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The geometry of the moduli space
of odd spin curves

By GAVRIL FARKAS and ALESSANDRO VERRA

Abstract

The spin moduli space S, is the parameter space of theta characteristics
(spin structures) on stable curves of genus g. It has two connected com-
ponents, 3; and 3;, depending on the parity of the spin structure. We
establish a complete birational classification by Kodaira dimension of the
odd component S, of the spin moduli space. We show that S, is uniruled
for g < 12 and even unirational for ¢ < 8. In this range, introducing the
concept of cluster for the Mukai variety whose one-dimensional linear sec-
tions are general canonical curves of genus g, we construct new birational
models of 3;. These we then use to explicitly describe the birational struc-
ture of 3;. For instance, Sg is birational to a locally trivial P7-bundle
over the moduli space of elliptic curves with seven pairs of marked points.
For g > 12, we prove that 3; is a variety of general type. In genus 12, this
requires the construction of a counterexample to the Slope Conjecture on
effective divisors on the moduli space of stable curves of genus 12.

The set of odd theta characteristics on a general curve C of genus g is
in bijection with the set 8(C) of theta hyperplanes H € (P9™1)V everywhere

tangent to the canonically embedded curve C' Il‘ic>| P91 Even though the
geometry and the intricate combinatorics of #(C') have been studied classically,
see [Dol12], [DK93] for a modern account, it has only been recently proved in
[CS03] that one can reconstruct a general curve [C] € M, from the hyperplane
configuration 6(C).

Odd theta characteristics form a moduli space m : §; — M,. At the
level of stacks, 7 is an étale cover of degree 2971(29 — 1). The normalization
of M, in the function field of S, gives rise to a finite covering  : 3; — M,.

Furthermore, 3; has a modular meaning being isomorphic to the coarse moduli
space of the Deligne-Mumford stack of odd stable spin curves; cf. [Cor89],
[CCCO07], [AJ03]. The map 7 is branched along the boundary of M,, and one
expects KE; to enjoy better positivity properties than ng.
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The aim of this paper is to describe the birational geometry of 3; for all
g. Our goals are (1) to understand the transition from rationality to maximal
Kodaira dimension for 3; as g increases, and (2) to use the existence of Mukai
models of ﬂg in order to construct explicit unirational parametrizations of g;
for small genus. Remarkably, we end up having no gaps in the classification of
S, . First, we show that in the range where the general curve [C] € M, lies
on a K3 surface, the existence of special theta pencils on K3 surfaces provides
an ezplicit uniruled parametrization of 3;:

THEOREM 0.1. The odd spin moduli space 3; s uniruled for g < 11.

We fix a general spin curve [C,n] € S;; therefore R%(C,n) = 1. When
g <9 or g =11, the underlying curve C' is the hyperplane section of a K3
surface X C PY such that if d € Cy_; is the (unique) effective divisor with
17 = Oc¢(d), then the linear span (d) C PY is a codimension 2 linear subspace.
A rational curve P C S, is induced by the pencil PHO(X, Zy/x(C)) of hy-

perplanes containing (d). We show in Section 3 that P C 3; is a covering
rational curve, satisfying

P-Ks =29—-24<0.
g
Thus P - Kgf < 0 precisely when g < 11, which highlights the fact that the
g

nature of g; is expected to change exactly when g > 12. This is something
we shall achieve in the course of proving Theorem 0.4.

The previous argument no longer works for S;,, when the condition that
a curve [C] € Myg lie on a K3 surface is divisorial in moduli [FP05]. This case
is a specialization of the genus 11 case. A general one-nodal irreducible curve
[C] € Ag € My of arithmetic genus 11 lies on a K3 surface X C P!, By
a degeneration argument, we show that this construction can also be carried
out in such a way that if v : C’ — C denotes the normalization of C, then the
points z,y € C’ with v(z) = v(y) (that is, mapping to the node of C) lie in the
support of the zero locus of one of the odd theta characteristics of [C'] € M.
Ultimately, this produces a rational curve P C Sy, through a general point,
which shows that Sy, is uniruled as well.

In the range in which a Mukai model of M, exists, our results are more
precise:

THEOREM 0.2. S, is unirational for g < 8.

The proof relies on the existence of Mukai varieties Vy; C P"s1972 where
ng = dim(V}), which have the property that general 1-dimensional linear sec-
tions of V, are canonical curves [C] € M, with general moduli. We fix an
integer 1 < 6 < g — 1 and consider the correspondence

05 ={(C.T,2): ZC CNT CV,, [sing(T)| =34, sing() € Z},
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where Z C V, is a cluster, that is, a 0-dimensional subscheme of Vj of length
2g — 2, supported at g — 1 points and such that dim(Z) = g — 2 (see Section 3
for a precise definition), I' C Vj is an irreducible §-nodal curve section of V,
whose nodes are among the points in the support of Z, and C' C V} is an
arbitrary curve linear section of V, containing Z as a subscheme. Thus if C is
smooth, then Z C C is a divisor of even degree at each point in its support, and
Oc(Z/2) can be viewed as an odd theta characteristic. The quotient variety

Pgs =Py s //Aut(Vy) comes equipped with two projections,

a B
Sg <—P975 —>Bg,5’

where 3;5 C gg_ denotes the moduli space of irreducible §-nodal curves of
arithmetic genus g together with an odd theta characteristic on the normal-
ization. It is easy to see that @975 is birational to a projective bundle over the
irreducible variety B_ ;. Thus the unirationality of 3; follows once we prove
that (i) « is dominant, and (ii) B, 4 itself is unirational. We carry out this
program when g < 8. When ¢ = n,—1, we show in Section 3 that the map @ is
birational; hence in this case 3 realizes a birational isomorphism between 3;
and a (Zariski trivial) projective bundle over B, ,,,~1- Very interesting is the
case g = 8, when ng = 8 (see [Muk93]) and By, is isomorphic to the moduli

space M 14/ Z?7 of elliptic curves with seven pairs of points; here each copy
of Zo identifies a pair of points.

THEOREM 0.3. Sg is birational to P7 x <M1,14/Z?7).

In the process of proving Theorem 0.2, we establish some facts of inde-
pendent interest concerning the Mukai models

My == Glg— L,y +g — 2)*//Aut(V]).

These are birational models of M, having Pic(90,) = Z and appearing as GIT
quotients of Grassmannians; they can be viewed as log-minimal models of M,
emerging from the constructions carried out in [Muk93], [Muk95], [Muk10].

Theorem 0.1 is sharp and the remaining moduli spaces 39_ are of general
type:

THEOREM 0.4. The space 3; is a variety of general type for g > 11.

The border case of Sy, is particularly challenging and takes up the entire
Section 6. We remark that in the range 11 < g < 17, of the two moduli spaces
gg_ and M,, one is of general type whereas the other has negative Kodaira
dimension. More strikingly, Theorems 0.4 and 0.1 coupled with results from
[Far10] show that for 9 < g < 11, the space 39_ is uniruled while 3; is of general
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type! Finally, we note that Sg is unirational whereas 3; is of Calabi-Yau type
[FV12].

We describe the main steps in the proof of Theorem 0.4. First, we use
that forallg >4 and ¢ > 0, ife : ‘SA‘g — gg_ denotes a resolution of singularities,
then there is an induced isomorphism at the level of global sections

e HO(S, g, K%f) = H(8,, K2);

see [Lud10]. Thus to conclude that 3; is of general type, it suffices to exhibit an
effective divisor D on 3; such that for appropriately chosen rational constants

a, B > 0, a relation of the type Kgf =a A+ 8D+ FEc€ Pic(Sg_) holds, where
g

A € Pic(S, ) is the pullback to S, of the Hodge class and E is an effective
Q-class that is typically a combination of boundary divisors. It is essential to
pick D so that (i) its class can be explicitly computed, that is, points in D
have good geometric characterization, and (ii) [D] € Pic(S, ) is in some way
an extremal point of the effective cone of divisors so that the coefficients «, 8

stand a chance of being positive. In the case of 3;, the role of D is played

by the divisor O, of vanishing theta nulls; see [Far10]. In the case of 3; we
compute the class of degenerate theta characteristics, that is, curves carrying
a nonreduced odd theta characteristic.

THEOREM 0.5. We fix g > 3. The locus consisting of odd spin curves
Zy = {[C’,n] €S, :n=0c2r1+r2+ +152)

wherexiECforizl,...,g—Z}

is a divisor on S, . The class of its compactification inside gg_ equals

_ g+2 l9/2] l9/2] o
29 =(9+8)A =" —ao— 26 - S 2(g—i) i — Y 2i B; € Pic(S,),
i=1 i=1
where A, o, Bo, - - -, g 215 Bg 21 are the standard generators of Pic(gg_).

For low genus, Z, specializes to well-known geometric loci. For instance,
Z3 is the divisor of hyperflexes on plane quartics. In particular, Theorem 0.5
yields the formula

T(Z23) = 308\ — 328 — 7661 € Pic(M3)

for the class of quartic curves having a hyperflex. This matches [Cuk89, eq.
(5.5)]. Moreover, one has the following relation in Pic(Ms3):

{{[C’] € M3 : dz € C with 4o = KC}}i = 8~ﬂé,2 + . (Z3),
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where ﬂéyg = 9\ — §y — 367 is the hyperelliptic class and the multiplicity 8
accounts for the number of Weierstrass points.

