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A two-dimensional polynomial mapping
with a wandering Fatou component

By Matthieu Astorg, Xavier Buff, Romain Dujardin, Han Peters,

and Jasmin Raissy

Abstract

We show that there exist polynomial endomorphisms of C2, possess-

ing a wandering Fatou component. These mappings are polynomial skew-

products, and can be chosen to extend holomorphically of P2(C). We also

find real examples with wandering domains in R2. The proof relies on par-

abolic implosion techniques and is based on an original idea of M. Lyubich.

Introduction

Let P : Ck → Ck be a polynomial mapping. In this article we consider P

as a dynamical system; that is, we study the behavior of the sequence of iterates

(P ◦n)n∈N. A case of particular interest is when P extends as a holomorphic

endomorphism of Pk(C). As a matter of expositional simplicity, let us assume

for the moment that this property holds. The Fatou set FP is classically

defined as the largest open subset of Pk(C) in which the sequence of iterates

is locally equicontinuous (or normal, according to the usual terminology). Its

complement, the Julia set, is where chaotic dynamics takes place. A Fatou

component is a connected component of FP .

When the dimension k equals 1, the Non Wandering Domain Theorem due

to Sullivan [Sul85] asserts that every Fatou component is eventually periodic.

This work is fundamental for at least two reasons:

— First, the result opens the way to a complete description of the dynamics

in the Fatou set: the orbit of any point in the Fatou set eventually lands

in a (super-)attracting basin, a parabolic basin or a rotation domain.

— Secondly, the proof introduced quasi-conformal mappings as a new tool in

this research area, leading to many subsequent developments.
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There are many variants and generalizations of Sullivan’s Theorem in several

areas of one-dimensional dynamics. For instance, it was shown by Eremenko

and Lyubich [EL92] and Goldberg and Keen [GK86] that entire mappings

with finitely many singular values have no wandering domains. On the other

hand, Baker [Bak76], prior to Sullivan’s result, gave the first example of an

entire mapping with a wandering domain. Simple explicit entire mappings with

Fatou components wandering to infinity were given in [Sul85, §9] and [Her84,

§II.11], while more elaborate examples with varied dynamical behaviors were

presented in [EL87]. More recently, Bishop [Bis15] constructed an example

with a bounded singular set. In all cases, the orbit of the wandering domain

is unbounded.

In the real setting, the question of (non)existence of wandering intervals

has a long and rich history. It started with Denjoy’s theory of linearization

of circle diffeomorphisms [Den32]: A C2-diffeomorphism of the circle with

irrational rotation number has no wandering intervals (hence it is linearizable),

whereas this result breaks down for C1 diffeomorphisms. More recent results

include homeomorphisms with various degrees of regularity and flatness of

critical points.

For interval maps, the nonexistence of wandering intervals for unimodal

maps with negative Schwarzian was established by Guckenheimer [Guc79], and

later was extended to several classes of interval and circle maps in [Lyu89],

[BL89], [MdMvS92]. In particular, the result of Martens, de Melo and van

Strien implies the nonexistence of wandering intervals for polynomials on the

real line.

One difficulty is to define a notion of Fatou set in this context. Let us just

note here that for a real polynomial, the Fatou set as defined in [MdMvS92]

contains the intersection of the complex Fatou set with the real line but could

a priori be larger.

The problem was also studied in the non-Archimedian setting, in partic-

ular, in the work of Benedetto [Ben05] and Trucco [Tru14].

The question of the existence of wandering Fatou components makes sense

in higher dimension, and it has been put forward by many authors since the

1990’s (see, e.g., [FS01]). Higher dimensional transcendental mappings with

wandering domains can be constructed from one-dimensional examples by sim-

ply taking products. An example of a transcendental biholomorphic map in

C2 with a wandering Fatou component oscillating to infinity was constructed

by Fornæss and Sibony in [FS98].

For higher dimensional polynomials and rational mappings, it is widely ac-

knowledged that quasi-conformal methods break down, so a direct approach to

generalize Sullivan’s Theorem fails. Besides this observation, little was known

about the problem so far.
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Recently, Misha Lyubich suggested that polynomial skew products with

wandering domains might be constructed by using parabolic implosion tech-

niques. The idea was to combine slow convergence to an invariant fiber and

parabolic transition in the fiber direction, to produce orbits shadowing those

of a Lavaurs map. (See below for a more precise description.)

In this paper, we bring this idea to completion, thereby providing the first

examples of higher dimensional polynomial mappings with wandering domains.

Main Theorem. There exists an endomorphism P : P2(C) → P2(C),

induced by a polynomial skew-product mapping P : C2 → C2, possessing a

wandering Fatou component.

Let us point out that the orbits in these wandering domains are bounded.

The approach is in fact essentially local. A more detailed statement is the

following. (See below for the definition of Lavaurs maps.)

Main Theorem (precise form). Let f : C → C and g : C → C be

polynomials of the form

(1) f(z) = z + z2 + O(z3) and g(w) = w − w2 + O(w3).

If the Lavaurs map Lf : Bf → C has an attracting fixed point, then the skew-

product map P : C2 → C2 defined by

(2) P (z, w) :=

Ç
f(z) +

π2

4
w, g(w)

å
admits a wandering Fatou component.

Notice that if f and g have the same degree, P extends to a holomorphic

self-map on P2(C). Observe also that examples in arbitrary dimension k ≥ 2

may be obtained from this result by simply considering products mappings of

the form (P,Q), where Q admits a fixed Fatou component.

Before explaining what the Lavaurs map is, let us give some explicit ex-

amples satisfying the assumption of the Main Theorem.

Example 1. Let f : C → C be the cubic polynomial f(z) = z + z2 + az3,

and let g be as in (1). If r > 0 is sufficiently small and a ∈ D(1 − r, r),

then the polynomial skew-product P defined in (2) admits a wandering Fatou

component.

Numerical experiments suggest that the value a = 0.95 works (see Figure 5

on page 298).

In view of the results of [MdMvS92] cited above, it is also of interest to look

for real polynomial mappings with wandering Fatou domains intersecting R2.

Our method also provides such examples.
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Example 2. Let f : C→ C be the degree 4 polynomial defined by

f(z) := z + z2 + bz4 with b ∈ R.
There exist parameters b ∈ (−8/27, 0) such that if g is as in (1), the poly-

nomial skew-product P defined in (2) admits a wandering Fatou component

intersecting R2.

Numerical experiments suggest that the parameter b = −0.2136 satisfies

this property. We illustrate this phenomenon graphically in Figure 1 for the

mapping P defined by

(3) (z, w) 7−→
Ç
z + z2 − 0.2136z4 +

π2

4
w,w − w2

å
.

The set of points (z, w) ∈ R2 with bounded orbit is contained in the rectangle

(−3, 3)× (0, 1). The topmost image in Figure 1 displays this set of points. The

bottom left image displays the window −3 < z < 3 and 1/10032 < w < 1/9992.

(This is a thin horizontal slice of the upper image, greatly magnified in the w-

direction.) The orbit of a point (z0, w0) contained in the wandering domain is

indicated. The coordinate w0 is close to 1/10002, and we plotted the first 2001

and the next 2003 iterates. The points are indicated in black except (z0, w0),

P ◦2001(z0, w0) and P ◦2001+2003(z0, w0), which are colored in red.1 The small

square around (z0, w0) is blown up to make the zoom on the bottom right

image. The wandering domain is contained in the grey open neighborhood of

(z0, w0) of points with bounded orbits. These specific values are explained by

the proof of the Main Theorem (see Proposition A below).

Using skew-products to construct new examples is natural as it allows

one to build on one-dimensional dynamics. This idea was already used several

times in holomorphic dynamics (see, e.g., [Jon99], [Duj15]) and beyond.

Fatou components of polynomial skew-products were studied in several

earlier works. Lilov showed in his thesis [Lil04] that skew-products do not

have wandering components near a super-attracting invariant fiber. In [PV16]

it was shown that the argument used in [Lil04] breaks down near an attracting

fiber. The construction in [PV16] uses a repelling fixed point in the invariant

fiber with multiplier equal to the inverse of the multiplier of the attracting

fiber. This resonance between multipliers induces a dynamical behavior that

cannot occur in one-dimensional dynamics.

In the same vein, an invariant fiber at the center of a Siegel disk was

used in [BTFP15] to construct a nonrecurrent Fatou component with limit set

isomorphic to a punctured disk. In that construction the invariant fiber also

contains a Siegel disk, but with the opposite rotation number.

1All colored figures are viewable in the online version of the article: http://dx.doi.org/10.

4007.annals.2016/184.1.2.

http://dx.doi.org/10.4007.annals.2016/184.1.2
http://dx.doi.org/10.4007.annals.2016/184.1.2
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Figure 1. A real wandering domain for the map P defined in (3).

We note that the construction presented in this paper uses an invariant

parabolic fiber that again contains a parabolic point.

To explain the notion of Lavaurs map and the strategy of the proof, we

need to recall some facts on parabolic dynamics. (See Appendix A for more

details.) Let f be a polynomial of the form

f(z) = z + z2 + az3 + O(z4) for some a ∈ C.
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Denote by

Bf :=
¶
z ∈ C ; f◦n(z)

6=−→
n→+∞

0
©

the parabolic basin of 0. It is known that there is an attracting Fatou coordinate

φf : Bf → C that conjugates f to the translation T1 by 1:

φf ◦ f = T1 ◦ φf .
This Fatou coordinate may be normalized by2

φf (z) = −1

z
− (1− a) log

Å
−1

z

ã
+ o(1) as <(−1/z)→ +∞.

Likewise, there is a repelling Fatou parametrization ψf : C→ C satisfying

ψf ◦ T1 = f ◦ ψf ,

which may be normalized by

− 1

ψf (Z)
= Z + (1− a) log(−Z) + o(1) as <(Z)→ −∞.

The (phase 0) Lavaurs map Lf is defined by3

Lf := ψf ◦ φf : Bf → C.

Mappings of this kind appear when considering high iterates of small pertur-

bations of f . This phenomenon is known as parabolic implosion and will play

a key role in this paper. The reader is referred to the text of Douady [Dou94]

for a gentle introduction to this topic and to [Shi00] for a more detailed pre-

sentation by Shishikura. (Semi-)parabolic implosion was recently studied in

the context of dissipative polynomial automorphisms of C2 by Bedford, Smillie

and Ueda [BSU12] (see also [DL15]).

Let us point out here that since our results do not fit into the classi-

cal framework, our treatment of parabolic implosion will be essentially self-

contained. As it turns out, our computations bear some similarity with those

of [BSU12].

We can now explain the strategy of the proof of the Main Theorem. Let

Bg be the parabolic basin of 0 under iteration of g. If w ∈ Bg, then g◦m(w)

converges to 0 like 1/m. We want to choose (z0, w0) ∈ Bf × Bg so that the

first coordinate of P ◦m(z0, w0) returns close to the attracting fixed point of Lf
infinitely many times. The proof is designed so that the return times are the

integers n2 for n ≥ n0. So, we have to analyze the orbit segment between n2

and (n+ 1)2, which is of length 2n+ 1.

2The branch of log used in this normalization as well as in the next one is the branch

defined in C \ R− that vanishes at 1
3The reader who is familiar with Lavaurs maps should notice that the choice of phase was

determined by the normalization of Fatou coordinates.
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For large n, the first coordinate of P along this orbit segment is approxi-

mately

f(z) + ε2 with
π

ε
= 2n.

The Lavaurs Theorem from parabolic implosion asserts that if π
ε = 2n, then

for large n, the (2n)th iterate of f(z) + ε2 is approximately equal to Lf (z)

on Bf .

Our setting is slightly different since ε keeps decreasing along the orbit.

Indeed, on the first coordinate we are taking the composition of 2n+ 1 trans-

formations

f(z) + ε2k with
π

εk
' 2n+

k

n
and 1 ≤ k ≤ 2n+ 1.

The main step of the proof of the Main Theorem consists in a detailed analysis

of this perturbed situation. We show that the decay of εk is counterbalanced

by taking exactly one additional iterate of P . The precise statement is the

following.

Proposition A. As n→ +∞, the sequence of maps

C2 3 (z, w) 7→ P ◦2n+1
Ä
z, g◦n

2
(w)
ä
∈ C2

converges locally uniformly in Bf × Bg to the map

Bf × Bg 3 (z, w) 7→
Ä
Lf (z), 0

ä
∈ C× {0}.

See Figure 2 for a graphical illustration of this proposition.

