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Large gaps between primes

By James Maynard

Abstract

We show that there exist pairs of consecutive primes less than x whose

difference is larger than

t(1 + o(1))(log x)(log log x)(log log log log x)(log log log x)−2

for any fixed t. This answers a well-known question of Erdős.

1. Introduction

Let G(X) = suppn≤X(pn+1− pn) denote the maximal gap between primes

of size at most X. Westzynthius [15] was the first to show that G(X) could

become arbitrarily large compared with the average gap (1 + o(1)) logX, and

this was improved by Erdős [1] and then Rankin [12], who succeeded in showing

that for X sufficiently large

(1.1) G(X) ≥ (c+ o(1))(logX)(log2X)(log4X)(log3X)−2,

with the constant c = 1/3, where logv denotes the v-fold logarithm. Since

Rankin’s 1938 result, however, the only improvements have been in the con-

stant c. Such improvements were obtained in the work of Schönhage [14],

Rankin [13], Maier and Pomerance [7], with the best constant c = 2eγ due

to Pintz [10]. In this paper we show that one can take the constant c to be

arbitrarily large by incorporating sieve ideas based on the recent results on

small gaps between primes [8], [9], [11] into the Erdős-Rankin method.

Theorem 1. We have

lim sup
n

pn+1 − pn
(log pn)(log2 pn)(log4 pn)(log3 pn)−2

=∞.

We note that Ford, Green, Konyagin and Tao have independently obtained

this result in the recent work [2] using a different method. Their work is based

on incorporating results on linear equations in the primes [4], [6], [5] (rather

than work on small gaps between primes) into the Erdős-Rankin construction.
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Remark. The method presented here in fact allows one to obtain a quan-

titative improvement to Rankin’s bound (1.1). We shall address this in forth-

coming work.

2. The Erdős-Rankin construction

As with most approaches to the problem, we follow the Erdős-Rankin

construction for large gaps, modifying only the final stage of the argument.

We wish to choose residue classes ap (mod p) for each prime p ≤ x such that

every integer n ∈ [1, U ] satisfies n ≡ ap (mod p) for some prime p ≤ x.

We fix constants CU , ε > 0, (and we will assume ε is sufficiently small at

various parts of the argument) and let y, z, U be defined in terms of x by

(2.1) y = exp
(
(1− ε) log x log3 x

log2 x

)
, z =

x

log2 x
, U = CU

x log y

log2 x
.

The only difference between these choices and those of [7] is that here U is

determined in terms of an unspecified constant CU (which we will show can be

taken arbitrarily large) rather than a specific choice of CU slightly less than

1.32eγ .

If we can cover the interval [1, U ] by residue classes ap (mod p) for p ≤ x,

then any U0 satisfying U0 ≡ −ap (mod p) for all p ≤ x has the property that

U0 + j has a prime factor of size at most x for each j ∈ [1, U ]. By the Chinese

remainder theorem, there is such a U0 in the interval [x, x+ exp((1 + o(1))x)],

and this gives rise to an interval of length U which contains no primes since

U0 +j is bigger than x but contains a prime factor less than x for all j ∈ [1, U ].

Letting x = (1 − ε) logX, and recalling our choice of U and y above, we

see that this would show there is an interval in [1, X] of length (1 − 2ε +

o(1))CU (logX)(log2X)(log4X)(log3X)−2 containing no primes. Therefore we

immediately obtain Theorem 1 if we can take CU to be arbitrarily large whilst

still covering [1, U ] by the residue classes ap (mod p) for p ≤ x.

We choose ap for primes p ≤ z by

ap = 1 for every prime 1 < p ≤ y,

ap = 0 for every prime y < p ≤ z.
(2.2)

After removing elements of [1, U ] in these residue classes we are left with the

set

(2.3) R∪R′,
where

R = {mp ≤ U : p > z,m is y-smooth, (mp− 1, Py) = 1},
R′ = {m ≤ U : m is y-smooth, (m− 1, Py) = 1},

Pt =
∏
p≤t

p for any t ∈ R.
(2.4)
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We first note that since p > z, the condition (mp− 1, Py) = 1 requires that m

be even. We split R according to this integer m. For even m, we let

(2.5) Rm = {z < p ≤ U/m : (mp− 1, Py) = 1}.

Lemma 2. We have
|R′| � x

(log x)1+ε
.

Proof. This is [7, Th. 5.3]. Our slightly different choice of U does not

affect the argument from [7]. �

Lemma 3. We have uniformly for z+z/ log x ≤ V ≤ x(log x)2 and m ≤ x,

#{z < p ≤ V : (mp− 1, Py) = 1}

=
V − z
log x

(∏
p≤y
p-m

p− 2

p− 1

)(
1 +O(exp(−(log2 x)1/2))

)
.

In particular, uniformly for even m ≤ U(1− 1/ log x)/z, we have

|Rm| =
2e−γU(1 + o(1))

m(log x)(log y)

(∏
p>2

p(p− 2)

(p− 1)2

)( ∏
p|m,p>2

p− 1

p− 2

)
.

Proof. The first statement follows from a ‘fundamental lemma’ sieve and

the Bombieri-Vinogradov theorem; see [3, Th. 6.12], for example. The second

statement follows immediately from the first using Mertens’ theorem. �

Lemma 4. For any M ≥ 2, we have∑
U/(zM)≤m<U/z

|Rm| �
U logM

(log x)(log y)
.

In particular,∑
U/(z(log2 x)

2)≤m<U/z
|Rm| = o

(CUx
log x

)
,

∑
1≤m<U/(z(log2 x)2)

|Rm| = O
(CUx

log x

)
.

