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A sharp Schrödinger
maximal estimate in R2

By Xiumin Du, Larry Guth, and Xiaochun Li

Abstract

We show that limt→0 e
it∆f(x) = f(x) almost everywhere for all f ∈

Hs(R2) provided that s > 1/3. This result is sharp up to the endpoint.

The proof uses polynomial partitioning and decoupling.

1. Introduction

The solution to the free Schrödinger equation

(1.1)

iut −∆u = 0, (x, t) ∈ Rn × R,
u(x, 0) = f(x), x ∈ Rn

is given by

eit∆f(x) = (2π)−n
∫
ei(x·ξ+t|ξ|

2)f̂(ξ) dξ.

We consider the following problem posed by Carleson in [5]: determine

the optimal s for which limt→0 e
it∆f(x) = f(x) almost everywhere whenever

f ∈ Hs(Rn). Our main result is the following:

Theorem 1.1. For every f ∈ Hs(R2) with s > 1/3, limt→0 e
it∆f(x) =

f(x) almost everywhere.

Recently, Bourgain [3] gave examples showing that such convergence can

fail for any s < 1/3, and so Theorem 1.1 is sharp up to the endpoint.

This problem originates from Carleson [5], who proved convergence for

s ≥ 1/4 when n = 1. Dahlberg and Kenig [6] showed that the convergence

does not hold for s < 1/4 in any dimension. Sjölin [18] and Vega [20] proved

independently the convergence for s > 1/2 in all dimensions. The sufficient

condition for pointwise convergence was improved by Bourgain [1], Moyua-

Vargas-Vega [16], and Tao-Vargas [19]. The best known sufficient condition
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in dimension n = 2 was s > 3/8, due to Lee [13] using Tao-Wolff’s bilinear

restriction method. In general dimension n ≥ 2, Bourgain [2] showed the

convergence for s > 1/2 − 1/(4n), using multilinear methods. When n = 2,

this approach gives a different proof of Lee’s result for s > 3/8.

For many years, it had seemed plausible that convergence actually holds

for s > 1/4 in every dimension. Only in 2012, Bourgain [2] gave a coun-

terexample showing that this is false in sufficiently high dimensions. Improved

counterexamples were given by Lucá-Rogers [14], [15] and Demeter-Guo [7].

Very recently, in [3], Bourgain gave counterexamples showing that convergence

can fail if s < n
2(n+1) . In particular, for n = 2, convergence can fail if s < 1/3.

We will follow the standard approach by bounding the associated maximal

function. We use Bn(c, r) to represent a ball centered at c with radius r in Rn,

and we use χE to denote the characteristic function of any measurable set E.

For brevity, B(c, r) represents B2(c, r), a ball in R2.

Theorem 1.2. For any s > 1/3, the following bound holds : for any

function f ∈ Hs(R2),

(1.2)

∥∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥∥
L3(B(0,1))

≤ Cs‖f‖Hs(R2).

If the support of f̂ lies in A(R) = {ξ ∈ R2 : |ξ| ∼ R}, then Theorem 1.2

boils down to the bound

(1.3)

∥∥∥∥∥ sup
0<t≤1

|eit∆f |
∥∥∥∥∥
L3(B(0,1))

≤ CεR1/3+ε‖f‖L2 .

After parabolic rescaling, this bound reduces to the following estimate for

functions f with f̂ supported in A(1).

Theorem 1.3. For any ε > 0, there exists a constant Cε such that

(1.4)
∥∥∥ sup

0<t≤R
|eit∆f |

∥∥∥
L3(B(0,R))

≤ CεRε‖f‖2

holds for all R ≥ 1 and all f with suppf̂ ⊂ A(1) = {ξ ∈ R2 : |ξ| ∼ 1}.

Here is an outline of the proof of Theorem 1.3. The proof uses polynomial

partitioning. This technique was introduced by Nets Katz and the second

author in [10], where it was applied to incidence geometry. In [8] and [9],

the second author applied this technique to restriction estimates in Fourier

analysis. Polynomial partitioning is a divide and conquer technique. We begin

by finding a polynomial whose zero set divides some object of interest into

equal pieces. For instance, in [10], it was proven that for any finite volume set

E ⊂ R3 and any degree D ≥ 1, there is a polynomial P of degree at most D

so that R3 \ Z(P ) is a union of ∼ D3 disjoint open sets Oi, and the volumes
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|Oi ∩ E| are all equal. Hence for any i, |E| . D3|Oi ∩ E|. In our paper, we

choose the polynomial P to behave well with respect to the LpxL
q
t norm of

eit∆f . For any p ≤ q < ∞ and any degree D ≥ 1, we show that there is a

polynomial P of degree at most D so that R3\Z(P ) is a union of ∼ D3 disjoint

open sets Oi, and for any i,

(1.5) ‖eit∆f‖p
LpxL

q
t (B(0,R)×[0,R])

. D3‖χOieit∆f‖
p
LpxL

q
t (B(0,R)×[0,R])

.

(To prove Theorem 1.3, we will use q finite but very large and p close to 3.

The degree D will be a tiny power of R, so D is large compared to 1, but very

small compared to R.)

Breaking spacetime into cells Oi is useful because of the way it interacts

with the wave packet decomposition of eit∆f , which we now recall. We de-

compose f into pieces that are localized in both physical space and frequency

space. We tile the physical space B(0, R) with R1/2-cubes ν, and we tile

the frequency space B(0, 1) with R−1/2-cubes θ. Then we decompose f as

f =
∑
θ,ν fθ,ν , where fθ,ν is essentially supported on ν in physical space and

essentially supported on θ in frequency space. Each function eit∆fθ,ν is called

a wave packet. The restriction of eit∆fθ,ν to the domain B(0, R) × [0, R] is

essentially supported on a tube Tθ,ν of radius R1/2 and length R. This tube in-

tersects the time slice {t = 0} at ν, and the direction of the tube depends on θ.

A key fact in the applications of polynomial partitioning in combinatorics

is that a line can enter at most D+ 1 of the cells Oi. To see this, we note that

the polynomial P can vanish at most D times along a line, unless it vanishes

on the whole line, and so a line can cross Z(P ) at most D times. A wave

packet eit∆fθ,ν is supported on a tube Tθ,ν of radius R1/2. This tube can

potentially enter many or even all the cells Oi, but it cannot penetrate deeply

into very many cells. We define W to be the R1/2-neighborhood of Z(P ) in

B(0, R) × [0, R], and we define O′i to be Oi \W . Now the central line of Tθ,ν
can enter at most D+ 1 of the original cells Oi, and so the tube Tθ,ν can enter

at most D+1 of the smaller cells O′i. In other words, each wave packet eit∆fθ,ν
is essentially supported on the union of W and D + 1 cells O′i.

We can use induction to study eit∆f on each smaller cell O′i. To study

eit∆f on a cell O′i, we only need to take account of those wave packets that

intersect O′i. Therefore, we define fi to be the sum of fθ,ν over those pairs

(θ, ν) for which Tθ,ν enters O′i. On the cell O′i, e
it∆f is essentially equal to

eit∆fi. We can control the L2 norms of the fi by using the fact that fθ,ν
are (approximately) orthogonal and the fact that each tube Tθ,ν enters . D

smaller cells O′i. In particular, we will prove that∑
i

‖fi‖22 . D‖f‖22.
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We can now use induction to control eit∆f on each cell O′i. In this way, we

get good control of the contribution to ‖eit∆f‖LpxLqt (B(0,R)×[0,R]) coming from

the union of all smaller cells O′i. It remains to control the contribution coming

from W .

The most difficult scenario is the following: eit∆f is a sum of wave packets

eit∆fθ,ν for which the tubes Tθ,ν are all contained in W . The polynomial

partitioning method allows us to reduce the original problem to this special

scenario. This scenario indeed occurs in Bourgain’s example in [3]. Let us take

a moment to describe this example.

In the example from [3], the zero set Z(P ) can be taken to be a plane

t = x1. The set W is a planar slab of thickness R1/2. The solution eit∆f

is essentially supported in W . On the plane t = x1, eit∆f is a solution of

the Schrödinger equation in 1 + 1 dimensions. In other words, we can choose

coordinates (y, s) on this plane and an initial data g so that eis∆g is essentially

equal to eit∆f on the plane. Also, |eit∆f(x1, x2)| is approximately constant as

we vary x1 within the slab W . The initial data is chosen so that |eis∆g(y)|
is large on a set X of ∼ R3/2 unit squares in [0, R] × [0, R]. It follows that

|eit∆f(x)| is large on a set of ∼ R3/2 3-dimensional rectangles of dimensions

R1/2×1×1 in B(0, R)×[0, R]. Moreover, the projections of these rectangles are

roughly disjoint, and so they cover a positive proportion of B(0, R). Therefore,

sup0<t<R |eit∆f(x)| is large on a positive proportion of B(0, R).

In this construction, the set X needs to be fairly sparse because the projec-

tions of the R1/2×1×1 rectangles need to be disjoint in B(0, R). In particular,

there can be at most R1/2 unit squares of X in any R1/2-ball in [0, R]× [0, R].

In the example of [3], |eis∆g| ∼ R−5/12‖g‖L2([0,R]) on the set X. During our

proof, we will need to show that this quantity R−5/12‖g‖L2 could not be any

larger. In rough terms, we need to show that a solution eis∆g cannot focus too

much on a set X that is sparse and spread out.

We will prove such bounds using the l2 decoupling theorem of Bourgain

and Demeter [4]. We think of these bounds as refinements of the Strichartz

inequality. Here is one such estimate:

Theorem 1.4. Suppose that g : R → C has frequency supported in

B1(0, 1). Suppose that Q1, Q2, . . . are lattice R1/2-cubes in [0, R]2, so that

‖eit∆g‖L6(Qj) is essentially constant in j.

Suppose that these cubes are arranged in horizontal strips of the form R ×
{t0, t0 +R1/2} and that each strip contains ∼ σ cubes Qj . Let Y denote

⋃
j Qj .

Then for any ε > 0,

‖eit∆g‖L6(Y ) ≤ CεRεσ−1/3‖g‖L2 .
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Figure 1. ∼ σ many cubes in a horizontal strip.

