Abstract
The spin moduli space $\overline{\mathcal{S}}_g$ is the parameter space of theta characteristics (spin structures) on stable curves of genus $g$. It has two connected components, $\overline{\mathcal{S}}_g^-$ and $\overline{\mathcal{S}}_g^+$, depending on the parity of the spin structure. We establish a complete birational classification by Kodaira dimension of the odd component $\overline{\mathcal{S}}_g^-$ of the spin moduli space. We show that $\overline{\mathcal{S}}_g^-$ is uniruled for $g<12$ and even unirational for $g\leq 8$. In this range, introducing the concept of cluster for the Mukai variety whose one-dimensional linear sections are general canonical curves of genus $g$, we construct new birational models of $\overline{\mathcal{S}}_g^-$. These we then use to explicitly describe the birational structure of $\overline{\mathcal{S}}_g^-$. For instance, $\overline{\mathcal{S}}_8^-$ is birational to a locally trivial $\textbf{P}^7$-bundle over the moduli space of elliptic curves with seven pairs of marked points. For $g\geq 12$, we prove that $\overline{\mathcal{S}}_g^-$ is a variety of general type. In genus $12$, this requires the construction of a counterexample to the Slope Conjecture on effective divisors on the moduli space of stable curves of genus $12$.
-
[Dol]
I. V. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge: Cambridge Univ. Press, 2012.
@book{Dol, address = {Cambridge},
author = {Dolgachev, Igor V.},
pages = {xii+639},
publisher = {Cambridge Univ. Press},
title = {Classical {A}lgebraic {G}eometry: A {M}odern {V}iew},
year = {2012},
doi = {10.1017/CBO9781139084437},
isbn = {978-1-107-01765-8},
} -
[DK]
I. V. Dolgachev and V. Kanev, "Polar covariants of plane cubics and quartics," Adv. Math., vol. 98, iss. 2, pp. 216-301, 1993.
@article{DK,
author = {Dolgachev, Igor V. and Kanev, Vassil},
journal = {Adv. Math.},
number = {2},
pages = {216--301},
title = {Polar covariants of plane cubics and quartics},
volume = {98},
year = {1993},
doi = {10.1006/aima.1993.1016},
issn = {0001-8708},
} -
[CS]
L. Caporaso and E. Sernesi, "Characterizing curves by their odd theta-characteristics," J. Reine Angew. Math., vol. 562, pp. 101-135, 2003.
@article{CS,
author = {Caporaso, Lucia and Sernesi, Edoardo},
journal = {J. Reine Angew. Math.},
pages = {101--135},
title = {Characterizing curves by their odd theta-characteristics},
volume = {562},
year = {2003},
doi = {10.1515/crll.2003.070},
issn = {0075-4102},
} -
[C] M. Cornalba, "Moduli of curves and theta-characteristics," in Lectures on Riemann Surfaces, Teaneck, NJ: World Sci. Publ., 1989, pp. 560-589.
@incollection{C, address = {Teaneck, NJ},
author = {Cornalba, Maurizio},
booktitle = {Lectures on {R}iemann Surfaces},
pages = {560--589},
publisher = {World Sci. Publ.},
title = {Moduli of curves and theta-characteristics},
year = {1989},
} -
[CCC]
L. Caporaso, C. Casagrande, and M. Cornalba, "Moduli of roots of line bundles on curves," Trans. Amer. Math. Soc., vol. 359, iss. 8, pp. 3733-3768, 2007.
@article{CCC,
author = {Caporaso, Lucia and Casagrande, Cinzia and Cornalba, Maurizio},
journal = {Trans. Amer. Math. Soc.},
number = {8},
pages = {3733--3768},
title = {Moduli of roots of line bundles on curves},
volume = {359},
year = {2007},
doi = {10.1090/S0002-9947-07-04087-1},
issn = {0002-9947},
} -
[AJ]
D. Abramovich and T. J. Jarvis, "Moduli of twisted spin curves," Proc. Amer. Math. Soc., vol. 131, iss. 3, pp. 685-699, 2003.
@article{AJ,
author = {Abramovich, Dan and Jarvis, Tyler J.},
journal = {Proc. Amer. Math. Soc.},
number = {3},
pages = {685--699},
title = {Moduli of twisted spin curves},
volume = {131},
year = {2003},
doi = {10.1090/S0002-9939-02-06562-0},
issn = {0002-9939},
} -
[FP]
G. Farkas and M. Popa, "Effective divisors on $\overline{\mathcal M}_g$, curves on $K3$ surfaces, and the slope conjecture," J. Algebraic Geom., vol. 14, iss. 2, pp. 241-267, 2005.