Proof. Let w1 = U/(zM), and let w2 = U(1−1/ log x)/z. For m ≥ w2, we

use the trivial bound |Rm| � U/(m log x), and so we see that the contribution

from w2 ≤ m < U/z is at most O(U/(log x)2). We now consider w1 ≤ m < w2.

Using the bound ∏
p|m, p>2

p− 1

p− 2
�
∏
p|m

p+ 1

p
=
∑
d|m

1

d
,

letting m = m′d, and using Lemma 3, we have∑
w1≤m<w2

|Rm| �
U

(log x)(log y)

∑
d<w2

1

d2

∑
w1/d≤m′<w2/d

1

m′
� U(logM +O(1))

(log x)(log y)
.

The final estimates follow immediately from recalling the definitions of U and y.

�
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We now state our key proposition.

Proposition 5. Fix δ > 0. Let m < Uz−1(log2 x)−2 be even, and let

Im ⊆ [x/2, x] be an interval of length at least δ|Rm| log x.

Then for x > x0(δ, CU ), there exists a choice of residue classes aq (mod q)

for each prime q ∈ Im such that

p ∈ Rm ⇒ p ≡ aq (mod q) for some prime q ∈ Im.

Theorem 1 now follows almost immediately from Proposition 5.

Proof of Theorem 1 assuming Propostion 5. By Lemma 4, we see that

(2.6)
∑

m<Uz−1(log2 x)
−2

δ|Rm| log x� δCUx.

Therefore, if δ is sufficiently small compared with CU , we can choose intervals

Im of length δ|Rm| log x for each even m < Uz−1(log2 x)−2 such that all the

Im are disjoint and contained in [x/2, x]. By Proposition 5 we can cover Rm
using a residue class for each prime in Im, for each such m. By Lemmas 2, 3

and 4, this means we can cover all but o(x/ log x) elements of R ∪ R′ using

only residue classes of primes in [x/2, x]. By choosing the residue class of

one remaining element for each prime in [z, x/2], we can then cover all the

remaining elements of R ∪ R′. Therefore we can choose residue classes ap
(mod p) for all p ≤ x which cover all of [1, U ] for any fixed choice of CU . This

completes the proof. �

We actually prove Proposition 5 in a slightly different (but equivalent)

form: We show that for any fixed ε, δ > 0 and interval Im ⊆ [x/2, x] of length

at least δ|Rm| log x, we can choose residue classes aq (mod q) for primes q ∈ Im
such that all but ε|Rm| elements p ofRm satisfy p ≡ aq (mod q) for some prime

q ∈ Im (where m is as in Proposition 5).

By appending to Im an interval of length 2ε|Rm| log x, we can choose the

residue class of one of the remaining ε|Rm| elements of Rm for each of the

primes in this appended interval. Thus we can cover all of Rm by residue

classes for primes in an interval of length (2ε+δ)|Rm| log x. Since ε and δ were

arbitrary, we see these two forms of Proposition 5 are equivalent.

3. The probabilistic method

Given an even m < U/(z(log2 x)2) and a prime q ∈ Im, we will define a

probability measure µm,q on the residue classes a (mod q). We then consider

the following situation: independently for each prime q ∈ Im, we randomly

choose a residue class a (mod q) with probability µm,q(a).
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Given a prime p ∈ Rm, we see that the probability that p is not in any of

the chosen residue classes for any q ∈ Im is∏
q∈Im prime

(1− µm,q(p)) = exp
( ∑
q∈Im prime

log (1− µm,q(p))
)

≤ exp
(
−

∑
q∈Im prime

µm,q(p)
)
.

(3.1)

Therefore, if for almost every p ∈ Rm we have that the expected number of

q ∈ Im for which the residue class p (mod q) is chosen is at least t, then the

probability that any such p ∈ Rm is not in any of the chosen residue classes

is less than e−t. Therefore the expected number of primes in Rm which are

not in any of the chosen residue classes is at most e−t|Rm|. If t can be taken

sufficiently large, we expect that all but at most ε|Rm| elements of Rm are in

at least one of the chosen residue classes. This means that there must be at

least one configuration of residue classes a (mod q) for q ∈ Im which covers

all but at most ε|Rm| elements of Rm, as required.

4. GPY probabilities

We have seen that to complete the argument we require a probability

measure µm,q for each prime q ∈ Im, such that for almost every p ∈ Rm, the

expected number
∑
q∈Im µm,q(p) of times the residue class p (mod q) is chosen

is at least t, where t can be taken to be arbitrarily large.

We wish µm,q(a) to be large when the residue class a (mod q) contains

many primes in Rm, and small otherwise. The key feature in this situation

is that the modulus q is only slightly smaller than the size of the elements of

Rm, which makes it difficult to count the number of primes in a given residue

class. To achieve such a measure, we adapt the weights used in [8], [9] to this

situation, so that µm,q(a) is large when a (mod q) contains many elements

with no small prime factors.

Specifically, first we choose an admissible set H = {h1, . . . , hk}, with

hj = pπ(k)+jPw for each j = 1, . . . , k (i.e., hj is the jth prime greater than

k, multiplied by all primes less than w). Here w is a quantity which will go to

infinity slowly with x, such that Pw = o(log2 x) (we could take w = log4 x, for

example), and k is a constant we will choose to be sufficiently large in terms

of ε, δ, CU . In particular, w will be large compared with k. We define

(4.1) µm,q(a) = αm,q
∑

n≤U/m
n≡a (mod q)

(n(mn−1),Pw)=1

( ∑
d1,...,dk
di|n+hiq

∑
e1,...,ek

ei|m(n+hiq)−1

λd1,...,dk,e1,...,ek

)2
.