The Strichartz inequality says that ‖eit∆g‖L6([0,R]2) . ‖g‖L2 . Theorem 1.4

says that we get a stronger estimate when the solution eit∆g is spread out

in space. To get a sense of what the theorem says, consider the following

example. Suppose that eit∆g is a sum of σ wave packets supported on dis-

joint R1/2 × R rectangles. We can take Y to be the union of these rect-

angles. By scaling, we can suppose that |eit∆g| ∼ 1 on these σ rectan-

gles and negligibly small elsewhere, and then a direct calculation shows that

‖eit∆g‖L6(Y ) ∼ ‖eit∆g‖L6([0,R]2) ∼ σ−1/3‖g‖L2([0,R]). So Theorem 1.4 roughly

says that if eit∆g is “as spread out as” σ disjoint wave packets, then its L6

norm cannot be much bigger than the L6 norm of σ disjoint wave packets.

This theorem helps us to control the size of eit∆g on a sparse, spread

out set X as above. Suppose that the function eit∆g is evenly spread out on

[0, R]2 in the sense that ‖eit∆g‖L6(Q) is roughly constant among all R1/2-boxes

Q ⊂ [0, R]2. In this case, we can take σ = R1/2 in Theorem 1.4, which gives

‖eit∆g‖L6([0,R]2) . R
−1/6+ε‖g‖L2 .

In the example from [3], X contains ∼ R1/2 unit squares in each R1/2-box of

[0, R]2, and each of these boxes indeed has a roughly equal value of ‖eit∆g‖L6(Q).

If |eit∆g| ∼ H on the set X, then Theorem 1.4 gives

H|X|1/6 . ‖eit∆g‖L6([0,R]2) . R
−1/6+ε‖g‖L2 .

Since |X| ∼ R3/2, we get the bound H . R−5/12+ε‖g‖L2 . This upper bound

matches the behavior of the example from [3] up to a factor Rε.

Theorem 1.4 lets us deal with the case that Z(P ) is a plane. We need to

deal with the more general case that Z(P ) is a possibly curved surface of degree

at most D. We prove a more general version of Theorem 1.4, Theorem 7.1,

which covers the case of wave packets concentrated into a curved surface.

Acknowledgement. The second author is supported by a Simons Investi-

gator grant.
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2. Main inductive theorem

Here we state a slightly more complicated theorem, which will imply all

the theorems in the introduction. Our proof uses induction, and we need the

slightly more complicated formulation to make all the inductions work. First

of all, the polynomial partitioning involves a topological argument, and the

topological argument does not work well with the sup appearing in our maximal

function. Therefore, we replace the norm LpxL
∞
t with the norm LpxL

q
t for q very

large. Another technical issue has to do with parabolic rescaling. Suppose that

f̂ is supported in a smaller ball B(ξ0,M
−1) ⊂ B(0, 1). In this situation, one

can often apply parabolic rescaling to reduce the problem at hand to a problem

on a smaller ball in physical space. However, the change of coordinates in such

a parabolic rescaling does not interact well with mixed norms of the form LpxL
q
t .

Therefore, we instead do induction on the size of the ball B(ξ0,M
−1), proving

slightly stronger bounds when the ball is small. Taking account of these small

issues, we formulate our result in the following way:

Theorem 2.1. For p > 3, for any ε > 0, there exists a constant Cε such

that for any q > 1/ε4,

(2.6)
∥∥∥eit∆f∥∥∥

LpxL
q
t (B(0,R)×[0,R])

≤ Cp,εM−ε
2
Rε‖f‖2

holds for all R ≥ 1, any ξ0 ∈ B2(0, 1), any M ≥ 1 and all f with suppf̂ ⊂
B2(ξ0,M

−1).

Let us quickly explain how Theorem 2.1 implies the theorems in the in-

troduction. We note that by the dominated convergence theorem, we have∥∥∥ sup
0<t≤R

|eit∆f |
∥∥∥
Lp(B(0,R))

= lim
q→∞

∥∥∥eit∆f∥∥∥
LpxL

q
t (B(0,R)×[0,R])

for any L2-function f with compact Fourier support or any Schwartz func-

tion f . Therefore, Theorem 2.1 implies that for any R ≥ 1 and any f with the

support of f̂ ⊂ B(0, 1), and for any p > 3, we have

(2.7)
∥∥∥eit∆f∥∥∥

LpxL
∞
t (B(0,R)×[0,R])

≤ Cp,εRε‖f‖2.

So far we assume p > 3. But it is straightforward to prove a bound of the form

‖eit∆f‖L2
xL
∞
t (B(0,R)×[0,R]) ≤ RO(1)‖f‖2.

Combining these bounds using Hölder’s inequality, we see that equation (2.7)

holds for p = 3 as well. This establishes Theorem 1.3.

We write A / B if A ≤ CεR
εB for any ε > 0. Suppose now that ĝ is

supported in A(R). To prove Theorem 1.2, we want to show that

(2.8)

∥∥∥∥∥ sup
0<t≤1

|eit∆g|
∥∥∥∥∥
L3(B(0,1))

/ R1/3‖g‖L2 .
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After parabolic rescaling, we are led to a function f with f̂ supported in

A(1), and we need to show the bound∥∥∥∥∥ sup
0<t≤R2

|eit∆f |
∥∥∥∥∥
L3(B(0,R))

/ ‖f‖L2 .

But applying Theorem 1.3 with R2 in place of R gives∥∥∥∥∥ sup
0<t≤R2

|eit∆f |
∥∥∥∥∥
L3(B(0,R2))

/ ‖f‖L2 .

This implies equation (2.8). Now, given s > 1/3 and f ∈ Hs(R2), we de-

compose f in a Littlewood-Paley decomposition: f =
∑
k≥0 fk where f̂0 is

supported in B(0, 1) and f̂k is supported in A(2k) for k ≥ 1. We have

‖fk‖L2 . 2−ks‖f‖Hs . Applying (2.8) to each fk and using the triangle in-

equality, we get Theorem 1.2.

Theorem 1.2 implies Theorem 1.1 by a standard smooth approximation

argument, which we briefly recall. If f is Schwartz, then it is well known that

eit∆f(x) → f(x) uniformly in x. Schwartz functions are dense in Hs, and so

we can write f = g + h, where g is Schwartz and ‖h‖Hs < ε100. Since g is

Schwartz, we can find a time tε > 0 so that |eit∆g(x)− g(x)| < ε for all x and

all 0 ≤ t ≤ tε. On the other hand, by the maximal estimate in Theorem 1.2,

|eit∆h(x)| < ε for all 0 ≤ t ≤ 1 and all x in B(0, 1)\Xε, where |Xε| < ε. Taking

a sequence of ε → 0 exponentially fast, and doing a little measure theory, it

follows that eit∆f(x) → f(x) for almost every x ∈ B(0, 1). The same applies

to any other ball, and we see that eit∆f(x)→ f(x) for almost every x ∈ R2.

We also remark that the local bound (1.2) from Theorem 1.2 can be

used to derive immediately a global estimate in L3(R2) for the maximal func-

tion sup0<t≤1 |eit∆f |, following from Theorem 10 in [17]. We are indebted to

K. Rogers for pointing this out to us.

In the rest of the paper, we prove Theorem 2.1. In Section 3, we review

polynomial partitioning, and in Section 4, we review wave packet decomposi-

tion. Then we begin the proof of Theorem 2.1 in Section 5.

3. Polynomial partitioning

First we state a variation of the ham-sandwich theorem, which intro-

duces a polynomial P in the polynomial ring R[x, t] such that the variety

Z(P ) = {(x, t) ∈ Rn × R : P (x, t) = 0} bisects every member in a collection

of some quantities. It relies on Borsuk-Ulam Theorem, which asserts that if

F : SN −→ RN is a continuous function, where SN is the N -dimensional unit

sphere, then there exists a point v ∈ SN with F (v) = F (−v).
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Lemma 3.1. If W1,W2, . . . ,WN ∈ L1
xL

r
t (Rn × R), 1 ≤ r < ∞, then there

exists a nonzero polynomial P on Rn×R of degree ≤ cnN1/(n+1) such that for

each Wj , ∥∥∥χ{P>0}Wj

∥∥∥
L1
xL

r
t (Rn×R)

=
∥∥∥χ{P<0}Wj

∥∥∥
L1
xL

r
t (Rn×R)

.

Proof. Let V be the vector space of polynomials on Rn × R of degree at

most D; then

DimV =

Ç
D + n+ 1

n+ 1

å
∼n Dn+1.

So we can choose D ∼ N1/(n+1) such that DimV ≥ N + 1, and without loss

of generality we can assume DimV = N + 1 and identify V with RN+1. We

define a function G as follows:

SN ⊆ V \{0} G−−→ RN

P 7→ {Gj(P )}Nj=1,

where

Gj(P ) :=
∥∥∥χ{P>0}Wj

∥∥∥
L1
xL

r
t (Rn×R)

−
∥∥∥χ{P<0}Wj

∥∥∥
L1
xL

r
t (Rn×R)

;

it is obvious that G(−P ) = −G(P ). Assume that the function G is contin-

uous. Then the Borsuk-Ulam Theorem tells us that there exists P ∈ SN ⊆
V \{0} with G(P ) = G(−P ), hence G(P ) = 0, and P obeys the conclusion of

Lemma 3.1. It remains to check the continuity of the functions Gj on V \{0}.
Suppose that Pk → P in V \{0}. Note that

|Gj(Pk)−Gj(P )| ≤ 2
∥∥∥χ{PkP≤0}Wj

∥∥∥
L1
xL

r
t (Rn×R)

,

while Pk → P implies that⋂
k0

⋃
k≥k0

{(x, t) : Pk(x, t) · P (x, t) ≤ 0} ⊆ P−1(0).

By the dominated convergence theorem,

lim
k0→∞

∥∥∥χ∪k≥k0
{PkP≤0}Wj

∥∥∥
L1
xL

r
t (Rn×R)

=
∥∥∥χ{P−1(0)}Wj

∥∥∥
L1
xL

r
t (Rn×R)

= 0.

This proves that limk→∞ |Gj(Pk)−Gj(P )| = 0, showing that Gj is continuous

on V \{0}. �

By applying Lemma 3.1 repeatedly, we get the following polynomial par-

titioning result:

Theorem 3.2. If W ∈L1
xL

r
t (Rn×R)\{0}, 1≤r<∞, then for each D, there

exists a nonzero polynomial P of degree at most D such that (Rn × R)\Z(P )

is a union of ∼n Dn+1 disjoint open sets Oi, and for each i, we have∥∥∥W∥∥∥
L1
xL

r
t (Rn×R)

≤ cnDn+1
∥∥∥χOiW∥∥∥

L1
xL

r
t (Rn×R)

.
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Proof. By Lemma 3.1, we obtain a polynomial P1 of degree . 1 such that∥∥∥χ{P1>0}W
∥∥∥
L1
xL

r
t (Rn×R)

=
∥∥∥χ{P1<0}W

∥∥∥
L1
xL

r
t (Rn×R)

.

