bonfert-Taylor},
zblnumber = {1201.37068},
} -
[CJS03:GeomFiniteII] G. Cui, Y. Jiang, and D. Sullivan, "On geometrically finite branched coverings. II. Realization of rational maps," in Complex Dynamics and Related Topics: Lectures from the Morningside Center of Mathematics, Int. Press, Somerville, MA, 2003, vol. 5, pp. 15-29.
@INCOLLECTION{CJS03:GeomFiniteII,
author = {Cui, Guizhen and Jiang, Yunping and Sullivan, Dennis},
title = {On geometrically finite branched coverings. {II}. {R}ealization of rational maps},
booktitle = {Complex Dynamics and Related Topics: Lectures from the {M}orningside {C}enter of {M}athematics},
series = {New Stud. Adv. Math.},
volume = {5},
pages = {15--29},
publisher = {Int. Press, Somerville, MA},
year = {2003},
mrclass = {37F10 (37F20)},
mrnumber = {2504308},
mrreviewer = {Petra Bonfert-Taylor},
zblnumber = {1201.37067},
} -
[CPT16:Renorm]
G. Cui, W. Peng, and L. Tan, "Renormalizations and wandering Jordan curves of rational maps," Comm. Math. Phys., vol. 344, iss. 1, pp. 67-115, 2016.
@ARTICLE{CPT16:Renorm,
author = {Cui, Guizhen and Peng, Wenjuan and Tan, Lei},
title = {Renormalizations and wandering {J}ordan curves of rational maps},
journal = {Comm. Math. Phys.},
fjournal = {Communications in Mathematical Physics},
volume = {344},
year = {2016},
number = {1},
pages = {67--115},
issn = {0010-3616},
mrclass = {37F25},
mrnumber = {3493138},
mrreviewer = {Eugen Mihailescu},
doi = {10.1007/s00220-016-2623-x},
url = {https://doi.org/10.1007/s00220-016-2623-x},
zblnumber = {1362.37095},
} -
[CT11:CharHyperbolic]
G. Cui and L. Tan, "A characterization of hyperbolic rational maps," Invent. Math., vol. 183, iss. 3, pp. 451-516, 2011.
@ARTICLE{CT11:CharHyperbolic,
author = {Cui, Guizhen and Tan, Lei},
title = {A characterization of hyperbolic rational maps},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {183},
year = {2011},
number = {3},
pages = {451--516},
issn = {0020-9910},
mrclass = {37F20 (37F15 37F30)},
mrnumber = {2772086},
mrreviewer = {Kevin M. Pilgrim},
doi = {10.1007/s00222-010-0281-8},
url = {https://doi.org/10.1007/s00222-010-0281-8},
zblnumber = {1230.37052},
} -
[CT18:HypParDef]
G. Cui and L. Tan, "Hyperbolic-parabolic deformations of rational maps," Sci. China Math., vol. 61, iss. 12, pp. 2157-2220, 2018.
@ARTICLE{CT18:HypParDef,
author = {Cui, Guizhen and Tan, Lei},
title = {Hyperbolic-parabolic deformations of rational maps},
journal = {Sci. China Math.},
fjournal = {Science China. Mathematics},
volume = {61},
year = {2018},
number = {12},
pages = {2157--2220},
issn = {1674-7283},
mrclass = {37F15 (37F20 37F30 37F45)},
mrnumber = {3881954},
mrreviewer = {Kevin M. Pilgrim},
doi = {10.1007/s11425-018-9426-4},
url = {https://doi.org/10.1007/s11425-018-9426-4},
zblnumber = {1404.37049},
} -
[DH85:DynamicsPolyLike]
A. Douady and J. H. Hubbard, "On the dynamics of polynomial-like mappings," Ann. Sci. École Norm. Sup. (4), vol. 18, iss. 2, pp. 287-343, 1985.
@ARTICLE{DH85:DynamicsPolyLike,
author = {Douady, Adrien and Hubbard, John Hamal},
title = {On the dynamics of polynomial-like mappings},
journal = {Ann. Sci. \'{E}cole Norm. Sup. (4)},
fjournal = {Annales Scientifiques de l'\'{E}cole Normale Supérieure. Quatrième Série},
volume = {18},
year = {1985},
number = {2},
pages = {287--343},
issn = {0012-9593},
mrclass = {58F11 (30D05)},
mrnumber = {0816367},
mrreviewer = {L. Keen},
doi = {10.24033/asens.1491},
url = {https://doi.org/10.24033/asens.1491},
zblnumber = {0587.30028},
} -
[DH93:ThurstonChar]
A. Douady and J. H. Hubbard, "A proof of Thurston’s topological characterization of rational functions," Acta Math., vol. 171, iss. 2, pp. 263-297, 1993.