Here λd1,...,dk,e1,...,ek are real constants (which we will choose later), and αm,q
is a normalizing constant so that

∑
a (mod q) µm,q(a) = 1.
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The coefficients λd1,...,dk,e1...,ek will factorize as λ
(1)
d1,...,dk

∏k
i=1 λ

(2)
ei . The

λ
(1)
d1,...,dk

correspond to a ‘GPY’ sieve and ensure that µm,q(a) can only be

large if there exists an n ≡ a (mod q) such that all of {n + h1q, . . . , n + hkq}
have no small prime factors (and so we expect many of them to be prime). The

λ
(2)
ej correspond to a standard Selberg sieve1 and ensure that the contribution

from such an n is small unless m(n+hjq)−1 has no prime factors less than yε.

If we choose a residue class a (mod q) randomly with probability µm,q(a),

then for a suitable choice of λ coefficients, we would find from following the

work [8], [9], [11] that the expected number of primes in Rm in the chosen

residue class would be a constant multiple of log k. One might hope that

the primes found this way would be approximately independent for different

q ∈ Im. If this were the case, then we would guess that the expected number of

times a given prime in Rm would be in a picked residue class would be roughly

the same for all primes in Rm, in which case this would be approximately

(|Im| log k)/(|Rm| log x), since there are roughly |Im|/ log x primes in Im. Re-

calling that we choose |Im| = δ|Rm| log x, we might therefore guess that the

expected number of times p ∈ Rm is chosen is roughly a constant multiple

of δ log k. (Normally this would actually depend on the arithmetic structure

of H,m, p0, but by choosing all elements of H to be a multiple of all small

primes this effect is negligible.) Therefore, if k is chosen sufficiently large, we

expect to be able to make this quantity larger than any fixed constant. We

now proceed to make these heuristic ideas rigorous.

In order for it to be feasible to estimate
∑
q µm,q(p), we exploit the lin-

earity (in n and q) of the expressions n+ hiq and m(n+ hiq)− 1 and make a

choice of λd1,...,dk,e1,...,ek which is independent of q. This allows us to estimate

the resulting sums for fixed n and varying prime q and also for fixed q and

varying n. In particular, this makes it more convenient to adopt the ‘analytic’

method for estimating the sums which appear, as in [11].

5. Setup

We let

ωm,q(p) =#{1 ≤ n ≤ p : n+ hiq ≡ 0 (mod p)

or m(n+ hiq) ≡ 1 (mod p) for some 1 ≤ i ≤ k},
(5.1)

and we extend ωm,q to a totally multiplicative function defined on N. Similarly,

we define the totally multiplicative function ϕm,q by ϕm,q(p) = p − ωm,q(p).

1We could apply a fundamental lemma type sieve here since y = xo(1), but we find it more

convenient to apply a Selberg sieve, which is weaker only by an unimportant constant factor.
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We put

(5.2) Sm,q =
∏
p≤y

(
1− ωm,q(p)

p

)(
1− 1

p

)−2k
,

noting that this product is nonzero since ωm,q(p)≤2 for p≤w and ωm,q(2)=1

since we are only considering m even.

We define λd1,...,dk,e1...,ek by

(5.3) λd1,...,dk,e1,...,ek =
( k∏
i=1

µ(di)µ(ei)
) J∑
j=1

( k∏
`=1

F`,j
( log d`

log x

)
G
( log e`

log y

))
for some smooth nonnegative functions Fi,j , G : [0,∞) → R which are not

identically zero (which we declare later). The functions Fi,j , G and the quantity

J will be allowed to depend on k, but will be independent of x, q. Thus,

in particular, |λd1,...,dk,e1,...,ek | �k 1. We further require that for each j ∈
{1, . . . , J}, we have

(5.4) sup
{ k∑
i=1

ui : Fi,j(ui) 6= 0
}
≤ 1/10,

and we restrict G to be supported on [0, 1]. Finally, we put

(5.5) F (t1, . . . , tk) =
J∑
j=1

k∏
`=1

F ′`,j(t`),

and we assume that the F`,j are chosen such that F is symmetric. We empha-

size that this choice of λ does not depend on q.

6. Sieve estimates

We first asymptotically evaluate the normalizing constant αm,q and then

estimate
∑
q∈Im µm,q(p).

Lemma 6. We have

α−1m,q = (1 + ok(1))
USm,q

m(log x)k(log y)k
I
(1)
k (F )I

(2)
k (G),

where Sm,q is given by (5.2), and

I
(1)
k (F ) =

∫
· · ·
∫

t1,...,tk≥0

F (t1, . . . , tk)
2dt1 . . . dtk, I

(2)
k (G) =

(∫ ∞
0

G′(t)2dt
)k
.

Proof. The quantity α−1m,q is somewhat analogous to that of [9, Prop. 9.1],

although here we do not concern ourselves with uniformity in k. From the fact
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that we have defined αm,q to be such that
∑
a (mod q) µm,q(a) = 1, we have that

α−1m,q =
∑

n≤U/m
(n(mn−1),Pw)=1

( ∑
d1,...,dk
di|n+hiq

∑
e1,...,ek

ei|m(n+hiq)−1

λd1,...,dk,e1,...,ek

)2
.(6.1)

Expanding the squares and swapping the order of summation shows this sum

is equal to ∑
d1,...,dk
d′1,...,d

′
k

∑
e1,...,ek
e′1,...,e

′
k

λd,eλd′,e′
∑

n≤U/m
(n(mn−1),Pw)=1
[di,d

′
i]|n+hiq ∀ i

[ei,e
′
i]|m(n+hiq)−1 ∀ i

1.(6.2)

Here to ease notation we have written λd,e for λd1,...,dk,e1...,ek , and similarly for

λd′,e′ .