Next, we let W+ := χ
{P1>0}W and W− := χ

{P1<0}W , and by Lemma 3.1 again

we obtain a polynomial P2 of degree . 21/(n+1) such that∥∥∥χ{P2>0}Wj

∥∥∥
L1
xL

r
t (Rn×R)

=
∥∥∥χ{P2<0}Wj

∥∥∥
L1
xL

r
t (Rn×R)

for j = +,−. Continuing inductively, we construct polynomials P1, P2, . . . , Ps.

Let P :=
∏s
k=1 Pk. The sign conditions of the polynomials cut (Rn×R)\Z(P )

into 2s cells Oi, and by construction and triangle inequality we have that, for

each i, ∥∥∥W∥∥∥
L1
xL

r
t (Rn×R)

≤ 2s
∥∥∥χOiW∥∥∥

L1
xL

r
t (Rn×R)

.

By construction, degPk . 2(k−1)/(n+1), therefore, degP ≤ cn2s/(n+1). We can

choose s such that cn2s/(n+1) ∈ [D/2, D]. Then degP ≤ D, and the number

of cells is 2s ∼n Dn+1. �

Definition 3.3. We say that a polynomial P is nonsingular if ∇P (z) 6= 0

for each point z in Z(P ).

It is well known that nonsingular polynomials are dense in the space of all

polynomials; cf. Lemma 1.5 in [8]. Following from the density of nonsingular

polynomials and the proof of Theorem 3.2, we can assume that the polynomial

in the partitioning theorem enjoys nice geometric properties.

Theorem 3.4. If W ∈L1
xL

r
t (Rn×R)\{0}, 1≤r<∞, then for each D, there

exists a nonzero polynomial P of degree at most D such that (Rn × R)\Z(P )

is a union of ∼n Dn+1 disjoint open sets Oi and for each i, we have∥∥∥W∥∥∥
L1
xL

r
t (Rn×R)

≤ cnDn+1
∥∥∥χOiW∥∥∥

L1
xL

r
t (Rn×R)

.

Moreover, the polynomial P is a product of distinct nonsingular polynomials.

4. Wave packet decomposition

We focus on the dimension n = 2 in the rest of the paper.

A (dyadic) rectangle in R2 is a product of (dyadic) intervals with respect

to given coordinate axes of R2. A rectangle θ =
∏2
j=1 θj in frequency space

and a rectangle ν =
∏2
j=1 νj in physical space are said to be dual if |θj ||νj | = 1

for j = 1, 2. We say that (θ, ν) is a tile if it is a pair of dual (dyadic) rectangles.

The dyadic condition is not essential in our decomposition.

Let ϕ be a Schwartz function from R to R whose Fourier transform is

nonnegative, supported in a small interval, of radius κ (κ is a fixed small
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constant), about the origin in R, and identically 1 on another smaller interval

around the origin. For a (dyadic) rectangular box θ =
∏2
j=1 θj , set

(4.1) ϕ̂θ(ξ1, ξ2) =
2∏
j=1

1

|θj |1/2
ϕ̂

Ç
ξj − c(θj)
|θj |

å
.

Here c(θj) is the center of the interval θj , and hence c(θ) = (c(θ1), c(θ2))

is the center of the rectangle θ. We also note that ‖ϕθ‖L2 ∼ 1. We let c(ν)

denote the center of ν. For a tile (θ, ν) and x ∈ R2, we define

(4.2) ‘ϕθ,ν(ξ) = e2πic(ν)·ξϕ̂θ(ξ).

We say that two tiles (θ, ν) and (θ′, ν ′) have the same dimensions if |θj | = |θ′j |
for all j, which then implies that |νj | = |ν ′j | for all j. Let T be a collection

of all tiles with fixed dimensions and coordinate axes. Then for any Schwartz

function f from R2 to R, we have the following representation:

(4.3) f(x) = cκ
∑

(θ,ν)∈T
fθ,ν := cκ

∑
(θ,ν)∈T

〈f, ϕθ,ν〉ϕθ,ν(x),

where cκ is an absolute constant. This representation can be proved directly

(see [11]) or by employing inductively the one-dimensional result in [12].

We will only use tiles (θ, ν) where θ is an R−
1
2 -cube in frequency space

and ν is an R
1
2 -cube in physical space. Indeed, let θ be an R−

1
2 -cube (or ball)

in B(0, 1) ⊂ R2. Let Tθ be a collection of all tiles (θ′, ν) such that ν’s are

R
1
2 -cubes and θ′ = θ. Then for any Schwartz function f with suppf̂ ⊂ B(0, 1),

we have

(4.4) f(x) = cκ
∑
θ

∑
(θ′,ν)∈Tθ

〈f, ϕθ′,ν〉ϕθ′,ν(x).

Here θ’s range over all possible cubes in suppf̂ . We use T to denote ∪θTθ. It

is clear that

(4.5)
∑

(θ,ν)∈T

∣∣∣〈f, ϕθ,ν〉∣∣∣2 ∼ ‖f‖22.
We set

(4.6) ψθ,ν(x, t) = eit∆ϕθ,ν(x).

From (4.4), we end up with the following representation for eit∆f :

(4.7) eit∆f(x) = cκ
∑

(θ,ν)∈T
eit∆fθ,ν(x) = cκ

∑
(θ,ν)∈T

〈f, ϕθ,ν〉ψθ,ν(x, t).

We shall analyze the localization of ψθ,ν in the physical and frequency space.

On the domain B(0, R)× [0, R], the function ψθ,ν is essentially supported

on a tube Tθ,ν defined as follows. Let

(4.8) Tθ,ν := {(x, t) ∈ R2 × R : 0 ≤ t ≤ R, |x− c(ν) + 2tc(θ)| ≤ R1/2+δ},
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where δ = ε2 is a small positive parameter. We see that Tθ,ν is a tube of

length R, of radius R1/2+δ, in the direction G0(θ) = (−2c(θ), 1), and inter-

secting {t = 0} at an R1/2+δ-ball centered at c(ν). In order to see this, let

ψ be a Schwartz function with Fourier transform supported in [−1, 1] and

2ψ(t) ≥ χ
[0,1](t). Here χ

[0,1] is the characteristic function on [0, 1]. On

B(0, R)× [0, R], we have |ψθ,ν | ≤ 2|ψ∗θ,ν |, where

(4.9) ψ∗θ,ν(x, t) = ψθ,ν(x, t)ψ

Å
t

R

ã
.

From the definitions of eit∆ and ψθ,ν , it is easy to check that, by integration by

parts, ψ∗θ,ν is essentially supported in the tube Tθ,ν . More precisely, we have

(4.10) |ψ∗θ,ν(x, t)| ≤ 1√
R
χ∗
Tθ,ν

(x, t),

where χ∗Tθ,ν denotes a bump function satisfying that χ∗Tθ,ν = 1 on {(x, t) ∈
R2 × R : 0 ≤ t ≤ R, |x− c(ν) + 2tc(θ)| ≤

√
R}, and χ∗

Tθ,ν
= O(R−1000) outside

Tθ,ν . We can essentially treat χ∗Tθ,ν as χTθ,ν , the indicator function on the

tube Tθ,ν .

On the other hand, the Fourier transform of ψ∗θ,ν enjoys

(4.11) ‘ψ∗θ,ν(ξ1, ξ2, ξ3) = R‘ϕθ,ν(ξ1, ξ2)ψ̂

Ç
ξ3 − (ξ2

1 + ξ2
2)

1/R

å
.

Hence ‘ψ∗θ,ν is supported in the 1
R -neighborhood of the parabolic cap over θ;

that is,

(4.12) supp‘ψ∗θ,ν ⊆ {(ξ1, ξ2, ξ3) : (ξ1, ξ2) ∈ θ, |ξ3 − (ξ2
1 + ξ2

2)| ≤ 1

R

}
.

We denote this 1
R -neighborhood of the parabolic cap over θ by θ∗. In the rest

of the paper, we can assume that the function ψθ,ν is essentially localized in

Tθ,ν in physical space, and θ∗ in frequency space.

5. Cell contributions

The rest of the paper is devoted to a proof of Theorem 2.1, using poly-

nomial partitioning. Recall that the functions f in Theorem 2.1 are Fourier

supported in B(ξ0,M
−1) ⊂ R2 with arbitrary ξ0 ∈ B(0, 1) and M ≥ 1. Also

p > 3 and q > ε−4. The function f can be assumed to be a Schwartz function

since the collection of all Schwartz functions is dense in L2. We need to prove

the bound (2.6): ∥∥∥eit∆f∥∥∥
LpxL

q
t (B(0,R)×[0,R])

≤ Cp,εM−ε
2
Rε‖f‖2.
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The proof of Theorem 2.1 is by induction on the radius R in physical space

and the radius 1/M in frequency space. First we cover the bases of the induc-

tion. If M ≥ R10, then we bound |eit∆f(x)| by M−1‖f‖2 and Theorem 2.1

is trivial. If R1/2−O(δ) < M < R10, then all associated wave packets are in

the same direction, and by a direct computation we can bound the left-hand

side of (2.6) by R(3−p)/(2p)+O(δ)‖f‖2, from which Theorem 2.1 follows imme-

diately. Therefore, we can assume that M �
√
R. We can assume that R is

sufficiently large, otherwise Theorem 2.1 is trivial. This covers the base of the

induction. Now we turn to the inductive step. By induction, we can assume

that Theorem 2.1 holds for physical radii less than R/2 or for physical radius

R and frequency radius less than 1
2M .

Let B∗R denote the set B(0, R)× [0, R].

We pick a degree D = Rε
4
, and apply polynomial partitioning with this

degree to the function χ
B∗R
|eit∆f(x)|p. By Theorem 3.4 with r = q/p, there

exists a nonzero polynomial P of degree at most D such that (R2 × R)\Z(P )

is a union of ∼ D3 disjoint open sets Oi and for each i, we have

(5.1)
∥∥∥eit∆f(x)

∥∥∥p
LpxL

q
t (B
∗
R)
≤ cD3

∥∥∥χOieit∆f(x)
∥∥∥p
LpxL

q
t (B
∗
R)
.

Moreover, the polynomial P is a product of distinct nonsingular polynomials.

