Ricci flow with surgery in higher dimensions

Abstract

We present a new curvature condition that is preserved by the Ricci flow in higher dimensions. For initial metrics satisfying this condition, we establish a higher dimensional version of Hamilton’s neck-like curvature pinching estimate. Using this estimate, we are able to prove a version of Perelman’s Canonical Neighborhood Theorem in higher dimensions. This makes it possible to extend the flow beyond singularities by a surgery procedure in the spirit of Hamilton and Perelman. As a corollary, we obtain a classification of all diffeomorphism types of such manifolds in terms of a connected sum decomposition. In particular, the underlying manifold cannot be an exotic sphere.
Our result is sharp in many interesting situations. For example, the curvature tensors of $\mathbb{CP}^{n/2}$, $\mathbb{HP}^{n/4}$, $S^{n-k} \times S^k$ ($2 \leq k \leq n-2$), $S^{n-2} \times \mathbb{H}^2$, $S^{n-2} \times \mathbb{R}^2$ all lie on the boundary of our curvature cone. Another borderline case is the pseudo-cylinder: this is a rotationally symmetric hypersurface that is weakly, but not strictly, two-convex. Finally, the curvature tensor of $S^{n-1} \times \mathbb{R}$ lies in the interior of our curvature cone.

  • [Besse] Go to document A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 1987, vol. 10.
    @BOOK{Besse,
      author = {Besse, Arthur L.},
      title = {Einstein {M}anifolds},
      series = {Ergeb. Math. Grenzgeb.},
      volume = {10},
      publisher = {Springer-Verlag, Berlin},
      year = {1987},
      pages = {xii+510},
      isbn = {3-540-15279-2},
      mrclass = {53C25 (53-02 53C21 53C30 53C55 58D17 58E11)},
      mrnumber = {0867684},
      mrreviewer = {S. M. Salamon},
      doi = {10.1007/978-3-540-74311-8},
      zblnumber = {1147.53001},
      }
  • [Bohm-Wilking] Go to document C. Böhm and B. Wilking, "Manifolds with positive curvature operators are space forms," Ann. of Math. (2), vol. 167, iss. 3, pp. 1079-1097, 2008.
    @ARTICLE{Bohm-Wilking,
      author = {Böhm, Christoph and Wilking, Burkhard},
      title = {Manifolds with positive curvature operators are space forms},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {167},
      year = {2008},
      number = {3},
      pages = {1079--1097},
      issn = {0003-486X},
      mrclass = {53C44 (53C21)},
      mrnumber = {2415394},
      mrreviewer = {John Urbas},
      doi = {10.4007/annals.2008.167.1079},
      zblnumber = {1185.53073},
      }
  • [Bony] Go to document J. Bony, "Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés," Ann. Inst. Fourier (Grenoble), vol. 19, iss. fasc. 1, pp. 277-304 xii, 1969.
    @ARTICLE{Bony,
      author = {Bony, Jean-Michel},
      title = {Principe du maximum, inégalite de {H}arnack et unicité du problème de {C}auchy pour les opérateurs elliptiques dégénérés},
      journal = {Ann. Inst. Fourier (Grenoble)},
      fjournal = {Université de Grenoble. Annales de l'Institut Fourier},
      volume = {19},
      year = {1969},
      number = {fasc. 1},
      pages = {277--304 xii},
      issn = {0373-0956},
      mrclass = {47.65 (35.00)},
      mrnumber = {0262881},
      mrreviewer = {R. S. Freeman},
      doi = {10.5802/aif.319},
      zblnumber = {0176.09703},
      }
  • [Brendle1] Go to document S. Brendle, "A general convergence result for the Ricci flow in higher dimensions," Duke Math. J., vol. 145, iss. 3, pp. 585-601, 2008.
    @ARTICLE{Brendle1,
      author = {Brendle, Simon},
      title = {A general convergence result for the {R}icci flow in higher dimensions},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {145},
      year = {2008},
      number = {3},
      pages = {585--601},
      issn = {0012-7094},
      mrclass = {53C44},
      mrnumber = {2462114},
      mrreviewer = {John Urbas},
      doi = {10.1215/00127094-2008-059},
      zblnumber = {1161.53052},
      }
  • [Brendle2] Go to document S. Brendle, "A generalization of Hamilton’s differential Harnack inequality for the Ricci flow," J. Differential Geom., vol. 82, iss. 1, pp. 207-227, 2009.