From this point, the proof of the Main Theorem is easily completed: If

ξ is an attracting fixed point of Lf and if (z0, w0) ∈ Bf × Bg is chosen so

that P ◦n
2
0(z0, w0) is close to (ξ, 0) for some large n0, then P ◦(n0+1)2(z0, w0)

gets closer to (ξ, 0) and we can repeat the process to get that the sequenceÄ
P ◦n

2
(z0, w0)

ä
n≥0 converges to (ξ, 0). Since this reasoning is valid on an open

set of initial conditions, these points belong to some Fatou component. Simple

considerations show that it cannot be preperiodic, and the result follows.

Let us observe that by construction, the ω-limit set of any point in the

wandering Fatou component consists of a single two-sided orbit of (ξ, 0) under

P , plus the origin.

We give two different approaches for constructing examples satisfying the

assumptions of the Main Theorem. The next proposition corresponds to Ex-

ample 1.

Proposition B. Consider the cubic polynomial f : C→ C defined by

f(z) := z + z2 + az3 with a ∈ C.

If r > 0 is sufficiently close to 0 and a ∈ D(1 − r, r), then the Lavaurs map

Lf : Bf → C admits an attracting fixed point.
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Figure 2. Illustration of Proposition A for f(z) = z+z2+0.95z3

and g(w) = w − w2. The parabolic basin Bf is colored in

grey. It is invariant under f , but not under fw := f + π2

4 w

for w 6= 0. The Lavaurs map Lf is defined on Bf . The point

z0 = −0.05+0.9i and its image Lf (z0) are indicated. The other

points are the points zn,k, which are defined by P ◦k(z0, wn2

ä
=Ä

zn,k, wn2+k

ä
for 1 ≤ k ≤ 2n + 1 and wm = g◦m(1/2). If n is

large enough, the point zn,2n+1 is close to Lf (z0). Left: n = 5,

there are 11 red points. Right: n = 10, there are 21 blue points.

To prove this proposition we construct a fixed point for the Lavaurs map

by perturbation from the degenerate situation a = 1 and estimate its multiplier

by a residue computation.

To construct the real examples of Example 2, we use the Intermediate

Value Theorem to find a real Lavaurs map with a real periodic critical point.

Proposition C. Consider the degree 4 polynomial f : C→ C defined by

f(z) := z + z2 + bz4 with b ∈ R.

Then there exists a parameter b ∈ (−8/27, 0) such that the Lavaurs map Lf
has a fixed critical point in R ∩ Bf .

In particular, this fixed point is super-attracting so we are in the situation

of the Main Theorem.
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The plan of the paper is the following. In Section 1 we show how to deduce

the Main Theorem from Proposition A. In Section 2 we develop a formalism of

approximate Fatou coordinates in our context, which is necessary for proving

Proposition A, which is itself established in Section 3. The proofs in Sections 2

and 3 are rather technical and are divided into a number of steps. A detailed

outline will be given there. Propositions B and C are respectively established

in Sections 4 and 5. Appendix A summarizes the main properties of Fatou

coordinates and Lavaurs maps.

Acknowledgements. This project grew up from discussions between Misha

Lyubich and Han Peters in relation with the work [LP14]. It evolved into

the current list of authors at the occasion of a meeting of the ANR project

LAMBDA in Université Paris-Est Marne-la-Vallée in April 2014. We are grate-

ful to Misha Lyubich for his crucial input, which ultimately led to the present

work.

1. Existence of wandering domains

In this section, we prove the Main Theorem assuming Proposition A.

Let ξ ∈ Bf be an attracting fixed point of the Lavaurs map Lf . Let V be

a disk centered at ξ, chosen such that Lf (V ) is compactly contained in V . It

follows that L◦kf (V ) converges to ξ as k →∞. Let also W b Bg be an arbitrary

disk.

Denote by π1 : C2 → C the first coordinate projection, that is, π1(z, w)

:= z. According to Proposition A, there exists n0 ∈ N such that for every

n ≥ n0,
π1 ◦ P ◦(2n+1)(V × g◦n2

(W )) b V.

Let U be a connected component of the open set P−n
2
0

Ä
V × g◦n2

0(W )
ä
.

Lemma 1.1. The sequence (P ◦n
2
)n≥0 converges locally uniformly to (ξ, 0)

on U .

Proof. An easy induction shows that for every integer n ≥ n0,

(4) P ◦n
2
(U) ⊆ V × g◦n2

(W ).

Indeed, this holds by assumption for n = n0. Now if the inclusion is true for

some n ≥ n0, then

π1 ◦ P ◦(n+1)2(U) = π1 ◦ P ◦(2n+1)
Ä
P ◦n

2
(U)
ä

⊂ π1 ◦ P ◦(2n+1)
Ä
V × g◦n2

(W )
ä
⊂ V,

from which (4) follows.

From this we get that the sequence (P ◦n
2
)n≥0 is uniformly bounded, hence

normal, on U . Also, any cluster value of this sequence of maps is constant and
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of the form (z, 0) for some z ∈ V . In addition, (z, 0) is a limit value (associated

to a subsequence (nk)) if and only if
Ä
Lf (z), 0

ä
is a limit value (associated to

the subsequence (1 + nk)). We infer that the set of cluster limits is totally

invariant under Lf : V → V , therefore it must be reduced to the attracting

fixed point ξ of Lf , and we are done. �

Corollary 1.2. The domain U is contained in the Fatou set of P .

Proof. It is well known in our context that the sequence (P ◦m)m≥0 is

locally bounded on U if and only if there exists a subsequence (mk) such that

(P ◦mk |U )k≥0 has the same property. Indeed, since W is compact, there exists

R > 0 such that if |z| > R, then for every w ∈ W , (z, w) escapes locally

uniformly to infinity under iteration. The result follows. �

Proof of the Main Theorem. Let Ω be the component of the Fatou set

FP containing U . According to Lemma 1.1, for any integer i ≥ 0, the se-

quence (P ◦(n
2+i))n≥0 converges locally uniformly to P ◦i(ξ, 0) =

Ä
f◦i(ξ), 0) on

U , hence on Ω. Therefore, the sequence (P ◦n
2
)n≥0 converges locally uniformly

to
Ä
f◦i(ξ), 0) on P ◦i(Ω).

As a consequence, if i, j are nonnegative integers such that P ◦i(Ω) =

P ◦j(Ω), then f◦i(ξ) = f◦j(ξ), from which we deduce that i = j. Indeed,

ξ belongs to the parabolic basin Bf , and so, it is not (pre)periodic under

iteration of f . This shows that Ω is not (pre)periodic under iteration of P ; it

is a wandering Fatou component for P . �

2. Approximate Fatou coordinates

In this section we study the phenomenon of persistence of Fatou coordi-

nates in our nonautonomous setting. As in the Main Theorem, we consider

polynomial mappings f, g : C→ C of the form

f(z) = z + z2 + az3 + O(z4) and g(w) = w − w2 + O(w3).

We put

fw(z) = f(z) +
π2

4
w.

We want to show that there exist changes of variables ϕw and ϕg(w) that are in

a sense approximations to the Fatou coordinates of f in appropriate domains,

and such that ϕg(w)◦fw◦ϕ−1w is close to a translation. These change of variables

are normalized so that ϕg(w) ◦ fw ◦ ϕ−1w is roughly defined in a vertical strip

of width 1 and the translation vector is
√
w/2. They will be given by explicit

formulas; in this respect our approach is similar to that of [BSU12]. Precise

error estimates are required in order to ultimately prove Proposition A in the

next section.



A POLYNOMIAL MAP WITH A WANDERING FATOU COMPONENT 273

2.1. Notation. The following notation will be used throughout this section

and the next one (see also Figure 3).

First, choose R > 0 large enough so that F : Z 7→ −1/f(−1/Z) is univa-

lent on C \D(0, R),

sup
|Z|>R

∣∣∣F (Z)− Z − 1
∣∣∣ < 1

10
and sup

|Z|>R

∣∣∣F ′(Z)− 1
∣∣∣ < 1

10
.

Denote by HR the right half-plane HR :=
¶
Z ∈ C ; <(Z) > R

©
and by −HR

the left half-plane −HR :=
¶
Z ∈ C ; <(Z) < −R

©
. Define the attracting petal

P att
f by

P att
f =

ß
z ∈ C ; <

Å
−1

z

ã
> R

™
.

Then,

• the restriction of the attracting Fatou coordinate φf to the attracting petal

P att
f is univalent, and

• the restriction of the repelling Fatou parametrization ψf to the left half-

plane −HR is univalent.

We use the notation ψ−1f only for the inverse branch ψ−1f : P rep
f → −HR of ψf

on the repelling petal P rep
f := ψf (−HR). Recall that

φf ◦ f = T1 ◦ φf , f ◦ ψf = ψf ◦ T1,

φf (z) ∼ −1

z
as <

Å
−1

z

ã
→ +∞ and ψf (Z) ∼ − 1

Z
as <(Z)→ −∞.

Next, for r > 0, we set Br := D(r, r) and fix r > 0 small enough that

Br ⊂ Bg and g(Br) ⊂ Br.

For the remainder of the article, we assume that w ∈ Br, whence g◦m(w)→ 0

as m → +∞. The notation
√
w stands for the branch of the square root on

Br that has positive real part.

Finally, we fix a real number

(5)
1

2
< α <

2

3
.

The relevance of this range of values for α will be made clearer during the

proof. For w ∈ Br, we let

rw := |w|(1−α)/2 −→
w→0

0 and Rw := |w|−α/2 −→
w→0

+∞.

Define R w to be the rectangle

(6) R w :=

ß
Z ∈ C ;

rw
10

< <(Z) < 1− rw
10

and − 1

2
< =(Z) <

1

2

™
,
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and let Datt
w and Drep

w be the disks

Datt
w := D

Å
Rw,

Rw
10

ã
and Drep

w := D

Å
−Rw,

Rw
10

ã
.

In this section, the notation O(h) means a quantity that is defined for

w ∈ Br close enough to zero and is bounded by C · h for a constant C that

does not depend on w. As usual, o(h) means a quantity such that o(h)/h

converges to zero as w → 0.

2.2. Properties of approximate Fatou coordinates. Our purpose in this

paragraph is to state precisely the properties of the approximate Fatou co-

ordinates, in an axiomatic fashion. The actual definitions as well as the proofs

will be detailed afterwards.

The claim is that there exists a family of domains (Vw) and univalent

maps (ϕw : Vw → C) parametrized by w ∈ Br, satisfying the following three

properties.

Property 1 (Comparison with the attracting Fatou coordinate). As w → 0

in Br,

Datt
w ⊂ φf

Ä
Vw ∩ P att

f

ä
and sup

Z∈Datt
w

∣∣∣∣∣ 2√
w
· ϕw ◦ φ−1f (Z)− Z

∣∣∣∣∣ −→ 0.

This means that 2√
w
ϕw approximates the Fatou coordinate on the attract-

ing side. A similar result holds on the repelling side.

Property 2 (Comparison with the repelling Fatou coordinate). As w → 0

in Br, we have that

1 +

√
w

2
·Drep

w ⊂ ϕw
Ä
Vw ∩ P rep

f

ä
and

sup
Z∈Drep

w

∣∣∣∣∣ψ−1f ◦ ϕ−1w
Ç

1 +

√
w

2
Z

å
− Z

∣∣∣∣∣ −→ 0.

Finally, the last property asserts that 2√
w
ϕw is almost a Fatou coordinate.

Property 3 (Approximate conjugacy to a translation). As w → 0 in Br,

we have that

R w ⊂ ϕw(Vw), fw ◦ ϕ−1w (R w) ⊂ Vg(w)
and

sup
Z∈R w

∣∣∣∣∣ϕg(w) ◦ fw ◦ ϕ−1w (Z)− Z −
√
w

2

∣∣∣∣∣ = o(w).

To improve the readability of the proof, which involves several changes of

coordinates, we adopt the following typographical convention:
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• block letters (like z, Vw, . . . ) are used for objects that are thought of as

living in the initial coordinates;
• script like letters (like Z, R w, . . . ) are used for objects living in approxi-

mate Fatou coordinates;
• the coordinate Z is used for the actual Fatou coordinate.

This gives rise to expressions like φf (z) = Z or ϕw(z) = Z.

2.3. Definition of the approximate Fatou coordinates. The skew-product

P fixes the origin and leaves the line {w = 0} invariant. We may wonder

whether there are other parabolic invariant curves near the origin, in the sense

of Écalle [Éca85] and Hakim [Hak98].