We define

(5.2) W := NR1/2+δZ(P ) ∩B∗R,

where δ = ε2 and NR1/2+δZ(P ) stands for the R1/2+δ-neighborhood of the

variety Z(P ) in R3. We have the wave packet decomposition for eit∆f as in

(4.7). For each cell Oi, we set

(5.3) O′i := [Oi ∩B∗R] \W and Ti := {(θ, ν) ∈ T : Tθ,ν ∩O′i 6= ∅}.

Here Tθ,ν is the tube associated to each tile (θ, ν), as defined in (4.8). For each

function f , we define

(5.4) fi :=
∑

(θ,ν)∈Ti

fθ,ν .

From (4.10), it follows that on each cell O′i,

(5.5) eit∆f(x) ∼ eit∆fi(x).

By the fundamental theorem of algebra, we have a simple yet important geo-

metric observation:

Lemma 5.1. For each tile (θ, ν) ∈ T, the number of cells O′i that intersect

the tube Tθ,ν is ≤ D + 1.
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Proof. If Tθ,ν intersects O′i, then the central line of Tθ,ν must enter Oi. On

the other hand, a line can cross the variety Z(P ) at most D times, hence can

enter at most D + 1 cells Oi. �

By triangle inequality, we dominate
∥∥∥eit∆f(x)

∥∥∥p
LpxL

q
t (B
∗
R)

by

(5.6)
∑
i

∥∥∥χO′ieit∆f(x)
∥∥∥p
LpxL

q
t (B
∗
R)

+
∥∥∥χW eit∆f(x)

∥∥∥p
LpxL

q
t (B
∗
R)
.

We call the first term in (5.6) the cellular term, and the second the wall term.

Using induction we will see that the desired bound (2.6) holds unless the wall

term makes a significant contribution. In particular, we will show that (2.6)

holds unless

(5.7)
∥∥∥eit∆f∥∥∥

LpxL
q
t (B
∗
R)
. RO(ε4)

∥∥∥χW eit∆f∥∥∥
LpxL

q
t (B
∗
R)
.

Define

(5.8) I =

®
i :
∥∥∥eit∆f(x)

∥∥∥p
LpxL

q
t (B
∗
R)
≤ 10cD3

∥∥∥χO′ieit∆f(x)
∥∥∥p
LpxL

q
t (B
∗
R)

´
,

where c is the constant from (5.1). By triangle inequality and (5.1), for each

i ∈ Ic, we have∥∥∥eit∆f(x)
∥∥∥p
LpxL

q
t (B
∗
R)
≤ 10

9
cD3

∥∥∥χOi∩W eit∆f(x)
∥∥∥p
LpxL

q
t (B
∗
R)

. R3ε4
∥∥∥χW eit∆f(x)

∥∥∥p
LpxL

q
t (B
∗
R)
.

So if Ic is nonempty, then (5.7) holds. For the moment, we are considering

the case where (5.7) does not hold, and so every index i is in I, and hence

|I| ∼ D3.

In addition, by Lemma 5.1,

(5.9)
∑
i

‖fi‖22 . (D + 1)
∑
θ,ν

‖fθ,ν‖22 . D‖f‖22.

Henceforth, by pigeonhole principle, there exists i ∈ I such that

(5.10) ‖fi‖22 . D−2‖f‖22.

Now we use induction: we apply (2.6) to this special fi at radius R
2 . We can

cover B(0, R)× [0, R] by O(1) cylinders with dimensions B(0, R/2)× [0, R/2].

Therefore, we get the bound∥∥∥eit∆f(x)
∥∥∥p
LpxL

q
t (B
∗
R)
. D3

∥∥∥χO′ieit∆f(x)
∥∥∥p
LpxL

q
t (B
∗
R)
. D3

∥∥∥eit∆fi(x)
∥∥∥p
LpxL

q
t (B
∗
R)

. D3
î
Cp,εM

−ε2Rε‖fi‖2
óp
. D3−p

î
Cp,εM

−ε2Rε‖f‖2
óp
.
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Recall that D = Rε
4
, and we can assume R is very large (compared to

p). Since p > 3, we have D3−p � 1. Therefore, we see that induction closes

(unless (5.7) holds).

It remains to prove the desired bounds when (5.7) holds — when the wall

term is almost as big as the whole.

6. Contribution from the wall: transverse and tangent terms

From Section 5, it remains to estimate the wall contribution, the second

term in (5.6). To deal with the contribution from the wall W , we break B∗R
into ∼ R3δ balls Bj of radius R1−δ. (Recall from the last section that δ is

defined to be ε2.)

For any tile (θ, ν) ∈ T, we say that Tθ,ν is tangent to the wall W in a

given ball Bj if it satisfies that Tθ,ν ∩Bj ∩W 6= ∅ and

(6.1) Angle(G0(θ), Tz[Z(P )]) ≤ R−1/2+2δ

for any nonsingular point z ∈ 10Tθ,ν ∩ 2Bj ∩ Z(P ). Recall that G0(θ) =

(−2c(θ), 1) is the direction of the tube Tθ,ν . Here Tz[Z(P )] stands for the

tangent space to the variety Z(P ) at the point z, and by a nonsingular point

we mean a point z in Z(P ) with ∇P (z) 6= 0. Since P is a product of distinct

nonsingular polynomials, the nonsingular points are dense in Z(P ). We note

that if Tθ,ν is tangent to W in Bj , then Tθ,ν ∩ Bj is contained in the R1/2+δ-

neighborhood of Z(P ) ∩ 2Bj .

We say that Tθ,ν is transverse to the wall W in the ball Bj if it enjoys

that Tθ,ν ∩Bj ∩W 6= ∅ and

(6.2) Angle(G0(θ), Tz[Z(P )]) > R−1/2+2δ

for some nonsingular point z ∈ 10Tθ,ν ∩ 2Bj ∩ Z(P ).

Let Tj,tang represent the collection of all tiles (θ, ν) ∈ T such that Tθ,ν ’s

are tangent to the wall W in Bj , and let Tj,trans denote the collection of all

tiles (θ, ν) ∈ T such that Tθ,ν ’s are transverse to the wall W in Bj .

We define fj,tang :=
∑

(θ,ν)∈Tj,tang
fθ,ν and fj,trans :=

∑
(θ,ν)∈Tj,trans

fθ,ν .

Then on Bj ∩W , we have

(6.3) eit∆f(x) ∼ eit∆fj,tang(x) + eit∆fj,trans(x).

The following lemma is about how a tube crosses a variety transversely,

which was proved by the second author in [8]. It says that Tθ,ν crosses the wall

W transversely in at most RO(ε4) many balls Bj .

Lemma 6.1 (Lemma 3.5 in [8]). For each tile (θ, ν) ∈ T, the number of

R1−δ-balls Bj for which (θ, ν) ∈ Tj,trans is at most Poly(D) = RO(ε4).
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For points (x, t) ∈ Bj ∩W , we could break up eit∆f(x) into a transverse

term and a tangent term. However, when we analyze the tangent contribution

in subsequent sections, we will need to use a bilinear structure. So we do a

more refined decomposition: we break eit∆f(x) into a linear transverse term

and a bilinear tangent term.

We decompose B(ξ0,M
−1) ⊂ R2, the Fourier support of function f , into

balls τ of radius 1/(KM). Here K = K(ε) is a large parameter. We write

f =
∑
τ fτ , where supp f̂τ ⊆ τ .

We let

Bε := {(x, t) ∈ B(0, R)× [0, R] : ∃ τ s.t. |eit∆fτ (x)| > K−ε
4 |eit∆f(x)|}.

We will show by induction on the radius (1/M) in frequency space that the

contribution from Bε is acceptable. In fact, by the definition of Bε,∥∥∥χBεeit∆f(x)
∥∥∥p
LpxL

q
t (B
∗
R)
≤ Kε4p

∑
τ

∥∥∥eit∆fτ (x)
∥∥∥p
LpxL

q
t (B
∗
R)
.

By applying (2.6) in Theorem 2.1 the right-hand side is bounded by

.Kε4p
∑
τ

î
Cε(KM)−ε

2
Rε‖fτ‖2

óp
≤K(ε4−ε2)p

î
CεM

−ε2Rε‖f‖2
óp
.

We choose K = K(ε) large so that K(ε4−ε2) � 1, which yields by induction

that the term involving Bε plays an unimportant role.

For points (x, t) not in Bε, we have the following decomposition into a

transverse term and a bilinear tangent term:

Lemma 6.2. For each point (x, t) ∈ Bj ∩W satisfying maxτ |eit∆fτ (x)| ≤
K−ε

4 |eit∆f(x)|, there exists a sub-collection I of the collection of all possible

1/(KM) balls τ , such that

(6.4) |eit∆f(x)| . |eit∆fI,j,trans(x)|+K10Bil(eit∆fj,tang(x)),

where

fI,j,trans(x) :=
∑
τ∈I

fτ,j,trans(x),

and the bilinear tangent term is given by

Bil(eit∆fj,tang(x)) := max
τ1,τ2

dist(τ1,τ2)≥1/(KM)

|eit∆fτ1,j,tang(x)|1/2|eit∆fτ2,j,tang(x)|1/2.

Proof. Let I be defined by I := {τ : |eit∆fτ,j,tang(x)| ≤ K−10|eit∆f(x)|}.
Then clearly

Ic = {τ : |eit∆fτ,j,tang(x)| > K−10|eit∆f(x)|}.
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If there exist τ1, τ2 ∈ Ic with dist(τ1, τ2) ≥ 1/(KM), then

|eit∆f(x)| . K10Bil(eit∆fj,tang(x)).

Otherwise, the number of balls τ in Ic is O(1), and∑
τ∈Ic
|eit∆fτ (x)| ≤ CK−ε4 |eit∆f(x)| ≤ 1

10
|eit∆f(x)|.

