Abstract
Let $u$ be a harmonic function in the unit ball $B(0,1) \subset \mathbb{R}^n$, $n \geq 3$, such that $u(0)=0$. Nadirashvili conjectured that there exists a positive constant $c$, depending on the dimension $n$ only, such that $$H^{n-1}(\{u=0 \} \cap B) \geq c.$$ We prove Nadirashvili’s conjecture as well as its counterpart on $C^\infty$-smooth Riemannian manifolds. The latter yields the lower bound in Yau’s conjecture. Namely, we show that for any compact $C^\infty$-smooth Riemannian manifold $M$ (without boundary) of dimension $n$, there exists $c>0$ such that for any Laplace eigenfunction $\varphi_\lambda$ on $M$, which corresponds to the eigenvalue $\lambda$, the following inequality holds: $c \sqrt \lambda \leq H^{n-1}(\{\varphi_\lambda =0\})$.
-
[Y] S. T. Yau, "Problem section," in Seminar on Differential Geometry, Princeton Univ. Press, Princeton, N.J., 1982, vol. 102, pp. 669-706.
@INCOLLECTION{Y,
author = {Yau, Shing Tung},
title = {Problem section},
booktitle = {Seminar on {D}ifferential {G}eometry},
series = {Ann. of Math. Stud.},
volume = {102},
pages = {669--706},
publisher = {Princeton Univ. Press, Princeton, N.J.},
year = {1982},
mrclass = {53Cxx (58-02)},
mrnumber = {0645762},
mrreviewer = {Yu. Burago},
zblnumber = {},
} -
[DF]
H. Donnelly and C. Fefferman, "Nodal sets of eigenfunctions on Riemannian manifolds," Invent. Math., vol. 93, iss. 1, pp. 161-183, 1988.
@ARTICLE{DF,
author = {Donnelly, Harold and Fefferman, Charles},
title = {Nodal sets of eigenfunctions on {R}iemannian manifolds},
journal = {Invent. Math.},
fjournal = {Inventiones Mathematicae},
volume = {93},
year = {1988},
number = {1},
pages = {161--183},
issn = {0020-9910},
mrclass = {58G25 (35B60 35P05)},
mrnumber = {0943927},
mrreviewer = {P. Günther},
doi = {10.1007/BF01393691},
url = {http://dx.doi.org/10.1007/BF01393691},
zblnumber = {0659.58047},
} -
[DF1]
H. Donnelly and C. Fefferman, "Nodal sets for eigenfunctions of the Laplacian on surfaces," J. Amer. Math. Soc., vol. 3, iss. 2, pp. 333-353, 1990.
@ARTICLE{DF1,
author = {Donnelly, Harold and Fefferman, Charles},
title = {Nodal sets for eigenfunctions of the {L}aplacian on surfaces},
journal = {J. Amer. Math. Soc.},
fjournal = {Journal of the American Mathematical Society},
volume = {3},
year = {1990},
number = {2},
pages = {333--353},
issn = {0894-0347},
mrclass = {58G25 (35P05)},
mrnumber = {1035413},
mrreviewer = {H.-B. Rademacher},
doi = {10.2307/1990956},
url = {http://dx.doi.org/10.2307/1990956},
zblnumber = {0702.58077},
} -
[GL]
N. Garofalo and F. Lin, "Monotonicity properties of variational integrals, $A_p$ weights and unique continuation," Indiana Univ. Math. J., vol. 35, iss. 2, pp. 245-268, 1986.
@ARTICLE{GL,
author = {Garofalo, Nicola and Lin, Fang-Hua},
title = {Monotonicity properties of variational integrals, {$A_p$} weights and unique continuation},
journal = {Indiana Univ. Math. J.},
fjournal = {Indiana University Mathematics Journal},
volume = {35},
year = {1986},
number = {2},
pages = {245--268},
issn = {0022-2518},
mrclass = {35J20 (35J10 42B25)},
mrnumber = {0833393},
mrreviewer = {Stavros A. Belbas},
doi = {10.1512/iumj.1986.35.35015},
zblnumber = {0678.35015},
} -
[HS]
R. Hardt and L. Simon, "Nodal sets for solutions of elliptic equations," J. Differential Geom., vol. 30, iss. 2, pp. 505-522, 1989.
@ARTICLE{HS,
author = {Hardt, Robert and Simon, Leon},
title = {Nodal sets for solutions of elliptic equations},
journal = {J. Differential Geom.},
fjournal = {Journal of Differential Geometry},
volume = {30},
year = {1989},
number = {2},
pages = {505--522},
issn = {0022-040X},
mrclass = {58E05 (35J99)},
mrnumber = {1010169},
mrreviewer = {Fang Hua Lin},
doi = {10.4310/jdg/1214443599},
zblnumber = {0692.35005},
} -
[HL] Q. Han and F. -H. Lin, Nodal Sets of Solutions of Elliptic Differential Equations.
@MISC{HL,
author = {Han, Q. and Lin, F.-H.},
title = {Nodal Sets of Solutions of Elliptic Differential Equations},
note = {book in preparation},
zblnumber = {},
} -
[LM1] A. Logunov and . E. Malinnikova, Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimension two and three.
@misc{LM1,
author = {Logunov, A. and Malinnikova, {\relax Eu}.},
title = {Nodal sets of {L}aplace eigenfunctions: estimates of the {H}ausdorff measure in dimension two and three},
note = {preprint},
zblnumber = {},
} -
[LM2]
A. Logunov, "Nodal sets of Laplace eigenfunctions: polynomial upper bounds for the Hausdorff measure," Ann. of Math., vol. 187, iss. 1, pp. 221-239, 2018.
