A sharp Schrödinger maximal estimate in $\mathbb {R}^2$

Abstract

We show that $\lim_{t \to 0} e^{it\Delta}f(x) = f(x)$ almost everywhere for all $f \in H^s (\mathbb{R}^2)$ provided that $s>1/3$. This result is sharp up to the endpoint. The proof uses polynomial partitioning and decoupling.

  • [jB] J. Bourgain, "Some new estimates on oscillatory integrals," in Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton Univ. Press, Princeton, NJ, 1995, vol. 42, pp. 83-112.
    @INCOLLECTION{jB,
      author = {Bourgain, Jean},
      title = {Some new estimates on oscillatory integrals},
      booktitle = {Essays on {F}ourier Analysis in Honor of {E}lias {M}. {S}tein},
      venue = {{P}rinceton, {NJ},
      1991},
      series = {Princeton Math. Ser.},
      volume = {42},
      pages = {83--112},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      year = {1995},
      mrclass = {42B15 (42B20 47B38)},
      mrnumber = {1315543},
      mrreviewer = {Gary Sampson},
      zblnumber = {0840.42007},
      }
  • [jB12] J. Bourgain, "On the Schrödinger maximal function in higher dimension," Tr. Mat. Inst. Steklova, vol. 280, iss. Ortogonal\cprime nye Ryady, Teoriya Priblizheniĭ i Smezhnye Voprosy, pp. 53-66, 2013.
    @ARTICLE{jB12,
      author = {Bourgain, Jean},
      title = {On the {S}chrödinger maximal function in higher dimension},
      journal = {Tr. Mat. Inst. Steklova},
      fjournal = {Trudy Matematicheskogo Instituta Imeni V. A. Steklova. Rossiĭskaya Akademiya Nauk},
      volume = {280},
      year = {2013},
      number = {Ortogonal\cprime nye Ryady, Teoriya Priblizheniĭi Smezhnye Voprosy},
      pages = {53--66},
      issn = {0371-9685},
      mrclass = {42B20 (35J10 35Q41)},
      mrnumber = {3241836},
      mrreviewer = {Juan Luis Varona},
      zblnumber = {1291.35253},
      }
  • [jB16] Go to document J. Bourgain, "A note on the Schrödinger maximal function," J. Anal. Math., vol. 130, pp. 393-396, 2016.
    @ARTICLE{jB16,
      author = {Bourgain, Jean},
      title = {A note on the {S}chrödinger maximal function},
      journal = {J. Anal. Math.},
      fjournal = {Journal d'Analyse Mathématique},
      volume = {130},
      year = {2016},
      pages = {393--396},
      issn = {0021-7670},
      mrclass = {42B25 (35Q41)},
      mrnumber = {3574661},
      doi = {10.1007/s11854-016-0042-8},
      url = {http://dx.doi.org/10.1007/s11854-016-0042-8},
      zblnumber = {1361.35151},
      }
  • [BD] Go to document J. Bourgain and C. Demeter, "The proof of the $l^2$ decoupling conjecture," Ann. of Math. (2), vol. 182, iss. 1, pp. 351-389, 2015.
    @ARTICLE{BD,
      author = {Bourgain, Jean and Demeter, Ciprian},
      title = {The proof of the {$l^2$} decoupling conjecture},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {182},
      year = {2015},
      number = {1},
      pages = {351--389},
      issn = {0003-486X},
      mrclass = {42B37 (11E76 46E30 53C40)},
      mrnumber = {3374964},
      mrreviewer = {G. V. Rozenblum},
      doi = {10.4007/annals.2015.182.1.9},
      url = {http://dx.doi.org/10.4007/annals.2015.182.1.9},
      zblnumber = {1322.42014},
      }
  • [lC] L. Carleson, "Some analytic problems related to statistical mechanics," in Euclidean Harmonic Analysis, Springer-Verlag, Berlin, 1980, vol. 779, pp. 5-45.
    @INCOLLECTION{lC,
      author = {Carleson, Lennart},
      title = {Some analytic problems related to statistical mechanics},
      booktitle = {Euclidean Harmonic Analysis},
