Abstract
We show that there exist pairs of consecutive primes less than $x$ whose difference is larger than \[ t(1+o(1))(\log{x})(\log\log{x})(\log\log\log\log{x})(\log\log\log{x})^{-2}\] for any fixed $t$. This answers a well-known question of Erdős.
-
@article{Erdos, mrkey = {0001759},
author = {Erd{ö}s, P.},
title = {The difference of consecutive primes},
journal = {Duke Math. J.},
fjournal = {Duke Mathematical Journal},
volume = {6},
year = {1940},
pages = {438--441},
issn = {0012-7094},
mrclass = {10.0X},
mrnumber = {0001759},
mrreviewer = {A. Brauer},
zblnumber= {0023.29801},
doi = {10.1215/S0012-7094-40-00635-4},
} -
[FGKT]
K. Ford, B. Green, S. Konyagin, and T. Tao, "Large gaps between consecutive prime numbers," Ann. of Math., vol. 184, pp. 935-974, 2016.
@article{FGKT,
author = {Ford, K. and Green, B. and Konyagin, S. and Tao, T.},
title = {Large gaps between consecutive prime numbers},
journal = {Ann. of Math.},
volume = {184},
year = {2016},
pages = {935--974},
doi={10.4007/annals.2016.183.3.4}
} -
[FriedlanderIwaniec] J. Friedlander and H. Iwaniec, Opera de Cribro, Providence, RI: Amer. Math. Soc., 2010, vol. 57.
@book{FriedlanderIwaniec, mrkey = {2647984},
author = {Friedlander, John and Iwaniec, Henryk},
title = {Opera de Cribro},
series = {Amer. Math. Soc. Colloq. Publ.},
volume = {57},
publisher = {Amer. Math. Soc.},
address = {Providence, RI},
year = {2010},
pages = {xx+527},
isbn = {978-0-8218-4970-5},
mrclass = {11N35 (11-02 11N05 11N13 11N25 11N36)},
mrnumber = {2647984},
mrreviewer = {D. R. Heath-Brown},
zblnumber = {1226.11099},
} -
[GTLinearEquations]
B. Green and T. Tao, "Linear equations in primes," Ann. of Math., vol. 171, iss. 3, pp. 1753-1850, 2010.
@article{GTLinearEquations, mrkey = {2680398},
author = {Green, Benjamin and Tao, Terence},
title = {Linear equations in primes},
journal = {Ann. of Math.},
fjournal = {Annals of Mathematics. Second Series},
volume = {171},
year = {2010},
number = {3},
pages = {1753--1850},
issn = {0003-486X},
coden = {ANMAAH},
mrclass = {11N13 (11B30 11P32)},
mrnumber = {2680398},
mrreviewer = {Tamar Ziegler},
doi = {10.4007/annals.2010.171.1753},
zblnumber = {1242.11071},
} -
[GTMobius]
B. Green and T. Tao, "The Möbius function is strongly orthogonal to nilsequences," Ann. of Math., vol. 175, iss. 2, pp. 541-566, 2012.
@article{GTMobius, mrkey = {2877066},
author = {Green, Benjamin and Tao, Terence},
title = {The {M}öbius function is strongly orthogonal to nilsequences},
journal = {Ann. of Math.},
fjournal = {Annals of Mathematics. Second Series},
volume = {175},
year = {2012},
number = {2},
pages = {541--566},
issn = {0003-486X},
coden = {ANMAAH},
mrclass = {37A45 (11A25)},
mrnumber = {2877066},
mrreviewer = {Tamar Ziegler},
doi = {10.4007/annals.2012.175.2.3},
zblnumber = {06024998},
} -
[GTInverse]
B. Green, T. Tao, and T. Ziegler, "An inverse theorem for the Gowers $U^{s+1}[N]$-norm," Ann. of Math., vol. 176, iss. 2, pp. 1231-1372, 2012.
@article{GTInverse, mrkey = {2950773},
author = {Green, Benjamin and Tao, Terence and Ziegler, Tamar},
title = {An inverse theorem for the {G}owers {$U\sp {s+1}[N]$}-norm},
journal = {Ann. of Math.},
fjournal = {Annals of Mathematics. Second Series},
volume = {176},
year = {2012},
number = {2},
pages = {1231--1372},
issn = {0003-486X},
coden = {ANMAAH},
mrclass = {11B30},
mrnumber = {2950773},
mrreviewer = {Julia Wolf},
doi = {10.4007/annals.2012.176.2.11},
zblnumber = {1282.11007},
} -
[MaierPomerance]
H. Maier and C. Pomerance, "Unusually large gaps between consecutive primes," Trans. Amer. Math. Soc., vol. 322, iss. 1, pp. 201-237, 1990.
@article{MaierPomerance, mrkey = {0972703},
author = {Maier, Helmut and Pomerance, Carl},
title = {Unusually large gaps between consecutive primes},
journal = {Trans. Amer. Math. Soc.},
fjournal = {Transactions of the American Mathematical Society},
volume = {322},
year = {1990},
number = {1},
pages = {201--237},
issn = {0002-9947},
coden = {TAMTAM},
mrclass = {11N05 (11N35)},
mrnumber = {0972703},
mrreviewer = {Jean-Marie De Koninck},
doi = {10.2307/2001529},
zblnumber = {0706.11052},
} -
[MaynardII] J. Maynard, Dense clusters of primes in subsets, 2016.