We briefly explain how Theorem 0.5 implies that 3; is of general type
for g > 11. We choose an effective divisor D € Eff(My) of small slope; for
composite g+ 1, one can take D = M;d the closure of the Brill-Noether divisor
of curves with a g, where p(g,r,d) = —1. There exists a constant ¢g 4, > 0

such that [EH87]

l9/2)

- +1 L p—

My = cgar((g+3)A -2 —do— > ilg - )6:) € Pic(M,).
=1

We form the linear combination of divisors on Sg_,

? g _9 1 ( g,d)
g cgdr(9—2)(g+1)
l9/2]
11g + 37
= ISy e 360 — > (a0 4 by ),
g+1 i=1

where a;, b; > 2 for i # 1 and aq, by > 3 are explicitly known rational constants.
The canonical class of S, is given by the Riemann-Hurwitz formula
lg/2]
Kg- =" (Kx,) + o = 13X — 200 = 36y — 2 Zl (i + Bi) — (a1 + Br),
i=
and by comparison it follows that for g > 12, one can find a constant p; € Q>
such that

Kg; — pg - XA € Qx0([Zg), 01, Bu,- .. a9 B/
which shows that Kg— is big and thus proves Theorem 0.4.
g9

For g = 12, there is no Brill-Noether divisor, and the reasoning above
shows that in order to conclude that S;, is of general type, one needs an
effective divisor D19 of slope 5(512) <6+ %, that is, a counterexample to the
Slope Conjecture on effective divisors on Mjo; see [FP05]. We define the locus

D1y 1= {[C] € Mi>: 3L € Wy (C)
with Sym?H°(C, L) rolly) HY(C,L%?%) not injective};

that is, points in D12 correspond to curves that admit an embedding C'c P4

with deg(C') = 14 such that HO(P4,IC/P4(2)) # 0. The computation of the
class of the closure D13 C Mjy is carried out in Section 6, and it turns out
that s(D12) = % <6+ % In particular, 19 violates the Slope Conjecture

on M, and as such, it contains the locus

K12 :={[C] € M2 : C lies on a K3 surface}.
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We discuss the structure of the paper. Section 1 is of preliminary nature
and establishes basic facts about the moduli space gg_ that will be used both
in Section 3 in the course of proving Theorem 0.2 as well as in Section 5,
when calculating the class [Z,]. In Section 2, we prove Theorem 0.1, whereas
Section 3 is devoted to the construction of Mukai models for gg_ and to estab-
lishing Theorem 0.2. The proof of Theorems 0.4 for g > 12 is completed in
Section 5. Finally, in Section 6 we construct two counterexamples to the Slope
Conjecture on My, which implies that Sy, is of general type.

1. Families of stable spin curves

We briefly review some relevant facts about the moduli space 3; that will
be used throughout the paper; see also [Cor89], [Far10], [Lud10] for details. As
a matter of notation, we follow the convention set in [FL10]; if M is a Deligne-
Mumford stack, then we denote by M its associated coarse moduli space.
Slightly abusing notation, if C' is a smooth curve of genus g and 7 € Pic?~1(C)
an isolated odd theta characteristic, that is, satisfying h°(C,n) = 1, we define
the support supp(n) := supp(D), where D € Cy_; is the unique effective divisor
with n = O¢(D). An isolated theta characteristic 7 is said to be nonreduced
if supp(n) is a nonreduced divisor on C'.

A connected, nodal curve X is called quasi-stable if for any component
E C X that is isomorphic to P!, one has that (i) kg := |[EN(X — E)| > 2, and
(ii) any two rational components E, E' C X with kg = kg > 2 are disjoint.
Such irreducible components are called exceptional. We recall the following
definition from [Cor89]:

Definition 1.1. A stable spin curve of genus g consists of a triple (X, n, 5),
where X is a genus g quasi-stable curve, n € Pic/"}(X) is a line bundle of
total degree g — 1 with ng = Opg(1) for all exceptional components £ C X,
and 8 : n®% — wy is a homomorphism of sheaves that is generically nonzero
along each nonexceptional component of X.

Sometimes the morphism 3 € PH?(X,wx ® n®(=2)) appearing in Defini-
tion 1.1 is uniquely determined by X and 7 and is accordingly dropped from
the notation. In such a case, to ease notation, we view spin curves as pairs
[X,n] € S,. It follows from the definition that if (X, n, 3) is a spin curve with
exceptional components F1, ..., E, and {p;, ¢;} = E;N(X — E;)fori=1,...,r,
then Bg, = 0. Moreover, if X := X — JI_, E; (viewed as a subcurve of X),

then we have an isomorphism of sheaves 77;%2 5w e

We denote by S, the nonsingular Deligne-Mumford stack of spin curves of
genus g. Because the parity h°(X,7n) mod 2 of a spin curve is invariant under
deformations [Mum?71], the stack S, splits into two connected components S:;
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and S, of relative degree 2971(29+1) and 2971(29—1) respectively. It is proved
in [Cor89] that the coarse moduli space of Sy is isomorphic to the normalization
of M, in the function field of S,. There is a proper morphism 7 : S, — M,
given by 7([X,n,]) := [st(X)], where st(X) denotes the stable model of X
obtained by contracting all exceptional components.

1.1. Spin curves of compact type. We recall the description of the pull-
back boundary divisors 7*(A;) for 1 < i < [g/2]. We choose a stable spin curve
[X,n, B8] € 7~ 1([C U, D]), where [C,y] € M;; and [D,y] € My_; 1. Then nec-
essarily X := C'Uy, E'Uy, D, where E is an exceptional component such that
CNE ={y1} and DNE = {y2}. Moreover, n = (77077ID777E = (’)E(l)) €
Pic9~1(X). Since B = 0, it follows that n5? = K¢ and 3% = Kp; that is, nc
and np are “honest” theta characteristics on C' and D respectively. The condi-
tion h%(X,n) = 1 mod 2 implies that nc and np must have opposite parities.
We denote by A; C 3; the closure in 3; of the locus corresponding to pairs

([Ca ne, y]a [D> D, y]) € Szjl X Sg+—i,1
and by B; C 3; the closure in 3; of the locus corresponding to pairs

([Ca nc, y]7 [Da "D, y]) € Sle X Sgifi,l'
One has the relation 7*(A;) = A;+ B;, and clearly
deg(A;/A)=29"2(2 = 1)(297 + 1), deg(B;/A;) = 2972(2" +1)(297" — 1).

One denotes ; := [A;], B; := [Bj] € Pic(S,).

1.2. Spin curves with an irreducible stable model. In order to describe
7 (Ag) we pick a point [X,n, 5] such that st(X) = Cyy := C/y ~ ¢, where
[C,y,q] € Mg_12is a general point of Ag. Unlike the case of curves of compact
type, here there are two possibilities depending on whether X possesses an
exceptional component or not. If X = Cy, and n¢ :=v*(n) where v : C — X
denotes the normalization map, then 77%2 = Kc(y + q). For each choice of
nc € Pic9™1(C) as above, there is precisely one choice of gluing the fibres
nc(y) and ne(q) such that h%(X,n) = 1 mod 2. We denote by Ag the closure
in 3; of the locus of those points [Cyq,nc € \/Kc(y+ q)] with nc(y) and
nc(q) glued as above. One has that deg(Ag/Ag) = 22972

If X = CUyy, gy E where FE is an exceptional component, then since g = 0,

it follows that Bc € H°(C, wx|c ® n?(_m) must vanish at both y and ¢ and
then for degree reasons nc := 1 ® O¢ is a theta characteristic on C. The
condition H(X,w) = H%(C,wc) = 1 mod 2 implies that [C,nc] € S,q- In
an étale neighborhood of a point [X, 7, 8], the covering 7 is given by

(7'1,7'2, . 77—3g73) = (712,72, e 77'3g—3),
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where one identifies C39~2 with the versal deformation space of (X,n, 3) and
the hyperplane (17 = 0) C C3973 denotes the locus of spin curves where the
exceptional component E persists. This discussion shows that 7 is simply
branched over Ag, and we denote the ramification divisor by By C 39_, that is,
the closure of the locus of spin curves [CUg, 4 B, (Cyne) € Sy, ne = Op(1)].

If ag = [Ag] € Pic(S, ) and By = [By] € Pic(S, ), we then have the relation
(1) 7 (d0) = ao + 20

We define several test curves in the boundary of Sg_ that will be later used
to compute divisor classes on the moduli space.

1.3. The family F;. We fix 1 < i < [g/2] and construct a covering family
for the boundary divisor A;. We fix general curves [C] € M; and [D,q] €
My i1 as well as an odd theta characteristic 7, on C and an even theta
characteristic 77}5 on D. If E = P! is a fixed exceptional component, we define
the family of spin curves

F; = {[C Uy UE Uy D, 0] : ne = ng,ne = Op(1),np = nh,

ENnC={y},END = {Q}}yec‘

One has that F; - 8; = 0 and then F; - a; = —2¢ + 2; furthermore, F; has

intersection number zero with the remaining generators of Pic(S,, ).

1.4. The family G;. As above, we fix an integer 1 < i < [g/2] and curves
[C] € M; and [D,q] € My_;1. This time we choose an even theta character-
istic 77;5 on C' and an odd theta characteristic n, on D. The following family
covers the divisor B;:

Gi = {[C Uy UE Uy D,n] - no = g, mi = Op(1),

=15, ENC={yh END={a}} .

ClearlyGi-aizo, GZ6222—218411(1(;7,A:GZ(XJZGZﬂJZOfOI‘j#l

1.5. Two elliptic pencils. The boundary divisor A; C M, is covered by
a standard elliptic pencil R obtained by attaching to a fixed general pointed
curve [C,y] € Mgy_11 a pencil of plane cubic curves {E) = f~1(A\)},cp1 where
f : Blg(P?) — PL. The points of attachment on the elliptic pencil are given
by a section o : P! — Blg(P?) given by one of the base points of the pencil
of cubics. We lift this pencil in two possible ways to the space 3;, depending
on the parity of the theta characteristic on the varying elliptic tail. We fix an
even theta characteristic n/; € Pic?"%(C), and E = P! will again denote an
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exceptional component. We define the family
Fy = {[C Ug EUsx) 1N, 10 = nds, e = Op(1),
NF-1(0) = Offl()\)] tAE Pl} C gg_

Since Fy N By = 0, we find that Fy - g = mi(Fp) - 61 = —1. Similarly, Fy -\ =
7« (Fp) - A = 1 and obviously Fy-a; = Fy - 5; =0 for 2 < i < [g/2]. For each
of the 12 points Ass € P! corresponding to singular fibres of R, the associated
Moy € Piicgfl(C UE U f~1(\s)) are actual line bundles on C U EU f~1(As);
that is, we do not have to blow up the extra node. Thus we obtain that
F() . ﬁ() = 0 and then FO Qg = ﬂ*(F()) . 50 = 12.