      venue = {{P}roc. {S}em., {U}niv. {M}aryland, {C}ollege {P}ark, {M}d., 1979},
      series = {Lecture Notes in Math.},
      volume = {779},
      pages = {5--45},
      publisher = {Springer-Verlag, Berlin},
      year = {1980},
      mrclass = {82A05},
      mrnumber = {0576038},
      mrreviewer = {A. J. O'Connor},
      zblnumber = {0425.60091},
      }
  • [DK] B. E. J. Dahlberg and C. E. Kenig, "A note on the almost everywhere behavior of solutions to the Schrödinger equation," in Harmonic Analysis, Springer-Verlag, New York, 1982, vol. 908, pp. 205-209.
    @INCOLLECTION{DK,
      author = {Dahlberg, Björn E. J. and Kenig, Carlos E.},
      title = {A note on the almost everywhere behavior of solutions to the {S}chrödinger equation},
      booktitle = {Harmonic Analysis},
      venue = {{M}inneapolis, {M}inn., 1981},
      series = {Lecture Notes in Math.},
      volume = {908},
      pages = {205--209},
      publisher = {Springer-Verlag, New York},
      year = {1982},
      mrclass = {35B99 (35J10)},
      mrnumber = {0654188},
      mrreviewer = {Denise Huet},
      zblnumber = {0519.35022},
      }
  • [DG] C. Demeter and S. Guo, Schrödinger maximal function estimates via the pseudoconformal transformation, 2016.
    @MISC{DG,
      author = {Demeter, C. and Guo, S.},
      title = {Schrödinger maximal function estimates via the pseudoconformal transformation},
      arxiv = {1608.07640},
      year = {2016},
      zblnumber = {},
      }
  • [lGnK] Go to document L. Guth and N. H. Katz, "On the Erdős distinct distances problem in the plane," Ann. of Math. (2), vol. 181, iss. 1, pp. 155-190, 2015.
    @ARTICLE{lGnK,
      author = {Guth, Larry and Katz, Nets Hawk},
      title = {On the {E}rdős distinct distances problem in the plane},
      journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {181},
      year = {2015},
      number = {1},
      pages = {155--190},
      issn = {0003-486X},
      mrclass = {52C10},
      mrnumber = {3272924},
      mrreviewer = {Shakhar Smorodinsky},
      doi = {10.4007/annals.2015.181.1.2},
      url = {http://dx.doi.org/10.4007/annals.2015.181.1.2},
      zblnumber = {1310.52019},
      }
  • [lG] Go to document L. Guth, "A restriction estimate using polynomial partitioning," J. Amer. Math. Soc., vol. 29, iss. 2, pp. 371-413, 2016.
    @ARTICLE{lG,
      author = {Guth, Larry},
      title = {A restriction estimate using polynomial partitioning},
      journal = {J. Amer. Math. Soc.},
      fjournal = {Journal of the American Mathematical Society},
      volume = {29},
      year = {2016},
      number = {2},
      pages = {371--413},
      issn = {0894-0347},
      mrclass = {42B20},
      mrnumber = {3454378},
      mrreviewer = {Bl. Sendov},
      doi = {10.1090/jams827},
      url = {http://dx.doi.org/10.1090/jams827},
      zblnumber = {1342.42010},
      }
  • [lG16] L. Guth, Restriction estimates using polynomial partitioning II, 2016.
    @misc{lG16,
      author = {Guth, Larry},
      title = {Restriction estimates using polynomial partitioning {II}},
      year={2016},
      arxiv={1603.04250},
     }
  • [LL] Go to document M. Lacey and X. Li, "On a conjecture of E. M. Stein on the Hilbert transform on vector fields," Mem. Amer. Math. Soc., vol. 205, iss. 965, p. viii, 2010.
    @ARTICLE{LL,
      author = {Lacey, Michael and Li, Xiaochun},
      title = {On a conjecture of {E}. {M}. {S}tein on the {H}ilbert transform on vector fields},
      journal = {Mem. Amer. Math. Soc.},