@ARTICLE{DH93:ThurstonChar,
author = {Douady, Adrien and Hubbard, John Hamal},
title = {A proof of {T}hurston's topological characterization of rational functions},
journal = {Acta Math.},
fjournal = {Acta Mathematica},
volume = {171},
year = {1993},
number = {2},
pages = {263--297},
issn = {0001-5962},
mrclass = {58F23},
mrnumber = {1251582},
mrreviewer = {Ben Bielefeld},
doi = {10.1007/BF02392534},
url = {https://doi.org/10.1007/BF02392534},
zblnumber = {0806.30027},
} -
[Epstein66:Curves2Manifolds]
D. B. A. Epstein, "Curves on $2$-manifolds and isotopies," Acta Math., vol. 115, pp. 83-107, 1966.
@ARTICLE{Epstein66:Curves2Manifolds,
author = {Epstein, D. B. A.},
title = {Curves on {$2$}-manifolds and isotopies},
journal = {Acta Math.},
fjournal = {Acta Mathematica},
volume = {115},
year = {1966},
pages = {83--107},
issn = {0001-5962},
mrclass = {57.20},
mrnumber = {0214087},
mrreviewer = {P. Dedecker},
doi = {10.1007/BF02392203},
url = {https://doi.org/10.1007/BF02392203},
zblnumber = {0136.44605},
} -
[HP08:Ahlfors-dim]
P. Ha"issinsky and K. M. Pilgrim, "Thurston obstructions and Ahlfors regular conformal dimension," J. Math. Pures Appl. (9), vol. 90, iss. 3, pp. 229-241, 2008.
@ARTICLE{HP08:Ahlfors-dim,
author = {Ha{ï}ssinsky, Peter and Pilgrim, Kevin M.},
title = {Thurston obstructions and {A}hlfors regular conformal dimension},
journal = {J. Math. Pures Appl. (9)},
fjournal = {Journal de Mathématiques Pures et Appliquées. Neuvième Série},
volume = {90},
year = {2008},
number = {3},
pages = {229--241},
issn = {0021-7824},
mrclass = {37F30 (30C65 30F40 37D20 37F15 53C23 54E40)},
mrnumber = {2446078},
mrreviewer = {Ma\l gorzata Stawiska},
doi = {10.1016/j.matpur.2008.04.006},
url = {https://doi.org/10.1016/j.matpur.2008.04.006},
zblnumber = {1213.30048},
} -
[HSS09:Exponential]
J. Hubbard, D. Schleicher, and M. Shishikura, "Exponential Thurston maps and limits of quadratic differentials," J. Amer. Math. Soc., vol. 22, iss. 1, pp. 77-117, 2009.
@ARTICLE{HSS09:Exponential,
author = {Hubbard, John and Schleicher, Dierk and Shishikura, Mitsuhiro},
title = {Exponential {T}hurston maps and limits of quadratic differentials},
journal = {J. Amer. Math. Soc.},
fjournal = {Journal of the Amer. Math. Soc.},
volume = {22},
year = {2009},
number = {1},
pages = {77--117},
issn = {0894-0347},
mrclass = {37F30 (30F30 30F60 37F20)},
mrnumber = {2449055},
mrreviewer = {Andrei B. Bogatyrëv},
doi = {10.1090/S0894-0347-08-00609-7},
url = {https://doi.org/10.1090/S0894-0347-08-00609-7},
zblnumber = {1206.37026},
} -
[IS10:HomotopyShadowing]
Y. Ishii and J. Smillie, "Homotopy shadowing," Amer. J. Math., vol. 132, iss. 4, pp. 987-1029, 2010.
@ARTICLE{IS10:HomotopyShadowing,
author = {Ishii, Yutaka and Smillie, John},
title = {Homotopy shadowing},
journal = {Amer. J. Math.},
fjournal = {American Journal of Mathematics},
volume = {132},
year = {2010},
number = {4},
pages = {987--1029},
issn = {0002-9327},
mrclass = {37C50 (37C15 37F15 37F20)},
mrnumber = {2663646},
mrreviewer = {Kazuhiro Sakai},
doi = {10.1353/ajm.0.0126},
url = {https://doi.org/10.1353/ajm.0.0126},
zblnumber = {1207.37013},
} -
[Kahn06:BoundsI] J. Kahn, A priori bounds for some infinitely renormalizable quadratics. I. Bounded primitive combinatorics, 2006.