Hence, by the fact that f =
∑
τ fτ and the definition of I,

9

10
|eit∆f(x)| ≤ |

∑
τ∈I

eit∆fτ (x)|

. |eit∆fI,j,tang(x)|+ |eit∆fI,j,trans(x)|

≤ CK−8|eit∆f(x)|+ |eit∆fI,j,trans(x)|,

which implies that |eit∆f(x)| . |eit∆fI,j,trans(x)|. �

By Lemma 6.2 we can now estimate the wall contribution in (5.6) by∥∥∥χW eit∆f(x)
∥∥∥p
LpxL

q
t (B
∗
R)

.
∥∥∥χBεeit∆f(x)

∥∥∥p
LpxL

q
t (B
∗
R)

(6.5)

+
∑
j

∥∥∥max
I

χ
Bj∩W |eit∆fI,j,trans(x)|

∥∥∥p
LpxL

q
t (B
∗
R)

(6.6)

+K10p
∑
j

∥∥∥χBj∩WBil(eit∆fj,tang(x))
∥∥∥p
LpxL

q
t (B
∗
R)
.(6.7)

As we explained above, the first term (6.5) obeys an acceptable bound by

induction on M . We now estimate the linear transverse term (6.6). The term

(6.6) is dominated by

(6.8)
∑
j

∑
I⊆T

∥∥∥χBj∩W eit∆fI,j,trans(x)
∥∥∥p
LpxL

q
t (B
∗
R)
,

where T is the collection of all possible 1/(KM)-balls in B(ξ0, 1/M), and

the sum is taken over all subsets of T . Since there are at most 2K
2
I’s, we

apply (2.6) in Theorem 2.1 with radius R1−δ to obtain

(6.9) (6.8) ≤
∑
j

2K
2 î
CεM

−ε2R(1−δ)ε‖fj,trans‖2
óp

which, using Lemma 6.1, is bounded by

(6.10) 2K
2
RO(ε4)−δεp

î
CεM

−ε2Rε‖f‖2
óp
.

Since δ = ε2, it is clear that 2K
2
RO(ε4)−δεp < 1/100, and so the induction on

the transverse term closes.
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It remains to estimate the bilinear tangent term (6.7). We state the result

on the bilinear maximal estimate in this section and prove it in Section 8.

Proposition 6.3. For p > 3, the following maximal estimate of the bi-

linear tangent term holds, uniformly in M :

(6.11)

(∫
B(0,R)

sup
t:(x,t)∈W∩Bj

∣∣∣Bil(eit∆fj,tang(x))
∣∣∣pdx)1/p

≤ CεR
ε/2‖f‖2.

Given Proposition 6.3, we estimate the bilinear tangent term (6.7) as

follows for any q > 1/ε4:∥∥∥χBj∩WBil(eit∆fj,tang(x))
∥∥∥p
LpxL

q
t (B
∗
R)

≤ Rp/q
∫
B(0,R)

sup
t:(x,t)∈W∩Bj

∣∣∣Bil(eit∆fj,tang(x))
∣∣∣pdx

≤ RO(δ)+εp/2‖f‖p2.

Hence Theorem 2.1 follows from Proposition 6.3 and the inductions.

7. Variations on the Strichartz inequality using decoupling

In this section we obtain both linear and bilinear local refinements of the

Strichartz inequality, via the Bourgain-Demeter l2-decoupling theorem [4]. In

Section 8 we will use the bilinear refinement to prove the bilinear maximal

estimate in Proposition 6.3.

For the bilinear tangent term in Proposition 6.3, all wave packets are tan-

gent to a variety. Suppose that Z = Z(P ) where P is a product of nonsingular

polynomials. For any tile (θ, ν) ∈ T, we say that Tθ,ν is ER−1/2-tangent to Z if

Tθ,ν ⊂ NER1/2Z ∩B∗R,

and

(7.1) Angle(G0(θ), Tz[Z(P )]) ≤ ER−1/2

for any nonsingular point z ∈ N2ER1/2(Tθ,ν) ∩ 2B∗R ∩ Z.

Let
TZ(E) := {(θ, ν) |Tθ,ν is ER−1/2-tangent toZ}.

We say that f is concentrated in wave packets from TZ(E) if∑
(θ,ν)/∈TZ(E)

‖fθ,ν‖2 ≤ RapDec(R)‖f‖2.

Since the radius of Tθ,ν is R1/2+δ, Rδ is the smallest interesting value of E.

In this section, we establish the following local refinements of the Strichartz

estimates:

Theorem 7.1. Suppose that f has Fourier support in B2(0, 1) and is

concentrated in wave packets from TZ(E), where Z = Z(P ) and P is a product
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of distinct nonsingular polynomials. Suppose that Q1, Q2, . . . are lattice R1/2-

cubes in B3(R), so that

‖eit∆f‖L6(Qj) is essentially constant in j.

Suppose that these cubes are arranged in horizontal strips of the form R×R×
{t0, t0 +R1/2} and that each strip contains ∼ σ cubes Qj . Let Y denote

⋃
j Qj .

Then

(7.2) ‖eit∆f‖L6(Y ) / E
O(1)R−1/6σ−1/3‖f‖L2 .

To get some intuition, we consider a special case of Theorem 7.1, in which

the variety Z is naturally replaced by a 2-plane V , and E ≈ 1. In the planar

case, all wave packets are contained in the ≈ R1/2-neighborhood of V , and

the absolute value |eit∆f(x)| is essentially constant along a certain direction

that is roughly normal to V . Note that eit∆f(x)|V is a Schrödinger solution in

dimension 2. Denote eit∆f(x)|V by eir∆h(y) for some function h with Fourier

support in B1(1), where (y, r) are coordinates of V . Hence the conclusion in

Theorem 7.1 can be rephrased in terms of h. Indeed, observe that

‖eit∆f(x)‖6L6(Y ) ∼ R
1/2‖eir∆h(y)‖6L6(Y ∩V ),

‖f‖22 ∼ R−1‖eit∆f‖2L2(B3(R)) ∼ R
−1R1/2‖eir∆h‖2L2(B3

R∩V ) ∼ R
1/2‖h‖22.

Therefore, the estimate (7.2) is equivalent to

(7.3) ‖eir∆h‖L6(Y ∩V ) / σ
−1/3‖h‖L2 .

It follows from the Strichartz inequality that ‖eir∆h‖L6(Y ∩V ) . ‖h‖L2 . We

get an improvement when σ is large. The condition that σ is large forces the

solution eit∆f to be spread out in space, and we will exploit this spreading out

to get our improvement.

Moreover, Theorem 7.1 has the following bilinear refinement:

Theorem 7.2. For functions f1 and f2 with separated Fourier supports

in B2(0, 1), separated by ∼ 1, suppose that f1 and f2 are concentrated in wave

packets from TZ(E), where Z = Z(P ) and P is a product of distinct nonsingu-

lar polynomials. Suppose that Q1, Q2, . . . , QN are lattice R1/2-cubes in B3(R),

so that for each i,

‖eit∆fi‖L6(Qj) is essentially constant in j.

Let Y denote
⋃N
j=1Qj . Then∥∥∥|eit∆f1e

it∆f2|1/2
∥∥∥
L6(Y )

/ EO(1)R−1/6N−1/6‖f1‖1/2L2 ‖f2‖1/2L2 .
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7.1. Proof of Theorem 7.1. The proof uses the Bourgain-Demeter l2-de-

coupling theorem, together with induction on the radius and parabolic rescal-

ing. First we recall the decoupling result of Bourgain and Demeter in [4].

Theorem 7.3 (Bourgain-Demeter). Suppose that the R−1-neighborhood

of the unit parabola in R2 is divided into R1/2 disjoint rectangular boxes τ , each

with dimensions R−1/2 × R−1. Suppose “Fτ is supported in τ and F =
∑
τ Fτ .

Then

‖F‖L6(R2) /

Ç∑
τ

‖Fτ‖2L6(R2)

å1/2

.

If E ≥ R1/4 (or any fixed power of R), then the estimate (7.2) is trivial

because of the factor EO(1). So we assume that E ≤ R1/4.

To set up the argument, we decompose f as follows. We break the unit

ball B2(1) in frequency space into small balls τ of radius R−1/4, and we divide

the physical space ball B2(R) into balls B of radius R3/4. For each pair (τ,B),

we let f2τ,B be the function formed by cutting off f on the ball B (with a

Schwartz tail) in physical space and the ball τ in Fourier space. We note that

eit∆f2τ,B , restricted to B3(R), is essentially supported on an R3/4×R3/4×R-

box, which we denote by 2τ,B. (This is similar to the discussion in Section 4.)

The box 2τ,B is in the direction given by (−2c(τ), 1) and intersects t = 0 at

a disk centered at (c(B), 0), where c(τ) and c(B) are the centers of τ and B

respectively. For a fixed τ , the different boxes 2τ,B tile B3(R). In particular,

for each τ , a given cube Qj lies in exactly one box 2τ,B.

Since f is concentrated in wave packets from TZ(E), we only need to

consider those R1/2-cubes Qj that are contained in the ER1/2-neighborhood

of Z. For each such R1/2-cube Qj , we will see that the wave packets that pass

through Qj are nearly coplanar. Because of this, we will be able to apply the

2-dimensional decoupling theorem to study eit∆f on Qj :

Lemma 7.4. Suppose that f has Fourier support in B2(0, 1) and is con-

centrated in wave packets from TZ(E), where E ≤ R1/4 and Z = Z(P ) is

a finite union of nonsingular varieties. Suppose that an R1/2-cube Q is in

NER1/2(Z). Then we have the decoupling bound

(7.4) ‖eit∆f‖L6(Q) /

Ç∑
2

‖eit∆f2‖2L6(10Q)

å1/2

+R−1000‖f‖L2 .

Remark. The R−1000‖f‖L2 is a negligibly small term that covers minor

contributions coming from the tails of the Fourier transforms of smooth func-

tions. We will neglect this term in the sequel.

Proof. Observe that Q ⊂ NER1/2Z implies that there exists a nonsingular

point z0 ∈ Z ∩ NER1/2Q. Thus for each wave packet Tθ,ν that intersects Q,
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we have z0 ∈ Z ∩N2ER1/2(Tθ,ν). By the definition of TZ(E) we get the angle

bound

(7.5) Angle(G0(θ), Tz0 [Z(P )]) ≤ ER−1/2.

We recall from Section 4 that G0(θ) = (−2c(θ), 1). Suppose that Tz0Z is

the plane given by a1x1 + a2x2 + bt = 0, with a2
1 + a2

2 + b2 = 1. The angle

condition above restricts the location of θ as follows:

(7.6) | − 2a · c(θ) + b| . ER−1/2.

We note that each tube Tθ,ν makes an angle & 1 with the plane t = 0, because

θ ⊂ B(0, 1). We can assume that there are some tubes Tθ,ν tangent to Tz0Z,

and so |a| & 1. Therefore, (7.6) confines θ to a strip of width ∼ ER−1/2 inside

of B(0, 1). We denote this strip by S ⊂ B(0, 1).

Let TZ,Q(E) be the set of (θ, ν) in TZ(E) for which each Tθ,ν intersects Q.