    @ARTICLE{Brendle2,
      author = {Brendle, Simon},
      title = {A generalization of {H}amilton's differential {H}arnack inequality for the {R}icci flow},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {82},
      year = {2009},
      number = {1},
      pages = {207--227},
      issn = {0022-040X},
      mrclass = {53C44 (53C21)},
      mrnumber = {2504774},
      mrreviewer = {John Urbas},
      doi = {10.4310/jdg/1242134372},
      zblnumber = {1169.53050},
      }
  • [Brendle-book] Go to document S. Brendle, Ricci flow and the sphere theorem, Amer. Math. Soc., Providence, RI, 2010, vol. 111.
    @BOOK{Brendle-book,
      author = {Brendle, Simon},
      title = {Ricci flow and the sphere theorem},
      series = {Grad. Stud. Math.},
      volume = {111},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {2010},
      pages = {viii+176},
      isbn = {978-0-8218-4938-5},
      mrclass = {53C20 (53C21 53C44)},
      mrnumber = {2583938},
      mrreviewer = {Frédéric Robert},
      doi = {10.1090/gsm/111},
      zblnumber = {1196.53001},
      }
  • [Brendle-Schoen] Go to document S. Brendle and R. Schoen, "Manifolds with $1/4$-pinched curvature are space forms," J. Amer. Math. Soc., vol. 22, iss. 1, pp. 287-307, 2009.
    @ARTICLE{Brendle-Schoen,
      author = {Brendle, Simon and Schoen, Richard},
      title = {Manifolds with {$1/4$}-pinched curvature are space forms},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {22},
      year = {2009},
      number = {1},
      pages = {287--307},
      issn = {0894-0347},
      mrclass = {53C20 (53C44)},
      mrnumber = {2449060},
      mrreviewer = {Frédéric Robert},
      doi = {10.1090/S0894-0347-08-00613-9},
      zblnumber = {1251.53021},
      }
  • [Cheeger-Gromoll1] Go to document J. Cheeger and D. Gromoll, "The splitting theorem for manifolds of nonnegative Ricci curvature," J. Differential Geometry, vol. 6, pp. 119-128, 1971/72.
    @ARTICLE{Cheeger-Gromoll1,
      author = {Cheeger, Jeff and Gromoll, Detlef},
      title = {The splitting theorem for manifolds of nonnegative {R}icci curvature},
      journal = {J. Differential Geometry},
      fjournal = {Journal of Differential Geometry},
      volume = {6},
      year = {1971/72},
      pages = {119--128},
      issn = {0022-040X},
      mrclass = {53C20},
      mrnumber = {0303460},
      mrreviewer = {J. R. Vanstone},
      doi = {10.4310/jdg/1214430220},
      zblnumber = {0223.53033},
      }
  • [Cheeger-Gromoll2] Go to document J. Cheeger and D. Gromoll, "On the structure of complete manifolds of nonnegative curvature," Ann. of Math. (2), vol. 96, pp. 413-443, 1972.
    @ARTICLE{Cheeger-Gromoll2,
      author = {Cheeger, Jeff and Gromoll, Detlef},
      title = {On the structure of complete manifolds of nonnegative curvature},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {96},
      year = {1972},
      pages = {413--443},
      issn = {0003-486X},
      mrclass = {53C20},
      mrnumber = {0309010},
      mrreviewer = {J. A. Wolf},
      doi = {10.2307/1970819},
      zblnumber = {0246.53049},
      }
  • [Chen-Zhu] Go to document B. Chen and X. Zhu, "Ricci flow with surgery on four-manifolds with positive isotropic curvature," J. Differential Geom., vol. 74, iss. 2, pp. 177-264, 2006.
    @ARTICLE{Chen-Zhu,
      author = {Chen, Bing-Long and Zhu, Xi-Ping},
      title = {Ricci flow with surgery on four-manifolds with positive isotropic curvature},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {74},
      year = {2006},
      number = {2},
      pages = {177--264},
      issn = {0022-040X},
      mrclass = {53C44 (53C21)},
      mrnumber = {2258799},
      mrreviewer = {Peng Lu},
      doi = {10.4310/jdg/1175266204},
      zblnumber = {1103.53036},
      }
  • [Chen-Tang-Zhu] Go to document B. Chen, S. Tang, and X. Zhu, "Complete classification of compact four-manifolds with positive isotropic curvature," J. Differential Geom., vol. 91, iss. 1, pp. 41-80, 2012.
