Abstract
We show that $\lim_{t \to 0} e^{it\Delta}f(x) = f(x)$ almost everywhere for all $f \in H^s (\mathbb{R}^2)$ provided that $s>1/3$. This result is sharp up to the endpoint. The proof uses polynomial partitioning and decoupling.
We show that $\lim_{t \to 0} e^{it\Delta}f(x) = f(x)$ almost everywhere for all $f \in H^s (\mathbb{R}^2)$ provided that $s>1/3$. This result is sharp up to the endpoint. The proof uses polynomial partitioning and decoupling.