Question. Do there exist holomorphic maps ξ± : Br → C such that

ξ±(w) → 0 as w → 0 and such that fw ◦ ξ±(w) = ξ± ◦ g(w) for w ∈ Br?

We shall content ourselves with the following weaker result.

Lemma 2.1. Let ζ± : Br → C be defined by

ζ±(w) = ±c1
√
w + c2w with c1 =

πi

2
and c2 =

aπ2

8
− 1

4
.

Then,
fw ◦ ζ±(w) = ζ± ◦ g(w) + O(w2).

Proof. An elementary computation shows that

fw ◦ ζ±(w) = ±c1
√
w +

Ç
c2 + c21 +

π2

4

å
w ± (ac31 + 2c1c2)w

√
w + O(w2).

On the other hand, »
g(w) =

√
w − 1

2
w
√
w + O(w2),

so
ζ ◦ g(w) = ±c1

√
w + c2w ∓

c1
2
w
√
w + O(w2).

Thus the result follows from our choice of c1 and c2 since

c2 + c21 +
π2

4
= c2 and ac31 + 2c1c2 = −c1

2
. �

Let ψw : C→ P1(C) \ {ζ+(w), ζ−(w)} be the universal cover defined by

(7) ψw(Z) :=
ζ−(w) · e2πiZ − ζ+(w)

e2πiZ − 1
= ic1

√
w cot(πZ) + c2w.

This universal cover restricts to a univalent map on the vertical strip

S0 :=
¶

Z ∈ C ; 0 < <(Z) < 1
©
,

with inverse given by

ψ−1w (z) =
1

2πi
log

Ç
z − ζ+(w)

z − ζ−(w)

å
.

In this formula, log(·) stands for the branch of the logarithm defined on C\R+

and such that log(−1) = πi.



276 M. ASTORG, X. BUFF, R. DUJARDIN, H. PETERS, and J. RAISSY

0 0

1

χw(Z)'Z

Datt
w Drep

w

Rw −Rw

ϕw◦ψf (Z)'1+
√
w
2
Z

−R

ϕw ψf
φf

ψw

R

Q w := χ−1w (R w)

|w|1/4

1− |w|1/4

10

Sw

rw
10

1− rw
10

0

R w

χw(Sw)
ϕw◦φ−1

f
(Z)'

√
w
2
Z

P att
f

ζ+(w)

ζ−(w)

Vw P rep
f

Figure 3. Changes of coordinates used in the proof.
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For w ∈ Br, let χw : S0 → C be the map defined by

(8) χw(Z) := Z −
√
w(1− a)

2
log

Ç
2 sin(πZ)

π
√
w

å
,

where in this formula the branch of log is defined on 1√
w

(C \R−) and vanishes

at 1.

Now introduce

Sw :=
¶

Z ∈ C ; |w|1/4 < <(Z) < 1− |w|1/4
©

and its image under ψw:

Vw := ψw(Sw) ⊂ C.

Lemma 2.2. If w ∈ Br is close enough to 0, then χw : Sw → C is

univalent. In addition, χw is close to the identity in the following sense:

if Z ∈ Sw ∩{Z, =(Z) < 1} , then χw(Z) = Z + O
Ä
|w|1/2 log |w|

ä
= Z + o(rw).

Proof. Observe that

χ′w(Z) = 1−
√
w(1− a)π

2
cot(πZ) and sup

Z∈Sw

∣∣∣cot(πZ)
∣∣∣ ∈ O

Ä
|w|−1/4

ä
.

As a consequence,

sup
Z∈Sw

∣∣∣χ′w(Z)− 1
∣∣∣ ∈ O

Ä
|w|1/4

ä
.

If χw(Z1) = χw(Z2), then

|Z2 − Z1| =
∣∣∣(χw(Z1)− Z1)− (χw(Z2)− Z2)

∣∣∣ ≤ sup
[Z1,Z2]

∣∣∣χ′w(Z)− 1
∣∣∣ · |Z2 − Z1|.

When w is sufficiently close to 0, the supremum is smaller than 1 and we

necessarily have Z1 = Z2.

The second assertion of the lemma follows directly from the definition of

χw and the fact that on Sw∩{=(Z) < 1}, |sin(πZ)| ≥ c |w|1/4 for some positive

constant c. �

From now on, we assume that w is sufficiently close to 0 so that χw :

Sw → C is univalent.

Definition 2.3. The approximate Fatou coordinates ϕw are the maps

ϕw := χw ◦ ψ−1w : Vw → C with w ∈ Br.

We need to prove that these approximate Fatou coordinates satisfy Prop-

erties 1, 2 and 3.

Observe that there is a slight abuse in terminology here since the ac-

tual approximation to the Fatou coordinate is given by 2√
w
ϕw, as stated in

Property 1. This normalization is chosen so that in the new coordinates, the
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parabolic transition (which requires approximately 2/
√
w steps) occurs in a

vertical strip of width 1 (see Figure 3).

2.4. Comparison with the attracting Fatou coordinate. In this paragraph,

we prove that the approximate Fatou coordinate ϕw satisfies Property 1,

namely when w → 0 in Br, D
att
w ⊂ φf (Vw) and

(9) sup
Z∈Datt

w

∣∣∣∣∣ 2√
w
· ϕw ◦ φ−1f (Z)− Z

∣∣∣∣∣ −→ 0.

Recall that Rw= |w|−α/2, rw= |w|1/2Rw= |w|(1−α)/2, and Datt
w =D(Rw, Rw/10).

Proof of Property 1.

Step 1. Let us first prove that Datt
w ⊂ φf (Vw). Note that Rw → +∞ as

w → 0, hence Datt
w ⊂ φf (P att

f ) for w close to 0. If z ∈ φ−1f (Datt
w ), then

φf (z) = −1

z
+ o

Å
1

z

ã
= O (Rw) .

In addition,

ζ±(w) = ±πi

2

√
w
Ä
1 + o(1)

ä
and

ζ±(w)

z
= O (rw) .

In particular,

log

Ç
z − ζ+(w)

z − ζ−(w)

å
= log

Ç
1− ζ+(w)

z

å
− log

Ç
1− ζ−(w)

z

å
= −ζ

+(w)

z
+
ζ−(w)

z
+ O

Ä
r2w
ä

= −πi

√
w

z
+ O

Ä
r2w
ä
.

Since α > 1/2, we have that r2w = |w|1−α = o
Ä
|w|1/2

ä
, and it follows that

(10) Z :=
1

2πi
log

Ç
z − ζ+(w)

z − ζ−(w)

å
= −
√
w

2z
+ O

Ä
r2w
ä

= −
√
w

2z
+ o
Ä
|w|1/2

ä
.

So, the real part of Z is comparable to rw, and since |w|1/4 = o (rw), we get

that Z ∈ Sw, whence z = ψw(Z) ∈ Vw for w ∈ Br close enough to 0.

Step 2. We now establish (9). Note that

sup
Z∈Datt

w

∣∣∣∣∣ 2√
w
· ϕw ◦ φ−1f (Z)− Z

∣∣∣∣∣ = sup
z∈φ−1

f
(Datt

w )

∣∣∣∣∣ 2√
w
· ϕw(z)− φf (z)

∣∣∣∣∣ .
Observe first that when w tends to 0, the domain φ−1f (Datt

w ) also tends to 0.

So, if z ∈ φ−1f (Datt
w ), then

φf (z) = −1

z
− (1− a) log

Å
−1

z

ã
+ o(1).
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On the other hand,

2 sin(πZ)

π
√
w

=
2√
w

Ä
Z + o(Z)

ä
= −1

z
+ o

Å
1

z

ã
.

Thus, together with the estimate (10), we infer that

(11)

ϕw(z) = χw(Z) = Z −
√
w · (1− a)

2
log

Ç
2 sin(πZ)

π
√
w

å
= −
√
w

2z
+ o
Ä
|w|1/2

ä
−
√
w · (1− a)

2
log

Å
−1

z
+ o

Å
1

z

ãã
=

√
w

2

Å
−1

z
− (1− a) log

Å
−1

z

ã
+ o (1)

ã
=

√
w

2

Ä
φf (z) + o(1)

ä
,

which completes the proof. �

2.5. Comparison with the repelling Fatou coordinate. In this paragraph,

we deal with Property 2; that is, we wish to prove that as w → 0 in Br,

D ′w := 1 +

√
w

2
·Drep

w ⊂ ϕw
Ä
Vw ∩ P rep

f

ä
and

sup
Z∈Drep

w

∣∣∣∣∣ψ−1f ◦ ϕ−1w
Ç

1 +

√
w

2
Z

å
− Z

∣∣∣∣∣ −→ 0.

The proof is rather similar to that of Property 1.

Proof of Property 2.

Step 1. Let us first prove that for w ∈ Br close enough to 0, the disk D ′w
is contained in ϕw(Vw). Note that with rw = |w|1/2Rw = |w|(1−α)/2 as before,

we have

D ′w = D

Ç
1−
√
wRw
2

,
rw
20

å
.

Since α > 1/2, we have that |w|1/4 = o(rw). Furthermore, <(
√
w) >

√
2
2 |w|

1/2

for w ∈ Br, hence

D ′′w := D

Ç
1−
√
wRw
2

,
rw
10

å
⊂ Sw.

In addition, by Lemma 2.2, χw(Z) = Z + o(rw) for Z ∈ D ′′w, so

D ′w ⊂ χw(D ′′w) ⊂ χw(Sw) = ϕw(Vw).
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Step 2. Given Z ∈ Drep
w , we set

X := χ−1w

Ç
1 +

√
w

2
Z

å
.

Note that
√
wZ has modulus equal to rw. Also, put

(12) z := ϕ−1w

Ç
1 +

√
w

2
Z

å
= ic1

√
w cot(πX ) + c2w.

By Lemma 2.2 we have that

X − 1 =

√
w

2
Z ·
Ä
1 + o(1)

ä
= O(rw),

hence

cot(πX ) = cot
Ä
π(X − 1)

ä
=

2

π
√
wZ

Ä
1 + o(1)

ä
.

Remembering that c1 = πi/2, from (12) we deduce that

z =
2ic1
πZ
·
Ä
1 + o(1)

ä
with

2ic1
πZ

= − 1

Z
∈ D

Ç
|w|α/2, |w|

α/2

2

å
.

So when w ∈ Br is close enough to 0, we find that z ∈ P rep
f and

ψ−1f (z) = −1

z
− (1− a) log

Å
1

z

ã
+ o(1).

Moreover,

2 sin(πX )

π
√
w

= −2 sin(π(X − 1))

π
√
w

= − 2√
w

Ç√
w

2
Z ·
Ä
1 + o(1)

äå
=

1

z
+ o

Å
1

z

ã
.

Finally, as in (11), we compute

Z =
2√
w

Ä
χw(X )− 1

ä
= −1

z
+ o(1)− (1− a) log

Å
1

z
+ o

Å
1

z

ãã
= ψ−1f (z) + o(1)

= ψ−1f ◦ ϕ
−1
w

Ç
1 +

√
w

2
Z

å
+ o(1).

This completes the proof of Property 2. �

2.6. Approximate translation property. In this paragraph, we prove that

the approximate Fatou coordinate ϕw satisfies Property 3; that is, as w → 0 in

Br, the inclusions R w ⊂ ϕw(Vw) and fw ◦ ϕ−1w (R w) ⊂ Vg(w) hold (recall that

the rectangle R w was defined in (6)), and

sup
Z∈R w

∣∣∣∣∣ϕg(w) ◦ fw ◦ ϕ−1w (Z)− Z −
√
w

2

∣∣∣∣∣ = o(w).
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Outline of the proof. Let

ψ0 := ψw, ψ
2 := ψg(w), χ

0 := χw, and χ2 := χg(w).

To handle the fact that fw ◦ ζ± is not exactly equal to ζ± ◦ g (see Lemma 2.1),

rather than dealing directly with ψ2 ◦ fw ◦ ψ−10 , we introduce an intermediate

change of coordinates

ψ1 : C 3 Z 7→
fw
Ä
ζ−(w)

ä
· e2πiZ − fw

Ä
ζ+(w)

ä
e2πiZ − 1

∈ P1(C) \
¶
fw
Ä
ζ+(w)

ä
, fw
Ä
ζ−(w)

ä©
.

Let H be the horizontal strip

H :=
¶

Z ∈ C ; −1 < =(Z) < 1
©
.

We will see that there are lifts F 0 : Sw → C, F 1 : H → C and a map

F : R w → C such that the following diagram commutes:

R w
F // C

Q w
F 0

//

χ0

OO

ψ0

��

F 0(Q w)

ψ1

��

F 1

// Sg(w)

ψ2

��

χ2

OO

ψ0(Q w)
fw

//

ϕw

>>

Vg(w)
id

// Vg(w).