A second lift of the elliptic pencil to 3; is obtained by choosing an odd
theta characteristic 7 € Pic? “2(C ), whereas on E) one takes each of the three
possible even theta characteristics; that is,

Go = {[C' Uy E Upr) FH V), 0 =115,
e = Op(1), -1y €7 [V A e P,

where 7 : gil — M is the projection of degree 3. Since m.(Go) = 3R C Aq,
we obtain that Go - A=3. Obviously G- a1 =0, and hence Gg - 1 =m(Go) - 61
= —3. The map v : gil — M 1 is simply ramified over the point correspond-
ing to j-invariant oo. Hence, Gg - ag = 12 and Gy - By = 12.

1.6. A covering family in By. We fix a general pointed spin curve [C, ¢, 5]
€ S,_1,, and as usual E = P! denotes an exceptional component. We con-
struct a family of spin curves Hy C By with general member

[C Uy B e = e = Op(1)], ., C S,

and with special fibre corresponding to y = ¢ being the odd spin curve with
support
C Uq E’ Uq/ Es U{y27q2} E,

where E’ and E, are both smooth rational curves and ys,q0 € E, Fo N E =
{y2,¢2}, while E; N E" = {¢'}. The stable model of this curve is C' U, (yfj(p),
having an elliptic tail of j-invariant co. The underlying line bundle n €
Picd~}(C' U E' U Ey U E) satisfies nc = 15, = Op(1),n = Op(1) and,

for degree reasons, ng, = Op,(—1). We have the following relations for the

numerical parameters of Hy:
Hyo-A=0, Hy-Bo=1-g, Hy-a9g=0, Ho-31 =1, Hp-a1 =0.

(The only nontrivial calculation here uses that Hy - Sy = m.(Hp) - 60/2 = 1 — g;
cf. [HMS82].)
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2. Theta pencils on K3 surfaces

In this section we prove Theorem 0.1. As usual, we denote by F, the
moduli space of polarized K3 surfaces [X, H], where X is a K3 surface and
H € Pic(X) is a (primitive) polarization of degree H? = 2g — 2; see [Muk96.
For an integer 0 < § < g, we introduce the universal Severi variety consisting
of pairs

Vys = {([X, H],C) : [X, H] € Fy and
C € |Ox(H)| is an integral 6 — nodal curve}.

If 0 : V, 5 — Fg is the obvious projection, we set V, 5(|H|) := o~ 1([X, H]). It
is known that every irreducible component of V, s has dimension 19 + g — ¢
and maps dominantly onto F,. It is conjectured that V), s is irreducible. This
is established in [CD12] in the range g <9 and g = 11.

For a point [X, H] € F,4, we consider a pencil of curves P C |H|, and we
denote by Z the base locus of P. We assume that a general member C' € P is
a nodal integral curve. It follows that C' — Z is smooth and that S := sing(C)
is a, possibly empty, subset of Z. Let ¢ : X' := Blg(X) — X be the blow-up
of X along the locus S of nodes, and denote by E the exceptional divisor of €.
Let

Pl C ‘E*H X OX/(—QE)’
be the strict transform of P by e, and let Z’ be its base locus. Since a general
member C' € P is nodal precisely along S, a general curve C’ € P’ is smooth.

We view b/ := Z'+ E-C" as a divisor on the smooth curve C’. By the adjunction
formula, b’ € |wer|.

Definition 2.1. We say that P is a theta pencil if h' has even multiplicity
at each of its points; that is, O¢ ( %h’ ) is an odd theta characteristic for every
smooth curve C’ € P'.

The definition implies that the intersection multiplicity of two curves in
P is even at each point p € supp(Z). For every pair [X, H| € F,, we have that

PROPOSITION 2.2. Every smooth curve C € |H| belongs to a theta pencil.
Proof. Let n be an odd theta characteristic with h°(C,n) = 1, and write
n = O¢(d), with d € Cy_y. Then PH® (X, Id/X(H)) is a theta pencil. O

We can reverse the construction of a theta pencil, starting instead with
the normalization of a nodal section of a K3 surface. Suppose

t:= [C”,ggl,yl, cey T8, YS, 17] € Mg_5725 XM, s S;_5
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is a 26-pointed curve C’ together with an isolated odd theta characteristic n
such that

(i) hY (C',n(— SO (s + yz))) > 1; we write n = O¢r (2?21(%' +yi) + d),
where d € Cg—35—1 is the residual divisor.

(ii) There exists a polarized K3 surface [X,H] € F, and a map f : ¢’ — X,
such that f(xz;) = f(y;)) = p; for all ¢ = 1,...,6 , f.(C') € |H| and,
moreover, f : ' — C is the normalization map of the d-nodal curve
C:= f(C).

If e : X’ — X is the blow-up of X at the points p1,...,ps and E C X’ denotes

the exceptional divisor, we may view C' C X’ as a smooth curve in the linear

system |[e*H ® Ox/(—2F)|. Note that

5
Oci(C') = Kev (— > (i + yi)) =n® Oc(d).

i=1
We pass to cohomology in the following short exact sequences:
0— Oxr — Zyx/(C") — Ocr(C")(=d) — 0
and

0— Oxr — (C") — Ocr — 0,

Lot 5 (i) /X!
respectively, in order to obtain that

=Pp!

Zayx: (€] = |Zaayx ()| = ’I2d+zf:1(mi+yi)/x'(cl)

is a theta pencil of d-nodal curves on X. The link between this description of
a theta pencil and the one provided by Definition 2.1 is given by the relation
W =2FE-C'+ 2d.
If IC;_M CMg_s525 ngféng_a is the locus of elements [C, (z, ¥i)i=1,....5, 1]
satisfying conditions (i) and (ii), the previous discussion proves the following:
PRrROPOSITION 2.3. FEwery irreducible component of ngi(w s uniruled.

This implies the following consequence of Proposition 3.4 to be established
in the next section:

THEOREM 2.4. We set ¢ <9 and 0 < ¢ < (g + 1)/3. Then the variety
ICg__ 5.5 s monempty, uniruled, and dominates the spin moduli space Sg__ 5

Definition 2.5. We say that a theta pencil P is §-nodal if its general mem-
ber is a d-nodal curve; that is, |S| = §. We say that P is regular if the support
supp(Z) of its base locus consists of g — 1 distinct points.

A J-nodal theta pencil P on a K3 surface X induces a map

m': P =Pl 3;_5,
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obtained by sending a general C’€ P’ to the moduli point [C”, Oc/(%h’)] €S, s
We note in passing that a theta pencil also induces a map m : P' — 3; defined
as follows. Consider the pencil '+ P’ having fixed component E. The general
member is a quasi-stable curve D € (FE + P’) of arithmetic genus g, with

exceptional components {F;};—1 s corresponding to the exceptional divisors
of the blow-up € : X’ — X. Then

m(C) := |:CU (UleEi), neg, = OEi(l), Ner = OC’(%h/ﬂ e g;

These pencils will be used extensively in the proof of Theorem 0.2.

Assume that [X, H| € F, is a general point; in particular, Pic(X)=Z- H.
Then every smooth curve C € |H| is Brill-Noether general (see [Laz86]), which
implies that h°(C,n) = 1 for every odd theta characteristic  on C. Theta pen-
cils with smooth general member define a locally closed subset in the Grassman-
nian G(2, H(S,Og(H)) of lines in |H|. Let ©~ (X, H) be its Zariski closure
in G(2, H°(S, Og(H)).

PROPOSITION 2.6. O~ (X, H) is pure of dimension g — 1.

Proof. Let f : P7(X,H) — |H| be the projection map from the pro-
jectivized universal bundle over ©7 (X, H), and let V,o(|H|) C |H| be the
open locus of smooth curves. Under our assumptions f has finite fibres over
Vgo(|H|). Thus P~ (X, H) has pure dimension g, and ©7 (X, H) has pure
dimension g — 1. O

For a general (thus necessarily regular) theta pencil P € ©7 (X, H), we
study in more detail the map m : P' = S,. Let A(X,H) C |H| be the
discriminant locus. Since [X, H| € F; is general, A(X, H) is an integral hy-
persurface parametrizing the singular elements of |H|. It is well known that
deg A(X, H) = 6g + 18.

PROPOSITION 2.7. Let P € © (X, H) be a general theta pencil with base
locus Z. Then every singular curve C € P is nodal. Furthermore,

P-AX,H)=2(a1+ -+ ag—1) + b1 + -+ bagt20,

where a; is the parameter point of a curve A; € P having a point of Z as its
only singularity and b; is the parameter point of a curve B; € P such that
sing(B;) C X — Z. Accordingly,

P-ag=494+20 and P-By =g — 1.

Proof. We set supp(Z) = {pi,...,pg—1}. Since P is regular, for i =
1,...,9 — 1, there exists a unique curve A; € P singular at p;. Moreover, for
degree reasons, p; is the unique double point of A;. Each pencil T' C |H| having
p; in its base locus is a tangent line to A(X, H) at A;. Hence the intersection
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multiplicity (P "A(X,H )) n is at least 2. It follows that the assertion to prove
is open on any family of pazirs (P,[X, H]) such that P € © (X, H). Since F,
is irreducible, it suffices to produce one polarized K3 surface (X, H) satisfying
this condition.

For this purpose, we use hyperelliptic polarized K3 surfaces (X, H). Con-
sider a rational normal scroll F := F, C P9, where a € {0,1} and g = 2n+1—a.
A general section R € |Op(1)| is a rational normal curve of degree g — 1. From
the exact sequence

0— OF(—QK]F — R) — OF(—QKF) — OR(—2KF) — 0,

one finds that there exist a smooth curve B € | — 2KF| and distinct points
01,...,09-1 € B such that the pencil @ C |Or(R)| of hyperplane sections
through o1,...,04_1 cuts out a pencil with simple ramification on B.