    @ARTICLE{Chen-Tang-Zhu,
      author = {Chen, Bing-Long and Tang, Siu-Hung and Zhu, Xi-Ping},
      title = {Complete classification of compact four-manifolds with positive isotropic curvature},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {91},
      year = {2012},
      number = {1},
      pages = {41--80},
      issn = {0022-040X},
      mrclass = {53C20 (53C21 57R55)},
      mrnumber = {2944961},
      mrreviewer = {David J. Wraith},
      doi = {10.4310/jdg/1175266204},
      zblnumber = {1257.53053},
      }
  • [Fraser] Go to document A. M. Fraser, "Minimal disks and two-convex hypersurfaces," Amer. J. Math., vol. 124, iss. 3, pp. 483-493, 2002.
    @ARTICLE{Fraser,
      author = {Fraser, Ailana M.},
      title = {Minimal disks and two-convex hypersurfaces},
      journal = {Amer. J. Math.},
      fjournal = {American Journal of Mathematics},
      volume = {124},
      year = {2002},
      number = {3},
      pages = {483--493},
      issn = {0002-9327},
      mrclass = {53C42 (53A10)},
      mrnumber = {1902886},
      mrreviewer = {Maria Helena Noronha},
      doi = {10.1353/ajm.2002.0013},
      zblnumber = {1043.53050},
      }
  • [Greene-Wu] Go to document R. E. Greene and H. Wu, "$C^{\infty }$ convex functions and manifolds of positive curvature," Acta Math., vol. 137, iss. 3-4, pp. 209-245, 1976.
    @ARTICLE{Greene-Wu,
      author = {Greene, R. E. and Wu, H.},
      title = {{$C\sp{\infty }$} convex functions and manifolds of positive curvature},
      journal = {Acta Math.},
      fjournal = {Acta Mathematica},
      volume = {137},
      year = {1976},
      number = {3-4},
      pages = {209--245},
      issn = {0001-5962},
      mrclass = {53C20 (32F99 32C05)},
      mrnumber = {0458336},
      mrreviewer = {H. Jacobowitz},
      doi = {10.1007/BF02392418},
      zblnumber = {0372.53019},
      }
  • [Hamilton1] Go to document R. S. Hamilton, "Three-manifolds with positive Ricci curvature," J. Differential Geom., vol. 17, iss. 2, pp. 255-306, 1982.
    @ARTICLE{Hamilton1,
      author = {Hamilton, Richard S.},
      title = {Three-manifolds with positive {R}icci curvature},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {17},
      year = {1982},
      number = {2},
      pages = {255--306},
      issn = {0022-040X},
      mrclass = {53C25 (35K55 58G30)},
      mrnumber = {0664497},
      mrreviewer = {J. L. Kazdan},
      doi = {10.4310/jdg/1214436922},
      zblnumber = {0504.53034},
      }
  • [Hamilton2] Go to document R. S. Hamilton, "Four-manifolds with positive curvature operator," J. Differential Geom., vol. 24, iss. 2, pp. 153-179, 1986.
    @ARTICLE{Hamilton2,
      author = {Hamilton, Richard S.},
      title = {Four-manifolds with positive curvature operator},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {24},
      year = {1986},
      number = {2},
      pages = {153--179},
      issn = {0022-040X},
      mrclass = {53C25 (58G30)},
      mrnumber = {0862046},
      mrreviewer = {Dennis M. DeTurck},
      doi = {10.4310/jdg/1214440433},
      zblnumber = {0628.53042},
      }
  • [Hamilton3] Go to document R. S. Hamilton, "The Harnack estimate for the Ricci flow," J. Differential Geom., vol. 37, iss. 1, pp. 225-243, 1993.
    @ARTICLE{Hamilton3,
      author = {Hamilton, Richard S.},
      title = {The {H}arnack estimate for the {R}icci flow},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {37},
      year = {1993},
      number = {1},
      pages = {225--243},
      issn = {0022-040X},
      mrclass = {58E11 (53C21 58G11)},
      mrnumber = {1198607},
      mrreviewer = {Wei Yue Ding},
      doi = {10.4310/jdg/1214453430},
      zblnumber = {0804.53023},
      }
  • [Hamilton4] Go to document R. S. Hamilton, "The formation of singularities in the Ricci flow," in Surveys in Differential Geometry, Vol. II, Int. Press, Cambridge, MA, 1995, pp. 7-136.