We concentrate on the inner sum. There is no contribution unless all

of d1d
′
1, . . . , dkd

′
k, e1e

′
1, . . . , eke

′
k are coprime to Pw. Moreover, there is

no contribution unless all of d1d
′
1, . . . , dkd

′
k are pairwise coprime, and all of

e1e
′
1, . . . , eke

′
k are pairwise coprime (since any p|(eie′i, eje′j), say, would have

to divide (hi − hj)q, which is in contradiction to p ≤ x1/10 < q being prime

and (eie
′
i, Pw) = 1). Finally, we see that we must have (did

′
i, eje

′
j)|mq(hj − hi)

− 1 for all 1 ≤ i, j ≤ k. If all of these conditions are satisfied, then, by

the Chinese remainder theorem, we can combine the divisibility conditions

in the inner sum to restrict n to lie in any of ϕm,q(Pw) residue classes

(mod Pw[d1, d
′
1, e1, e

′
1, . . . , dk, d

′
k, ek, e

′
k]).

Thus we see that (6.2) is given by∑′

d1,...,dk
d′1,...,d

′
k

∑′

e1,...,ek
e′1,...,e

′
k

λd,eλd′,e′
( Uϕm,q(Pw)

m[d,d′, e, e′]Pw
+O(ϕm,q(Pw))

)
,(6.3)

where we have written [d,d′, e, e′] for [d1, d
′
1, e1, e

′
1, . . . , dk, d

′
k, ek, e

′
k] and

∑′ for

the conditions that d1d
′
1, . . . , dkd

′
k, Pw are pairwise coprime, e1e

′
1, . . . , eke

′
k, Pw

are pairwise coprime, and that (eie
′
i, djd

′
j)|(mq(hj − hi) − 1, Py) for all 1 ≤

i, j ≤ k. The fact we have forced this common factor to divide Py is redundant

since λd,e is supported only on ei ≤ y, but is slightly convenient later.

We first estimate the error term trivially. We have supd,e(|λd,e|)�k 1. We

write d =
∏k
i=1 di (and similarly for d′, e, e′) and see that the support conditions

of Fi,j , G mean we only need to consider d, d′ ≤ x1/10 and e, e′ ≤ yk �k x
ε.

Therefore the error term contributes

(6.4) �k ϕm,q(Pw)
∑

d,d′≤x1/10,e,e′�kxε

τk(d)τk(d
′)τk(e)τk(e

′)�k x
1/2.

We now estimate the main term. The argument we use is standard and is a

minor adaption of [11, Lemma 4.1].
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We expand λd,e, λd′,e′ using (5.3). Thus we are left to evaluate

(6.5)
J∑
j=1

J∑
j′=1

∑′

d1,...,dk
d′1,...,d

′
k

∑′

e1,...,ek
e′1,...,e

′
k

∏k
`=1 µ(d`)µ(d′`)µ(e`)µ(e′`)H`,j,j′(d`, d

′
`, e`, e

′
`)

[d,d′, e, e′]
,

where

H`,j,j′(d`, d
′
`, e`, e

′
`) = F`,j

( log d`
log x

)
F`,j′

( log d′`
log x

)
G
( log e`

log y

)
G
( log e′`

log y

)
.

The function etF`,j(t) can be extended to a smooth compactly supported func-

tion on R, and so has a Fourier expansion etF`,j(t) =
∫
R e
−itξf`,j(ξ)dξ, for a

function f`,j which (from the smoothness of etF`,j(t) and integration by parts)

satisfies f`,j(ξ) �k,A (1 + |ξ|)−A for any A > 0, and so is rapidly decreasing.

In particular, we have

(6.6) F`,j
( log d`

log x

)
=

∫
R

f`,j(ξ`)

d
(1+iξ`)/ log x
`

dξ`.

We obtain an analogous expression for G. Thus the sum over the d, d′, e, and

e′ variables in (6.5) can then be rewritten as∫
R
· · ·
∫
R

( ∑′

d1,...,dk
d′1,...,d

′
k

∑′

e1,...,ek
e′1,...,e

′
k

1

[d,d′, e, e′]

k∏
`=1

µ(d`)µ(d′`)µ(e`)µ(e′`)

d
1+iξ`
log x

` (d′`)
1+iξ′

`
log x e

1+iτ`
log y

` (e′`)
1+iτ ′

`
log y

)

×
( k∏
`=1

f`,j(ξ`)f`,j′(ξ
′
`)g(τ`)g(τ ′`)dξ`dξ

′
`dτ`dτ

′
`

)
.

(6.7)

Here we have swapped the order of summation and integration (noting the

expression is absolutely convergent).

We concentrate on the first term in parentheses in the integral. Since the

restrictions imposed on the summation are multiplicative and the summand is

also multiplicative, we can rewrite the sum as a product
∏
pKp for functions

Kp(ξ1 . . . , ξk, ξ
′
1, . . . , ξ

′
k, τ1, . . . , τk, τ

′
1, . . . , τ

′
k). We first notice that

Kp =
∑′

d1,...,dk
d′1,...,d

′
k

∑′

e1,...,ek
e′1,...,e

′
k

[d,d′,e,e′]|p

1

[d,d′, e, e′]

k∏
`=1

µ(d`)µ(d′`)µ(e`)µ(e′`)

d
1+iξ`
log x

` (d′`)
1+iξ′

`
log x e

1+iτ`
log y

` (e′`)
1+iτ ′

`
log y

= 1 +Ok(p
−1−1/ log x).