Let p : X — F be the double covering of F branched along B. Then
X is a K3 surface and |H| := |Ox(p*R)| is a hyperelliptic linear system on
X of genus g. Then p*(Q) is a regular theta pencil on X with the required
properties. O

Since theta pencils cover gg_ when ¢ < 11 and g # 10, the following
consequence of Proposition 2.7 is very suggestive concerning the variation of
/1(3;) as ¢ increases; in particular, in highlighting the significance of the case
g =12.

COROLLARY 2.8. With the same notation as above, we have that P - Kgf

=2g—24. In particular, general theta pencils of genus g <12 are Kgf —negativ;.
g
Proof. Use that (P - A)g- = (m(P) - )‘)ﬂg =g+1, P-opg=4g+20 and
P-By=g—1. ! O
PROPOSITION 2.9. The locally closed set of nodal theta pencils in ©~ (X, H)
1s nonempty. If P is a general nodal theta pencil, then a general curve C € P
has one node as its only singularity.

Proof. We keep the notation from the previous proof and construct a
smooth curve B € | — 2Ky|. We choose general points 0,01,...,04—3 € B such
that the pencil @ C |Op(R)| consisting of hyperplane sections passing through
o1 + -+ + 04—3 + 20 cuts out a pencil with simple ramification on B. Then
p*(Q) is a nodal theta pencil with the required properties. O

THEOREM 2.10. S, is uniruled for g < 11.

Proof. By [M1-4], a general curve [C] € M, is embedded in a K3 surface
X precisely when g < 9 or g = 11. By Proposition 2.7, C belongs to a theta
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pencil P C |Ox(C)| (which, moreover, is K<--negative). Thus the statement

Sg

follows for g < 9 and g = 11. To settle the case of Sy, we show that Kioa
is nonempty and irreducible. Indeed, then by Proposition 2.3 it follows that
Ko, is uniruled, and since the projection map Ky;; — Sy is finite, Ky,
dominates Sp,. This implies that Sy is uniruled.

The variety Ky, is an open subvariety of the irreducible locus

U:= {([C,l‘ay]ﬂﬂ € Mi1o2 XMy St hO(C,n® Oc(—x —y)) > 1}’

and hence it is irreducible as well. To establish its nonemptiness, it suffices
to produce an example of an element ([C, z,yl, 77]) € U such that the curve
Cyy can be embedded in a K3 surface. We specialize to the case when C' is
hyperelliptic and =,y € C are distinct Weierstrass points, in which case one
can choose n = O¢(x + y + w1 + - - - + wy), where w; are distinct Weierstrass
points in C' — {z,y}. Again we let p : X — F C P! be a hyperelliptic K3
surface branched along B € | — 2KF|, with polarization H := p*Op(1), so that
[X,H] € Fi1. We set C := p*(R), where R € |Op(1)| is a rational normal
curve of degree 10. We need to ensure that C' is 1-nodal, with its node p € C
such that if f : ¢’ — C denotes the normalization map, then both points in
f~1(p) are Weierstrass points. This is satisfied once we choose R in such a way
that B - R > 2p(p). O

3. Unirationality of gg_ for g <8

To prove the claimed unirationality results, we use that a general curve
[C] € M, has a sextic plane model when g < 6, or is a linear section of a
Mukai variety when 7 < g < 9. We start with the easy case of small genus
before moving on to the more substantial study of Mukai models.

THEOREM 3.1. S, is unirational for g < 6.

Proof. We fix 3 < g < 6 and a general odd spin curve [C,n] € S;. Write
n = Oc¢(d), where d € Cy_1. Then choose a general linear system A € G2(C).
The induced morphism ¢4 : C — I' C P2 realizes C as a sextic with § = 10—g
nodes. By choosing [C,n] and A generically, we may assume that supp(d)
consists of g — 1 points and is disjoint from gi);‘l(sing(f‘)). Accordingly, we
identify d with its image ¢ 4(d) on I'. By adjunction,

00(2d) = wo = Oc(3) (05 (sing(I))),

therefore the unique plane cubic E € |Op2(3)| passing through the 10— g nodes
of I as well as through the g — 1 points of supp(d) is actually tangent to T’
along supp(d).
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We denote by U C (P?)? the open set parametrizing general 9-tuples of
points (Z,y) := (21,...,%s5,Y1,--.,Yg—1), Where g =10 — 6. Over U lies a pro-
jective bundle P whose fibre at (Z, ) is the linear system of plane sextics I" that
are singular along z and totally tangent to Ez ; along y. Here Ez 5 € |Op2(3)]
denotes the unique plane cubic through the points x1,...,25,y1,...,9Yg-1-
Then P is a rational variety, and by the previous remark, it dominates gg_.

Thus 39_ is unirational. O

We assume now that 7 < g < 10 and denote by V, C Py the rational
homogeneous space defined as follows (see [Muk93], [Muk95], [Muk10]):

— Vio: the 5-dimensional variety Gy /P C P!3corresponding to the Lie group Ga;
— Vj: the Pliicker embedding of the symplectic Grassmannian SG(3,6) c P13,
~ Vg: the Pliicker embedding of the Grassmannian G(2,6) C P;

~ Vi: the Pliicker embedding of the orthogonal Grassmannian OG (5, 10) C P15,
Note that N, = g + dim(V}) — 2. Inside the Hilbert scheme Hilb(V}) of curvi-
linear sections of Vj, we consider the open set U, classifying curves C' C Vj,
such that

e (' is a nodal integral section of Vj; by a linear space of dimension g — 1;

e the residue map p: H(C,we) — H°(C,we ® Osing(c)) 1s surjective.

A general point [C — P97!] € U, is a smooth, canonical curve of genus g.
Mukai’s results [Muk93], [Muk95], [Muk10] imply that C' has general moduli
if g < 9. For each 0 < § < g — 1, we define the locally closed sets of J-nodal
curvilinear sections of V,

Uy s :={[C — P9 el : |sing(C)| = 5}

PROPOSITION 3.2. For g <9, the variety Uy s is smooth of pure codimen-
sion 6 in Uy.

Proof. A general 2-dimensional linear section of Vj is a polarized K3 sur-
face [X, H] € F, with general moduli. It is known [Tan82] that J-nodal hy-
perplane sections of S form a pure (g — §)-dimensional family V, s(|H|) C |H].
Thus, Uy s # 0 and codim (U 5,U,) < 6. We fix a curve [C] € Uy 5 and then con-
sider the normal bundle N¢ of C' in V; and the map r : H%(C, N¢) — Osing(0)
induced by the exact sequence

(2) 0= Te — Ty, ® Oc = No = TL — 0,

where T, é = Oging(c) 18 the Lichtenbaum-Schlessinger sheaf of C' classifying the
deformations of sing(C). Using the identification Ticy(Uy) = H°(C, N¢), it is
known that Ker(r) is isomorphic to Tjc|(Uy,s); see, e.g., [HH85]. Furthermore,
Ng = wg(Ng—ngl) and r = p®We—9+1) where p : H(C,we) — HO(C, Osing(C))
is the map given by the residues at the nodes. Since p is surjective, Ker(r) has
codimension ¢ inside Tjc)(Uy) and the statement follows. O
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The automorphism group Aut(V,) acts in the natural way on Hilb(V}).
The locus of singular curvilinear sections [C] € U, is an Aut(V,)-invariant
divisor that misses a general point of Uy; therefore, U® := U, NHilb(Vy)™ # 0.
Since p(V;) = 1, the notion of stability is independent of the polarization. The
(quasi-projective) GIT-quotient

M, = U/ Aut(Vy)

is said to be the Mukai model of My. We have the following commutative
diagram:
Uy —— Uy

BN v

where ug : Ug® — DMy is the quotient map and mg : Uy — M, is the moduli
map. The general fibre of my is an Aut(V})-orbit. Summarizing results from
[Muk93], [Muk95], [Muk10], we state the following:

THEOREM 3.3. For 7 < g <9, the map ¢4 : My --» M, is a birational
isomorphism. The inverse map gb;l contracts the (unique) Brill-Noether di-
visor ﬂ;d C My of curves with a g, when p(g,r,d) = —1, as well as the
boundary divisors A; with 1 <1i < [g/2].

Next, let Ag C Ag C M, be the locus of integral stable curves of arith-
metic genus g with § nodes. Then Ag is irreducible of codimension § in M,.

LEMMA 3.4. Set 7 < g < 9, and let D be any irreducible component
of Uys. Then the restriction morphism mgp : D — Ag is dominant. In
particular, a general §-nodal curve [C] € Ag lies on a smooth K3 surface.

Proof. Since Uy s is smooth, D is a connected component of U, s5; that is,
for [C] € D, the tangent spaces to D and to Uy s coincide. We consider again
the sequence (2):

0—Te — Ty, ® Oc = Ni — 0,

where N¢ := Im {Ty,®Oc — N¢} is the equisingular sheaf of C. We have that
HY(C, N/,) = Ker(r). As remarked in the proof of Proposition 3.2, H(C, N{,)
is the tangent space Tjc)(Uys) and its codimension in H 0(C, N¢) equals 6.
Consider the coboundary map 9 : H°(C, N},) — H'(C,T¢). Since H(C,T¢)
classifies topologically trivial deformations of the nodal curve C, the image
Im(9) is isomorphic to the image of the tangent map dmy,, ; at [C]. On the
other hand, H°(C, Ty, ® O¢) is the tangent space to the orbit of C' under the
action of Aut(V}). This is reduced and the stabilizer of C, being a subgroup
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of Aut(C), is finite. Hence we obtain
dim Im(9) = h°(C, N¢) — § — dim Aut(V,) = 3g — 3 — 4.