      fjournal = {Memoirs of the American Mathematical Society},
      volume = {205},
      year = {2010},
      number = {965},
      pages = {viii+72},
      issn = {0065-9266},
      isbn = {978-0-8218-4540-0},
      mrclass = {42A50 (42B25)},
      mrnumber = {2654385},
      mrreviewer = {Steven George Krantz},
      doi = {10.1090/S0065-9266-10-00572-7},
      url = {http://dx.doi.org/10.1090/S0065-9266-10-00572-7},
      zblnumber = {1190.42005},
      }
  • [LT1] Go to document M. Lacey and C. Thiele, "$L^p$ estimates on the bilinear Hilbert transform for $2<p<\infty$," Ann. of Math. (2), vol. 146, iss. 3, pp. 693-724, 1997.
    @ARTICLE{LT1,
      author = {Lacey, Michael and Thiele, Christoph},
      title = {{$L^p$} estimates on the bilinear {H}ilbert transform for {$2   journal = {Ann. of Math. (2)},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {146},
      year = {1997},
      number = {3},
      pages = {693--724},
      issn = {0003-486X},
      mrclass = {42A50 (42B20)},
      mrnumber = {1491450},
      mrreviewer = {Loukas Grafakos},
      doi = {10.2307/2952458},
      url = {http://dx.doi.org/10.2307/2952458},
      zblnumber = {0914.46034},
      }
  • [sL] Go to document S. Lee, "On pointwise convergence of the solutions to Schrödinger equations in $\Bbb R^2$," Int. Math. Res. Not., vol. 2006, iss. 22, p. 21, 2006.
    @ARTICLE{sL,
      author = {Lee, Sanghyuk},
      title = {On pointwise convergence of the solutions to {S}chrödinger equations in {$\Bbb R^2$}},
      journal = {Int. Math. Res. Not.},
      fjournal = {International Mathematics Research Notices},
      volume = {2006},
      number = {22},
      year = {2006},
      note = {article \hbox{I}D 32597},
      pages = {21 pp.},
      issn = {1073-7928},
      mrclass = {35Q40 (35J10)},
      mrnumber = {2264734},
      mrreviewer = {Mathieu Lewin},
      zblnumber = {1131.35306},
      doi = {10.1155/IMRN/2006/32597},
      }
  • [LR] R. Lucà and K. M. Rogers, An improved necessary condition for the Schrödinger maximal estimate, 2015.
    @MISC{LR,
      author = {Lucà, Renato and Rogers, Keith M},
      title = {An improved necessary condition for the {S}chrödinger maximal estimate},
      arxiv = {1506.05325v1},
      year = {2015},
      zblnumber = {},
      }
  • [LR17] Go to document R. Lucà and K. M. Rogers, "Coherence on fractals versus pointwise convergence for the Schrödinger equation," Comm. Math. Phys., vol. 351, iss. 1, pp. 341-359, 2017.
    @ARTICLE{LR17,
      author = {Lucà, Renato and Rogers, Keith M.},
      title = {Coherence on fractals versus pointwise convergence for the {S}chrödinger equation},
      journal = {Comm. Math. Phys.},
      fjournal = {Communications in Mathematical Physics},
      volume = {351},
      year = {2017},
      number = {1},
      pages = {341--359},
      issn = {0010-3616},
      mrclass = {35Q40 (28A80)},
      mrnumber = {3613507},
      doi = {10.1007/s00220-016-2722-8},
      url = {http://dx.doi.org/10.1007/s00220-016-2722-8},
      zblnumber = {06702029},
      }
  • [MVV] Go to document A. Moyua, A. Vargas, and L. Vega, "Schrödinger maximal function and restriction properties of the Fourier transform," Internat. Math. Res. Notices, iss. 16, pp. 793-815, 1996.
    @ARTICLE{MVV,
      author = {Moyua, A. and Vargas, A. and Vega, L.},
      title = {Schrödinger maximal function and restriction properties of the {F}ourier transform},
      journal = {Internat. Math. Res. Notices},
      fjournal = {International Mathematics Research Notices},