(6.8)

Thus
∏
pKp � (log x)Ok(1). Since all the f, g functions are rapidly decreasing,

this means that we can restrict the integral to |ξ`|, |ξ′`|, |τ`|, |τ ′`| ≤
√

log x

for all ` at the cost of an error Ok((log x)−2k). To ease notation we let sj =

(1 + iξj)/ log x, r` = (1 + iτ`)/ log y and similarly for s′j , r
′
`.
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For w < p ≤ y with p - ∏h,h′∈H(mq(h− h′)− 1), or for p > y, we have
(6.9)

Kp =
(
1 +Ok

( 1

p2

)) k∏
`=1

(
1− p−1−s`

)(
1− p−1−s′`

)(
1− p−1−r`

)(
1− p−1−r′`

)
(
1− p−1−s`−s′`

)(
1− p−1−r`−r′`

) .

For w < p ≤ y with p|∏h,h′∈H(mq(h − h′) − 1), we have terms involving the

product of dj and e` if p|mq(h`−hj)−1. This means that we have an additional

factor compared with (6.9) of(
1 +Ok(p

−2)
) ∏
j,`: p|mq(h`−hj)−1

(
1 +

∑
T ⊆{sj ,s′j ,r`,r

′
`}

T ∩{sj ,s′j}6=∅
T ∩{rj ,r′j}6=∅

(−1)#T p−
∑

t∈T t
)

=
(
1 +

#{j, ` : p|mq(h` − hj)− 1}
p

)(
1 +Ok

( 1

p2
+

log p
√

log x

p log y

))
.

(6.10)

Here we used the fact that we have restricted to |sj |, |r`| < (log x)1/2/ log y

(so, for example, p−sj = 1 + O((log p)(log x)1/2/(log y)) by Taylor expansion)

to obtain the final error term.

For such p, we see that the hiq (mod p) are all distinct; p > w implies

p - ∏j 6=`(hj−h`) and p ≤ y < q implies p - q. Therefore, recalling the definition

(5.1) of ωm,q(p), we see that ωm,q(p) = 2k −#{j, ` : p|mq(h` − hj) − 1}, and

so the first factor in (6.10) simplifies to 1− (ωm,q(p)− 2k)/p.

We see that since
∏
h,h′∈H(mq(h−h′)−1)� xOk(1), and log y > (log x)1−ε,

we have ∏
p|
∏
h,h′ (mq(h−h

′)−1)
p>w

(
1 +Ok

( 1

p2
+

log p
√

log x

p log y

))

= exp
(
Ok
(
w−1 +

log log x

(log x)1/2−ε

))
= 1 + ok(1),

(6.11)

and so the second factor in (6.10) has a negligible effect.

Finally, we see that since

logw = o((log x)ε) and s`, s
′
`, r`, r

′
` = o(log x)−1/2+ε,

we have

∏
p≤w

k∏
`=1

(
1− p−1−s`

)(
1− p−1−s′`

)(
1− p−1−r`

)(
1− p−1−r′`

)
(
1− p−1−s`−s′`

)(
1− p−1−r`−r′`

)
= (1 + ok(1))

∏
p<w

(
1− 1

p

)2k
.

(6.12)
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Putting this all together gives

∏
p>w

Kp = (1 + ok(1))
∏
p<w

(
1− 1

p

)−2k ∏
w<p≤y

(
1− ωm,q(p)− 2k

p

)

×
k∏
`=1

ζ
(
1 +

2+iξ`+iξ
′
`

log x

)
ζ
(
1 +

2+iτ`+iτ
′
`

log y

)
ζ
(
1 + 1+iξ`

log x

)
ζ
(
1 +

1+iξ′
`

log x

)
ζ
(
1 + 1+iτ`

log y

)
ζ
(
1 +

1+iτ ′
`

log y

) .(6.13)

Here we have extended the product of 1− (ωm,q(p)− 2k)/p to all primes w <

p ≤ y, which is valid since ωm,q(p) = 2k if p - ∏h,h′(mq(h− h′)− 1) for such p.

In the region |z| = o(1), we have the estimate ζ(1 + z) = (1 + o(1))/z.

Thus, recalling that log y ≥ (log x)1−ε, we are left to estimate

∫
· · ·
∫

(1 + ok(1))
k∏
`=1

(
(1 + iξ`)(1 + iξ′`)(1 + iτ`)(1 + iτ ′`)

(2 + iξ` + iξ′`)(2 + iτ` + iτ ′`)

× f`,j(ξ`)f`,j′(ξ′`g(τ`)g(τ ′`))dξ`dξ
′
`dτ`dτ

′
`

)
,

(6.14)

where the integral is over |ξ`|, |ξ′`|, |τ`|, |τ ′`| ≤
√

log x. From the rapid decay of

the f and g functions, we see that the ok(1) term contributes ok(1) in total,

and we can extend the integrals to being over R at a cost of ok(1). Thus it

suffices (since the integrals are absolutely convergent) to show that for any

f1, f2 amongst the f`,j , g, we have∫
R

∫
R

(1 + iξ)(1 + iξ′)

2 + iξ + iξ′
f1(ξ)f2(ξ

′)dξdξ′ =

∫ ∞
0

F ′1(t)F
′
2(t)dt.(6.15)

This follows immediately from our definition of the Fourier transform. (Differ-

entiating under the integral sign is valid due to absolute convergence.)

Putting everything together, we have that

α−1m,q =
(1 + ok(1))Uϕm,q(Pw)

m(log x)k(log y)kPw

∏
p≤w

(
1− 1

p

)−2k ∏
w≤p≤y

(
1− ωm,q(p)− 2k

p

)

×
(∫ ∞

0
G′(t)2dt

)k J∑
j=1

J∑
j′=1

k∏
`=1

(∫ ∞
0

F ′`,j(t)F
′
`,j′(t)dt

)
(6.16)

= (1 + ok(1))
USm,qIk(F )

m(log x)k(log y)k
I
(1)
k (F )I

(2)
k (G).

Here we have used the fact that G and the F`,j are all nonnegative (and not the

zero function) to take the o(1) errors as a factor at the front of the expression.