Since Ag has codimension § in M, it follows that mgp is dominant. O

]

PROPOSITION 3.5. Fizx 0 <6 < g—1 and D an irreducible component of
Uys. Then D% # .

Proof. Tt suffices to construct an Aut(Vj)-invariant divisor that does not
contain D. We carry out the construction when g = 8, the remaining cases
being largely similar.

We fix a complex vector space V =2 C®, and then Vg := G(2,V) C P(A?V)
and Uy C G(8,A2V). For a projective 7-plane A € G(8,A%V), we denote the
set of containing hyperplanes F) := {H € P(A?V)Y : H D A} and define the
Aut(Vg)-invariant divisor

Z:={A clUs: FynNG(2,VY) C P(A*V)Y is not a transverse intersection}.
We claim that D ¢ Z. Indeed, let us fix a general point [C' < A] € D, where
A = (C), corresponding to a general curve [C] € Ag. In particular, we may
assume that C lies outside the closure in M, of curves violating the Petri
theorem. Thus C possesses no generalized g2’s, that is, W?(C) = (), whereas
Wé(C) C Pic(C) consists of locally free pencils satisfying the Petri condition.
We recall from [Muk95] the construction of ¢, [C], which generalizes to ir-
reducible Petri general nodal curves: There exists a unique rank two vector
bundle £ on C with det(E) = wc and h%(C,E) = 6. This appears as an

extension
05>A—>E—-we®A =0

for every A € Wé(C’) Then one sets ¢, ([C]) := [C = G(2,H(C,E)V)].
Moreover,

Fx = P(Ker{A\’H°(C, E) — H°(C,wc)}).
In particular, the intersection Fy NG (2, H°(C, E)) corresponds to the pencils

A e Wé(C) Since C' is Petri general, W;(C) is a smooth scheme, and thus
[C— Al ¢ Z. O

We consider the quotient M, 5 := 1% //Aut(Vy) and the induced map
gf)g,g : f)ﬁg’(; — Ag.

THEOREM 3.6. The variety My s is irreducible, and ¢4s is a birational
isomorphism.

Proof. By Lemma 3.4, any irreducible component Y of 9, s dominates
Ag. On the other hand, ¢4 : M, — M, is a birational morphism and ¢g 5 =

‘bglimg,a‘ Since M, is normal, each fibre of ¢, is connected. Thus M5 is
irreducible and deg(¢q,5) = 1. O
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We lift our construction to the space of odd spin curves. Keeping 7<¢g<9,
we consider the Hilbert scheme Hﬂbgg_g(vg) of 0-dimensional subschemes of
Vy having length 2g — 2.

Definition 3.7. Let 3,1 C Hilbgy_2(V;) be the parameter space of those
O-dimensional schemes Z C V; such that

(1) Z is a hyperplane section of a smooth curve section [C] € Uy,
(2) Z has multiplicity 2 at each point of its support,
(3) supp(Z) consists of g — 1 linearly independent points.

The space 34—1 classifies clusters of length 2g —2 on Vj,. The cycle associ-
ated under the Hilbert-Chow morphism to a general point of 3,_; corresponds
to a 0-cycle of the form 2p;+---+2p,_1 € Syng_z(Vg) satisfying the condition

dim (p1,...,pg—1) NTy, (Vy) > 1, for i=1,...,9—1.
Clearly dim(34—1) =dim G(g—1,Ng)—(Ng—g+1) = (g—1)(Ng—g+1). We

consider the incidence correspondence between clusters and curvilinear sections

of Vg,

Uy = {(C,Z) eUy x 34-1:Z CC}.
The first projection map m : Uy, — U is finite of degree 29-1(29 —1); its fibre
at a general point [C] € U, is in bijective correspondence with the set of odd

theta characteristics of C. In particular, both U, and 3,-1 are irreducible
varieties. The spin moduli map

my Uy - Sg_

is defined by m/ (C,Z2) = [C,0c(Z/2)] for each point (C,Z) € U, corre-
sponding to a smooth curve C. Later we shall extend the rational map m, to

a regular map over U, . It is clear that m/  induces a map ¢, : Q, --» §
from the quotient

Qg =1 (U) /[ Aut(Vy).

We may think of ), as being the Mukai model of 3;. Ifr™:Q, — My is
the map induced by 7 at the level of Mukai models, we have a commutative
diagram

m, —2 M,
PROPOSITION 3.8. The spin Mukai model Qy is irreducible and ¢y

Qy — 39_ is a birational isomorphism.
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g
morphism over the locus of points with nodal underlying curve section of

Vy as follows. Let (C,Z) € U, be an arbitrary point, and set supp(Z) :=
{p1,...,pg—1}. Assume that sing(C)Nsupp(Z) = {p1,...,ps}, where § < g—1.
Consider the partial normalization v : N — C' at the points p1,...,ps. In par-

One extends the rational map m, (therefore ¢, as well) to a regular

ticular, there exists an effective Cartier divisor e on C of degree g — § — 1 such
that 2e = Z N (C — sing(C)). Set ¢ := On(v*e). Then m, (C, Z) is the spin
curve [X, 7] € S, defined as follows.

Definition 3.9. We describe the following stable spin curve:
(1) X:=NUFEyU---UEs, where E; =Pl fori=1,...,0.
(2) E;N N =v~1(p;), for every node p; € sing(C) Nsupp(Z).
(3) n®On = e and n® Of, = Op1(1).

We note that N is smooth of genus g—¢ precisely when sing(C') C supp(Z).

In this case £ € Picd ! 79(N) is a theta characteristic and h°(N,)=1. Observe
also that there is an isomorphism

H(X,wx @) = H'(N,wy @ %) = C,

so the spin curve in Definition 3.9 is uniquely determined by specifying X
and 7.
For 1 < < g — 1, we refine our incidence correspondence and consider

U, 5= {(C’, Z) €U, :sing(C) Csupp(Z), |[sing(C)| = 5}.

We denote by B, s the closure of mg (U, 5) inside S, ; this is the closure in S,
of the locus of §-nodal spin curves having § exceptional components. Clearly
B, s is an irreducible component of W_I(Ag) and it is birationally isomorphic
to Sy—s.26/75. We set

Qs = U s N (UP) // Aut(V),

and we let uy : Z/{g_ P Qg_ s denote the quotient map. Keeping all previous
notation, we have a further commutative diagram

— Ug — d)g,é —
ugﬁ Qg,é Bg,é

S
Ug bg,s k)
ug,5 ” fIng,cs ? Ag,
where gb; 5 is the morphism induced on Q; s by my.

THEOREM 3.10. We fir 7 < g <9 and1 < < g—1. Then the map
qﬁ;5 : Q;5 — Bg_a is a birational isomorphism.
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Proof. 1t suffices to note that ¢, s is birational, and the vertical arrows of
the diagram are finite morphisms of the same degree, namely the number of
odd theta characteristics on a curve of genus g — 4. ([

We construct a projective bundle over B;(; and then show that for cer-
tain values § < g — 1, the locus B;a itself is unirational, whereas the above
mentioned bundle dominates S;. Let Cy5 C U; 5 X Vg be the universal curve,
endowed with its two projection maps

— p q
Z/{g76 < Cg}& — Vg.

We fix a point (I', Z) € U, s and let v : N — I" be the normalization map. Re-
call that sing(T") consists of § linearly independent points and h?(N, Oy (v*e))
= 1, where e is the effective divisor on I' characterized by Zr , = 2e. Thus
the restriction map H(T,wr) — H°(wr ® Oz) has a 1-dimensional kernel. In
particular, the relative cotangent sheaf w, admits a global section s inducing
an exact sequence

0—0c,; = wp— Ow ®@wp =0,

which defines a subscheme W C C, 5, whose fibre at the point (I', Z) € Z/{; 5 18
Z itself. We set

A= py (IW/Cg,s ® q*ovg(l))a
which is a vector bundle on U, 5 of rank Ny — g + 2. The fibre of A(I', Z) is
identified with H°(Vy, Z,y,(1)). One has a natural identification

PHY (IZ/Vg(l))V = {1-dimensional linear sections of V; containing Z}.
Definition 3.11. Py 5 is the projectivized dual of A.
From the definitions and the previous remark, it follows that

PROPOSITION 3.12. P, 5 is the Zariski closure of the incidence correspon-
dence

5,6 = {(C’ (F’Z)) 6Z/{g XZ/{;(; Z C C}

Consider the projection maps

_ a B _
ng 5 77;’75 ugﬁ'

We wish to know when is o a dominant map. For 1 < § < g < 9, we have the
following:

PRrROPOSITION 3.13. The morphism « is dominant if and only if

§< Ny+1—g=dim(V,) — 1.
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Proof. By definition, the morphism 3 is surjective. Let (I',Z) € U, 5 be
an arbitrary point, and set sing(T") := {p1,...,ps} C Z. We define Py to be
the locus of 1-dimensional linear sections of Vj containing Z. Inside Pz we
consider the space

P, = {I" € Py :sing(I")N Z D sing(I') N Z}.

For p € sing(T"), the locus H, := {I" € Pz : p € sing(I")} is a hyperplane in
P7. Indeed, we identify Pz with the family of linear spaces L € G(g — 1, V)
such that (Z) C L. By the definition of the cluster Z, it follows that T,(Vj)
N(Z) is a line. For L € Py, the intersection L NV} is singular at p if and only
if dim L N T,(Vy) > 2. This is obviously a codimension 1 condition in Pz.
Therefore, if for 1 < i < § we define the hyperplane

H;:={L=(I"y e Py:dim LNT,(V,) > 2},
then

PF,Z =H;N---NH;s.

This shows that the general point in 37(C, Z) corresponds to a smooth curve
C > Z. We now fix a general point (I', Z) € U, ; corresponding to a general
cluster Z € 34-1.

Claim. Pr z has codimension 0 in Pz; its general element is a nodal curve
with § nodes.