For each (θ, ν) in TZ,Q(E), θ obeys (7.6), and so θ ⊂ S. Let η be a smooth

bump function which approximates χQ. We note that ηeit∆f is essentially

equal to ∑
(θ,ν)∈TZ,Q(E)

ηeit∆fθ,ν .

Therefore, the Fourier transform of the localized solution ηeit∆f is essentially

supported in

(7.7) S∗ := {(ξ1, ξ2, ξ3) : (ξ1, ξ2) ∈ S and |ξ3 − ξ2
1 − ξ2

2 | . R−1/2}.

(The contribution of the not essential parts is covered by the negligible term

R−1000‖f‖L2 in the statement of the lemma.)

After a rotation in the (x1, x2)-plane we can suppose that the strip S is

defined by

a1 ≤ ξ1 ≤ a1 + ER−1/2

for some a1 ∈ [−1, 1]. We note that at each point (ξ1, ξ2) ∈ S,

(7.8) ∂1

Ä
ξ2

1 + ξ2
2

ä
= 2a1 +O(ER−1/2).

Let v be the vector

v = (1, 0, 2a1).

Let Π be a 2-plane perpendicular to v. Because E ≤ R1/4, we claim that the

projection of S∗ onto Π lies in the ∼ R−1/2-neighborhood of a parabola. We

can see this as follows. Let

S∗core := {(ξ1, ξ2, ξ3) : ξ1 = a1, |ξ2| ≤ 1, ξ3 = ξ2
1 + ξ2

2}.

The set S∗core is a parabola, and its projection onto Π is also a parabola. We

claim that the projection of S∗ to Π lies in the ∼ R−1/2-neighborhood of this

parabola. If (ξ1, ξ2, ξ3) ∈ S∗, then (7.8) tells us that

(ξ2
1 + ξ2

2) = a2
1 + ξ2

2 + 2a1(ξ1 − a1) +O(ER−1/2 · |ξ1 − a1|).
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Therefore,

(ξ1, ξ2, ξ3) = (a1, ξ2, a
2
1 + ξ2

2) + (ξ1 − a1)v +O(ER−1/2|ξ1 − a1|+R−1/2).

The first term on the right-hand side lies is S∗core. Since Π is perpendicular

to v, the projection to Π kills the second term on the right-hand side. So the

distance from the projection of ξ to the projection of S∗core is at most

ER−1/2|ξ1 − a1|+R−1/2 . E2R−1 +R−1/2 ∼ R−1/2.

Therefore, if we restrict ηeit∆f to Π, the resulting 2-dimensional function

has Fourier support in the ∼ R−1/2-neighborhood of a parabola.

We consider the decomposition f =
∑

(τ,B):2τ,B∩Q6=∅ f2τ,B . If eit∆f2τ,B
contributes to ‖eit∆f‖L6(Q), there must be a wave packet Tθ,ν that intersects

the R1/2-cube Q with θ ⊂ τ , and so τ∩S must be nonempty. Also, for a given τ ,

there is only one B so that 2τ,B ∩Q is nonempty. Also, the Fourier support of

ηeit∆f2τ,B lies in S∗∩(τ×R), by the same argument we used above for ηeit∆f .

The projection onto Π of S∗ ∩ (τ × R) is an R−1/4 × R−1/2 rectangular box.

The union of these boxes over all τ intersecting S is the R−1/2-neighborhood

of a parabola. Therefore, we have the hypotheses to apply the 2-dimensional

decoupling theorem, Theorem 7.3, which gives

‖ηeit∆f‖L6(Π) /

Ç∑
2

‖ηeit∆f2‖2L6(Π)

å1/2

.

Now we integrate in the direction perpendicular to Π and apply Fubini

and Minkowski to get

‖ηeit∆f‖L6(R3) /

Ç∑
2

‖ηeit∆f2‖2L6(R3)

å1/2

.

This implies the desired conclusion. �

Next, by induction on the radius R, we will show that each function f2
obeys a version of Theorem 7.1. Here is the statement. Suppose that S1, S2, . . .

are R1/2×R1/2×R3/4-tubes in 2 (running parallel to the long axis of 2) and

that

‖eit∆f2‖L6(Sj) is essentially constant in j.

Suppose that these tubes are arranged into R3/4-strips running parallel to the

short axes of 2 and that each such strip contains ∼ σ2 tubes Sj . Let Y2 denote

∪jSj . Then

(7.9) ‖eit∆f2‖L6(Y2) / E
O(1)R−1/12R−1/12σ

−1/3
2 ‖f2‖L2 .

This inequality follows by doing a parabolic rescaling and then using The-

orem 7.1 at scale R1/2, which we can assume holds by induction on R. We write

down the details of this parabolic rescaling and, in particular, we will check



628 XIUMIN DU, LARRY GUTH, and XIAOCHUN LI

that the tangent-to-variety condition is preserved under parabolic rescaling.

For each R−1/4-ball τ in B2(1), we write ξ = ξ0 +R−1/4ζ ∈ τ , then

|eit∆fτ (x)| = R−1/4|eit̃∆g(x̃)|

for some function g with Fourier support in B2(1) and ‖g‖2 = ‖fτ‖2, where

the new coordinates (x̃, t̃) are related to the old coordinates (x, t) by

(7.10)

x̃ = R−1/4x+ 2tR−1/4ξ0,

t̃ = R−1/2t.

Therefore,

‖eit∆f2(x)‖L6(Y2) = R−1/12‖eit̃∆g(x̃)‖L6(Ỹ ),

where Ỹ is the image of Y2 under the new coordinates. Note that Ỹ is a

union of R1/4-cubes inside an R1/2-cube. These R1/4-cubes are arranged in

R1/4-horizontal strips, and each strip contains ∼ σ2 R1/4-cubes. Moreover, by

the relation (7.10), we see that each wave packet T , at scale R, of dimensions

R1/2+δ × R1/2+δ × R in the old coordinates is mapped to a corresponding

wave packet T̃ , at scale R1/2, of dimensions R1/4+δ×R1/4+δ×R1/2 in the new

coordinates. The variety Z(P ) corresponds to a new variety Z(Q), given by the

relation Q(x̃, t̃) = Q(R−1/4x + 2tR−1/4ξ0, R
−1/2t) = P (x, t). We claim that,

under the above correspondence, if the wave packet T at scale R is ER−1/2-

tangent to Z(P ), then the wave packet T̃ at scale R1/2 is ER−1/4-tangent to

Z(Q) in the new coordinates.

By the relation (7.10), the distance condition T ⊂ NER1/2Z(P ) implies

that T̃ ⊂ NER1/4Z(Q). Given the direction (−2ξ, 1) of T , the angle condition

Angle((−2ξ, 1), Tz0 [Z(P )]) ≤ ER−1/2

is equivalent to

(7.11)
|(−2ξ, 1) · (Px(x0, t0), Pt(x0, t0))|

|(Px(x0, t0), Pt(x0, t0))|
. ER−1/2,

where z0 = (x0, t0). Note that the direction of the corresponding wave packet

T̃ is given by (−2ζ, 1), where ξ and ζ are related by ξ = ξ0 + R−1/4ζ. Let

z̃0 = (x̃0, t̃0) denote the point corresponding to z0. Using the relations

Px = R−1/4Qx̃, Pt = 2R−1/4ξ0 ·Qx̃ +R−1/2Qt̃,

after some computation, (7.11) yields that

|(−2ζ, 1) · (Qx̃(x̃0, t̃0), Qt̃(x̃0, t̃0))|
|(Qx̃(x̃0, t̃0), Qt̃(x̃0, t̃0))|

. ER−1/4,

which implies that

Angle((−2ζ, 1), T̃z̃0 [Z(Q)]) ≤ ER−1/4.
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Therefore, the tangent-to-variety condition is preserved under parabolic rescal-

ing and the induction on radius is justified.

We have now established inequality (7.9). To apply this inequality, we

need to identify a good choice of Y2. We do this by some dyadic pigeonholing.

For each 2, we apply the following algorithm to regroup tubes in 2.

(1) We sort those R1/2×R1/2×R3/4-tubes S’s contained in the box 2 according

to the order of magnitude of ‖eit∆f2‖L6(S), which we denote λ. For each

dyadic number λ, we use Sλ to stand for the collection of tubes S ⊂ 2

with ‖eit∆f2‖L6(S) ∼ λ.

(2) For each λ, we sort the tubes S ∈ Sλ by looking at the number of such

tubes in an R3/4-strip. For any dyadic number η, we let Sλ,η be the set of

tubes S ∈ Sλ so that the number of tubes of Sλ in the R3/4-strip containing

S is ∼ η.

...

R

1

2

η

R

3 4

R

3 4

R

1 2

Figure 2. Tubes in a given strip in the 2.

Let Y2,λ,η be the union of the tubes in Sλ,η. Then we represent

eit∆f =
∑
λ,η

Ç∑
2

eit∆f2 · χY2,λ,η

å
.

Note that ‖eit∆f2‖L6(S) ≤ RO(1)‖f‖2 for each tube S as above and the number

of 2’s does not exceed RO(1). We see that the contribution from those λ’s with

λ ≤ R−C‖f‖2 is at most R−C/2‖f‖2. Here the constant C can be selected

to be sufficiently large so that R−C/2‖f‖2 is negligible. So without loss of

generality, we can assume that the terms with small λ contribute insignificantly
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to ‖eit∆f‖L6(Qj) for every Qj . Therefore, there are only O(logR) significant

choices for each of λ, η. By pigeonholing, we can choose λ, η so that

(7.12) ‖eit∆f‖L6(Qj) . (logR)2
∥∥∥∑

2

eit∆f2 · χY2,λ,η
∥∥∥
L6(Qj)

holds for a fraction ≈ 1 of all cubes Qj in Y . We need this uniform choice of

(λ, η), which is independent of Qj , because later we will sum over all Qj and

arrive at ‖eit∆f2‖L6(Y2,λ,η).

We fix λ and η for the rest of the proof. Let Y2 stand for the abbreviation

of Y2,λ,η. We note that Y2 obeys the hypotheses for our inductive estimate

(7.9), with σ2 being the value of η that we have fixed.

The following geometric estimate will play a crucial role in our proof. Each

set Y2 contains . σ2 tubes in each strip parallel to the short axes of 2. Since

the angle between the short axes of 2 and the x-axes is bounded away from

π/2, it follows that Y2 contains . σ2 cubes Qj in any R1/2-horizontal row.