@article{FP,
author = {Farkas, Gavril and Popa, Mihnea},
journal = {J. Algebraic Geom.},
number = {2},
pages = {241--267},
title = {Effective divisors on {$\overline{\mathcal M}\sb g$},
curves on {$K3$} surfaces, and the slope conjecture},
volume = {14},
year = {2005},
doi = {10.1090/S1056-3911-04-00392-3},
issn = {1056-3911},
} -
[M1] S. Mukai, "Curves and Grassmannians," in Algebraic Geometry and Related Topics, Yang, J. -H., Namikawa, Y., and Ueno, K., Eds., Int. Press, Cambridge, MA, 1993, vol. I, pp. 19-40.
@incollection{M1,
author = {Mukai, Shigeru},
booktitle = {Algebraic Geometry and Related Topics},
editor = {Yang, J.-H. and Namikawa, Y. and Ueno, K.},
pages = {19--40},
publisher = {Int. Press, Cambridge, MA},
series = {Conf. Proc. Lecture Notes Algebraic Geom.},
title = {Curves and {G}rassmannians},
volume = {I},
year = {1993},
} -
[M2]
S. Mukai, "Curves and symmetric spaces. I," Amer. J. Math., vol. 117, iss. 6, pp. 1627-1644, 1995.
@article{M2,
author = {Mukai, Shigeru},
journal = {Amer. J. Math.},
number = {6},
pages = {1627--1644},
title = {Curves and symmetric spaces. {I}},
volume = {117},
year = {1995},
doi = {10.2307/2375032},
issn = {0002-9327},
} -
[M3]
S. Mukai, "Curves and symmetric spaces, II," Ann. of Math., vol. 172, iss. 3, pp. 1539-1558, 2010.
@article{M3,
author = {Mukai, Shigeru},
journal = {Ann. of Math.},
number = {3},
pages = {1539--1558},
title = {Curves and symmetric spaces, {II}},
volume = {172},
year = {2010},
doi = {10.4007/annals.2010.172.1539},
issn = {0003-486X},
} -
[F3]
G. Farkas, "The birational type of the moduli space of even spin curves," Adv. Math., vol. 223, iss. 2, pp. 433-443, 2010.
@article{F3,
author = {Farkas, Gavril},
journal = {Adv. Math.},
number = {2},
pages = {433--443},
title = {The birational type of the moduli space of even spin curves},
volume = {223},
year = {2010},
doi = {10.1016/j.aim.2009.08.011},
issn = {0001-8708},
} -
[FV]
G. Farkas and A. Verra, "Moduli of theta-characteristics via Nikulin surfaces," Math. Ann., vol. 354, iss. 2, pp. 465-496, 2012.
@article{FV,
author = {Farkas, Gavril and Verra, Alessandro},
journal = {Math. Ann.},
number = {2},
pages = {465--496},
title = {Moduli of theta-characteristics via {N}ikulin surfaces},
volume = {354},
year = {2012},
doi = {10.1007/s00208-011-0739-z},
issn = {0025-5831},
} -
[Lud]
K. Ludwig, "On the geometry of the moduli space of spin curves," J. Algebraic Geom., vol. 19, iss. 1, pp. 133-171, 2010.
@article{Lud,
author = {Ludwig, Katharina},
journal = {J. Algebraic Geom.},
number = {1},
pages = {133--171},
title = {On the geometry of the moduli space of spin curves},
volume = {19},
year = {2010},
doi = {10.1090/S1056-3911-09-00505-0},
issn = {1056-3911},
} -
[Cu]
F. Cukierman, "Families of Weierstrass points," Duke Math. J., vol. 58, iss. 2, pp. 317-346, 1989.
@article{Cu,
author = {Cukierman, Fernando},
journal = {Duke Math. J.},
number = {2},
pages = {317--346},
title = {Families of {W}eierstrass points},
volume = {58},
year = {1989},
doi = {10.1215/S0012-7094-89-05815-8},
issn = {0012-7094},
} -
[EH2]
D. Eisenbud and J. Harris, "The Kodaira dimension of the moduli space of curves of genus $\geq 23$," Invent. Math., vol. 90, iss. 2, pp. 359-387, 1987.
