Abstract
We show that there exist polynomial endomorphisms of $\mathbb{C}^2$, possessing a wandering Fatou component. These mappings are polynomial skew-products, and can be chosen to extend holomorphically of $\mathbb{P}^2(\mathbb{C})$. We also find real examples with wandering domains in $\mathbb{R}^2$. The proof relies on parabolic implosion techniques and is based on an original idea of M. Lyubich.
Authors
Matthieu Astorg
Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, Toulouse, France
Xavier Buff
Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, Toulouse, France
Romain Dujardin
Laboratoire d'Analyse et de Mathématiques Appliquées, Université Paris-Est Marne-la-Vallée, Champs-sur-Marne, France
Han Peters
KdV Institute for Mathematics University of Amsterdam, The Netherlands
Jasmin Raissy
Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, Toulouse, France