�
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Lemma 7. Let m < Uz−1(log x)−2 be even, and let p0 ∈ Rm with hkx <

p0 < U/m− hkx. Then

∑
q∈Im

µm,q(p0)� (1 + ok(1))
k|Im|J (1)

k (F )J
(2)
k (G)

(log x)|Rm|I(1)k (F )I
(2)
k (G)

,

where

J
(1)
k (F ) =

∫
· · ·
∫

t1,...,tk−1≥0

(∫
tk≥0

F (t1, . . . , tk)dtk
)2
dt1 . . . dtk−1,

J
(2)
k (G) = G(0)2

(∫ ∞
0

G′(t)2dt
)k−1

.

Proof. We substitute the definition of µm,q to give

∑
q∈Im prime

µm,q(p0)

=
∑

q∈Im prime

αm,q
∑

n≤U/m
n≡p0 (mod q)

(n(mn−1),Pw)=1

( ∑
d1,...,dk
di|n+hiq

∑
e1,...,ek

ei|m(n+hiq)−1

λd1,...,dk,e1,...,ek

)2
.

(6.17)

Since all terms are nonnegative, we obtain a lower bound by dropping all

terms in the sum over n except for when n = p0 − hq for some h ∈ H. We

see that (p0 + (hi − h)q, Pw) = (p0, Pw) = 1 and (mp0 +m(hi − h)q− 1, Pw) =

(mp0 − 1, Pw) = 1 so all the terms n = p0 − hq appear in the sum (since, by

assumption, hkx < p0 < U/m− hkx). This gives

∑
q∈Im prime

µm,q(p0)

≥
∑
h∈H

∑
q∈Im prime

αm,q
( ∑

d1,...,dk
di|p0+(hi−h)q

∑
e1,...,ek

ei|m(p0+(hi−h)q)−1

λd1,...,dk,e1,...,ek

)2
.

(6.18)

We split the sum over q into residue classes modulo Pw. This gives

∑
h∈H

∑
w0 (mod Pw)
(w0,Pw)=1

×
∑

q∈Im prime
q≡w0 (mod Pw)

αm,q
( ∑

d1,...,dk
di|p0+(hi−h)q

∑
e1,...,ek

ei|m(p0+(hi−h)q)−1

λd1,...,dk,e1,...,ek

)2
.

(6.19)

We now replace αm,q with a slightly more manageable expression with less

dependence on q. We first note that since all the hi are a multiple of Pw, for
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every prime p ≤ w, we have that ωm,q(p) = 2 or 1 depending on whether or

not (m, p) = 1. For w < p ≤ y, we have ωm,q(p) = 2k if

p -
∏

h′,h′′∈H
(mq(h′ − h′′)− 1).

Thus, recalling that we only consider even m, we have

S−1m,q =
∏
p≤y

(
1− ωm,q(p)

p

)−1(
1− 1

p

)2k
≥ (1 + ok(1))Sm

∏
w<p≤y

p|
∏
h′,h′′ (mq(h

′−h′′)−1)

(
1− 2k

p

)
,

(6.20)

where we have put

(6.21) Sm = 2−(2k−1)
( ∏
p|m, p>2

p− 2

p− 1

) ∏
2<p≤w

(
1− 2

p

)−1(
1− 1

p

)2k
.

Since
∏
h′,h′′(mq(h

′ − h′′) − 1) � xOk(1), we can restrict the primes occurring

in the final product on the right hand side of (6.20) to be less than z0 =

log x/ log2 x at a cost of a factor of 1+ok(1). Expanding out this product then

gives

S−1m,q ≥ (1 + ok(1))Sm

∑
a1,2,...,ak,k−1|Pz0/Pw
ai,j |mq(hi−hj)−1

(−2k)ω([a])

[a]
.(6.22)

Here we have put [a] = [a1,2, . . . , ak,k−1]. Substituting this bound for Sm,q and

our bound for αm,q from Lemma 6 into (6.18), we have

∑
q∈Im prime

µm,q(p0) ≥
(1 + ok(1))m(log x)k(log y)kSm

UI
(1)
k (F )I

(2)
k (G)

×
∑
h∈H

∑
w0 (mod Pw)
(w0,Pw)=1

∑
a1,2,...,ak,k−1|Pz0/Pw

(−2k)ω([a])

[a]

×
∑

q∈Im prime
q≡w0 (mod Pw)

ai,j |mq(hi−hj)−1 ∀ i 6=j

( ∑
d1,...,dk

di|p0+(hi−h)q

∑
e1,...,ek

ei|m(p0+(hi−h)q)−1

λd1,...,dk,e1,...,ek

)2
.

(6.23)

We concentrate on the sum over q. For convenience we will consider the case

when h in the outer sum is hk; the other cases are entirely analogous.

Since p0 is a prime larger than x, and (mp0 − 1, Py) = 1, we may restrict

to dk = ek = 1 since no other divisors of p0 or mp0 − 1 occur. Inserting this
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condition, expanding the square and swapping the order of summation then

gives that the sum over q is equal to∑
d1,...,dk
d′1,...,d

′
k

dk=d
′
k=1

∑
e1,...,ek
e′1,...,e

′
k

ek=e
′
k=1

λd,eλd′,e′
∑

q∈Im prime
[di,d

′
i]|p0+(hi−hk)q ∀ i

[ei,e
′
i]|mp0+m(hi−hk)q−1∀ i
q≡w0 (mod Pw)

ai,j |mq(hi−hj)−1 ∀ i 6=j

1.(6.24)

This is now an expression which is similar to that considered in the proof

of [9, Prop. 9.2]. Let us be given a1,2, . . . , ak,k−1|Pz0/Pw and d,d′, e, e′ with

λd,eλd′,e′ 6= 0 and with dk = d′k = ek = e′k = 1. We see that the inner sum over

q is empty unless d1d
′
1, . . . , dkd

′
k, Pw are pairwise coprime, e1e

′
1, . . . , eke

′
k, Pw are

pairwise coprime and a1,2, . . . , ak,k−1,m are pairwise coprime. Moreover, we

must also have that

(did
′
i, eje

′
j) |mp0(hi − hj) + hk − hi ∀ i, j,

(did
′
i, aj,`) | (hj − h`)mp0 + hi − hk ∀ i, j, `,(6.25)

(eie
′
i, aj,`) | (hj − h`)(1− p0m)− hi + hk ∀ i, j, `.