ϕg(w)

bb

Step 1. We prove that R w ⊂ ϕw(Vw) = χ0(Sw) and that

sup
Z∈R w

∣∣∣ϕ−1w (Z)
∣∣∣ = O

Ä
|w|α/2

ä
.

Define Q w := (χ0)−1(R w) ⊂ Sw.

Step 2. We define F 0 on Sw and prove that for Z ∈ Q w,

(13) F 0(Z) = Z +

√
w

2
+
π(1− a)w

4
cot(πZ) + o(w).

In particular, for w close enough to 0, F 0(Z) = Z + O
Ä
|w|1/2

ä
, and hence

F 0(Q w) ⊂ H .

Step 3. We define F 1 on H and prove that for Z ∈ H ,

F 1(Z) = Z + o(w).

In particular, for w close enough to 0, F 1 ◦F 0(Z) = F 0(Z)+o(w), from which

we deduce that

F 1 ◦ F 0(Q w) ⊂ Sg(w), whence fw ◦ ϕ−1w (R w) ⊂ Vg(w).
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Step 4. We use χ0 and χ2 to eliminate the third term on the right-hand

side of (13). Specifically, we define F on R w and prove that for Z ∈ R w,

F (Z) = Z +

√
w

2
+ o(w).

Thus Property 3 is established. �

2.6.1. Proof of Step 1. We prove that R w ⊂ ϕw(Vw) and that

sup
Z∈R w

∣∣∣ϕ−1w (Z)
∣∣∣ = O

Ä
|w|α/2

ä
.

Let R ′w ⊂ Sw be the rectangle

R ′w :=

ß
Z ∈ Sw ;

rw
20

< <(Z) < 1− rw
20

and − 1 < =(Z) < 1

™
with, as before, rw := |w|(1−α)/2. We see that R w ⊂ R ′w and the distance

between the boundaries is rw/20. On the other hand, by Lemma 2.2, for

Z ∈ R ′w, χw(Z) = Z + o(rw). From this it follows that χw(∂R ′w) surrounds

R w, whence

R w ⊂ χw(R ′w) ⊂ χw(Sw) = ϕw(Vw),

as desired.

To prove the estimate on ϕ−1w (Z), define Q w := χ−1w (R w). Since ϕw =

χw ◦ ψ−1w , we see that ϕ−1w (R w) = ψw(Q w). The above sequence of inclusions

shows that Q w ⊂ R ′w. Thus from

ψw(Z) = ic1
√
w cot(πZ) + c2w,

we infer that

sup
Z∈R w

∣∣∣ϕ−1w (Z)
∣∣∣ = sup

Z∈Qw

∣∣∣ψw(Z)
∣∣∣ ≤ sup

Z∈R ′w

∣∣∣ψw(Z)
∣∣∣

= O

Ç
|w|1/2

rw

å
+ O(w) = O

Ä
|w|α/2

ä
.

This completes the proof of Step 1.

2.6.2. Proof of Step 2. We define F 0 on Sw and prove that for Z ∈ Q w,

F 0(Z) = Z +

√
w

2
+
π(1− a)w

4
cot(πZ) + o(w) = Z + O

Ä
|w|1/2

ä
.

Step 2.1. We first define F 0. It will be convenient to set w = ε2 so that

expansions with respect to
√
w become expansions with respect to ε. Set

ζ±0 (ε) := ζ±(ε2) = ±c1ε+ c2ε
2, ζ±1 (ε) := fε2 ◦ ζ±0 (ε) and ζ±2 (ε) := ζ± ◦ g(ε2).

Choose r1 > 0 small enough so that the only preimage of 0 by f within

D(0, 2r1) is 0. Choose r2 > 0 so that for ε ∈ D(0, r2), the only preimage of
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ζ±1 (ε) = fε2
Ä
ζ±0 (ε)

ä
under fε2 within D(0, r1) is ζ±0 (ε). The function

(z, ε) 7−→ fε2(z)− ζ+1 (ε)

z − ζ+0 (ε)
· z − ζ−0 (ε)

fε2(z)− ζ−1 (ε)

extends holomorphically to ∆ := D(0, r1)×D(0, r2) and does not vanish there.

In addition, it identically takes the value 1 for ε = 0. We set

u : (z, ε) 7−→ 1

2πi
log

Ç
fε2(z)− ζ+1 (ε)

z − ζ+0 (ε)
· z − ζ−0 (ε)

fε2(z)− ζ−1 (ε)

å
,

where the branch of logarithm is chosen so that u(z, 0) ≡ 0. Consider the map

F 0 defined on Sw by

F 0(Z) := Z + u
Ä
ψ0(Z), ε

ä
.

Then, for Z ∈ Sw, set

z := ψ0(Z) ∈ Vw so that Z =
1

2πi
log

Ç
z − ζ+0 (ε)

z − ζ−0 (ε)

å
.

As Z ranges in Sw, z avoids the points ζ±0 (ε) and remains in a small disk

around 0, thus fε2(z) avoids the points ζ±1 (ε) = fε2
Ä
ζ±0 (ε)

ä
. So we can define

Z1 :=
1

2πi
log

Ç
fε2(z)− ζ+1 (ε)

fε2(z)− ζ−1 (ε)

å
,

where the branch is chosen so that

Z1 − Z = u(z, ε) = u
Ä
ψ0(Z), ε

ä
= F 0(Z)− Z.

We therefore have

ψ1 ◦ F 0(Z) = ψ1(Z1) = fε2(z) = fε2 ◦ ψ0(Z).

In other words, the following diagram commutes:

Sw
F 0

//

ψ0

��

C

ψ1

��
Vw

fw

// P1(C).

Step 2.2. We now prove that for (z, ε) ∈ ∆, the following estimate is true:

2πiu(z, ε) = 2c1ε− 2c1(1− a)εz + O(εz2) + O(ε3).

Indeed, observe that

fε2(z)− ζ+1 (ε)

z − ζ+0 (ε)
· z − ζ−0 (ε)

fε2(z)− ζ−1 (ε)
=
f(z)− f

Ä
ζ+0 (ε)

ä
z − ζ+0 (ε)

· z − ζ−0 (ε)

f(z)− f
Ä
ζ−0 (ε)

ä ,



284 M. ASTORG, X. BUFF, R. DUJARDIN, H. PETERS, and J. RAISSY

whence

2πiu(z, ε) = log

Ñ
1− f

Ä
ζ+0 (ε)

ä
/f(z)

1− ζ+0 (ε)/z

é
− log

Ñ
1− f

Ä
ζ−0 (ε)

ä
/f(z)

1− ζ−0 (ε)/z

é
.

Recall that ζ±0 (ε) = ±c1ε+ c2ε
2, so

f
Ä
ζ±0 (ε)

ä
= ±c1ε+ c3ε

2 + O(ε3) with c3 := c2 + c21.

Since u is holomorphic on ∆ and u(z, 0) ≡ 0, it admits an expansion of the

form u(z, ε) = u1(z)ε+ u2(z)ε
2 + O(ε3) on ∆. To find u1 and u2, we write

log

Ñ
1− f

Ä
ζ±0 (ε)

ä
/f(z)

1− ζ±0 (ε)/z

é
= ±c1 ·

Ç
− 1

f(z)
+

1

z

å
· ε+

Ñ
− c3
f(z)

− c21

2
Ä
f(z)

ä2 +
c2
z

+
c21

2z2

é
· ε2 + O(ε3),

and taking the difference between these two expressions, we conclude that

2πiu(z, ε) = 2c1 ·
Ç

1

z
− 1

f(z)

å
· ε+ O(ε3)

= 2c1ε− 2c1(1− a)εz + O(εz2) + O(ε3).

Step 2.3. We finally establish (13). If Z ∈ Q w and

z := ψ0(Z) = ic1ε cot(πZ) + c2ε
2 = ic1ε cot(πZ) + o(ε),

it then follows from Step 1 of the proof (see (14)) that z = O (|ε|α). Since

α > 1/2, we see that4 O(εz2) = O
(
|ε|1+2α

)
⊂ o(ε2). Thus, for Z ∈ Q w,

u
Ä
ψ0(Z), ε

ä
=

2c1
2πi

ε− c21 · (1− a)

π
ε2 cot(πZ) + o(ε2)

=
ε

2
+
π(1− a)ε2

4
cot(πZ) + o(ε2).

Since F 0(Z) = Z + u
(
ψ0(Z), ε

)
, we arrive at the desired estimate (13), and

the proof of Step 2 is complete.

2.6.3. Proof of Step 3. We define F 1 on the horizontal strip H and prove

that

F 1(Z) = Z + o(w).

The idea is simply that since the distance
∣∣∣ζ±2 − ζ±1 ∣∣∣ is much smaller than∣∣∣ζ+1 − ζ−1 ∣∣∣, (ψ2)−1 ◦ ψ1 is very close to the identity.

4This computation is responsible for the lower bound in the choice of the value of α.
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Step 3.1. We first define F 1. Let µ1 : P1(C) → P1(C) and µ2 : P1(C) →
P1(C) be the Möbius transformations defined by (recall that ε =

√
w)

µ1(z) :=
z − ζ+1 (ε)

z − ζ−1 (ε)
and µ2(z) :=

z − ζ+2 (ε)

z − ζ−2 (ε)
.

The Möbius transformation µ := µ2 ◦µ−11 : P1(C)→ P1(C) sends µ1 ◦ ζ+2 (ε) to

0, µ1 ◦ ζ−2 (ε) to ∞ and fixes 1. Set

δ+ := µ1 ◦ ζ+2 (ε) =
ζ+2 (ε)− ζ+1 (ε)

ζ+2 (ε)− ζ−1 (ε)
and δ− :=

1

µ1 ◦ ζ−(ε)
=
ζ−2 (ε)− ζ−1 (ε)

ζ−2 (ε)− ζ+1 (ε)
.

Note that

ζ±2 (ε)− ζ±1 (ε) = O
Ä
ε4
ä

whereas ζ±2 (ε)− ζ∓1 (ε) = iπε ·
Ä
1 + o(1)

ä
,

therefore

δ+ = O
Ä
ε3
ä

and δ− = O
Ä
ε3
ä
.

Thus, the image of the horizontal strip H = {−1 < =(Z) < 1} under the ex-

ponential map

exp : C 3 Z 7→ e2πiZ ∈ C \ {0}

avoids δ+ and 1/δ−, and µ : exp(H ) → C \ {0} lifts to a map F 1 : H → C
such that the following diagram commutes:

H
F 1

//

ψ1

��

exp
��

C

ψ2

��

exp
��

P1(C)
µ // P1(C)

P1(C)
id
//

µ1

OO

P1(C).

µ2

OO

Since µ(1)=1, the choice of lift is completely determined by requiring F 1(0)=0.

Step 3.2. We estimate F 1(Z) − Z. Since µ(δ+) = 0, µ(1/δ−) = ∞ and

µ(1) = 1, we infer that

µ(z) = z · 1− δ−

1− δ+
· 1− δ+/z

1− δ−z
.

As a consequence,

F 1(Z)− Z = log(1− δ−)− log(1− δ+) + log(1− δ+/z) + log(1− δ−z),

where log is the principal branch of the logarithm on C \R−. (The arguments

of the four logarithms are close to 1.) Since δ+ = O
(
ε3
)

and δ− = O
(
ε3
)
, we
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conclude that

sup
Z∈H

∣∣∣F 1(Z)− Z
∣∣∣ = O

Ä
ε3
ä
⊂ o(ε2) = o(w),

as desired.

Step 3.3. Let us show that F 1 ◦ F 0(Q w) ⊂ Sg(w). First, we saw in the

course of Step 1 that Q w ⊂ R ′w. Now, when w is small,∣∣∣g(w)
∣∣∣1/4 = |w|1/4 + o

Ä
|w|1/4

ä
,

hence R ′w ⊂ Sg(w) and the distance between the boundaries is comparable to

|w|1/4. Since F 1 ◦ F 0(Z) = Z + O
Ä
|w|1/2

ä
on Q w and |w|1/2 = o

Ä
|w|1/4

ä
, we

see that F 1 ◦ F 0(Q w) ⊂ Sg(w), as claimed.

From this we deduce that

fw ◦ ϕ−1w (R w) = fw ◦ ψw(Q w) = ψg(w)
Ä
F 1 ◦ F 0(Q w)

ä
⊂ ψg(w)(Sg(w)) = Vg(w),

which finishes the proof of Step 3.