Therefore,

(7.13) |Y2 ∩ Y | .
σ2
σ
|Y |.

Next we sort the the boxes 2 according to the dyadic size of ‖f2‖L2 . We

can restrict matters to . logR choices of this dyadic size, and so we can choose

a set of 2’s, B, so that ‖f2‖L2 is essentially constant for 2 ∈ B and

(7.14) ‖eit∆f‖L6(Qj) / ‖
∑
2∈B

eit∆f2 · χY2‖L6(Qj)

for a fraction ≈ 1 of cubes Qj in Y .

Finally we sort the cubes Qj ⊂ Y according to the number of Y2 that

contain them. We let Y ′ ⊂ Y be a set of cubes Qj that obey (7.14) and that

each lie in ∼ µ of the sets {Y2}2∈B. Because (7.14) holds for a large fraction

of cubes, and because there are only dyadically many choices of µ, |Y ′| ≈ |Y |.
By the equation (7.13), we see that

|Y2 ∩ Y ′| ≤ |Y2 ∩ Y | /
σ2
σ
|Y | ≈ σ2

σ
|Y ′|.

Therefore, the multiplicity µ is bounded by

(7.15) µ /
σ2
σ
|B|.

We now are ready to combine all our ingredients and finish our proof. For

each Qj ⊂ Y ′, we have

‖eit∆f‖L6(Qj) /

∥∥∥∥∥∥∑2∈B eit∆f2 · χY2
∥∥∥∥∥∥
L6(Qj)

.
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. . . η21

R

1 2 R

1 4

Figure 3. Cubes in a given strip in an R1/2-cube.

Now we apply Lemma 7.4 to the function
∑

2∈B,Qj∈Y2 f2 to bound the

right-hand side by

/

Ñ ∑
2∈B,Qj⊂Y2

∥∥∥eit∆f2∥∥∥2

L6(Qj)

é1/2

.

Since the number of Y2 containing Qj is ∼ µ, we can apply Hölder to get∥∥∥∥∥∥∑2∈B eit∆f2 · χY2
∥∥∥∥∥∥
L6(Qj)

/ µ1/3

Ñ ∑
2∈B,Qj⊂Y2

∥∥∥eit∆f2∥∥∥6

L6(Qj)

é1/6

.

Now we raise to the sixth power and sum over Qj ⊂ Y ′ to get∥∥∥eit∆f∥∥∥6

L6(Y ′)
/ µ2

∑
2∈B

∥∥∥eit∆f2∥∥∥6

L6(Y2)
.

Since |Y ′| ' |Y |, and since each cube Qj ⊂ Y makes an equal contribution to

‖eit∆f‖L6(Y ), we see that ‖eit∆f‖L6(Y ) ≈ ‖eit∆f‖L6(Y ′) and so∥∥∥eit∆f∥∥∥6

L6(Y )
/ µ2

∑
2∈B

∥∥∥eit∆f2∥∥∥6

L6(Y2)
.

By a parabolic rescaling, Figure 2 becomes Figure 3. Henceforth, applying

our inductive hypothesis (7.9) at scale R1/2 to the right-hand side, we see that

(7.16)
∥∥∥eit∆f∥∥∥6

L6(Y )
/ EO(1)R−1µ2σ−2

2

∑
2∈B
‖f2‖6L2 .

Plugging in our bound for µ in (7.15), this is bounded by

. EO(1)R−1σ−2|B|2
∑
2∈B
‖f2‖6L2 .
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Now since ‖f2‖L2 is essentially constant among all 2 ∈ B, the last expression is

∼ EO(1)R−1σ−2(
∑
2∈B
‖f2‖2L2)3 ≤ EO(1)R−1σ−2‖f‖6L2 .

Taking the sixth root, we obtain our desired bound:

‖eit∆f‖L6(Y ) / E
O(1)R−1/6σ−1/3‖f‖L2 .

This closes the induction on radius and completes the proof.

7.2. Proof of Theorem 7.2. It can be proved by the method used in the

proof of Theorem 7.1. By Hölder,∥∥∥∥∣∣∣eit∆f1e
it∆f2

∣∣∣1/2∥∥∥∥
L6(Y )

≤
2∏
i=1

∥∥∥eit∆fi∥∥∥1/2

L6(Y )
.

For each i, we process ‖eit∆fi‖L6(Y ) following the proof of Theorem 7.1. We

decompose fi =
∑

2 fi,2, and we follow the proof of Theorem 7.1. We define

Yi,2 by dyadic pigeonholing, so that Yi,2 is arranged in several R3/4-strips

(running parallel to the short axes of 2) with ∼ σi,2 R1/2×R1/2×R3/4-tubes

in each strip. When we use dyadic pigeonholing to pick a subset of cubes

Qj ⊂ Y , we pigeonhole for f1 and f2 simultaneously, and so we pick out a

set of cubes that works well for both functions. Following the argument up to

equation (7.14), we see that for a fraction ≈ 1 of cubes Qj ,

(7.17) ‖eit∆fi‖L6(Qj) / ‖
∑
2∈Bi

eit∆fi,2 · χYi,2‖L6(Qj) for i = 1, 2.

Similarly, we sort the cubes Qj ⊂ Y according to the number of Yi,2 that

contain them. We let Y ′ ⊂ Y be a set of cubes Qj that obey (7.17) and that

each lie in ∼ µ1 of the sets {Y1,2}2∈B1 and ∼ µ2 of the sets {Y2,2}2∈B2 . Because

(7.14) holds for a large fraction of cubes, and because there are only dyadically

many choices of µ1, µ2, |Y ′| ≈ |Y |. Following the proof of Theorem 7.1 further,

up to equation (7.16), we see that for each i,

(7.18)
∥∥∥eit∆fi∥∥∥

L6(Y )
/ EO(1)R−1/6

µ2
iσ
−2
i,2

∑
2∈Bi

‖fi,2‖6L2

1/6

.

Finally, we give a geometric estimate for µ1 and µ2 that takes advantage

of the bilinear structure. If 21 ∈ B1 and 22 ∈ B2, then the angle between

their long axes is ∼ 1. Therefore, their intersection is contained in a ball of

radius ∼ R3/4, and so Y21 ∩ Y22 contains . σ1,2σ2,2 different R1/2-balls (see

Figure 4). For each of the ≈ N cubes Qj in Y ′, for each i, the cube Qj lies in

∼ µi of the sets {Y2i}2i∈Bi . Therefore,

(7.19) N
2∏
i=1

µi /
2∏
i=1

σi,2|Bi|.
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Figure 4. at mostO(σ1,2σ2,2) cubes created by two transversal

families of rectangular boxes.

Starting with (7.18) and inserting this estimate, we see that

2∏
i=1

∥∥∥eit∆fi∥∥∥1/2

L6(Y )
/ EO(1)R−1/6

2∏
i=1

µ2
iσ
−2
i,2

∑
2∈Bi

‖fi,2‖6L2

 1
6
· 1
2

/ EO(1)R−1/6
2∏
i=1

N−1|Bi|2
∑
2∈Bi

‖fi,2‖6L2

 1
6
· 1
2

. EO(1)R−1/6N−1/6
2∏
i=1

‖fi‖1/2L2 ,

as desired.

8. Bilinear maximal estimate with small separation

In this section, using Theorem 7.2 and parabolic rescaling, we prove the

following proposition, which implies Proposition 6.3.

Proposition 8.1. Suppose that ξ0 ∈ B2(0, 1) and that fi have Fourier

supports in B(ξ0, 1/M) for some M ≥ 1. Also suppose that the Fourier sup-

ports of fi are separated by at least 1/(KM), where K = K(ε) is a large

constant. Suppose that each fi is concentrated in wave packets from TZ(E),

where E ≥ Rδ and Z = Z(P ) and P is a product of distinct nonsingular

polynomials. Then

(8.1)
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L3
x(BR)L∞t (0,R)

/ EO(1)‖f1‖1/2L2 ‖f2‖1/2L2 .
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Proof. We can assume M � R1/2; otherwise all wave packets were in the

same direction and a direct computation would give us the desired result.

Since the functions f1 and f2 are concentrated in wave packets from

TZ(E), we decompose NER1/2Z into balls Q of radius R1/2. Let η be a smooth

bump function approximating χ
Q. As we saw in the proof of Lemma 7.4,

in equation (7.7), the Fourier support of each function ηeit∆fi is essentially

supported on

S∗ := {(ξ1, ξ2, ξ3) : (ξ1, ξ2) ∈ S and |ξ3 − ξ2
1 − ξ2

2 | . R−1/2},

where S ⊂ B(0, 1) is a strip of width ER−1/2. Since the Fourier support of

each fi is also contained in B(ξ0, 1/M), the Fourier support of ηeit∆fi is also

essentially contained in B(ξ0,
2
M )×R. The intersection of S∗ with the cylinder

B(ξ0,
2
M )×R is contained in a rectangle of dimensions ∼ ER−1/2×1/M×1/M .

We denote this rectangle by A∗(Q). Since the Fourier support of each ηeit∆fi
is contained in A∗(Q), |ηeit∆fi| is morally constant on dual rectangles with

dimensions M ×M ×E−1R1/2. We tile Q with such dual rectangles, which we

denote Ak(Q). The projection of each dual rectangle Ak(Q) to the x-plane is

an M × E−1R1/2-rectangle.

Suppose that sup0<t<R |eit∆f1e
it∆f2|1/2 ∼ H on a set U ⊂ B(0, R). It

suffices for us to prove the bound

(8.2) H|U |1/3 / EO(1)‖f1‖1/2L2 ‖f2‖1/2L2 .

We will bound |U | using the rectangles Ak(Q). For the time being, let us

suppose that |ηeit∆fi| is roughly constant on each Ak(Q). This is not quite

rigorous, but useful for intuition. On the next page, we will come back to this

point and give a rigorous argument.

There must be a collection of dual rectangles Ak(Qj) whose projections

cover U and so that |eit∆f1e
it∆f2|1/2 ∼ H on each dual rectangle. We let X

denote the union of these dual rectangles. Each M ×M × E−1R1/2 rectangle

Ak(Qj) ⊂ X has a projection with area ME−1R1/2, and since these projections

cover U , we have the bound

(8.3) |U | .M−1|X|.

We can also assume that no two rectangles Ak(Qj) ⊂ X have essentially

the same projection. This implies that X contains . EO(1)R1/2M−1 rectangles

Ak(Q) in each cube Q. So for each cube Q, we get the bound

(8.4) |X ∩Q| . EO(1)MR.