@misc{Kahn06:BoundsI,
author = {Kahn, Jeremy},
title = {A priori bounds for some infinitely renormalizable quadratics. {I}. {B}ounded primitive combinatorics},
note={preprint ims06-05, Stony Brook IMS},
year={2006},
arxiv={math/0609045v2},
} -
[KPT15:EmbeddingEL] J. Kahn, K. ~M. Pilgrim, and D. ~P. Thurston, Conformal surface embeddings and extremal length, 2015.
@MISC{KPT15:EmbeddingEL,
author = {Kahn, Jeremy and Pilgrim, K.~M. and Thurston, D.~P.},
title = {Conformal surface embeddings and extremal length},
year = {2015},
arxiv = {1507.05294},
zblnumber = {},
} -
[Katsura04:ClassCstarI]
T. Katsura, "A class of $C^\ast$-algebras generalizing both graph algebras and homeomorphism $C^\ast$-algebras. I. Fundamental results," Trans. Amer. Math. Soc., vol. 356, iss. 11, pp. 4287-4322, 2004.
@ARTICLE{Katsura04:ClassCstarI,
author = {Katsura, Takeshi},
title = {A class of {$C^\ast$}-algebras generalizing both graph algebras and homeomorphism {$C^\ast$}-algebras. {I}. {F}undamental results},
journal = {Trans. Amer. Math. Soc.},
fjournal = {Transactions of the Amer. Math. Soc.},
volume = {356},
year = {2004},
number = {11},
pages = {4287--4322},
issn = {0002-9947},
mrclass = {46L05 (37B99 46L55 46L80)},
mrnumber = {2067120},
mrreviewer = {Valentin Deaconu},
doi = {10.1090/S0002-9947-04-03636-0},
url = {https://doi.org/10.1090/S0002-9947-04-03636-0},
zblnumber = {1049.46039},
} -
[Nekrashevych05:SelfSimilar]
V. Nekrashevych, Self-Similar Groups, Amer. Math. Soc., Providence, RI, 2005, vol. 117.
@BOOK{Nekrashevych05:SelfSimilar,
author = {Nekrashevych, Volodymyr},
title = {Self-Similar Groups},
series = {Math. Surveys Monogr.},
volume = {117},
publisher = {Amer. Math. Soc., Providence, RI},
year = {2005},
pages = {xii+231},
isbn = {0-8218-3831-8},
mrclass = {20E08 (20F65 37B15 37F10)},
mrnumber = {2162164},
mrreviewer = {Laurent Bartholdi},
doi = {10.1090/surv/117},
url = {https://doi.org/10.1090/surv/117},
zblnumber = {1087.20032},
} -
[Nekrashevych14:CombModel]
V. Nekrashevych, "Combinatorial models of expanding dynamical systems," Ergodic Theory Dynam. Systems, vol. 34, iss. 3, pp. 938-985, 2014.
@ARTICLE{Nekrashevych14:CombModel,
author = {Nekrashevych, Volodymyr},
title = {Combinatorial models of expanding dynamical systems},
journal = {Ergodic Theory Dynam. Systems},
fjournal = {Ergodic Theory and Dynamical Systems},
volume = {34},
year = {2014},
number = {3},
pages = {938--985},
issn = {0143-3857},
mrclass = {37C50 (20M35 37C15 37F15 37F20)},
mrnumber = {3199801},
doi = {10.1017/etds.2012.163},
url = {https://doi.org/10.1017/etds.2012.163},
zblnumber = {1350.37034},
} -
[Nekrashevych16:PaperFolding]
V. Nekrashevych, "Mating, paper folding, and an endomorphism of $\Bbb{PC}^2$," Conform. Geom. Dyn., vol. 20, pp. 303-358, 2016.
@ARTICLE{Nekrashevych16:PaperFolding,
author = {Nekrashevych, Volodymyr},
title = {Mating, paper folding, and an endomorphism of {$\Bbb{PC}^2$}},
journal = {Conform. Geom. Dyn.},
fjournal = {Conformal Geometry and Dynamics. An Electronic Journal of the Amer. Math. Soc.},
volume = {20},
year = {2016},
pages = {303--358},
mrclass = {32H50 (37F15 37F20)},
mrnumber = {3574443},
mrreviewer = {Peter Haïssinsky},
doi = {10.1090/ecgd/302},
url = {https://doi.org/10.1090/ecgd/302},
zblnumber = {1408.37082},
} -
[PT:ConfDim] K. Pilgrim and D. P. Thurston, Graph energies and Ahlfors-regular conformal dimension.