2.6.4. Proof of Step 4. We define F on R w and prove that

F (Z) = Z +

√
w

2
+ o(w).

Let

F := χ2 ◦ (F 1 ◦ F 0) ◦ (χ0)−1 : R w → C,
so that the following diagram commutes:

R w
F // C

Q w F 0
//

χ0

OO

F 0(Q w)
F 1

// Sg(w).

χ2

OO

For Z ∈ Q w, define

v(Z) :=

√
w

2
+
π(1− a)w

4
cot(πZ) =

√
w

2
+ o
Ä
|w|1/2

ä
,

where the second equality follows from the fact that cot(πZ) = O(r−1w ) on Q w.

Now we write

F
Ä
χ0(Z)

ä
= χ2 (Z + v(Z) + o(w)) = Z + v(Z) + o(w)

+

»
g(w)(1− a)

2
· log

Ñ
2 sin

Ä
πZ + πv(Z) + o(w)

ä»
g(w)

é
.

(14)

Using »
g(w) =

»
w + O (w2) =

√
w + O

Ä
|w|3/2

ä
,
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and arguing as in Lemma 2.2, we see that the logarithm in (14) is O(log |w|).
Thus we infer that

F
Ä
χ0(Z)

ä
= Z + v(Z)−

√
w(1− a)

2
log

Ñ
2 sin

Ä
πZ + πv(Z)

ä
π
√
w

é
+ o(w),

and as a result,

F
Ä
χ0(Z)

ä
− χ0(Z) = v(Z)−

√
w(1− a)

2
log

Ñ
sin
Ä
πZ + πv(Z)

ä
sin(πZ)

é
+ o(w).

From the estimate v(Z) =
√
w/2 + o

Ä
|w|1/2

ä
, we deduce

sin
Ä
πZ + πv(Z)

ä
sin(πZ)

=
sin(πZ) +

π
√
w

2
cos(πZ) + o

Ä
|w|1/2

ä
sin(πZ)

= 1 +
π
√
w

2
· cot(πZ) + o

Ä
|w|1/2

ä
.

So finally,

F
Ä
χ0(Z)

ä
− χ0(Z) =

√
w

2
+
π(1− a)w

4
cot(πZ)

−
√
w(1− a)

2
· π
√
w

2
cot(πZ) + o(w)

=

√
w

2
+ o(w).

This completes the proof of Step 4, and accordingly of Property 3 of the ap-

proximate Fatou coordinates. �

3. Parabolic implosion

This section is devoted to the proof of Proposition A.

3.1. Set up and notation. Let Cf be a compact subset of Bf and Cg be a

compact subset of Bg. We need to prove that the sequence of maps

C2 3 (z, w) 7→ P ◦2n+1
Ä
z, g◦n

2
(w)
ä
∈ C2

converges uniformly on Cf × Cg to the map

Cf × Cg 3 (z, w) 7→
Ä
Lf (z), 0

ä
∈ C× {0}.

For (z, w) ∈ Cf × Cg and for m ≥ 0, set

wm := g◦m(w).

This sequence converges uniformly to 0 on Cg so the difficulty consists in

proving that the first coordinate converges uniformly to Lf (z).

To do this, we will have to estimate various quantities that depend on an

integer k ∈ [0, 2n+1] (corresponding to an iterate m = n2 +k ∈ [n2, (n+1)2]).

We adopt the convention that the notation o(·) or O(·) stands for an estimate
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that is uniform on Cf ×Cg and depends only on n, meaning that it is uniform

with respect to k ∈ [0, 2n+ 1].

For m2 ≥ m1 ≥ 0, we set

fm2,m1 := fwm2−1 ◦ · · · ◦ fwm1
with fw(z) := f(z) +

π2

4
w.

By convention, an empty composition is the identity, whence fm,m = id. Then,

P ◦2n+1
Ä
z, g◦n

2
(w)
ä

=
Ä
f(n+1)2,n2(z), w(n+1)2

ä
so we must prove that

f(n+1)2,n2(z) = Lf (z) + o(1).

3.2. Outline of the proof. Let us recall that R > 0 was chosen so large

that F : Z 7→ −1/f(−1/Z) satisfies

(15) sup
|Z|>R

∣∣∣F (Z)− Z − 1
∣∣∣ < 1

10
and sup

|Z|>R

∣∣∣F ′(Z)− 1
∣∣∣ < 1

10
.

The repelling petal P rep
f is the image of −HR under the univalent map ψf , and

the notation ψ−1f is reserved for the inverse branch ψ−1f : P rep
f → HR.

Set

kn := bnαc = o(n), where
1

2
< α <

2

3
is as in (5).

The proof will be divided into four propositions that we state independently,

corresponding to three moments of the transition between n2 and (n + 1)2.

The proofs will be given in Sections 3.4–3.7.

We first show that for the first kn iterates, the orbit stays close to an orbit

of f . (The bound α < 2/3 is important here.)

Proposition 3.1 (Entering the eggbeater). Assume z ∈ Cf , and let xιn
be defined by xιn := fn2+kn,n2(z).5

Then, xιn ∼ −1/kn, whence xιn ∈ Bf for n large enough. Moreover,

φf (xιn) = φf
Ä
f◦kn(z)

ä
+ o(1) as n→ +∞.

The next two propositions concern the iterates between n2+kn and (n+1)2

− kn.

Proposition 3.2 (Transition length). As n→∞,

2n ·

Ñ
n2+2n−kn∑
m=n2+kn

√
wm
2

é
= 2n− 2kn + o(1).6

5The superscript ι stands for incoming, and in Proposition 3.4 below, o stands for outgoing.

This convention was used in [BSU12].
6Recall that

√
w is the square-root with positive real part.
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Proposition 3.3 (Passing through the eggbeater). Let (xιn)n≥0 be a se-

quence such that xιn ∼ −1/kn, whence xιn ∈ Bf for n large enough. Set

xon := f(n+1)2−kn,n2+kn (xιn) .

Then, xon ∼ 1/kn, whence xon ∈ P
rep
f for n large enough. Moreover, as n→∞,

ψ−1f (xon) = φf (xιn)+2n ·

Ñ
n2+2n−kn∑
m=n2+kn

√
wm
2

é
−2n+o(1) = φf (xιn)−2kn+o(1).

The next result is similar to Proposition 3.1.

Proposition 3.4 (Leaving the eggbeater). Let (xon)n≥0 be a sequence con-

tained in P rep
f such that ψ−1f (xon) = −kn + O(1) as n→ +∞. Then,

f(n+1)2,(n+1)2−kn (xon) = f◦kn (xon) + o(1) as n→ +∞.

Proof of Proposition A. We start with Proposition 3.1: if z ∈ Cf , then

xιn := fn2+kn,n2(z)

satisfies xιn ∼ −1/kn and as n→ +∞,

φf (xιn) = φf
Ä
f◦kn(z)

ä
+ o(1) = φf (z) + kn + o(1).

According to Proposition 3.3,

xon := f(n+1)2−kn,n2+kn (xιn) = f(n+1)2−kn,n2(z)

satisfies xon ∼ 1/kn and as n→ +∞,

ψ−1f (xon) = φf (z) + kn − 2kn + o(1) = φf (z)− kn + o(1).

Finally, since φf (z)− kn + o(1) = −kn + O(1), Proposition 3.4 implies that as

n→ +∞,

f(n+1)2,n2(z) = f(n+1)2,(n+1)2−kn (xon) = f◦kn (xon) + o(1).

This in turn finishes the proof of Proposition A because

f◦kn (xon) = f◦kn ◦ ψf ◦ ψ−1f (xon) = ψf
Ä
ψ−1f (xon) + kn

ä
= ψf

Ä
φf (z) + o(1)

ä
= Lf (z) + o(1). �

3.3. Comparison with classical parabolic implosion. Propositions 3.1, 3.3

and 3.4 are valid if instead of using the sequence
Ä
wm := g◦m(w)

ä
, we use the

sequence (w′m) defined by

w′m :=
1

n2
if n2 ≤ m ≤ (n+ 1)2 − 1.
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In that case, the only modification is for Proposition 3.2, which has to be

replaced by

2n ·

Ñ
n2+2n−kn∑
m=n2+kn

√
w′m
2

é
= 2n ·

Ñ
n2+2n−kn∑
m=n2+kn

1

2n

é
= 2n− 2kn + 1 + o(1).

Following the proof of Proposition A, we get

f
◦(2n+1)
1/n2 (z) = ψf

Ä
φf (z) + 1 + o(1)

ä
= f ◦ Lf (z) + o(1).

We thus see that in our nonautonomous context, where the dynamics slowly

decelerates as the orbit transits between the eggbeaters, it takes exactly one

more iteration to make the transition than in the classical case.

3.4. Transition length. In this paragraph, we prove Proposition 3.2, which

concerns the dynamics of g only. We need to show that

n2+2n−kn∑
m=n2+kn

√
wm
2

= 1− kn
n

+ o

Å
1

n

ã
as n→ +∞.

With φg : Bg → C denoting the attracting Fatou coordinate of g, for all k ≥ 0,

we have

φg(wn2+k) = φg(w) + n2 + k = n2 + k + O(1).7

As a consequence, for k ∈ [kn, 2n− kn], it holds that

wn2+k = φ−1g
Ä
n2 + k + O(1)

ä
=

1

n2 + k + O(log n)

and
√
wn2+k =

1»
n2 + k + O(log n)

=
1

n
− k

2n3
+ O

Å
log n

n3

ã
.

It follows that
2n−kn∑
k=kn

√
wn2+k =

2n− 2kn + 1

n
− 2n(2n− 2kn + 1)

4n3
+ O

Å
log n

n2

ã
= 2− 2kn

n
+ o

Å
1

n

ã
,

and we are done. �

3.5. Entering the eggbeater. In this paragraph, we prove Proposition 3.1;

that is, if z ∈ Cf and xιn := fn2+kn,n2(z), then, as n→ +∞,

xιn ∼ −
1

kn
and φf (xιn) = φf

Ä
f◦kn(z)

ä
+ o(1).

7Recall that the notations o(·) and O(·) mean that the estimates are uniform on Cf ×Cg
and with respect to k ∈ [0, 2n+ 1].
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3.5.1. Entering the attracting petal. Choose κ0 ≥ 1 sufficiently large so

that

f◦κ0(Cf ) ⊂ P att
f .

For every fixed k ≥ 0, the sequence of polynomials (fwn2+k)n≥0 converges

locally uniformly to f . It follows that for every k ∈ [1, κ0], the sequence

fn2+k,n2 converges uniformly to f◦k on Cf . In particular, if n is large enough,

then

fn2+k,n2(Cf ) ⊂ Bf for k ∈ [1, κ0], and fn2+κ0,n2(Cf ) ⊂ P att
f .

In addition, since fn2+κ0,n2(z) is close to fκ0(z), then for large n, we also have

(16) kn >
10∣∣∣fn2+κ0,n2(z)

∣∣∣ for z ∈ Cf .

3.5.2. The orbit remains in the attracting petal. We now prove that if n

is large enough and k ∈ [κ0, kn], then fn2+k,n2(Cf ) ⊂ P att
f .

For this purpose, we work in the coordinate Z = −1/z. For m ≥ 0,

consider the rational map Fm defined by

Fm(Z) := − 1

fwm(−1/Z)
= F (Z)− π2wm · [F (Z)]2

4 + π2wm · F (Z)
.

This has to be understood as a perturbation of F . Notice however that the

remainder term Fm(Z)−F (Z) is not negligible with respect to F (Z) as Z →∞,

so we have to control precisely for which values of Z the remainder is indeed

small.

Since F (Z) ∼ Z as z →∞ and since wn2+k ∈ O(1/n2) for k ∈ [0, kn], we

get

sup
|Z|=R

∣∣∣Fn2+k(Z)−F (Z)
∣∣∣=o(1) and sup

|Z|=2kn

∣∣∣Fn2+k(Z)−F (Z)
∣∣∣=O

Ç
k2n
n2

å
=o(1).

In particular, according to the Maximum Principle and the choice of R — see

(15) — for n large enough, if k ∈ [0, kn], then

sup
R<|Z|<2kn

∣∣∣Fn2+k(Z)− Z − 1
∣∣∣ < 1

10
.