If all of these conditions are satisfied, then the inner sum can be rewritten as

a sum over primes in Im in a single residue class modulo the least common

multiple of d1, d
′
1, e1, e

′
1,. . . , dk, d

′
k, ek, e

′
k, a1,2 . . . , ak,k−1, Pw. Moreover, this

residue class will be coprime to the modulus. Thus in this case the inner sum

is

(6.26)

∑
q∈Im prime 1

ϕ(Pw)ϕ([d,d′, e, e′,a])
+O(E(x;Pw[d,d′, e, e′,a])),

where we have written [d,d′, e, e′,a] to represent the least common multiple

of all the d, d′, e, e′ and a variables, and where

(6.27) E(x; q) = sup
t≤x

sup
(a,q)=1

∣∣∣∣π(t; q, a)− π(t)

ϕ(q)

∣∣∣∣.
We put r = Pw[d,d′, e, e′,a] and note that r � x1/5+ok(1), from the support

conditions on F`,j and G and the fact that aj,l|Pz0 = xo(1). Therefore, using

the trivial bound E(x; q) � x/q and the Bombieri-Vinogradov theorem, we

see the contribution of the error to (6.24) is

�k

∑
r�x1/5+ε

τk2+4k(r)E(x; r)

�
(
x

∑
r�x1/5+ε

τk2+4k(r)
2

r

)1/2( ∑
r�x1/5+ε

E(x; r)
)1/2

�k
x

(log x)2k
,

(6.28)

which will be negligible. (Here we used |λd,e| �k 1 for all d, e.)
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Im is an interval of length δ|Rm| log x� x(log x)−2 by Lemma 3 and our

bound on m. Since Im is contained in [x/2, x], the number of primes in Im is

(1 + o(1))|Im|/ log x by the prime number theorem. Therefore the main term

of (6.24) then simplifies to

(1 + o(1))|Im|
ϕ(Pw) log x

∑∗

d1,...,dk
d′1,...,d

′
k

∑∗

e1,...,ek
e′1,...,e

′
k

λd,eλd′,e′

ϕ([d,d′, e, e′,a])

=
(1 + o(1))|Im|G(0)2

ϕ(Pw) log x

J∑
j=1

J∑
j′=1

Fk,j(0)Fk,j′(0)
∑∗∗

d1,...,dk−1

d′1,...,d
′
k−1

∑∗∗

e1,...,ek−1

e′1,...,e
′
k−1

×
∏k−1
`=1 µ(d`)µ(d′`)µ(e`)µ(e′`)F`,j

(
log d`
log x

)
F`,j′

(
log d′`
log x

)
G
(
log e`
log y

)
G
(
log e′`
log y

)
ϕ([d,d′, e, e′,a])

.

(6.29)

Here we have written
∑∗ to indicate that the summation is restricted to the

conditions that dk = d′k = ek = e′k = 1, that d1d
′
1, . . . , dkd

′
k, Pw are pairwise

coprime, that e1e
′
1, . . . , eke

′
k, Pw are pairwise coprime, and that the divisibil-

ity constraints (6.25) are satisfied. Similarly, we have written
∑∗∗ for these

constraints with the conditions on dk, d
′
k, ek, e

′
k dropped (because we have sep-

arated their contribution).

We can evaluate this by an essentially identical argument to that used in

Lemma 6. The presence of the Euler ϕ function in the denominator affects Kp

by a factor 1 + Ok(p
−2), and so has a negligible effect. The presence of the a

factor in the denominator means that for any p|ai,j , we have Kp �k p
−1. This

means that the contribution to (6.24) when a1,2, . . . , ak,k−1 6= 1, . . . , 1 is

(6.30) �k

S
(2)
m,p0,hk

|Im|
ϕ(Pw)(log x)k(log y)k−1

∏
p|ai,j for some i, j

Ok(1)

p
,

where

S
(2)
m,p0,h

=
∏
p≤w

(
1− 1

p

)−(2k−2) ∏
w<p≤y

(
1−

ω
(2)
m,p0,h

(p)

p

)(
1− 1

p

)−(2k−2)
,(6.31)

ω
(2)
m,p0,h

(p) = #{1 ≤ n ≤ p : p0 + (hi − h)n ≡ 0 (mod p)

or m(p0 + (hi − h)n) ≡ 1 (mod p) for some i}.
(6.32)
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Thus (6.30) shows that the total contribution from all a1,2, . . . , ak,k−1 6= 1, . . . , 1

is

∑
a1,2,...,ak,k−1|Pz0/Pw
a1,2,...,ak,k−1 6=1,...,1

(−2k)ω([a])

[a]

×
∑

q∈Im prime
q≡w0 (mod Pw)

ai,j |mq(hi−hj)−1∀ i 6=j

( ∑
d1,...,dk

di|p0+(hi−hk)q

∑
e1,...,ek

ei|m(p0+(hi−hk)q)−1

λd1,...,dk,e1,...,ek

)2

�k

S
(2)
m,p0,hk

|Im|
ϕ(Pw)(log x)k(log y)k−1

( ∏
w<p≤z0

(
1 +

Ok(1)

p2

)
− 1

)

= ok
( S

(2)
m,p0,hk

|Im|
ϕ(Pw)(log x)k(log y)k−1

)
.