@article{EH2,
author = {Eisenbud, David and Harris, Joe},
journal = {Invent. Math.},
number = {2},
pages = {359--387},
title = {The {K}odaira dimension of the moduli space of curves of genus {$\geq 23$}},
volume = {90},
year = {1987},
doi = {10.1007/BF01388710},
issn = {0020-9910},
} -
[FL]
G. Farkas and K. Ludwig, "The Kodaira dimension of the moduli space of Prym varieties," J. Eur. Math. Soc. $($JEMS$)$, vol. 12, iss. 3, pp. 755-795, 2010.
@article{FL,
author = {Farkas, Gavril and Ludwig, Katharina},
journal = {J. Eur. Math. Soc. $($JEMS$)$},
number = {3},
pages = {755--795},
title = {The {K}odaira dimension of the moduli space of {P}rym varieties},
volume = {12},
year = {2010},
doi = {10.4171/JEMS/214},
issn = {1435-9855},
} -
[Mu]
D. Mumford, "Theta characteristics of an algebraic curve," Ann. Sci. École Norm. Sup., vol. 4, pp. 181-192, 1971.
@article{Mu,
author = {Mumford, David},
journal = {Ann. Sci. École Norm. Sup.},
pages = {181--192},
title = {Theta characteristics of an algebraic curve},
volume = {4},
year = {1971},
issn = {0012-9593},
url = {http://www.numdam.org/item?id=ASENS_1971_4_4_2_181_0},
} -
[HM]
J. Harris and D. Mumford, "On the Kodaira dimension of the moduli space of curves," Invent. Math., vol. 67, iss. 1, pp. 23-88, 1982.
@article{HM,
author = {Harris, Joe and Mumford, David},
journal = {Invent. Math.},
number = {1},
pages = {23--88},
title = {On the {K}odaira dimension of the moduli space of curves},
volume = {67},
year = {1982},
doi = {10.1007/BF01393371},
issn = {0020-9910},
} -
[M4] S. Mukai, "Curves and $K3$ surfaces of genus eleven," in Moduli of Vector Bundles, New York: Dekker, 1996, vol. 179, pp. 189-197.
@incollection{M4, address = {New York},
author = {Mukai, Shigeru},
booktitle = {Moduli of Vector Bundles},
pages = {189--197},
publisher = {Dekker},
series = {Lecture Notes Pure Appl. Math.},
title = {Curves and {$K3$} surfaces of genus eleven},
volume = {179},
year = {1996},
} -
[CD]
C. Ciliberto and T. Dedieu, "On universal Severi varieties of low genus $K3$ surfaces," Math. Z., vol. 271, iss. 3-4, pp. 953-960, 2012.
@article{CD,
author = {Ciliberto, Ciro and Dedieu, Thomas},
journal = {Math. Z.},
number = {3-4},
pages = {953--960},
title = {On universal {S}everi varieties of low genus {$K3$} surfaces},
volume = {271},
year = {2012},
doi = {10.1007/s00209-011-0898-3},
issn = {0025-5874},
} -
[La]
R. Lazarsfeld, "Brill-Noether-Petri without degenerations," J. Differential Geom., vol. 23, iss. 3, pp. 299-307, 1986.
@article{La,
author = {Lazarsfeld, Robert},
journal = {J. Differential Geom.},
number = {3},
pages = {299--307},
title = {Brill-{N}oether-{P}etri without degenerations},
volume = {23},
year = {1986},
issn = {0022-040X},
url = {http://projecteuclid.org/euclid.jdg/1214440116},
} -
[Ta]
A. Tannenbaum, "Families of curves with nodes on $K3$ surfaces," Math. Ann., vol. 260, iss. 2, pp. 239-253, 1982.
@article{Ta,
author = {Tannenbaum, Allen},
journal = {Math. Ann.},
number = {2},
pages = {239--253},
title = {Families of curves with nodes on {$K3$} surfaces},
volume = {260},
year = {1982},
doi = {10.1007/BF01457238},
issn = {0025-5831},
} -
[HH]
R. Hartshorne and A. Hirschowitz, "Smoothing algebraic space curves," in Algebraic Geometry, Sitges, New York: Springer-Verlag, 1985, vol. 1124, pp. 98-131.
@incollection{HH, address = {New York},
author = {Hartshorne, R. and Hirschowitz, A.},
booktitle = {Algebraic Geometry, {S}itges},
pages = {98--131},
publisher = {Springer-Verlag},
series = {Lecture Notes in Math.},
title = {Smoothing algebraic space curves},
volume = {1124},
year = {1985},
doi = {10.1007/BFb0074998},
} -
[Sc] G. Scorza, "Sopra le curve canoniche di uno spazio lineare qualunque e sopra certi loro covarianti quartici," Atti Accad. Reale Sci. Torino, vol. 35, pp. 765-773, 1900.