    @INCOLLECTION{Hamilton4,
      author = {Hamilton, Richard S.},
      title = {The formation of singularities in the {R}icci flow},
      booktitle = {Surveys in Differential Geometry, {V}ol. {II}},
      venue = {{C}ambridge, {MA},
      1993},
      pages = {7--136},
      publisher = {Int. Press, Cambridge, MA},
      year = {1995},
      mrclass = {53C21 (58G30)},
      mrnumber = {1375255},
      mrreviewer = {Man Chun Leung},
      zblnumber = {0867.53030},
      doi = {10.4310/SDG.1993.v2.n1.a2},
      }
  • [Hamilton5] Go to document R. S. Hamilton, "Four-manifolds with positive isotropic curvature," Comm. Anal. Geom., vol. 5, iss. 1, pp. 1-92, 1997.
    @ARTICLE{Hamilton5,
      author = {Hamilton, Richard S.},
      title = {Four-manifolds with positive isotropic curvature},
      journal = {Comm. Anal. Geom.},
      fjournal = {Communications in Analysis and Geometry},
      volume = {5},
      year = {1997},
      number = {1},
      pages = {1--92},
      issn = {1019-8385},
      mrclass = {53C21 (53C20 57R99 58G11)},
      mrnumber = {1456308},
      mrreviewer = {Ben Andrews},
      doi = {10.4310/jdg/1214440433},
      zblnumber = {0892.53018},
      }
  • [Huisken] Go to document G. Huisken, "Ricci deformation of the metric on a Riemannian manifold," J. Differential Geom., vol. 21, iss. 1, pp. 47-62, 1985.
    @ARTICLE{Huisken,
      author = {Huisken, Gerhard},
      title = {Ricci deformation of the metric on a {R}iemannian manifold},
      journal = {J. Differential Geom.},
      fjournal = {Journal of Differential Geometry},
      volume = {21},
      year = {1985},
      number = {1},
      pages = {47--62},
      issn = {0022-040X},
      mrclass = {53C20 (35K99 58D17 58E11 58G11)},
      mrnumber = {0806701},
      mrreviewer = {Dennis M. DeTurck},
      doi = {10.4310/jdg/1214439463},
      zblnumber = {0606.53026},
      }
  • [Ivey] Go to document T. Ivey, "New examples of complete Ricci solitons," Proc. Amer. Math. Soc., vol. 122, iss. 1, pp. 241-245, 1994.
    @ARTICLE{Ivey,
      author = {Ivey, Thomas},
      title = {New examples of complete {R}icci solitons},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the American Mathematical Society},
      volume = {122},
      year = {1994},
      number = {1},
      pages = {241--245},
      issn = {0002-9939},
      mrclass = {53C21 (53C25 58G11)},
      mrnumber = {1207538},
      mrreviewer = {Xiao Wei Peng},
      doi = {10.1090/S0002-9939-1994-1207538-5},
      zblnumber = {0812.53045},
      }
  • [Kleiner-Lott] Go to document B. Kleiner and J. Lott, "Notes on Perelman’s papers," Geom. Topol., vol. 12, iss. 5, pp. 2587-2855, 2008.
    @ARTICLE{Kleiner-Lott,
      author = {Kleiner, Bruce and Lott, John},
      title = {Notes on {P}erelman's papers},
      journal = {Geom. Topol.},
      fjournal = {Geometry \& Topology},
      volume = {12},
      year = {2008},
      number = {5},
      pages = {2587--2855},
      issn = {1465-3060},
      mrclass = {53C44 (57M40)},
      mrnumber = {2460872},
      mrreviewer = {Gérard Besson},
      doi = {10.2140/gt.2008.12.2587},
      zblnumber = {1204.53033},
      }
  • [Margerin1] Go to document C. Margerin, "Pointwise pinched manifolds are space forms," in Geometric Measure Theory and the Calculus of Variations, Amer. Math. Soc., Providence, RI, 1986, vol. 44, pp. 307-328.