@misc{MaynardII,
author = {Maynard, James},
title = {Dense clusters of primes in subsets},
note={{\em Composito Math.},
to appear},
year = {2016},
} -
[Maynard]
J. Maynard, "Small gaps between primes," Ann. of Math., vol. 181, iss. 1, pp. 383-413, 2015.
@article{Maynard, mrkey = {3272929},
author = {Maynard, James},
title = {Small gaps between primes},
journal = {Ann. of Math.},
fjournal = {Annals of Mathematics. Second Series},
volume = {181},
year = {2015},
number = {1},
pages = {383--413},
issn = {0003-486X},
mrclass = {11N05 (11N36)},
mrnumber = {3272929},
mrreviewer = {Ya Ming Lu},
doi = {10.4007/annals.2015.181.1.7},
zblnumber = {1306.11073},
} -
[Pintz]
J. Pintz, "Very large gaps between consecutive primes," J. Number Theory, vol. 63, iss. 2, pp. 286-301, 1997.
@article{Pintz, mrkey = {1443763},
author = {Pintz, J{á}nos},
title = {Very large gaps between consecutive primes},
journal = {J. Number Theory},
fjournal = {Journal of Number Theory},
volume = {63},
year = {1997},
number = {2},
pages = {286--301},
issn = {0022-314X},
coden = {JNUTA9},
mrclass = {11N05 (11N36)},
mrnumber = {1443763},
mrreviewer = {Gunter Dufner},
doi = {10.1006/jnth.1997.2081},
zblnumber = {0870.11056},
} -
[Polymath]
D. H. J. Polymath, "Variants of the Selberg sieve, and bounded intervals containing many primes," Res. Math. Sci., vol. 1, p. 12, 2014.
@article{Polymath, mrkey = {3373710},
author = {Polymath, D. H. J.},
title = {Variants of the {S}elberg sieve, and bounded intervals containing many primes},
journal = {Res. Math. Sci.},
fjournal = {Research in the Mathematical Sciences},
volume = {1},
year = {2014},
pages = {Art. 12, 83},
issn = {2197-9847},
mrclass = {11N05 (11N36)},
mrnumber = {3373710},
doi = {10.1186/s40687-014-0012-7},
} -
[RankinOld]
R. A. Rankin, "The difference between consecutive prime numbers," J. London Math. Soc., vol. S1-13, iss. 4, p. 242–-247, 1938.
@article{RankinOld, mrkey = {1574971},
author = {Rankin, R. A.},
title = {The difference between consecutive prime numbers},
journal = {J. London Math. Soc.},
fjournal = {The Journal of the London Mathematical Society},
volume = {S1-13},
number = {4},
pages = {242–-247},
mrclass = {Contributed Item},
mrnumber = {1574971},
YEAR={1938},
doi = {10.1112/jlms/s1-13.4.242},
zblnumber = {0019.39403},
} -
[RankinNew]
R. A. Rankin, "The difference between consecutive prime numbers. V," Proc. Edinburgh Math. Soc., vol. 13, pp. 331-332, 1962/1963.
@article{RankinNew, mrkey = {0160767},
author = {Rankin, R. A.},
title = {The difference between consecutive prime numbers. {V}},
journal = {Proc. Edinburgh Math. Soc.},
fjournal = {Proceedings of the Edinburgh Mathematical Society. Series II},
volume = {13},
year = {1962/1963},
pages = {331--332},
issn = {0013-0915},
mrclass = {10.42},
mrnumber = {0160767},
mrreviewer = {N. G. de Bruijn},
doi = {10.1017/S0013091500025633},
zblnumber = {0121.04705},
} -
[Schonhage]
A. Schönhage, "Eine Bemerkung zur Konstruktion grosser Primzahllücken," Arch. Math. $($Basel$)$, vol. 14, pp. 29-30, 1963.
@article{Schonhage, mrkey = {0146154},
author = {Sch{ö}nhage, Arnold},
title = {Eine {B}emerkung zur {K}onstruktion grosser {P}rimzahllücken},
journal = {Arch. Math. $($Basel$)$},
fjournal = {Archiv der Mathematik},
volume = {14},
year = {1963},
pages = {29--30},
issn = {0003-889X},
mrclass = {10.42},
mrnumber = {0146154},
mrreviewer = {R. A. Rankin},
doi = {10.1007/BF01234916},
zblnumber = {0108.04504},
} -
[Westzynthius] E. Westzynthius, "Uber die Verteilung der Zahlen, die zu den $n$ ersten Primzahlen teilerfremd sind.," Comm. Phys. Math. Soc. Sci. Fenn., vol. 25, pp. 1-37, 1931.
@article{Westzynthius,
author = {Westzynthius, E.},
title = {{U}ber die {V}erteilung der {Z}ahlen, die zu den {$n$} ersten {P}rimzahlen teilerfremd sind.},
journal = {Comm. Phys. Math. Soc. Sci. Fenn.},
volume = {25},
pages = {1--37},
year = {1931},
zblnumber = {0003.24601},
}