Abstract
An old question in Ramsey theory asks whether any finite coloring of the natural numbers admits a monochromatic pair $\{x+y,xy\}$. We answer this question affirmatively in a strong sense by exhibiting a large new class of nonlinear patterns that can be found in a single cell of any finite partition of $\mathbb N$. Our proof involves a correspondence principle that transfers the problem into the language of topological dynamics. As a corollary of our main theorem we obtain partition regularity for new types of equations, such as $x^2-y^2=z$ and $x^2+2y^2-3z^2=w$.