@article{LM2,
author = {Logunov, A.},
title = {Nodal sets of {L}aplace eigenfunctions: polynomial upper bounds for the {H}ausdorff measure},
journal={Ann. of Math.},
VOLUME={187},
number={1},
year={2018},
pages={221--239},
doi={10.4007/annals.2018.198.1.4},
zblnumber = {},
} -
[CM]
T. H. Colding and W. P. Minicozzi II, "Lower bounds for nodal sets of eigenfunctions," Comm. Math. Phys., vol. 306, iss. 3, pp. 777-784, 2011.
@ARTICLE{CM,
author = {Colding, Tobias H. and Minicozzi, II, William P.},
title = {Lower bounds for nodal sets of eigenfunctions},
journal = {Comm. Math. Phys.},
fjournal = {Communications in Mathematical Physics},
volume = {306},
year = {2011},
number = {3},
pages = {777--784},
issn = {0010-3616},
mrclass = {58J50 (28A78 35P15 35P20)},
mrnumber = {2825508},
mrreviewer = {Julie Rowlett},
doi = {10.1007/s00220-011-1225-x},
url = {http://dx.doi.org/10.1007/s00220-011-1225-x},
zblnumber = {1238.58020},
} -
[SZ]
C. D. Sogge and S. Zelditch, "Lower bounds on the Hausdorff measure of nodal sets II," Math. Res. Lett., vol. 19, iss. 6, pp. 1361-1364, 2012.
@ARTICLE{SZ,
author = {Sogge, Christopher D. and Zelditch, Steve},
title = {Lower bounds on the {H}ausdorff measure of nodal sets {II}},
journal = {Math. Res. Lett.},
fjournal = {Mathematical Research Letters},
volume = {19},
year = {2012},
number = {6},
pages = {1361--1364},
issn = {1073-2780},
mrclass = {58C40 (28A78 35P15 35R01)},
mrnumber = {3091613},
mrreviewer = {Nelia Charalambous},
doi = {10.4310/MRL.2012.v19.n6.a14},
url = {http://dx.doi.org/10.4310/MRL.2012.v19.n6.a14},
zblnumber = {1283.58020},
} -
[B] J. Brüning, "Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators," Math. Z., vol. 158, iss. 1, pp. 15-21, 1978.
@ARTICLE{B,
author = {Brüning, Jochen},
title = {{Ü}ber {K}noten von {E}igenfunktionen des {L}aplace-{B}eltrami-{O}perators},
journal = {Math. Z.},
fjournal = {Mathematische Zeitschrift},
volume = {158},
year = {1978},
number = {1},
pages = {15--21},
} -
[GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1977, vol. 224.
@BOOK{GT,
author = {Gilbarg, David and Trudinger, Neil S.},
title = {Elliptic Partial Differential Equations of Second Order},
series = {Grundlehren Math. Wiss.},
volume = {224},
publisher = {Springer-Verlag, Berlin-New York},
year = {1977},
pages = {x+401},
isbn = {3-540-08007-4},
mrclass = {35-02 (35J25 35J65)},
mrnumber = {0473443},
mrreviewer = {O. John},
zblnumber = {0361.35003},
} -
[L]
F. Lin, "Nodal sets of solutions of elliptic and parabolic equations," Comm. Pure Appl. Math., vol. 44, iss. 3, pp. 287-308, 1991.
@ARTICLE{L,
author = {Lin, Fang-Hua},
title = {Nodal sets of solutions of elliptic and parabolic equations},
journal = {Comm. Pure Appl. Math.},
fjournal = {Communications on Pure and Applied Mathematics},
volume = {44},
year = {1991},
number = {3},
pages = {287--308},
issn = {0010-3640},
mrclass = {58G11 (35J05 35K05 58G03)},
mrnumber = {1090434},
mrreviewer = {Robert McOwen},
doi = {10.1002/cpa.3160440303},
url = {http://dx.doi.org/10.1002/cpa.3160440303},
zblnumber = {0734.58045},
} -
[M]
D. Mangoubi, "The effect of curvature on convexity properties of harmonic functions and eigenfunctions," J. Lond. Math. Soc. (2), vol. 87, iss. 3, pp. 645-662, 2013.
@ARTICLE{M,
author = {Mangoubi, Dan},
title = {The effect of curvature on convexity properties of harmonic functions and eigenfunctions},
journal = {J. Lond. Math. Soc. (2)},
fjournal = {Journal of the London Mathematical Society. Second Series},
volume = {87},
year = {2013},
number = {3},
pages = {645--662},
issn = {0024-6107},
mrclass = {58J50 (35J15 35P20 35R01 53C21 58E20)},
mrnumber = {3073669},
mrreviewer = {Tanya J. Christiansen},
doi = {10.1112/jlms/jds067},
url = {http://dx.doi.org/10.1112/jlms/jds067},
zblnumber = {1316.35220},
} -
[N]
N. Nadirashvili, "Geometry of nodal sets and multiplicity of eigenvalues," Curr. Dev. Math., pp. 231-235, 1997.
@ARTICLE{N,
author = {Nadirashvili, N.},
title = {Geometry of nodal sets and multiplicity of eigenvalues},
journal = {Curr. Dev. Math.},
year = {1997},
pages = {231--235},
zblnumber = {},
doi = {10.4310/CDM.1997.v1997.n1.a16},
}