@MISC{PT:ConfDim,
author = {Pilgrim, K. and Thurston, D. P.},
title = {Graph energies and {A}hlfors-regular conformal dimension},
note = {in preparation},
zblnumber = {},
} -
[Putman16:IsotopSurface]
A. Putman, Answer to Who proved that two homotopic embeddings of one surface in another are isotopic?, 2016.
@MISC{Putman16:IsotopSurface,
author = {Putman, A.},
title = {Answer to {W}ho proved that two homotopic embeddings of one surface in another are isotopic?},
note = {MathOverflow},
year = {2016},
url = {http://mathoverflow.net/a/248866},
zblnumber = {},
} -
[Sullivan81:ErgInf]
D. Sullivan, "On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions," in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, 1981, pp. 465-496.
@INPROCEEDINGS{Sullivan81:ErgInf,
author = {Sullivan, Dennis},
title = {On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions},
booktitle = {Riemann Surfaces and Related Topics: {P}roceedings of the 1978 {S}tony {B}rook {C}onference},
venue = {{S}tate {U}niv. {N}ew {Y}ork, {S}tony {B}rook, {N}.{Y}., 1978},
series = {Ann. of Math. Stud.},
volume = {97},
pages = {465--496},
publisher = {Princeton Univ. Press, Princeton, N.J.},
year = {1981},
mrclass = {58F11 (22E40 30C60 53C30 57R99)},
mrnumber = {0624833},
mrreviewer = {M. Rees},
zblnumber = {0567.58015},
doi = {10.1515/9781400881550-035},
url = {https://doi.org/10.1515/9781400881550-035},
} -
[Thurston16:RubberBands]
D. P. Thurston, "From rubber bands to rational maps: a research report," Res. Math. Sci., vol. 3, p. 15, 2016.
@ARTICLE{Thurston16:RubberBands,
author = {Thurston, Dylan P.},
title = {From rubber bands to rational maps: a research report},
journal = {Res. Math. Sci.},
fjournal = {Research in the Mathematical Sciences},
volume = {3},
year = {2016},
pages = {Paper No. 15, 49},
issn = {2522-0144},
mrclass = {37F20 (30C62 30F10 30F60 57M12 57M50)},
mrnumber = {3500499},
mrreviewer = {Peter Haïssinsky},
doi = {10.1186/s40687-015-0039-4},
url = {https://doi.org/10.1186/s40687-015-0039-4},
zblnumber = {1360.37119},
} -
@ARTICLE{Thurston19:Elastic,
author = {Thurston, Dylan P.},
title = {Elastic graphs},
journal = {Forum Math. Sigma},
fjournal = {Forum of Mathematics. Sigma},
volume = {7},
year = {2019},
pages = {e24, 84},
mrclass = {37E25 (05C21 31C20 58E20)},
mrnumber = {3993808},
doi = {10.1017/fms.2019.4},
url = {https://doi.org/10.1017/fms.2019.4},
zblnumber = {07094012},
} -
[Wang14:DecompositionHerman]
X. Wang, "A decomposition theorem for Herman maps," Adv. Math., vol. 267, pp. 307-359, 2014.
@ARTICLE{Wang14:DecompositionHerman,
author = {Wang, Xiaoguang},
title = {A decomposition theorem for {H}erman maps},
journal = {Adv. Math.},
fjournal = {Advances in Mathematics},
volume = {267},
year = {2014},
pages = {307--359},
issn = {0001-8708},
mrclass = {37F30 (37F10 37F20 37F50)},
mrnumber = {3269181},
mrreviewer = {Jasmin Raissy},
doi = {10.1016/j.aim.2014.09.004},
url = {https://doi.org/10.1016/j.aim.2014.09.004},
zblnumber = {1418.37078},
} -
[JZ09:SubHyp]
G. Zhang and Y. Jiang, "Combinatorial characterization of sub-hyperbolic rational maps," Adv. Math., vol. 221, iss. 6, pp. 1990-2018, 2009.
@ARTICLE{JZ09:SubHyp,
author = {Zhang, Gaofei and Jiang, Yunping},
title = {Combinatorial characterization of sub-hyperbolic rational maps},
journal = {Adv. Math.},
fjournal = {Advances in Mathematics},
volume = {221},
year = {2009},
number = {6},
pages = {1990--2018},
issn = {0001-8708},
mrclass = {37F20 (37F10)},
mrnumber = {2522834},
mrreviewer = {David A. Brown},
doi = {10.1016/j.aim.2009.03.009},
url = {https://doi.org/10.1016/j.aim.2009.03.009},
zblnumber = {1190.37051},
}