An easy induction on k shows that for every k ∈ [κ0, kn] and every z ∈ Cf ,

(17)
− 1

fn2+k,n2(z)
∈ D

Ç
− 1

fn2+κ0,n2(z)
+ k − κ0,

k − κ0
10

å
⊂
¶
Z ∈ C ; <(Z) > R and |Z| < 2kn

©
.
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Indeed, the induction hypothesis clearly holds for k = κ0, and if it holds for

some k ∈ [κ0, kn − 1], then

− 1

fn2+k+1,n2(z)
= Fn2+k

Ç
− 1

fn2+k,n2(z)

å
∈ D

Ç
− 1

fn2+k,n2(z)
+ 1,

1

10

å
⊂ D

Ç
− 1

fn2+κ0,n2(z)
+ k − κ0 + 1,

k − κ0
10

+
1

10

å
.

If Z belongs to the latter disk, then

<(Z) > <
Ç
− 1

fn2+κ0,n2(z)

å
+k−κ0+1− k − κ0 + 1

10
> R+

9

10
(k−κ0+1) > R

and using (16),

|Z| <
∣∣∣∣∣− 1

fn2+κ0,n2(z)

∣∣∣∣∣+ k − κ0 + 1 +
k − κ0 + 1

10
<

1

10
kn +

11

10
kn < 2kn.

This shows that fn2+k,n2(z) ∈ P att
f for all k ∈ [κ0, kn] and all z ∈ Cf .

3.5.3. Working in attracting Fatou coordinates. We finally prove that for

k ∈ [0, kn],

φf
Ä
fn2+k,n2(zn)

ä
= φf

Ä
f◦k(z)

ä
+ o(1).

This is clear for k ∈ [1, κ0] since for each fixed k, the sequence (fn2+k,n2)

converges uniformly to f◦k on Cf . So it is enough to prove the estimate for

k ∈ [κ0, kn].

We have that φ′f (z) ∼ 1/z2 as z → 0 in P att
f . Also, we saw in (17) that

for k ∈ [κ0, kn], ∣∣∣∣∣ 1

fn2+k,n2(zn)

∣∣∣∣∣ ≤ 2kn.

It follows that for k ∈ [κ0, kn − 1] and z ∈ Cf ,

sup
Ik

|φ′f | ∈ O(k2n) with Ik :=
î
f ◦ fn2+k,n2(z), fn2+k+1,n2(z)

ó
,

whence

φf
Ä
fn2+k+1,n2(z)

ä
= φf

Ç
f
Ä
fn2+k,n2(z)

ä
+
π2

4
wn2+k

å
= φf ◦ f

Ä
fn2+k,n2(z)

ä
+ wn2+k · sup

Ik

|φ′f | ·O(1)

= φf
Ä
fn2+k,n2(z)

ä
+ 1 + O

Ç
k2n
n2

å
.



A POLYNOMIAL MAP WITH A WANDERING FATOU COMPONENT 293

As a consequence, for k ∈ [κ0, kn],

φf
Ä
fn2+k,n2(z)

ä
= φf

Ä
fn2+κ0,n2(z)

ä
+ k − κ0 + O

Ç
k3n
n2

å
= φf

Ä
f◦κ0(z)

ä
+ k − κ0 + o(1)

= φf
Ä
f◦k(z)

ä
+ o(1),

where the second equality follows from the estimate fn2+κ0,n2(z) = f◦κ0(z) +

o(1) and the fact that k3n = O
(
n3α

)
since α < 2/3.

Taking k = kn, we conclude that

φf (xιn) = φf
Ä
fn2+kn,n2(z)

ä
+ o(1) = φf (z) + kn + o(1) = kn + O(1),

and so, xιn ∼ −1/φf (xιn) ∼ −1/kn as required. The proof of Proposition 3.1 is

completed. �

3.6. Passing through the eggbeater. In this paragraph, we prove Proposi-

tion 3.3; that is, if (xιn)n≥0 is a sequence such that xιn ∼ −1/kn and if

xon := f(n+1)2−kn,n2+kn (xιn) ,

then, as n→ +∞,

xon ∼
1

kn
and ψ−1f (xon) = φf (xιn) + n ·

Ñ
n2+2n−kn∑
m=n2+kn

√
wm

é
− 2n+ o(1).

The proof relies on the formalism of approximate Fatou coordinates introduced

in Section 2 and notation thereof (in particular, Properties 1, 2 and 3). Figure 4

illustrates the proof.

Proof. Let vιn := wn2+kn , which belongs to Br for n large enough.

Step 1. If xιn ∼ −1/kn, then for n large enough, xιn ∈ P att
f . Set Yn :=

φf (xιn), and note that

Yn ∼ −
1

xιn
∼ kn ∼ nα ∼ |vιn|−α/2, whence Yn ∈ Datt

vιn
for n large enough.

According to Property 1, for n large enough, xιn = φ−1f (Yn) ∈ Vvιn and

(18)
2√
vιn
· ϕvιn(xιn) =

2√
vιn
· ϕvιn ◦ φ

−1
f (Yn) = Yn + o(1) = φf (xιn) + o(1).

Step 2. We will now prove by induction on m that for all m ∈ [n2 + kn,

(n+ 1)2 − kn],

fm,n2+kn(xιn) ∈ Vwm
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ϕwm+1

ϕvon ◦ ψf (Drep
von

)

Zm

' +
√
wm
2

Zm+1

ϕwm

ϕvιn ◦ φ
−1
f (Datt

vιn
)

xιn ∼ − 1
kn

xon ∼ 1
kn

φ−1f (Datt
vιn

) ψf (Drep
von

)

fwm

Figure 4. The map ϕwm+1 ◦ fwm ◦ϕ−1wm is close to a translation

by
√
wm
2 .

and

Zm := ϕwm ◦ fm,n2+kn(xιn) = ϕwn(xιn) +
m−1∑

j=n2+kn

Ç√
wm
2

+ o

Å
1

n2

ãå
.

Indeed, for m = n2 + kn, we have that wm = vιn and according to Step 1,

fm,n2+kn(xιn) = xιn ∈ Vvιn = Vwm ,

so the induction hypothesis holds in this case.

Now, assume the induction hypothesis holds for some

m ∈ [n2 + kn, (n+ 1)2 − kn − 1].

According to Step 1,

(19) ϕvιn(xιn) =

√
vιn
2
·
Ä
φf (xιn) + o(1)

ä
=
kn
2n

+ o

Å
kn
n

ã
.

In addition,
√
wm =

1»
n2 + O(n)

=
1

n
+ O

Å
1

n2

ã
.
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It follows that

Zm =
kn
2n

+ o

Å
kn
n

ã
+ (m− n2 − kn) ·

Å
1

2n
+ O

Å
1

n2

ãã
=
m− n2

2n
+ o

Å
kn
n

ã
,

and therefore

kn
2n

+ o

Å
kn
n

ã
≤ <(Zm) ≤ 1− kn

2n
+ o

Å
kn
n

ã
and =(Zm) = o(1).

Since rwm = |wm|(1−α)/2 ∼ kn/n, we see that for large n, Zm ∈ R wm . Accord-

ing to Property 3,

fm+1,n2+kn(xιn) = fwm ◦ fm,n2+kn(xιn) ∈ Vwm+1

and

Zm+1 = φwm+1 ◦ fwm ◦ φ−1wm(Zm) = Zm +

√
wm
2

+ o(wm)

= ϕvιn(xιn) +
m−1∑

j=n2+kn

Ç√
wj

2
+ o

Å
1

n2

ãå
+

√
wm
2

+ o

Å
1

n2

ã
= ϕvιn(xιn) +

m∑
j=n2+kn

Ç√
wj

2
+ o

Å
1

n2

ãå
.

Step 3. We now specialize to the case m := (n+ 1)2 − kn and set

von := w(n+1)2−kn and xon := f(n+1)2−kn,n2+kn(xιn).

According to Step 2 of the proof, xon ∈ Vvon and

(20) ϕvon(xon) = ϕvιn(xιn) +
n2+2n−kn∑
j=n2+kn

Ç√
wj

2
+ o

Å
1

n2

ãå
.

In particular, by using (19) and Proposition 3.2, we get

(21) ϕvon(xon) =
kn
2n

+ o

Å
kn
n

ã
+ 1− kn

n
+ o

Å
1

n

ã
= 1− kn

2n
+ o

Å
kn
n

ã
.

Set

Xn :=
2√
von
·
Ä
ϕvon(xon)− 1

ä
so that ϕvon(xon) = 1 +

√
von
2
·Xn.

Since 2/
√
von ∼ 2n, from (21) we deduce that Xn = −kn · (1 + o(1)). Since in

addition kn ∼ (von)(1−α)/2, it follows that for n large enough, Xn ∈ Drep
von

. Thus
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we compute

ψ−1f (xon) = ψ−1f ◦ ϕ
−1
von

Ç
1 +

√
von
2
·Xn

å
= Xn + o(1)

=
2√
von
·

Ñ
ϕvιn(xιn) +

Ñ
n2+2n−kn∑
j=n2+kn

√
wj

2

é
+ o

Å
1

n

ã
− 1

é
=

2√
von
·

Ñ√
vιn
2

Ä
φf (xιn) + o(1)

ä
+

Ñ
n2+2n−kn∑
j=n2+kn

√
wj

2

é
+ o

Å
1

n

ã
− 1

é
= φf (xιn) + 2n ·

Ñ
n2+2n−kn∑
j=n2+kn

√
wj

2

é
− 2n+ o(1),

where we deduce the first line by Property 2, the second line follows by (20),

the third line holds thanks to Property 1, and the final line holds since vιn ∼
von ∼ 1

n2 . This completes the proof. �

3.7. Leaving the eggbeater. In this paragraph, we prove Proposition 3.4;

that is, if (xon)n≥0 is a sequence contained in the repelling petal P rep
f and if

ψ−1f (xon) = −kn + O(1),

then, as n→ +∞,

f(n+1)2,(n+1)2−kn (xon) = f◦kn (xon) + o(1).

Set xon,0 := xon, and for k ∈ [1, kn], set

xon,k := f(n+1)2−kn+k,(n+1)2−kn (xon) .

3.7.1. Within the repelling petal. Let κ1 be an integer such that for all

n ≥ 0,

<
Ä
ψ−1f (xon)

ä
+ kn +R < κ1.

We prove by induction on k that for n large enough, if k ∈ [0, kn − κ1], then

xon,k ∈ P
rep
f and ψ−1f (xon,k) = ψ−1f (xon) + k + k ·O

Ç
k2n
n2

å
.

First, the induction hypothesis clearly holds for k = 0. So, let us assume

it is true for some k ∈ [0, kn − κ1 − 1]. As in Proposition 3.1, since α < 2/3

and k ≤ kn, kO(k2n/n
3) ⊂ o(1). It follows that for large n,

<
Ä
ψ−1f (xon,k)

ä
= <
Ä
ψ−1f (xon)

ä
+ k + o(1) < k + κ1 − kn −R ≤ −R− 1.

Since xon,k+1 = fw(n+1)2−kn+k
(xon,k) = f(xon,k)+o(1) and f ◦ψf = ψf ◦T1, taking

n larger if necessary, xon,k+1 belongs to the repelling petal P rep
f .

Next, since

(ψ−1f )′(z) ∼ 1

z2
as z → 0 in P rep

f ,
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as in Proposition 3.1 we see that

ψ−1f (xon,k+1) = ψ−1f

Å
f(xon,k) + O

Å
1

n2

ãã
= ψ−1f ◦ f(xon,k) + O

Ö
1

n2
∣∣∣xon,k∣∣∣2

è
= ψ−1f (xon,k) + 1 + O

Ç
k2n
n2

å
= ψ−1f (xon) + k + 1 + (k + 1) ·O

Ç
k2n
n2

å
,

and the proof of the induction is completed.

3.7.2. Leaving the repelling petal. By the previous step we have that

ψ−1f (xon,kn−κ1) = ψ−1f (xon) + kn − κ1 + o(1) = ψ−1f ◦ f
◦kn−κ1(xon) + o(1).

Applying ψf on both sides yields

xon,kn−κ1 = f◦kn−κ1(xon) + o(1).

Since the sequence of polynomials f(n+1)2,(n+1)2−κ1 converges locally uniformly

to f◦κ1 , we deduce that

xon,kn = f(n+1)2,(n+1)2−kn (xon) = f◦kn(xon) + o(1),

thereby concluding the proof of Proposition 3.4. �

4. A Lavaurs map with an attracting fixed point

This section is devoted to the proof of Proposition B. Given a ∈ C, let

fa : C→ C be the cubic polynomial defined by

fa(z) = z + z2 + az3.

We must show that if r > 0 is sufficiently close to 0 and a ∈ D(1− r, r), then

the Lavaurs map Lfa : Bf → C admits an attracting fixed point. Notice that

since Lfa commutes with fa, it therefore has infinitely many of them.