Proof of the claim. Indeed P is a general fibre of the projective bundle
Uy — 3g-1. The claim follows since codim(U,, 5, U, ) = 0. O

The fibre a‘l((C, Z)) over a general point (C,Z) € U, is the union of

(ggl) linear spaces Hy N---N Hy C Py as above. By the claim above, when
Z € 3g4-1 is a general cluster, this is a union of linear spaces P , as before,

having codimension § in Pz. Hence ofl<(C', Z)) is not empty if and only if
0 <dim Pgz; that is, § < Ny — g+ 1. O

Let us fix the following notation:

Definition 3.14. (1) Pys := (P25)” // Aut(Vy).

(2) @:Pys — S, is the morphism induced by « at the level of quotients.

Note that 8 : Pys — U, 5 is a projective bundle and Aut(Vy) acts lin-
early on its fibres; therefore 8 descends to a projective bundle on B; s+ Then
it follows from the previous remark that P, s is birationally isomorphic to
PNo—9H+1 3;5. To finish the proof of the unirationality of S;°, we proceed as
follows.

THEOREM 3.15. Let 7 < g < 9 and assume that (i) B, is unirational
and (ii) 6 < Ny — g+ 1. Then S, is unirational.
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Proof. By assumption (ii), the map « : Pgs — Uy is dominant. Hence
the same is true for the induced morphism @ : Pg5 — S, . By (i) and the

above remark, Fg’(s is unirational. Therefore gg_ is unirational as well. ([l

Theorem 3.15 has some straightforward applications. The case 6 =g — 1

is particularly convenient, since B is isomorphic to the moduli space of

9,9—1
integral curves of geometric genus 1 with ¢ — 1 nodes. For § = g — 1, the
assumptions of Theorem 3.15 hold when g < 8. In this range, the unirationality

of §; follows from that of B, _;.
THEOREM 3.16. B, ,_; is unirational for g < 10.

Proof. Let I C P? x (P2)Y be the natural incidence correspondence con-
sisting of pairs (z,¢) such that z is a point on the line /. For § < 9, we
define

s := {(z1,01,... 26,05, E) € I x PHO(P?, Op2(3)) : a1,...,75 € E}.

Then there exists a rational map fs : IIs --» By, | 5 sending (1,01, ..., 25,05, F)
to the moduli point of the §-nodal, integral curve C obtained from the elliptic
curve F by identifying the pairs of points in EN¥¢; — {x;} for 1 <i < 4. It is
easy to see that Il; is rational if 6 < 9. Clearly f5 is dominant, just because
every elliptic curve can be realized as a plane cubic. It follows that B5_+1, 5 18
unirational when 6 < 9.

Unfortunately one cannot apply Theorem 3.16 to the case g = 9, since the
assumptions of Theorem 3.15 are satisfied only if § < 5.

4. The Scorza curve

This section serves as a preparation for the proof of Theorem 0.5, and we
discuss in detail a correspondence T, C C'xC associated to each (nonvanishing)
theta characteristic [C,n] € S; — Opun. This correspondence was used by
G. Scorza [Sco00] to provide a birational isomorphism between Mj and Sy
(see also [DK93]) and recently in [TZ11], where several conditional statements
of Scorza’s have been rigourously established.

For a fixed theta characteristic [C, 7] € S;‘ — Opun, we consider the curve

T, = {(a:,y) €CxC:H'Cn®Oc(x—1y)) #0}.

By Riemann-Roch, it follows that T}, is a symmetric correspondence that misses
the diagonal A C C'x C. The curve T}, has a natural fixed point free involution
and we denote by f : T, — I';, the associated étale double covering. Under
the assumption that T;, is a reduced curve, its class is computed in [DK93,
Prop. 7.1.5]:

Ty=(@-DF+(g-1)FR+A.
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Here F; € H?(C x C,Q) denotes the class of the fibre of the i-th projection
CxC—C.

THEOREM 4.1. For a general theta characteristic [C,n] € S, the Scorza
curve Ty, is a smooth curve of genus g(T,) = 3g(g — 1) + 1.

Proof. Tt is straightforward to show that a point (z,y) € T, is singular if
and only if

3)  HC,n®Oc(x—2y)) #0 and H(C,n® Oc(y — 2x)) # 0.

By induction on g, we show that for a general even spin curve, such a pair (z, y)
cannot exist. We assume the result holds for a general [C,n¢] € 8;_1. We fix
a general point ¢ € C, an elliptic curve D together with np € Pic®(D) —{Op}
with n%g = Op and consider the spin curve t := [C' U EFU D, Ne =1Nc, Me =
Or(1), np = np] € 3;_, obtained from C' U, D by inserting an exceptional
component E. Since the exceptional component plays no further role in the
proof, we are going to suppress it.

We assume by contradiction that ¢t € g;r lies in the closure of the locus
of spin curves with singular Scorza curve. Then there exists a nodal curve
C Uy D' semistably equivalent to C' U, D obtained by inserting a possibly
empty chain on P'’s at the node ¢ (therefore, p,(D’) = 1 and we may regard
D as a subcurve of D’), as well as smooth points z,y € C U D’ together
with two limit linear series 0 = {o¢,0p/} and 7 = {7, 7p/} of type 92_2 on
C' U D’ such that the underlying line bundles corresponding to o (resp. 7) are
uniquely determined twists at the nodes of the line bundle n ® Ocyps (x — 2y)
(resp. 1 ® Ocupr(y — 2x)). The precise twists are determined by the limit
linear series condition that each aspect of a limit 92,2 have degree g — 2. We
distinguish three cases depending on which components of C'U D’ the points
x and y specialize.

(i) z,y € C. Then o¢ € H*(C,nc ® Oc(x — 2y +q)),7c € H°(C,nc ®
Oc(y — 2z + q)), while op,7p € H0<D,7]D ® Op((g — 2)q)). Denoting by
{¢'} € DN (CUD'")— D the point where D meets the rest of the curve, one
has the compatibility conditions

ordg(oc) +ordy(op) > g—2 and ordy(rc) + ordy(7p) > g — 2,

which leads to ordy(cc) > 1 and ord,(r¢) > 1; that is, we have found two
points x,y € C such that H°(C,nc(x — 2y)) # 0 and H(C, nc(y — 2z)) # 0,
which contradicts the inductive assumption on C.

(i) x,y € D’. This case does not appear if we choose nc such that
H°(C,nc) = 0. Indeed, for degree reason, both nonzero sections o¢, 7c must
lie in the space H°(C,nc).
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(iii) x € C,y € D’'. For simplicity, we assume first that y € D. We find
that

oc € H(C,nc @ Oc(z — q)), op € H(D,np @ Op(g-q — 2y))
and
70 € H°(C,ne ® Oc(2q — 2x)), 7p € H*(D,np ® Oc(y + (9 —3) - ¢)).

We claim that ord,(c¢) = ordy(7¢) = 0, which can be achieved by a generic
choice of ¢ € C. Then ordy(0p) > g—2, which implies that np = Op(2y—2q).
Similarly, ordy(7p) > g — 2, which yields that np = Op(g — y); that is, 7)%3 =
Op. Since np was assumed to be a nontrivial point of order 2, this leads
to a contradiction. Finally, the case y € D’ — D, that is, when y lies on
an exceptional subcurve E' C D', is dealt with similarly: Since ord,(c¢) =
ordy(7¢) = 0, by compatibility, after passing through the component E’, one
obtains that ordy(op) > g — 2. Since op € H*(D,np ® Op((g — 2)¢')) and
np # Op, we obtain a contradiction O

5. The stack of degenerate odd theta characteristics

In this section we define a Deligne-Mumford stack X, — §; parametrizing
limit linear series 92—1 that appear as limits of degenerate theta character-
istics on smooth curves. The push-forward of [X,] is going to be precisely our
divisor Z,. Having a good description of X, over the boundary will enable us
to determine all the coefficients in the expression of [Z,] in Pic(S, ) and thus
prove Theorem 0.5. Throughout, we will use the test curves in 3; constructed
in Section 1.

We first define a partial compactification 1\719 = M,y U Zo U---U Z[g/g]
of My, obtaining by adding to My the open sub-stack Zo C Ag of one-nodal
irreducible curves [Cyq := C/y ~ ¢|, where [C,y, q] € Mgy_12 is a Brill-Noether
general curve together with their degenerations [C'U Dy] where Dy, is an el-
liptic curve with j(Dy,) = 0o, as well as the open substacks Zj CAjforl<
J < lg/2] classifying curves [C'U, D], where [C] € M; and [D] € M,_; are Brill-
Noether general curves in the respective moduli spaces. Let p : I\N/Ig,l — 1\719
be the universal curve. We denote g; = TF_I(MQ) C S, and note that for all
0 < j < [g/2], the boundary divisors A’ := A; N é:g_, B} = BN gg_ are mu-

tually disjoint inside 3’9_ . Finally, we consider Z := gg_ X35 M, 1 and denote
g

by p1: Z2 — §g_ the projection.
Following the local description of the projection S; — M, carried out in

[Cor89], in order to obtain the universal spin curve over gg_ one has first to
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blow up the codimension 2 locus V' C Z corresponding to points
v = ([C Uy Bone? = Ke, 1h%(ne) = 1 mod 2, ng = Op(1)],
= B) x~ My;.
v(y) = v(a)) € By x5z My,

(Recall that v : C — Cy, denotes the normalization map, so v corresponds to
the marked point specializing to the node of the curve Cy,.)

Suppose that (71,...,73¢4—3) are local coordinates in an étale neighbour-
hood of [C' Uy, v E,ne,nEe] € §g* such that the local equation of the divisor
Bj is (11 = 0). Then Z around v admits local coordinates (z,y, 71, ..., T3g-3)
verifying the equation xy = 72; in particular, Z is singular along V. Next, for

1 < j <[g/2], one blows up the codimension 2 loci V; C Z consisting of points
([c Uy D.nesmn], a € CND) € (45U B)) xgz My,

This corresponds to inserting an exceptional component in each spin curve in

7 (A;). We denote by

C = BlVUVlLJ---U‘/[Q/Q] (Z)

andby f:C — S; the induced family of spin curves. Then for every [X,n, 3] €
g; , we have an isomorphism between f~1([X,7, 8]) and the quasi-stable curve
X.