We consider the R1/2-cubes Q in B2(R)× [0, R] that intersect X. We sort

theseR1/2-cubesQ according to the dyadic value of
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Q)

.
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We can choose a set of of R1/2-cubes Qj , j = 1, 2, . . . , N , so that

(8.5)
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Qj)

is essentially constant in j,

and |X| / |X ∩ Y |, where Y :=
⋃N
j=1Qj . Using the locally constant property

that |eit∆f1e
it∆f2|1/2 ∼ H on each rectangle Ak(Qj) ⊂ X, we see that

(8.6) H|X|1/6 / EO(1)
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Y )

.

Since |X ∩ Qj | . EO(1)MR for each cube Qj , j = 1, . . . , N , we see that

|X| / |X ∩ Y | . EO(1)MNR. Therefore,

(8.7) H|X|1/3 / EO(1)M1/6N1/6R1/6
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Y )

.

Finally, since |U | .M−1|X|, we have

(8.8) H|U |1/3 / EO(1)M−1/6N1/6R1/6
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Y )

.

Therefore, our desired bound (8.2) follows from a generalization of Theo-

rem 7.2, which we now state.

Proposition 8.2. Suppose that f1 and f2 are as in Proposition 8.1. Sup-

pose that Q1, Q2, . . . , QN are lattice R1/2-cubes in B3(R) so that

(8.9)
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Qj)

is essentially constant in j.

Let Y denote
⋃N
j=1Qj . Then

(8.10)
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Y )

/ EO(1)M1/6N−1/6R−1/6‖f1‖1/2L2 ‖f2‖1/2L2 .

If M = 1, then f1 and f2 have Fourier supports separated by ∼ 1, and

we can apply Theorem 7.2. We first find Y ′ ⊂ Y with |Y ′| ≈ |Y | so that

for each i, ‖eit∆fi‖L6(Qj) is essentially constant among all Qj ⊂ Y ′. Then we

apply Theorem 7.2 to Y ′ to get (8.10):∥∥∥|eit∆f1|1/2|eit∆f2|1/2
∥∥∥
L6(Y )

≈
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Y ′)

/ EO(1)N−1/6R−1/6‖f1‖1/2L2 ‖f2‖1/2L2 .

For larger M , the Fourier supports of f1 and f2 are only separated by

∼ 1/M , and so we will need to apply parabolic rescaling before we can use

Theorem 7.2.

Before we do this parabolic rescaling and prove Proposition 8.2, let us

return to the issue of |eit∆fi| being morally roughly constant on each rectan-

gle Ak(Q). We used the locally constant property to justify (8.6) above. We

can rigorously prove (8.6) as follows. We mentioned above that each function

ηQe
it∆fi has Fourier transform essentially supported in a rectangle A∗(Q) of
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dimensions ∼ ER−1/2 ×M−1 ×M−1. So the Fourier transform of their prod-

uct, g := η2
Qe

it∆f1e
it∆f2, is essentially supported in a rectangle with the same

orientation and roughly the same dimensions. If ψ̂ is designed to be identi-

cally 1 on this rectangle, then g ∗ ψ is essentially equal to g. We can choose

such a ψ where |ψ| is a rapidly-decaying approximation of |Ak(Qj)|−1χ
Ak(Qj).

Therefore, we see that

(8.11)

sup
Ak(Q)

|eit∆f1e
it∆f2| . RO(δ)

∫
RδAk(Q) |eit∆f1e

it∆f2|
|Ak(Qj)|

+R−1000‖f1‖L2‖f2‖L2 ,

where the second term accounts for the tail of ψ. Since E ≥ Rδ, we can assume

that RδAk(Q) ⊂ Q.

We let X be a union of rectangles Ak(Qj) that each obey

H . sup
Ak(Qj)

|eit∆f1e
it∆f2|1/2.

We can arrange that the projections of 10Ak(Qj) cover U and also that any

two rectangles Ak(Qj) in X have essentially different projections. Because of

this covering, we still have |U | . M−1|X|. Now if H . R−100‖f1‖1/2L2 ‖f2‖1/2L2 ,

then (8.2) follows trivially. Therefore, (8.11) tells us that for each Ak(Qj) ⊂ X,∫
RδAk(Q)

|eit∆f1e
it∆f2| & R−O(δ)|Ak(Qj)|H2.

We define Y just as above, and this inequality lets us rigorously justify

(8.6):

H|X|1/6 ≈ H|X ∩ Y |1/6 / EO(1)
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Y )

.

It only remains to prove Proposition 8.2.

Proof. For function f with Fourier support in B(ξ0, 1/M), by parabolic

rescaling, we have

(8.12) ‖eit∆f(x)‖Lp(B3(R)) ∼M
4
p
−1‖eir∆f̃(y)‖Lp(BR/M×IR/M2 ),

where f̃ has Fourier support in B2(0, 1), ‖f̃‖2 = ‖f‖2, the new coordinates

(y, r) and old coordinates (x, t) are related byy = x/M + 2tξ0/M,

r = t/M2,

and BR/M × IR/M2 is a box of dimensions ∼ R
M ×

R
M ×

R
M2 , which is the range

for (y, r) under the change of variables as above. By (8.12), we have

(8.13)
∥∥∥|eit∆f1|1/2|eit∆f2|1/2

∥∥∥
L6(Y )

∼M−1/3
∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2

∥∥∥
L6(Ỹ )

,
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where f̃1, f̃2 have 1/K-separated Fourier supports in B2(0, 1), and Ỹ is a union

of N
√
R
M ×

√
R
M ×

√
R

M2 -boxes in BR/M × IR/M2 , in correspondence to Y under

the change of variables as above.

To use Theorem 7.2 to estimate
∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2

∥∥∥
L6(Ỹ )

, we decom-

pose BR/M × IR/M2 as a union of R
M2 -balls Qk,R/M2 , and inside each Qk,R/M2

we consider the
√
R/M -cubes Q(k) that intersect Ỹ . First, we sort the balls

Qk,R/M2 according to the dyadic values ‖eir∆f̃i‖L2(Qk,R/M2 ), i = 1, 2. Then

inside each Qk,R/M2 we sort the cubes Q(k) according to the dyadic values

‖eir∆f̃i‖L6(Q(k)), i = 1, 2. We can choose balls Qk,R/M2 , k = 1, 2, . . . , W̄ , and

inside each Qk,R/M2 we can choose a set of
√
R/M -cubes Q

(k)
j , j = 1, 2, . . . , Nk,

so that

(8.14) ≈ N boxes in Ỹ are contained in
W̄⋃
k=1

Ỹk,

where Ỹk :=
⋃Nk
j=1Q

(k)
j , and the following conditions hold:

(a) for each i= 1, 2, ‖eir∆f̃i‖L2(Qk,R/M2 ) is essentially constant in k= 1, . . . , W̄ ;

(b) for each k = 1, . . . , W̄ , for each i = 1, 2, ‖eir∆f̃i‖L6(Q
(k)
j )

is essentially

constant in j = 1, . . . , Nk;

(c)
∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2

∥∥∥
L6(Ỹk)

is essentially constant in k = 1, . . . , W̄ .

Now by (8.9), (8.14) and condition (c) as above, for each 1 ≤ k ≤ W̄ , we

have ∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2
∥∥∥
L6(Ỹ )

/ W̄
1
6

∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2
∥∥∥
L6(Ỹk)

.

Since the tangent-to-variety condition is preserved under parabolic rescaling,

we can apply Theorem 7.2 to bound
∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2

∥∥∥
L6(Ỹk)

by

/ EO(1)
Å
R

M2

ã−1/6

N
−1/6
k

Å
R

M2

ã−1/2 2∏
i=1

∥∥∥eir∆f̃i∥∥∥1/2

L2(Qk,R/M2 )
.

By condition (a) as above and parabolic rescaling (8.12), we have

2∏
i=1

∥∥∥eir∆f̃i∥∥∥1/2

L2(Qk,R/M2 )
. W̄−1/2

2∏
i=1

‖eir∆f̃i‖1/2L2(BR/M×IR/M2 )

∼ W̄−1/2M−1
2∏
i=1

‖eit∆fi‖1/2L2(B3(R)) . W̄
−1/2M−1R1/2

2∏
i=1

‖fi‖1/22 .
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Combining (8.13) and the above estimates for
∥∥∥|eir∆f̃1|1/2|eir∆f̃2|1/2

∥∥∥
L6(Ỹ )

, we

get ∥∥∥|eit∆f1|1/2|eit∆f2|1/2
∥∥∥
L6(Y )

/ EO(1)W̄−1/3N
−1/6
k R−1/6

2∏
i=1

‖fi‖1/22 .

The above estimate holds for W̄ indexes k’s. For each k, there are Nk

√
R
M -

cubes in Ỹk, each
√
R
M -cube contains at most M

√
R
M ×

√
R
M ×

√
R

M2 -boxes in Ỹ ,

and there are ≈ N
√
R
M ×

√
R
M ×

√
R

M2 -boxes in Ỹ that are contained in
⋃W̄
k=1 Ỹk.

By pigeonholing there is an index k satisfying

N / NkW̄M.

Therefore,

(8.15)∥∥∥|eit∆f1|1/2|eit∆f2|1/2
∥∥∥
L6(Y )

/ EO(1)W̄−1/6N−1/6M1/6R−1/6
2∏
i=1

‖fi‖1/22 .

Since W̄ ≥ 1, this completes the proof of Proposition 8.2. �

This finishes the proof of Proposition 8.1. �

Finally, to prove Proposition 6.3, we apply Proposition 8.1 to fj,tang on

each ball Bj . We expand fj,tang into wave packets at the scale ρ = R1−δ on

the ball Bj . Because of the definition of fj,tang, each wave packet will lie in the

R1/2+δ-neighborhood of Z and the angles between the wave packets and the

tangent space of Z will be bounded by R−1/2+2δ. For a detailed description of

the wave packet decomposition of fj,tang on a smaller ball, see Section 7 of [9].

We define E so that ρ1/2E = R1/2+δ. Since ρ = R1−δ, we get E = R(3/2)δ, and

so Eρ−1/2 = R−1/2+2δ. Each new wave packet lies in the Eρ1/2-neighborhood

of Z, and the angles between the wave packets and the tangent space of Z

are bounded by Eρ−1/2. Therefore, the new wave packets are concentrated

in TZ(E). Now since EO(1) = RO(δ), the bound from Proposition 8.1 implies

Proposition 6.3.
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