(6.33)

Hence the main contribution comes from when a1,2 = · · · = ak,k−1 = 1. In this

case, the contribution is

(1 + ok(1))S
(2)
m,p0,hk

|Im|G(0)2

ϕ(Pw)(log x)k(log y)k−1

J∑
j=1

J∑
j′=1

Fk,j(0)Fk,j′(0)
(∫ ∞

0
G′(t)2dt

)k−1

×
k−1∏
`=1

∫ ∞
0

F ′`,j(t)F
′
`,j′(t)dt

=
(1 + ok(1))S

(2)
m,p0,hk

|Im|
ϕ(Pw)(log x)k(log y)k−1

J
(1)
k (F )J

(2)
k (G).

(6.34)

We obtain the same estimate (6.34) with S
(2)
m,p0,hk

replaced with S
(2)
m,p0,h

for a

different h ∈ H. (Since F is symmetric, J
(1)
k (F ) does not depend on the choice

of h ∈ H.) Substituting (6.33) and (6.34) into our main term (6.23), we obtain

∑
q∈Im prime

µm,q(p0) ≥
(1 + ok(1))m(log y)J

(1)
k (F )J

(2)
k (G)|Im|

UI
(1)
k (F )I

(2)
k (G)ϕ(Pw)

×
∑
h∈H

SmS
(2)
m,p0,h

∑
w0 (mod Pw)
(w0,Pw)=1

1.
(6.35)

The inner sum is clearly ϕ(Pw). We note that for any h ∈ H, we have ω
(2)
m,p0,h

(p)

= 0 for p ≤ w and ω
(2)
m,p0,h

(p) ≤ 2k − 2 for all p. Therefore, recalling the
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definitions (6.21) and (6.31) of Sm and Sm,p0,h, we have

SmS
(2)
m,p0,h

= 2−1
∏

p|m, p>2

p− 2

p− 1

∏
p<w

(
1− 1

p

)2
(
1− 2

p

) ∏
w<p≤y

(
1−

ω
(2)
m,p0,h

(p)

p

)
(
1− 1

p

)2k−2
�

∏
p|m, p>2

p− 2

p− 1

∏
w<p≤y

(
1− 2k − 2

p

)(
1− 1

p

)−(2k−2)
� (1 + ok(1))

∏
p|m, p>2

p− 2

p− 1
.

(6.36)

Recalling the estimate on the size of Rm from Lemma 3 then gives the result.

�

Finally, we recall the key integral estimate from [8].

Lemma 8. There exists a suitable choice of smooth functions F,G such

that

kJ
(1)
k (F )J

(2)
k (G)

I
(1)
k (F )I

(2)
k (G)

� log k.

Proof. We choose G(t) to be a smooth approximation to 1− t supported

on t ∈ [0, 1] such that J
(2)
k (G)/I

(2)
k (G) ≥ 1 − ε. We can choose such a G

since the set of nonnegative continuous functions supported on [0, 1] is L2- and

L1-dense in the set of continuous nonnegative functions supported on [0, 1] (by

the Stone-Weierstrasss theorem).

We recall the choice of function giving [8, Prop. 4.3(iii)]. Let Fk : [0,∞)k

→ R and g : [0,∞)→ R be defined by

Fk(t1, . . . , tk) =


∏k
i=1 g(kti) if

∑k
i=1 ti ≤ 1,

0 otherwise,
(6.37)

g(t) =

1/(1 +At) t ∈ [0, T ],

0 otherwise,
(6.38)

and where A = log k−2 log2 k and T = (eA−1)/A. This is clearly a nonnegative

symmetric function defined on
∑k
i=1 ti ≤ 1.

By [8, §7], we have that J
(1)
k (Fk)/I

(1)
k (Fk) � (log k)/k. We choose F`,j

such that F is a smooth approximation to Fk(10t1, . . . , 10tk) supported on

{(t1, . . . , tk) ∈ [0,∞)k :
∑k
i=1 ti ≤ 1/10} with

J
(1)
k (F )/I

(1)
k (F ) ≥ (1/10− ε)J (1)

k (Fk)/I
(1)
k (Fk),

which gives the result.
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We can choose such an approximation F since the set of symmetric, non-

negative linear combinations of direct products of smooth compactly supported

functions on [0, 1]k is L2- and L1-dense in the set of nonnegative symmetric

L2-integrable functions on [0, 1]k. �

Completion of the proof of Proposition 5. Since

|Im| = (1 + o(1))δ|Rm| log x,

by Lemmas 7 and 8 we have that any prime p0 ∈ Rm with hkx < p0 <

U/m − hkx has the expected number
∑
q µm,q(p0) of times p0 is chosen is

� δ log k. By Lemma 3, the number of primes p0 ∈ Rm which do not satisfy

hkx < p0 < U/m− hkx is ok(|Rm|) for m < U/z(log2 x)2.

Thus we have shown that if we choose residue classes randomly according

to µm,q, for all but ok(|Rm|) primes p0 ∈ Rm, the expected number
∑
q µm,q(p0)

of times p0 ∈ Rm is chosen is � δ log k. By choosing k sufficiently large in

terms of δ, ε, we can ensure that this expectation is larger than log ε−1. But, by

the argument of Section 3, this means that the expected number of p0 ∈ Rm
which are not in any of the chosen residue classes must be less than ε|Rm|.
Therefore there must be at least one assignment of residue classes for which

at most ε|Rm| of the primes p0 ∈ Rm are not chosen. By the argument at the

end of Section 2, this implies Proposition 5, and hence Theorem 1. �
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