There exists a spin line bundle P € Pic(C) of relative degree g — 1 as
well as a morphism of Oc-modules B : P®? — wy having the property that
Pir-1xmpy = n and Bjy-ixps) = B : n®? — wy for all spin curves
[X,n,0] € gg_ . We note that for the even moduli space g; , one has an analo-
gous construction of the universal spin curve.

Next we define the stack 7 : X4 — g; classifying limit 92,1 that are twists
of degenerate odd-spin curves. For a tree-like curve X, we denote by Gy(X)
the scheme of limit linear series gj;. The fibres of the morphism 7 have the
following description:

. T_l(Sg_) parametrizes triples ([C, nl, o, a:), where [C,n] € S;, x € C'is a

g
point and o € PHY(C,7) is a section such that div(c) > 2.
e For 1 < j <[g/2], the inverse image 7! (A} U B}) parametrizes elements of

the form
—0
(X,O' € Ggfl(X)’ T c Xreg)’
where (X, ) is a 1-pointed quasi-stable curve semistably equivalent to the

underlying curve of a spin curve [C U, EUy D, nc,nE,np) € A;- U B;, with
E denoting the exceptional component, g(C) = j, g(D) = g — j,{q} =
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CNE,{¢d}=END and

oc € PHO(C,ne ® Oc((g9 — 4)q)), op € PH(D,np © Op(jd)),
op € PHY(E,Op(g—1))

are aspects of the limit linear series 0 on X. Moreover, we require that
ord, (o) > 2.

e 77 1(B]) parametrizes elements (X, nePicdY(X), 0 e PHY(X,n), 2 € Xreg),
where (X, z) is a 1-pointed quasi-stable curve equivalent to the curve un-
derlying a point [C' U, v E,mc, nE] € By, the line bundle n on X satisfies
nic = nc and np = ng and 7z = Oz for the remaining components of X.
Finally, we require ord, (o) > 2.

e 771(A}) corresponds to points (X, nePicd X)), cePH (X ,n),z € Xreg),
where (X, ) is a 1-pointed quasi-stable curve equivalent to the curve under-
lying a point [Cyq,nc,,] € Ap, and if 4 : X — Cyq is the map contracting all
exceptional components, then p*(n¢,,) = 1 (in particular, 7 is trivial along
exceptional components), and finally ord, (o) > 2.

Using general constructions of stacks of limit linear series (cf. [EH86],
[Far09]), it is clear that X is a Deligne-Mumford stack. There exists a proper
morphism

T: Xy — g;
that factors through the universal curve, and we denote by x : X, — C the
induced morphism; hence 7 = f o x. The push-forward of the coarse moduli
space Ty ([X,]) equals scheme-theoretically ?Q N g; . It appears possible to
extend X, over the entire §g_, but this is not necessary in order to prove
Theorem 0.4, and so we skip the details.
We are now in a position to calculate the class of the divisor Z,, and we

expand its class in the Picard group of gg_,

- ) 19/2) 0/ B
(4) Zg=X-A—dp-ao—Pfo-Bo— Y ai-ai— Y fi-fBi €Pic(S,),
i=1 i=1

where \, a;, ; € Qfori =0,...,[g/2]. We start by determining the coefficients
of the divisors «; and S; for 1 <i < [g/2].

PROPOSITION 5.1. For1 <i < [g/2], we have that F;-Z, = 4(g—1)(i—1)
and the intersection is everywhere transverse. It follows that a; = 2(g — 7).

Proof. We recall from the definition of F; that we have fixed theta char-
acteristics of opposite parity n; € Pic' *(C) and n}, € Pic?"""!(D). Choose a
point t = (X, n,0,7) € 7-1(F}). Tt is a simple exercise to show that the “dou-
ble” point z of o € ?;,I(X ) cannot specialize to the exceptional component;
therefore one has only two cases to consider depending on whether z lies on C'
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or on D. Assume first that z € C' and then o € PH(C,n; ® Oc((g9 — )q))
and op € PHY(D,n},®0p(iq)), where {g} = CND is a point that moves on C
but is fixed on D. Then ord,(op) < i — 1; therefore ord,(cc) > g — i and then
oc(—(g—1i)q) € PH(C,ng). In particular, if we choose [C, 5] € S;— Z;, then
the section o¢(—(g —)q) has only simple zeros, which shows that x cannot lie
on C, so this case does not occur.

We are left with the possibility 2 € D—{q}. One observes that ord,(cc) =
g —i+ 1 and ordy(op) = i — 2. In particular, ¢ € supp(n.), which gives
i — 1 choices for the moving point ¢ € C. Furthermore, op(—(i — 2)q) €
H%(D,n},®0p(2qg—21)); that is, z specializes to one of the ramification points
of the pencil n},®0p(2q) € ng—i+1(D)~ We note that because of the generality
of [D, 775] € SJ_Z» as well as that of ¢ € D, the pencil is base point free and
complete. From the Hurwitz-Zeuthen formula one finds 4(¢g — ¢) ramification
points of |nf, ® Op(2q)|, which leads to the formula F; - Z, = 4(g — i)(i — 1).
The fact that 7,.(X,) is transverse to F; follows because the formation of X,
commutes with restriction to Bj,. Then one can easily show in a way similar
to [EH87, Lemma 3.4], or by direct calculation, that X, X5~ Bj{, is smooth at

g
any of the points in 77(F}). O
PROPOSITION 5.2. For 1 < i < [g/2], we have that G; - Z, = 4i(i — 1)
and the intersection is transversal. In particular, B; = 2i.

Proof. This time we fix general points [C,nf] € S;" and [D,np] € S,
and ¢ € C N D, which is a fixed general point on D but an arbitrary point
on C. Again, it is easy to see that if t = (X, 0,2) € 771(G;), then x must lie
either on C or on D. Assume first that x € C' — {¢}. Then the aspects of o
are described as follows:

oc € PHY(C,nt @ Oc((g —i)q)), op € PHY(D,np ® Opliq))
and, moreover, ord,(cc) > 2. The point ¢ € D can be chosen so that it
does not lie in supp(np,); hence ordy(op) < i, and then ordy(cc) > g —i — 1.
This leads to the conclusion H°(C,n} ® Oc(y — 2x)) # 0, or equivalently
(z,y) € C x C is a ramification point of the degree i covering p; : Tné - C
from the associated Scorza curve. We have shown that Tné is smooth of genus

14 3i(i — 1) (cf. Theorem 4.1) and, moreover, all the ramification points of p;
are ordinary; therefore we find

deg Ram(p1) = 29(Tc, ) — 2 — deg(p1) (2 —2) = 4i(i — 1)

choices when x € C. The next possibility is € D — {q}. The same reasoning
as above shows that ord,(oc) < g — ¢ — 1, and therefore ordy(ocp) > i as well
as ord,(op) > 2. Since op(—iq) € PHY(D,np), this case does not occur if
[D,np) €S, — Z4i. O
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Next we prove that Z, is disjoint from both elliptic pencils Fy and Gy.

ProprosIiTION 5.3. We have that Fy - Zq = 0 and Gy - ?g = 0. The
equalities & — 1200 + a1 = 0 and 3& — 126 — 128y + 351 = 0 follow.

Proof. We first show that Fy N Z, = (), and we assume by contradiction
that there exists t = (X,0,7) € 77 1(Fp). Let us deal first with the case when
st(X) = CNE), with E) being a smooth curve of genus 1. The key point is that
the point of attachment ¢ € C'N E), being general, we can assume that (z,q) ¢
Ram{p; : Tné — C} for all z € C. This implies that H*(C, nt®0c(¢—22))=0
for all # € C, and therefore a section o¢ € PH(C, nf, ® Oc(q)) cannot vanish
twice anywhere. Thus either z € FE\ — {q}, or = lies on some exceptional
component of X. In the former case, since ordy(cc) = 0, it follows that
ordg(og,) > g—1; that is, o, has no zeroes other than ¢ (simple or otherwise).
In the latter case, when z € E, with E being an exceptional component, we
denote by ¢’ € E the point of intersection of E with the connected subcurve
of X containing C' as a subcomponent. Since, as above, ord,(cc) = 0, by
compatibility it follows that ord,(cg) = g — 1. But o € PH(E,Op(g—1));
that is, g does not vanish at z, a contradiction. The proof that Gy N Zq =0
is similar, and we omit the details. O

The trickiest part in the calculation of [Z] is the computation of the
following intersection number:

PROPOSITION 5.4. If Hy C By is the covering family lying in the ramifi-
cation divisor ofgg_, then one has that Hy- Z, = 2(g —2) and the intersection
consists of g — 2 points each counted with multiplicity 2. Therefore the relation

(9—1)Bo — B1 = 2(g — 2) holds.

Proof. We first describe the set-theoretic intersection 7,(X,) N Hy. We
recall that we have fixed [C,q,no] € S, ;; and start by choosing a point
t = (X,n,0,x) € 77Y(Hp). Assume first that X = C Ugy,qy £, where y € C;
that is,  does not specialize to one of the nodes of C'U E. Suppose first that
x € C' —{y,q}. From the Mayer-Vietoris sequence on X, we write

0+#0 e H(X,n®Ox(—27))
= Ker{HO(C, e ® Oc(—27)) @ HO(Ea Og(1)) =g C%ZHI}}’

and we obtain that H(C,n; ® Oc(—2z)) # 0. This case can be avoided by
choosing [C,ng] € S, — Z4-1.

Next we consider the possibility z € E—{y, ¢}. In this case he same Mayer-
Vietoris argument reads 0 # Ker{HO(C, ng) @ HY(E, Op(-1)) g (C%y’q}};
that is, y + ¢ € supp(n). This case can be avoided as well by starting with a
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general point ¢ € C' —supp(7). Thus the only possibility is that = specializes
to one of the nodes y or q.