@article{Sc,
author = {Scorza, G.},
journal = {Atti Accad. Reale Sci. Torino},
pages = {765--773},
title = {Sopra le curve canoniche di uno spazio lineare qualunque e sopra certi loro covarianti quartici},
volume = {35},
year = {1900},
} -
[TZ]
H. Takagi and F. Zucconi, "Spin curves and Scorza quartics," Math. Ann., vol. 349, iss. 3, pp. 623-645, 2011.
@article{TZ,
author = {Takagi, Hiromichi and Zucconi, Francesco},
journal = {Math. Ann.},
number = {3},
pages = {623--645},
title = {Spin curves and {S}corza quartics},
volume = {349},
year = {2011},
doi = {10.1007/s00208-010-0530-6},
issn = {0025-5831},
} -
[EH1]
D. Eisenbud and J. Harris, "Limit linear series: Basic theory," Invent. Math., vol. 85, iss. 2, pp. 337-371, 1986.
@article{EH1,
author = {Eisenbud, David and Harris, Joe},
journal = {Invent. Math.},
number = {2},
pages = {337--371},
title = {Limit linear series: {B}asic theory},
volume = {85},
year = {1986},
doi = {10.1007/BF01389094},
issn = {0020-9910},
} -
[F2]
G. Farkas, "Koszul divisors on moduli spaces of curves," Amer. J. Math., vol. 131, iss. 3, pp. 819-867, 2009.
@article{F2,
author = {Farkas, Gavril},
journal = {Amer. J. Math.},
number = {3},
pages = {819--867},
title = {Koszul divisors on moduli spaces of curves},
volume = {131},
year = {2009},
doi = {10.1353/ajm.0.0053},
issn = {0002-9327},
} -
[Log]
A. Logan, "The Kodaira dimension of moduli spaces of curves with marked points," Amer. J. Math., vol. 125, iss. 1, pp. 105-138, 2003.
@article{Log,
author = {Logan, Adam},
journal = {Amer. J. Math.},
number = {1},
pages = {105--138},
title = {The {K}odaira dimension of moduli spaces of curves with marked points},
volume = {125},
year = {2003},
doi = {10.1353/ajm.2003.0005},
issn = {0002-9327},
} -
[F1]
G. Farkas, "Syzygies of curves and the effective cone of $\overline{\mathcal{M}}_g$," Duke Math. J., vol. 135, iss. 1, pp. 53-98, 2006.
@article{F1,
author = {Farkas, Gavril},
journal = {Duke Math. J.},
number = {1},
pages = {53--98},
title = {Syzygies of curves and the effective cone of {$\overline{\mathcal{M}}_g$}},
volume = {135},
year = {2006},
doi = {10.1215/S0012-7094-06-13512-3},
issn = {0012-7094},
} -
[HT]
J. Harris and L. Tu, "Chern numbers of kernel and cokernel bundles," Invent. Math., vol. 75, iss. 3, pp. 467-475, 1984.
@article{HT,
author = {Harris, J. and Tu, L.},
journal = {Invent. Math.},
number = {3},
pages = {467--475},
title = {Chern numbers of kernel and cokernel bundles},
volume = {75},
year = {1984},
doi = {10.1007/BF01388639},
issn = {0020-9910},
} -
[T]
M. Teixidor i Bigas, "Petri map for rank two bundles with canonical determinant," Compos. Math., vol. 144, iss. 3, pp. 705-720, 2008.
@article{T,
author = {{Teixidor i Bigas},
Montserrat},
journal = {Compos. Math.},
number = {3},
pages = {705--720},
title = {Petri map for rank two bundles with canonical determinant},
volume = {144},
year = {2008},
doi = {10.1112/S0010437X07003442},
issn = {0010-437X},
} -
[Vo]
C. Voisin, "Sur l’application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri," Acta Math., vol. 168, iss. 3-4, pp. 249-272, 1992.
@article{Vo,
author = {Voisin, Claire},
journal = {Acta Math.},
number = {3-4},
pages = {249--272},
title = {Sur l'application de {W}ahl des courbes satisfaisant la condition de {B}rill-{N}oether-{P}etri},
volume = {168},
year = {1992},
doi = {10.1007/BF02392980},
issn = {0001-5962},
} -
[FR] G. Farkas and R. Rimányi, Symmetric degeneracy loci and moduli of curves.
@misc{FR,
author = {Farkas, Gavril and Rim{\'{a}}nyi, R.},
note = {in preparation},
title = {Symmetric degeneracy loci and moduli of curves},
}