Set

Ua := ψ−1fa (Bfa) and Ea := φfa ◦ ψfa : Ua → C.

This is an open set containing an upper half-plane and a lower half-plane. Note

that ψfa : Ua → Bfa semi-conjugates Ea to Lfa . Since ψfa is univalent in a left

half-plane, it is enough to show that Ea has an attracting fixed point with real

part arbitrarily close to −∞. Since Ea commutes with the translation by 1, it

is therefore enough to show that Ea : Ua → C has an attracting fixed point.
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Figure 5. Behavior of Lf for f(z) = z + z2 + 0.95z3. Left: the

set of points z ∈ Bf whose image by Lf remains in Bf . The

restriction of Lf to the bounded white domains is a covering

above C \ Bf . Right: the Lavaurs map Lf has two complex

conjugate sets of attracting fixed points. The fixed points of Lf
are indicated as red points, and their basins of attraction are

colored (blue for one of the fixed points, and green for the oth-

ers).

The open set Ua is invariant by T1, and the map Ea commutes with T1.

The set

U :=
¶

(a, Z) ∈ C× C ; Z ∈ Ua
©

is an open subset of C2, and the map

E : U 3 (a, Z) 7→ Ea(Z) ∈ C

is analytic. The universal cover

exp : C 3 Z 7→ e2πiZ ∈ C \ {0}

semi-conjugates Ea to a map

ea : Ua → C \ {0}, with Ua := exp(Ua) ⊂ C \ {0}.

The open set Ua is a neighborhood of 0 and ∞ in C \ {0}. The map ea has

removable singularities at 0 and ∞ (see the proof of Lemma 4.1 below), thus
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it extends as a map ea : “Ua → “C, where “C := C ∪ {∞} is the Riemann sphere

and “Ua := Ua ∪ {0,∞} ⊂ “C. We set“U :=
¶

(a, z) ∈ C× “C ; z ∈ “Ua© .
Lemma 4.1. The points 0 and ∞ in “C are fixed points of ea : “Ua → “C.

Both fixed points have multiplier e2π
2(1−a).

Proof. As =(Z)→ +∞, we have that

− 1

ψfa(Z)
= Z + (1− a) log(−Z) + o(1),

where log is the principal branch of logarithm. Note that log(−Z) = log(Z)−πi

as =(Z)→ +∞. Thus,

Ea(Z) = φfa ◦ ψfa(Z) = Z + (1− a) log(−Z) + o(1)

− (1− a) log
Ä
Z + (1− a) log(−Z) + o(1)

ä
+ o(1)

= Z + (1− a) log(Z)− πi(1− a)− (1− a) log(Z) + o(1)

= Z − πi(1− a) + o(1).

As a consequence, as z = exp(Z)→ 0, we have that

ea(z) = e2πiZ · e2π2(1−a)+o(1) = e2π
2(1−a)z ·

Ä
1 + o(1)

ä
,

and thus we conclude that 0 is a fixed point of ea with multiplier e2π
2(1−a).

A similar argument shows that ∞ is also a fixed point of ea with multiplier

e2π
2(1−a). �

In particular, we see that for a = 1, the map e1 has multiple fixed points

at 0 and ∞.

Lemma 4.2. The multiplicity of 0 and ∞ as fixed points of e1 is 2.

Proof. The mapping e1 : “U1 → “C is a finite type analytic map in the sense

of Epstein (see Appendix A.4). Therefore, each attracting petal at 0 or at

∞ must attract the infinite orbit of a singular value of e1. Indeed if not, the

component B of the immediate basin containing this petal would avoid the

singular values of e1. The restriction e1 : B → B would then be a covering and

the corresponding attracting Fatou coordinate would extend to a covering map

φ : B → C. This would force B to be isomorphic to C, which is not possible

since B is contained in C \ {0}.
According to Proposition A.5, the finite type map e1 admits exactly two

critical values (the images of the critical values of f1 under the map exp ◦φf1)

and two singular values that are respectively fixed at 0 and ∞. It follows that

the number of attracting petals at 0 plus the number of attracting petals at∞
is at most 2. So this number must be equal to 2, and the result follows. �
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As we perturb a away from 1, the multiple fixed point at 0 splits into a

pair of fixed points of ea: one at 0 with multiplier e2π
2(1−a) and another one

denoted by ξ(a), with multiplier ρ(a). We use a classical residue computation

to estimate this multiplier. Let γ be a small loop around 0. The Cauchy

Residue Formula yields

1

1− e2π2(1−a) +
1

1− ρ(a)
=

1

2πi

∫
γ

dz

z − ea(z)
−→
a→1

1

2πi

∫
γ

dz

z − e1(z)
∈ C.

From this it follows that

1

1− ρ(a)
=

1

2π2(1− a)
+ O(1) as a→ 1.

Now observe that

ρ(a) ∈ D ⇐⇒ <
Ç

1

1− ρ(a)

å
>

1

2
,

and similarly,

a ∈ D(1− r, r) ⇐⇒ <
Ç

1

2π2(1− a)

å
>

1

4π2r
.

As a consequence, when r > 0 is sufficiently close to 0 and a ∈ D(1− r, 1), we

deduce that
∣∣∣ρ(a)

∣∣∣ < 1, so ξ(a) is an attracting fixed point.

Let finally Z(a) be a preimage of ξ(a) under exp, that is, exp
Ä
Z(a)

ä
=

ξ(a). We claim that for a sufficiently close to 1, Z(a) is a fixed point of Ea.
Indeed, observe first that Ea

Ä
Z(a)

ä
− Z(a) is an integer that does not depend

on the choice of preimage Z(a). Therefore, it is sufficient to prove that

lim
a→1
Ea
Ä
Z(a)

ä
− Z(a) = 0.

This may be seen as follows. The function Ea− id is periodic of period 1, hence

of the form ua ◦ exp for some function ua : “Ua → C. The function

u : “U 3 (a, z) 7−→ ua(z) ∈ C

is analytic, in particular, continuous. So,

lim
a→1
Ea
Ä
Z(a)

ä
− Z(a) = lim

a→1
u
Ä
a, ξ(a)

ä
= u(1, 0) = lim

=(Z)→+∞
E1(Z)− Z = 0.

The last equality follows from the proof of Lemma 4.1. This shows that for a

sufficiently close to 1, Z(a) is a fixed point of Ea with multiplier ρ(a), and the

proof of Proposition B is complete. �
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5. Wandering domains in R2

In this section, we prove Proposition C, which shows the existence of real

polynomial maps in two complex variables with wandering Fatou components

intersecting R2. Let us consider the polynomial f(z) := z + z2 + bz4. We seek

a parameter b ∈ (−8/27, 0) such that the Lavaurs map Lf has a fixed critical

point in R ∩ Bf .

Outline of the proof. Set

b := −1 + 2c

4c3
with c ∈ [−3/2,−1/2] and fc(z) := z + z2 − 1 + 2c

4c3
z4.

As c increases from −3/2 to −3/4, the corresponding parameter b decreases

from −4/27 to −8/27, and as c increases from −3/4 to −1/2, the parameter

b increases from −8/27 to 0. The point c is a critical point of the polynomial

fc. As a consequence,

degc φfc = degc T1 ◦ φfc = degc φfc ◦ fc = (degfc(c) φfc) · (degc fc) ≥ 2.

So, c is a critical point of φfc , whence a critical point of Lfc .

Claim 1: When c ∈ (−3/2,−1/2], the critical point c belongs to the par-

abolic basin Bfc .

Claim 2: The function L : (−3/2,−1/2]→ R defined by L(c) := Lfc(c) is

continuous.

Claim 3: L(−1/2) > 0.

Claim 4: There is a sequence cn converging to −3/2 with L(cn) < cn.

These four claims are enough to get the desired conclusion. Indeed, the

function c 7→ L(c) − c takes a positive value at c = −1/2 and takes negative

values arbitrarily close to −3/2. Since it is continuous, it follows from the

Intermediate Value Theorem that it must vanish somewhere in (−3/2,−1/2).

�

Figure 6 shows the graph of the function L : (−3
2 ,−

1
2)→ R that intersects

the diagonal. As c tends to −3
2 , L(c) accumulates the whole interval f(R) =

(−∞, x] with x := 27
16 + 9

8

√
3 ' 3.63.

A numerical experiment suggests that the function L(c) − c vanishes for

a value of c close to −0.586. Accordingly, for

f(z) = z + z2 − 0.2136z4,

the Lavaurs map Lf : Bf → C has a real attracting fixed point.
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Figure 6. The graph of the function L : c 7→ Lfc(c). Each inter-

section with the diagonal corresponds to a a super-attracting

fixed point of Lfc .

Proof of Claim 1. It is enough to show that z < fc(z) ≤ 0 for z ∈ [c, 0).

Indeed, if so, then the sequence (fnc (c))n≥0 stays in [c, 0) and it is nondecreas-

ing, so it must converge to the unique fixed point in [c, 0], namely, to the

parabolic fixed point 0.

To see that fc − id > 0 on [c, 0), note that if c ∈ [−3/2,−1/2], then

b ∈ [−8/27, 0] and if z ∈ [c, 0), then

1 + bz2 ≥ 1 + bc2 =
1

2
− 1

4c
≥ 1

2
+

1

4
· 2

3
=

2

3
.

Thus,

fc(z)− z = z2 + bz4 = z2 · (1 + bz2) ≥ 2

3
z2 > 0.

To see that fc ≤ 0 on [c, 0), it is enough to see that g(z) := 1+z+ bz3 ≥ 0

on [c, 0). As above, for c ∈ [−3/2,−1/2] and z ∈ [c, 0), we have

g′(z) = 1 + 3bz2 ≥ 1 + 3bc2 = −1

2
− 3

4c
≥ −1

2
+

3

4
· 2

3
= 0.

Thus, g is increasing on [c, 0), and since

g(c) = 1 + c+ bc3 =
3

4
+

1

2
c ≥ 0,

the proof of Claim 1 is completed. �
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Proof of Claim 2. For c ∈ C \ 0, we may consider the attracting Fatou

coordinate φfc and the repelling Fatou parametrization ψfc of fc (normalized

according to our usual convention; see Appendix A). The formulas (22) and

(23) defining φfc and ψfc as limits show that φfc and ψfc take real values on

the real axis. Define

B :=
¶

(c, z) ∈
Ä
C \ {0}

ä
× C ; z ∈ Bfc

©
.

Propositions A.1 and A.2 imply that

B 3 (c, z) 7→ φfc(z) ∈ C and
Ä
C \ {0}

ä
× C 3 (c, Z) 7→ ψfc(z) ∈ C

are continuous, as well as their composition

L : B 3 (c, z) 7→ ψfc ◦ φfc(z).

Now for c ∈ (−3/2, 1/2], the point (c, c) belongs to B, so we conclude that the

function L : c 7→ L(c, c) is continuous on (−3/2,−1/2]. �

Proof of Claim 3. Assume c = −1/2 so that f := f−1/2 is the quadratic

polynomial z 7→ z + z2. The repelling Fatou parametrization sends points on

R that are sufficiently close to −∞ to points on R+ that are close to 0. Since

f(R+) = R+ and since ψf (z) = f◦m ◦ ψf (z −m) for all m ≥ 0, we see that

ψf (R) = R+. As a consequence, L(−1/2) = ψf ◦ φf (−1/2) > 0. �

Proof of Claim 4. Let us first study the behavior of φfc(c) when c is close

to −3/2. Putting c = −3
2 + t, we compute

fc(c) =
3

4
c+

1

2
c2 = −3

4
t+ O(t2).

Let Φ(c) := φfc(c). Then the asymptotic expansion of φfc (see Section A.1) at

0 yields

Φ(c) = φfc ◦ fc(c)− 1 =
4

3t
− log

Å
4

3t

ã
− 1 + o(1).

Thus the sequence of maps (Φn) defined by

Φn(u) := Φ

Ç
−3

2
+

4

3(n+ u)

å
− n+ log n+ 1

converges uniformly to the identity on compact intervals of R.

Now let us consider the map f := fc0 for c0 := −3/2. Figure 7 shows the

graph of f . The fixed points of f are 0, ξ := −3
√
3

2 and ξ′ := 3
√
3

2 . The critical

points of f are c0 = −3
2 , c′ := 3

4(1 +
√

3) and c′′ := 3
4(1−

√
3). We see that

f◦2(c′) < ξ < c0 < c′′ < 0 < c′ < ξ′ < f(c′).