      year = {1996},
      number = {16},
      pages = {793--815},
      issn = {1073-7928},
      mrclass = {42B25 (35B10 35J10)},
      mrnumber = {1413873},
      mrreviewer = {Cristian E. GutiÂ\copyright{}rrez},
      doi = {10.1155/S1073792896000499},
      url = {http://dx.doi.org/10.1155/S1073792896000499},
      zblnumber = {0868.35024},
      }
  • [Rogers] Go to document K. M. Rogers, "A local smoothing estimate for the Schrödinger equation," Adv. Math., vol. 219, iss. 6, pp. 2105-2122, 2008.
    @ARTICLE{Rogers,
      author = {Rogers, Keith M.},
      title = {A local smoothing estimate for the {S}chrödinger equation},
      journal = {Adv. Math.},
      fjournal = {Advances in Mathematics},
      volume = {219},
      year = {2008},
      number = {6},
      pages = {2105--2122},
      issn = {0001-8708},
      mrclass = {35J10 (35B45 35L05 35Q40)},
      mrnumber = {2456277},
      mrreviewer = {Thomas Duyckaerts},
      doi = {10.1016/j.aim.2008.08.008},
      url = {http://dx.doi.org/10.1016/j.aim.2008.08.008},
      zblnumber = {1157.35326},
      }
  • [pS] Go to document P. Sjölin, "Regularity of solutions to the Schrödinger equation," Duke Math. J., vol. 55, iss. 3, pp. 699-715, 1987.
    @ARTICLE{pS,
      author = {Sjölin, Per},
      title = {Regularity of solutions to the {S}chrödinger equation},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {55},
      year = {1987},
      number = {3},
      pages = {699--715},
      issn = {0012-7094},
      mrclass = {35B65 (35D10 35J10)},
      mrnumber = {0904948},
      mrreviewer = {Ya. A. RoÄ-tberg},
      doi = {10.1215/S0012-7094-87-05535-9},
      url = {http://dx.doi.org/10.1215/S0012-7094-87-05535-9},
      zblnumber = {0631.42010},
      }
  • [TV] Go to document T. Tao and A. Vargas, "A bilinear approach to cone multipliers. I. Restriction estimates," Geom. Funct. Anal., vol. 10, iss. 1, pp. 185-215, 2000.
    @ARTICLE{TV,
      author = {Tao, T. and Vargas, A.},
      title = {A bilinear approach to cone multipliers. {I}. {R}estriction estimates},
      journal = {Geom. Funct. Anal.},
      fjournal = {Geometric and Functional Analysis},
      volume = {10},
      year = {2000},
      number = {1},
      pages = {185--215},
      issn = {1016-443X},
      mrclass = {42B15 (42B25)},
      mrnumber = {1748920},
      mrreviewer = {Andreas Seeger},
      doi = {10.1007/s000390050006},
      url = {http://dx.doi.org/10.1007/s000390050006},
      zblnumber = {0949.42012},
      }
  • [lV] Go to document L. Vega, "Schrödinger equations: pointwise convergence to the initial data," Proc. Amer. Math. Soc., vol. 102, iss. 4, pp. 874-878, 1988.
    @ARTICLE{lV,
      author = {Vega, Luis},
      title = {Schrödinger equations: pointwise convergence to the initial data},
      journal = {Proc. Amer. Math. Soc.},
      fjournal = {Proceedings of the American Mathematical Society},
      volume = {102},
      year = {1988},
      number = {4},
      pages = {874--878},
      issn = {0002-9939},
      mrclass = {35J10},
      mrnumber = {0934859},
      mrreviewer = {E. MÂ${}^1\!/\!_4$ller-Pfeiffer},
      doi = {10.2307/2047326},
      url = {http://dx.doi.org/10.2307/2047326},
      zblnumber = {0654.42014},
      }

Authors

Xiumin Du

University of Illinois at Urbana-Champaign, Urbana IL

Current address:

Institute for Advanced Study, Princeton, NJ Larry Guth

Massachusetts Institute of Technology, Cambridge, MA

Xiaochun Li

University of Illinois at Urbana-Champaign, Urbana IL