Large gaps between primes

Abstract

We show that there exist pairs of consecutive primes less than $x$ whose difference is larger than \[ t(1+o(1))(\log{x})(\log\log{x})(\log\log\log\log{x})(\log\log\log{x})^{-2}\] for any fixed $t$. This answers a well-known question of Erdős.

  • [Erdos] Go to document P. Erdös, "The difference of consecutive primes," Duke Math. J., vol. 6, pp. 438-441, 1940.
    @article{Erdos, mrkey = {0001759},
      author = {Erd{ö}s, P.},
      title = {The difference of consecutive primes},
      journal = {Duke Math. J.},
      fjournal = {Duke Mathematical Journal},
      volume = {6},
      year = {1940},
      pages = {438--441},
      issn = {0012-7094},
      mrclass = {10.0X},
      mrnumber = {0001759},
      mrreviewer = {A. Brauer},
      zblnumber= {0023.29801},
      doi = {10.1215/S0012-7094-40-00635-4},
      }
  • [FGKT] Go to document K. Ford, B. Green, S. Konyagin, and T. Tao, "Large gaps between consecutive prime numbers," Ann. of Math., vol. 184, pp. 935-974, 2016.
    @article{FGKT,
      author = {Ford, K. and Green, B. and Konyagin, S. and Tao, T.},
      title = {Large gaps between consecutive prime numbers},
      journal = {Ann. of Math.},
      volume = {184},
      year = {2016},
      pages = {935--974},
      doi={10.4007/annals.2016.183.3.4}
    }
  • [FriedlanderIwaniec] J. Friedlander and H. Iwaniec, Opera de Cribro, Providence, RI: Amer. Math. Soc., 2010, vol. 57.
    @book{FriedlanderIwaniec, mrkey = {2647984},
      author = {Friedlander, John and Iwaniec, Henryk},
      title = {Opera de Cribro},
      series = {Amer. Math. Soc. Colloq. Publ.},
      volume = {57},
      publisher = {Amer. Math. Soc.},
      address = {Providence, RI},
      year = {2010},
      pages = {xx+527},
      isbn = {978-0-8218-4970-5},
      mrclass = {11N35 (11-02 11N05 11N13 11N25 11N36)},
      mrnumber = {2647984},
      mrreviewer = {D. R. Heath-Brown},
      zblnumber = {1226.11099},
      }
  • [GTLinearEquations] Go to document B. Green and T. Tao, "Linear equations in primes," Ann. of Math., vol. 171, iss. 3, pp. 1753-1850, 2010.
    @article{GTLinearEquations, mrkey = {2680398},
      author = {Green, Benjamin and Tao, Terence},
      title = {Linear equations in primes},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {171},
      year = {2010},
      number = {3},
      pages = {1753--1850},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {11N13 (11B30 11P32)},
      mrnumber = {2680398},
      mrreviewer = {Tamar Ziegler},
      doi = {10.4007/annals.2010.171.1753},
      zblnumber = {1242.11071},
      }
  • [GTMobius] Go to document B. Green and T. Tao, "The Möbius function is strongly orthogonal to nilsequences," Ann. of Math., vol. 175, iss. 2, pp. 541-566, 2012.
    @article{GTMobius, mrkey = {2877066},
      author = {Green, Benjamin and Tao, Terence},
      title = {The {M}öbius function is strongly orthogonal to nilsequences},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {175},
      year = {2012},
      number = {2},
      pages = {541--566},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {37A45 (11A25)},
      mrnumber = {2877066},
      mrreviewer = {Tamar Ziegler},
      doi = {10.4007/annals.2012.175.2.3},
      zblnumber = {06024998},
      }
  • [GTInverse] Go to document B. Green, T. Tao, and T. Ziegler, "An inverse theorem for the Gowers $U^{s+1}[N]$-norm," Ann. of Math., vol. 176, iss. 2, pp. 1231-1372, 2012.
    @article{GTInverse, mrkey = {2950773},
      author = {Green, Benjamin and Tao, Terence and Ziegler, Tamar},
      title = {An inverse theorem for the {G}owers {$U\sp {s+1}[N]$}-norm},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {176},
      year = {2012},
      number = {2},
      pages = {1231--1372},
      issn = {0003-486X},
      coden = {ANMAAH},
      mrclass = {11B30},
      mrnumber = {2950773},
      mrreviewer = {Julia Wolf},
      doi = {10.4007/annals.2012.176.2.11},
      zblnumber = {1282.11007},
      }
  • [MaierPomerance] Go to document H. Maier and C. Pomerance, "Unusually large gaps between consecutive primes," Trans. Amer. Math. Soc., vol. 322, iss. 1, pp. 201-237, 1990.
    @article{MaierPomerance, mrkey = {0972703},
      author = {Maier, Helmut and Pomerance, Carl},
      title = {Unusually large gaps between consecutive primes},
      journal = {Trans. Amer. Math. Soc.},
      fjournal = {Transactions of the American Mathematical Society},
      volume = {322},
      year = {1990},
      number = {1},
      pages = {201--237},
      issn = {0002-9947},
      coden = {TAMTAM},
      mrclass = {11N05 (11N35)},
      mrnumber = {0972703},
      mrreviewer = {Jean-Marie De Koninck},
      doi = {10.2307/2001529},
      zblnumber = {0706.11052},