    @INCOLLECTION{Margerin1,
      author = {Margerin, Christophe},
      title = {Pointwise pinched manifolds are space forms},
      booktitle = {Geometric Measure Theory and the Calculus of Variations},
      venue = {{A}rcata, {C}alif., 1984},
      series = {Proc. Sympos. Pure Math.},
      volume = {44},
      pages = {307--328},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1986},
      mrclass = {53C20},
      mrnumber = {0840282},
      mrreviewer = {Bang-yen Chen},
      doi = {10.1090/pspum/044/840282},
      zblnumber = {0587.53042},
      }
  • [Margerin2] Go to document C. Margerin, "A sharp characterization of the smooth $4$-sphere in curvature terms," Comm. Anal. Geom., vol. 6, iss. 1, pp. 21-65, 1998.
    @ARTICLE{Margerin2,
      author = {Margerin, Christophe},
      title = {A sharp characterization of the smooth {$4$}-sphere in curvature terms},
      journal = {Comm. Anal. Geom.},
      fjournal = {Communications in Analysis and Geometry},
      volume = {6},
      year = {1998},
      number = {1},
      pages = {21--65},
      issn = {1019-8385},
      mrclass = {53C21 (53C20)},
      mrnumber = {1619838},
      mrreviewer = {Man Chun Leung},
      doi = {10.4310/CAG.1998.v6.n1.a2},
      zblnumber = {0966.53022},
      }
  • [Margerin3] C. Margerin, Déformations de structures Riemanniennes.
    @MISC{Margerin3,
      author = {Margerin, Christophe},
      title = {Déformations de structures {R}iemanniennes},
      note = {unpublished manuscript},
      zblnumber = {},
      sortyear={2018},
      }
  • [Micallef-Moore] Go to document M. J. Micallef and J. D. Moore, "Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes," Ann. of Math. (2), vol. 127, iss. 1, pp. 199-227, 1988.
    @ARTICLE{Micallef-Moore,
      author = {Micallef, Mario J. and Moore, John Douglas},
      title = {Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {127},
      year = {1988},
      number = {1},
      pages = {199--227},
      issn = {0003-486X},
      mrclass = {53C42 (53C21 58E12 58E20)},
      mrnumber = {0924677},
      mrreviewer = {Andrea Ratto},
      doi = {10.2307/1971420},
      zblnumber = {0661.53027},
      }
  • [Nishikawa] Go to document S. Nishikawa, "Deformation of Riemannian metrics and manifolds with bounded curvature ratios," in Geometric Measure Theory and the Calculus of Variations, Amer. Math. Soc., Providence, RI, 1986, vol. 44, pp. 343-352.
    @INCOLLECTION{Nishikawa,
      author = {Nishikawa, Seiki},
      title = {Deformation of {R}iemannian metrics and manifolds with bounded curvature ratios},
      booktitle = {Geometric Measure Theory and the Calculus of Variations},
      venue = {{A}rcata, {C}alif., 1984},
      series = {Proc. Sympos. Pure Math.},
      volume = {44},
      pages = {343--352},
      publisher = {Amer. Math. Soc., Providence, RI},
      year = {1986},
      mrclass = {58D17 (53C20 58E11 58G11)},
      mrnumber = {0840284},
      mrreviewer = {Y. Mutô},
      doi = {10.1090/pspum/044/840284},
      zblnumber = {0589.53046},
      }
  • [Perelman1] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002.
    @MISC{Perelman1,
      author = {Perelman, G.},
      title = {The entropy formula for the {R}icci flow and its geometric applications},
      arxiv = {math/0211159},
      year = {2002},
      zblnumber = {1130.53001},
      }
  • [Perelman2] G. Perelman, Ricci flow with surgery on three-manifolds, 2003.
    @MISC{Perelman2,
      author = {Perelman, G.},
      title = {Ricci flow with surgery on three-manifolds},
      arxiv = {math/0303109},
      year = {2003},
      zblnumber = {1130.53002},
      }
  • [Perelman3] G. Perelman, Finite extinction time for solutions to the Ricci flow on certain three-manifolds, 2003.
    @MISC{Perelman3,
      author = {Perelman, G.},
      title = {Finite extinction time for solutions to the {R}icci flow on certain three-manifolds},
      arxiv = {math/0307245},
      year = {2003},
      zblnumber = {1130.53003},
      }

Authors

Simon Brendle

Columbia University New York, NY