Thus, f sends the interval (−∞, ξ) into itself, and the orbit of any point in

this interval escapes to −∞. In particular, the orbit of c′ escapes to −∞. In
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Figure 7. The graph of the function f(z) := z + z2 − 4
27z

4 and

the first iterates of the critical point c′ := 3
4(1 +

√
3).

addition, f − id ≥ 0 on [0, c′], and f is increasing on [0, c′]. So, we can define

a sequence (c′m)m≥0 recursively by c′0 := c′ and for m ≥ 0,

c′m+1 ∈ (0, c′) and f(c′m+1) = c′m.

This sequence is decreasing and converges to a fixed point of f , thus to 0.

Choose m0 large enough so that x := c′m0
belongs to the repelling petal

P rep
f . Hence f◦(m0+2)(x) < ξ. Choose ε > 0 small enough so that for all

c ∈ (c0, c0+ε), the point x belongs to the repelling petal of fc and f◦m0+2
c (x) <

ξ(c), where ξ(c) is the leftmost fixed point of fc in R. In particular, for all

m ≥ m0 + 2, we have that f◦m(x) < ξ(c) < c.

For c ∈ (c0, c0 + ε), set

Ψ(c) := ψ−1fc (x)

and

Ψn(u) := Ψ

Ç
−3

2
+

4

3(n+ u)

å
.

Note that Ψ(c) = X0 + O(t) since x lies in the repelling petal of fc and ψc
varies continuously with c. Therefore, we also have that Ψn(u) = X0+O(1/n).

Together with the Intermediate Value Theorem, this implies that for large

enough n, the equation

Φn(u) = Ψn(u) + {log n}
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admits at least one solution un ∈ (X0 − 1, X0 + 2), where {log n} denotes the

fractional part of log n.

Now set

cn := −3

2
+

4

3(n+ un)
and sn := blog nc.

We have that

φfcn (cn) = Φn(un) + n− log n− 1

= Ψn(un) + {log n}+ n− log n− 1

= Ψn(un) + n− sn − 1.

Thus,

L(cn) = ψfcn ◦ φfcn (cn)

= ψfcn

Ä
Ψn(un) + n− sn − 1

ä
= ψfcn

Ä
ψ−1fcn (x) + n− sn − 1

ä
= f◦(n−sn−1)cn (x).

Finally, since n− sn− 1 > m0 for n large enough and since f◦m(x)<c for

all m≥m0+2 and all c∈(c0, c0+ε), we deduce that L(cn)=f
◦(n−sn−1)
cn (x)<cn

for n large enough. This completes the proof of Claim 4. �

Appendix A. Fatou coordinates

Throughout this Section f : C→ C is a polynomial of the form

f(z) = z + a2z
2 + a3z

3 + O(z4) with a2 ∈ C \ {0}.

In the coordinate Z = −1/(a2z), the expression of f becomes

F (Z) = Z + 1 +
b

Z
+ O

Å
1

Z2

ã
with b = 1− a3

a22
.

Choose R > 0 sufficiently large so that F is univalent on C \ D(0, R) and the

estimates (15) hold. Denote by HR the right half-plane

HR :=
¶
Z ∈ C ; <(Z) > R

©
and by −HR the corresponding left half-plane.

Finally, denote by log : C \R− → C be the principal branch of logarithm.

A.1. Attracting Fatou coordinate. As <(Z)→ +∞,

F (Z)− b log
Ä
F (Z)

ä
= Z + 1 +

b

Z
+ O

Å
1

Z2

ã
− b log

Å
Z + 1 +

b

Z
+ O

Å
1

Z2

ãã
= Z − b logZ + 1 + O

Å
1

Z2

ã
.

The map F is univalent on the right half-plane HR, and if Z ∈ HR, then

F ◦m(Z)− b log
Ä
F ◦m(Z)

ä
= Z − b logZ +m+ O(1) as m→ +∞.
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It follows that the sequence of univalent maps

HR 3 Z 7−→ F ◦m(Z)−m− b logm ∈ C

is normal and converges locally uniformly to a univalent map ΦF : HR → C
satisfying

ΦF ◦ F = T1 ◦ ΦF with T1(Z) = Z + 1.

In addition,

ΦF (Z) = Z − b logZ + o(1) as <(Z)→ +∞.

Transferring this to the initial coordinate, we see that the sequence of mappings

Bf → C defined by

(22) z 7−→ − 1

a2 · f◦m(z)
−m− b logm

converges locally uniformly to an attracting Fatou coordinate φf : Bf → C that

semi-conjugates f : Bf → Bf to T1 : C → C; that is, φf ◦ f = T1 ◦ φf , and

satisfies

φf (z) = − 1

a2z
− b log

Å
− 1

a2z

ã
+ o(1) as <(−1/z)→ +∞.

The restriction of φf to the attracting petal

P att
f :=

ß
z ∈ C ; <

Å
− 1

a2z

ã
> R

™
coincides with z 7→ ΦF

Ä
−1/(a2z)

ä
, hence it is univalent.

In addition, the convergence in (22) is locally uniform with respect to f

in the open set B = {(f, z), z ∈ Bf}, which yields the following result.

Proposition A.1. The map φf depends holomorphically on f .

Figure 8 illustrates the behavior of the extended Fatou coordinate for

the cubic polynomial f1(z) = z + z2 + z3 that has two critical points c± :=

(−1± i
√

2)/3. The basin of attraction Bf is colored according to the following

scheme:

• blue if =
Ä
φf (z)

ä
> =
Ä
φf (c+)

ä
,

• red if =
Ä
φf (z)

ä
< =
Ä
φf (c−)

ä
,

• green if =
Ä
φf (c−)

ä
< =
Ä
φf (z)

ä
< =
Ä
φf (c+)

ä
.

A.2. Repelling Fatou coordinate. As <(Z)→ −∞,

F
Ä
Z + b log(−Z)

ä
= Z + b log(−Z) + 1 +

b

Z + b log(−Z)
+ O

Å
1

Z2

ã
= (Z + 1) + b log(−Z − 1) + O

Å
1

Z2

ã
.
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Figure 8. Left: the basin of attraction Bf . The attracting Fatou

coordinate φf is univalent on each tile. It sends each blue tile

to an upper half-plane, each red tile to a lower half-plane and

each green tile to an horizontal strip. The parabolic point at 0

and the critical points c± are marked. Right: the range of φf .

The points φf (c±) are marked.

It follows that if R > 0 is sufficiently large and <(Z) < −R, then

F ◦m
Ä
(Z −m) + b log(m− Z)

ä
= O(1) as m→ +∞.

In that case, the sequence of univalent maps

−HR 3 Z 7−→ F ◦m(Z −m+ b logm) ∈ C

converges locally uniformly to a map ΨF : −HR → C satisfying

ΨF ◦ T1 = F ◦ΨF .

In addition,

ΨF (Z) = Z + b log(−Z) + o(1) as <(Z)→ −∞.

Transferring this to the initial coordinate, we see that the sequence of maps

(23) C 3 Z 7−→ f◦m
Ç
− 1

a2 · (Z −m+ b logm)

å
∈ C

converges locally uniformly to an repelling Fatou parametrization ψf : C→ C
that semi-conjugates T1 : C→ C to f : C→ C (that is, ψf ◦ T1 = f ◦ ψf ) and

satisfies

− 1

ψf (Z)
= Z + b log(−Z) + o(1) as <(Z)→ −∞.
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The restriction of ψf to the left half-plane −HR is given in coordinates by

the formula Z 7→ −1/
Ä
a2ΨF (Z)

ä
, whence is univalent. The image P rep

f :=

ψf (−HR) is called a repelling petal.

The following proposition holds for the same reasons as in the attracting

case (see [BÉE13, §5] for details).

Proposition A.2. The map ψf depends holomorphically on f .

A.3. Lavaurs maps. For σ ∈ C, the Lavaurs map with phase σ is the map

Lf,σ := ψf ◦ Tσ ◦ φf : Bf → C with Tσ(Z) = Z + σ.

In this article, we are only concerned by the Lavaurs map Lf := Lf,0 := ψf ◦φf
with phase 0. The relevance of Lavaurs maps is justified by the following result

due to Pierre Lavaurs [Lav89].

Theorem (Lavaurs). Let f : C → C be a polynomial such that f(z) =

z + z2 + O(z3) as z → 0. For ε ∈ C, set fε(z) := f(z) + ε2. Let (εn)n≥0 be a

sequence of complex numbers and (mn)n≥0 be a sequence of integers, such that

π

εn
−mn → σ ∈ C as n→ +∞.

Then, the sequence of polynomials f◦mnεn converges locally uniformly on Bf to

Lf,σ .

It is also relevant to consider the map

Ef := φf ◦ ψf : Uf → C with Uf := ψ−1f (Bf ).

The repelling parametrization ψf semi-conjugates Ef : Uf → C to Lf : Bf → C.

Figure 9 illustrates the behavior of the map Ef for f(z) = z + z2 + z3.

Propositions A.1 and A.2 imply that Ef and Lf vary nicely with f .

Proposition A.3. The mappings Ef and Lf depend holomorphically on f .

Note that Ef commutes with T1:

Ef ◦ T1 = φf ◦ ψf ◦ T1 = φf ◦ f ◦ ψf = T1 ◦ φf ◦ ψf = T1 ◦ Ef .

So, the universal cover exp : C 3 Z 7−→ e2πiZ ∈ C \ {0} semi-conjugates

Ef : Uf → C to a map

ef : Uf → C \ {0} with Uf := exp(Uf ) ⊂ C \ {0}.

The map ef has removable singularities at 0 and ∞, thus it extends as a

map ef : “Uf → “C, where “C := C ∪ {∞} is the Riemann sphere and “Uf :=

Uf ∪ {0,∞} ⊂ “C. The map ef : “Uf → “C is called the horn map associated

to f . As observed by Adam Epstein in his Ph.D. thesis [Eps93], this horn map

is a finite type analytic map (see Definition A.4 below).
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Figure 9. Behavior of the map Ef for f(z) = z + z2 + z3. The

domain Uf has two connected components, one containing an

upper half-plane and the other containing a lower half-plane.

The domain is tiled according to the behavior of Ef . The re-

striction of Ef to each tile is univalent. The image of blue tiles

is the blue upper half-plane on the right. The image of red tiles

is the red lower half-plane on the right. The image of green tiles

is the horizontal green strip on the right.

A.4. Finite type analytic maps. Let h : W → X be an analytic map of

complex 1-manifolds, possibly disconnected. An open set U ⊆ X is evenly

covered by h if h|V : V → U is a homeomorphism for each component V of

h−1(U); we say that x ∈ X is a regular value for h if some neighborhood U

of x is evenly covered, and a singular value for h otherwise. Note that the set

S(h) of singular values is closed. Recall that w ∈ W is a critical point if the

derivative of h at w vanishes, and then h(w) ∈ X is a critical value. We say

that x ∈ X is an asymptotic value if h approaches x along some path tending

to infinity relative to W . It follows from elementary covering space theory that

the critical values together with the asymptotic values form a dense subset of

S(h). In particular, every isolated point of S(h) is a critical or asymptotic

value.

Definition A.4. An analytic map h : W → X of complex 1-manifolds is of

finite type if

• h is nowhere locally constant,
• h has no isolated removable singularities,
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• X is a finite union of compact Riemann surfaces, and
• S(h) is finite.

When h : W → X is a finite type analytic map with W ⊆ X, we say that

h is a finite type analytic map on X. The reason why finite type analytic maps

are relevant when studying Lavaurs maps is the following.

Let f : P → P be a rational map, let φf : Bf → C be an attracting

Fatou coordinate defined on the parabolic basin of some fixed point of f with

multiplier 1, and let ψf : C → P1(C) be a repelling Fatou parametrization

associated to some fixed point of f with multiplier 1. Define

Ef = φf ◦ ψf : Uf → C with Uf = (ψf )−1(Bf ).

Finally, set “Uf = exp(Uf ) ∪ {0,∞}, and let ef : “Uf → “C be defined by

exp ◦Ef = ef ◦ exp .

The following result is stated as [BÉE13, Prop. 7.3].

Proposition A.5. The map ef : “Uf → “C is a finite type analytic map

on “C. The singular values are

• 0 and ∞, which are fixed asymptotic values of ef ; and
• the images by exp ◦φf of the critical orbits of f contained in Bf , which

are critical values of ef .
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[Éca85] J. Écalle, Les Fonctions Résurgentes. Tome III: L’Équation du
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Institut de Mathématiques de Toulouse, Université de Toulouse,
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