      }
  • [MaynardII] J. Maynard, Dense clusters of primes in subsets, 2016.
    @misc{MaynardII,
      author = {Maynard, James},
      title = {Dense clusters of primes in subsets},
      note={{\em Composito Math.},
      to appear},
      year = {2016},
      }
  • [Maynard] Go to document J. Maynard, "Small gaps between primes," Ann. of Math., vol. 181, iss. 1, pp. 383-413, 2015.
    @article{Maynard, mrkey = {3272929},
      author = {Maynard, James},
      title = {Small gaps between primes},
      journal = {Ann. of Math.},
      fjournal = {Annals of Mathematics. Second Series},
      volume = {181},
      year = {2015},
      number = {1},
      pages = {383--413},
      issn = {0003-486X},
      mrclass = {11N05 (11N36)},
      mrnumber = {3272929},
      mrreviewer = {Ya Ming Lu},
      doi = {10.4007/annals.2015.181.1.7},
      zblnumber = {1306.11073},
      }
  • [Pintz] Go to document J. Pintz, "Very large gaps between consecutive primes," J. Number Theory, vol. 63, iss. 2, pp. 286-301, 1997.
    @article{Pintz, mrkey = {1443763},
      author = {Pintz, J{á}nos},
      title = {Very large gaps between consecutive primes},
      journal = {J. Number Theory},
      fjournal = {Journal of Number Theory},
      volume = {63},
      year = {1997},
      number = {2},
      pages = {286--301},
      issn = {0022-314X},
      coden = {JNUTA9},
      mrclass = {11N05 (11N36)},
      mrnumber = {1443763},
      mrreviewer = {Gunter Dufner},
      doi = {10.1006/jnth.1997.2081},
      zblnumber = {0870.11056},
      }
  • [Polymath] Go to document D. H. J. Polymath, "Variants of the Selberg sieve, and bounded intervals containing many primes," Res. Math. Sci., vol. 1, p. 12, 2014.
    @article{Polymath, mrkey = {3373710},
      author = {Polymath, D. H. J.},
      title = {Variants of the {S}elberg sieve, and bounded intervals containing many primes},
      journal = {Res. Math. Sci.},
      fjournal = {Research in the Mathematical Sciences},
      volume = {1},
      year = {2014},
      pages = {Art. 12, 83},
      issn = {2197-9847},
      mrclass = {11N05 (11N36)},
      mrnumber = {3373710},
      doi = {10.1186/s40687-014-0012-7},
      }
  • [RankinOld] Go to document R. A. Rankin, "The difference between consecutive prime numbers," J. London Math. Soc., vol. S1-13, iss. 4, p. 242–-247, 1938.
    @article{RankinOld, mrkey = {1574971},
      author = {Rankin, R. A.},
      title = {The difference between consecutive prime numbers},
      journal = {J. London Math. Soc.},
      fjournal = {The Journal of the London Mathematical Society},
      volume = {S1-13},
      number = {4},
      pages = {242–-247},
      mrclass = {Contributed Item},
      mrnumber = {1574971},
      YEAR={1938},
      doi = {10.1112/jlms/s1-13.4.242},
      zblnumber = {0019.39403},
      }
  • [RankinNew] Go to document R. A. Rankin, "The difference between consecutive prime numbers. V," Proc. Edinburgh Math. Soc., vol. 13, pp. 331-332, 1962/1963.
    @article{RankinNew, mrkey = {0160767},
      author = {Rankin, R. A.},
      title = {The difference between consecutive prime numbers. {V}},
      journal = {Proc. Edinburgh Math. Soc.},
      fjournal = {Proceedings of the Edinburgh Mathematical Society. Series II},
      volume = {13},
      year = {1962/1963},
      pages = {331--332},
      issn = {0013-0915},
      mrclass = {10.42},
      mrnumber = {0160767},
      mrreviewer = {N. G. de Bruijn},
      doi = {10.1017/S0013091500025633},
      zblnumber = {0121.04705},
      }
  • [Schonhage] Go to document A. Schönhage, "Eine Bemerkung zur Konstruktion grosser Primzahllücken," Arch. Math. $($Basel$)$, vol. 14, pp. 29-30, 1963.
    @article{Schonhage, mrkey = {0146154},
      author = {Sch{ö}nhage, Arnold},
      title = {Eine {B}emerkung zur {K}onstruktion grosser {P}rimzahllücken},
      journal = {Arch. Math. $($Basel$)$},
      fjournal = {Archiv der Mathematik},
      volume = {14},
      year = {1963},
      pages = {29--30},
      issn = {0003-889X},
      mrclass = {10.42},
      mrnumber = {0146154},
      mrreviewer = {R. A. Rankin},
      doi = {10.1007/BF01234916},
      zblnumber = {0108.04504},
      }
  • [Westzynthius] E. Westzynthius, "Uber die Verteilung der Zahlen, die zu den $n$ ersten Primzahlen teilerfremd sind.," Comm. Phys. Math. Soc. Sci. Fenn., vol. 25, pp. 1-37, 1931.
    @article{Westzynthius,
      author = {Westzynthius, E.},
      title = {{U}ber die {V}erteilung der {Z}ahlen, die zu den {$n$} ersten {P}rimzahlen teilerfremd sind.},
      journal = {Comm. Phys. Math. Soc. Sci. Fenn.},
      volume = {25},
      pages = {1--37},
      year = {1931},
      zblnumber = {0003.24601},
      }

Authors

James Maynard

Magdalen College, Oxford, England