We deal first with the case when x and ¢ coalesce, and there is no loss of
generality in assuming that X = CUEUFE’, where both components E and E’
are copies of P! and CNE = {y},CNE' = {q}, ENE' = {y} and, moreover,
r € E' — {y,q}. The restrictions of the line bundle n € Pic/™1(X) are such
that nic = nc,ne = Op(1) and npr = Op. We write

0#0=(0c,08,0m)

€ Ker{H(C,ng) ® H(E, Op(1)) @ HY(E', Op(1)) 25 Cyy o),

hence o = 0, and then by compatibility oc(¢) = 0; that is, ¢ € supp(n.),
and again this case can be ruled out by a suitable choice of ¢q. The last pos-
sible situation is when z and the moving point y € C' coalesce, in which case
X = CUEUE, where this time CNE = {q¢},CNE ={y},ENE = {y'}
and again x € F' — {y/,q}. Writing one last time the Mayer-Vietoris se-
quence we find that o = 0 and then og(y’) = 0 and oc(y) = 0, that is,
y € supp(ny), and then the section o¢ is uniquely determined up to a con-
stant. Finally op € H°(E,Og(1)(—y')) is uniquely specified by the gluing
condition o5 (q) = oc(g). Allin all, Hy N Z, = |supp(ng)| =g — 2.

This discussion singles out an irreducible component = C x«(Xy) C C of
the intersection x(X,) N f~1(BY); namely,

E= {([C Utygy Esne,mel, ) sy € supp(ne) and o=y € Xsing},

where we recall that f : C — gg_ is the universal spin curve. Since = C

Sing (X* (Xg)), after a simple local analysis, it follows that each point in 71 (Hy)
occurs counted with multiplicity 2. O

Remark 5.5. A partial independent check of Theorem 0.5 is obtained by
using the Porteous formula to determine the coefficient A in the expression of
[Z4]. By abuse of notation we still denote by f : C — S the restriction of
the universal spin curve to the locus of smooth curves and 7 € Pic(C) the spin
bundle of relative degree g — 1. Then Z; is the push-forward via f : C — S/
of the degeneration locus of the sheaf morphism ¢ : f.(n) — Ji(n). (Both
these sheaves are locally free away from a subset of codimension 3 in S, and
throwing away this locus has no influence on divisor class calculations.) Since
det(fin) = (fun)®?, it follows that c (f*(n)) = —M\/4, whereas the Chern
classes of the first jet bundle Ji(n) are calculated using the standard exact
sequence on C

0 —n®wr — Ji(n) — n—0.
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Remembering Mumford’s formula f,(c%(wy)) = 12, one finally writes that

12, = Fea( ) — 1)) = £ Cer(on)? — 2e1(0p) - ea(Fu()
= (9+8) A € Pic(S; ).

6. A divisor of small slope on M,

The aim of this section is to construct an effective divisor D € Eff(M2)
of slope s(D) < 6 4+ 12/13, that is, violating the Slope Conjecture. As pointed
out in the proof of Theorem 0.4, this is precisely what is required in order to
show that S, is a variety of general type.

THEOREM 6.1. The following locus consisting of curves of genus 12,
D19 := {[C] € Mqp:3dL € W144(C)
with Sym*H(C, L) Holly) H(C, L®?) not injective},

is a divisor on Mya. The class of its compactification inside Mo equals

6
D1p = 13245 XA — 1926 o — 9867 &1 — Y _ b; §; € Pic(Mi2),
j=2
where b; > by for j > 2. In particular, s(D12) = % <6+ %
This implies the following upper bound for the slope s(M32) of the moduli
space:
COROLLARY 6.2.
10 — . 4415 10 14
6+ 35 < s(Mi2) == inf pepgag,y5(D) < o (=6+ ks 32—1)
Another immediate application, via [Log03], [Far06], concerns the bira-
tional type of the moduli space My, of n-pointed stable curves of genus g:

THEOREM 6.3. The moduli space of n-pointed curves Mia,, is of general
type for n > 11.

The divisor ®19 is constructed as the push-forward of a codimension 3
cycle in the stack &%, — M;y classifying linear series gf,. We describe the
construction of this cycle, and then extend this determinantal structure over
a partial compactification of Mio. This will be essential to understand the
intersection of D15 with the boundary divisors Ay and A; of M1s. We denote
by M’fz the open substack of Mjs consisting of curves [C] € My such that
W(C) = 0 and W, (C) = (. Results in Brill-Noether theory guarantee that
codim(Myy — MYy, Mya) > 3. TIf Picld denotes the Picard stack of degree 14
over MY,, then we consider the smooth Deligne-Mumford substack &1, C Picls
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parametrizing pairs [C, L], where [C] € MY, and L € W4,(C) is a (necessarily
complete and base point free) linear series. We denote by o : &1, — MY, the
forgetful morphism. For a general [C] € MY,, the fibre 0~1([C]) = W4(C) is
a smooth surface.

Let 7 : MY, ; — MY, be the universal curve. Then the natural projection
is denoted by pa : M, X, &1, — 61, If £ is a Poincaré bundle over
MZl)Z,l XMP, ®%, (or over an étale cover of it), then by Grauert’s Theorem,
both

£ = (p2)«(£) and F := (p2).(LP?)

are vector bundles over &7,, with rank(€) = 5 and rank(F) = h%(C, L®?) = 17
respectively. There is a natural vector bundle morphism over &, given by
multiplication of sections,

¢ : Symz(g) — F,

and we denote by Uio C 6‘114 its first degeneracy locus. We set D19 := 0, (Ui2).
Since the degeneracy locus U has expected codimension 3 inside &1, the
locus D13 is a virtual divisor on M7,.

We extend the vector bundles £ and F over a partial compactification
of &%, given by limit gj,. We denote by A} C A; C My the locus of
curves [C' U, E], where E is an arbitrary elliptic curve, [C] € Mj; is a Brill-
Noether general curve and y € C is an arbitrary point. We then denote by
AP C Ay C M;; the locus consisting of curves [Cy,y] € Ag, where [C, q] € M1
is Brill-Noether general and y € C' is arbitrary, as well as their degenerations
[C' Uy Ex], where E is a rational nodal curve. Once we set

— _
we can extend the morphism o to a proper morphism
= AP
o @%4 — My,

from the stack 8‘114 of limit linear series g}, over the partial compactification
le)z of Mlg.

We extend the vector bundles £ and F over the stack @‘114. The proof of
the following result proceeds along the lines of the proof of Proposition 3.9 in
[Far06]:

__ ProprOSITION 6.4. There exist two vector bundles € and F defined over
®1, with rank(£) = 5 and rank(F) = 17, together with a vector bundle mor-
phism ¢ : Sym?(£) — F, such that the following statements hold:

e For [C, L] € 14, with [C] € MY, we have that
E(C,L)=HC,L) and F(C,L)= H°(C,L%?).
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o Fort = (CUyE,lc,lg) € o~ (AL), where g(C) = 11,¢9(F) = 1 andlc = |L¢|

is such that Lc € Wi4(C) has a cusp at y € C, then E(t) = H(C, L¢) and
Ft) = H(C,Lg (=2y) & C- w2,

where u € H°(C, L¢) is any section such that ord,(u) = 0. If Lo has a base
point at y, then £(t) = H*(C, Lc) = H(C,Lc ® Oc(—y)) and the image of
a natural map F(t) — HO(C, LE?) is the subspace H(C, LE?* ® Oc(—2y)).

o Pixt =[Cy :=Cly ~q,L] € o7 (AY), with g,y € C and L € Wﬁ((}’yq)
such that h°(C,v*L @ Oc(—y — q)) = 4, where v : C — Cy, is the normal-
1zation map. In the case when L is locally free, we have that

g(t) - HO(C’ V*L) and ‘7:<t) = HO(C7 V*L®2 & OC(_y - Q)) ®C- U2,

where w € H°(C,v*L) is any section not vanishing at y and q. In the case
when L is not locally free, that is, L € Wﬁ(qu)—Wﬁ(qu), then L = v, (A),
where A € Wi (C) and the image of the natural map F(t) — HO(C,v*L%?)
is the subspace H°(C, A®?).

To determine the push-forward [D15]"'" =0, <63(f—Sym2 (5)) e AL(MY,),
we study the restriction of the morphism ¢ along the pull-backs of two curves
sitting in the boundary of Mis, which are defined as follows. We fix a general
pointed curve [C,q] € M1, and a general elliptic curve [E,y] € M. Then
we consider the families

Co:={Cly~q:y€eC} CAjC M,
Cr:={CU,E:yeC}cC A} c M.
These curves intersect the generators of Pic(M;s) as follows:
Co-A =0, Cp-do = deg(we,,) = —22,Cp-01 =1 and Cp-J; = 0 for 2 < j <6,
and
Ci-A=0,C1-60 =0, C1-01 = —deg(K¢c) = —20 and C;-6; =0 for 2 < j <6.

Next, we fix a general pointed curve [C,q] € M;ji; and describe the
geometry of the pull-back 0*(Cp) C &7,. We consider the determinantal 3-fold

Y :={(y,L) € C x W4(C): h°(C,L ® Oc(—y — q)) = 4}

together with the projection m : Y — C. Inside Y we consider the following
divisors:

I':={(y,A® Oc(y)) :y € C, A€ Wi5(C)}
and
Ty :={(y,A® Oc(q)) :y € C, A€ Wi(C)}
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intersecting transversally along the curve
L= {(¢A®Oc(q)) : A € Wi5(C)} = Wi5(0).

We introduce the blow-up Y’/ — Y of Y along ' and denote by Er C Y’
the exceptional divisor and by fl, ['s C Y the strict transforms of T'; and Ty
respectively. We then define Y =Y’ / Iy 2T to be the variety obtained from
Y’ by identifying the divisors T'; and Ty over each (y, A) € C x Wi(C). Let
£:Y = Y be the projection map.

PROPOSITION 6.5. With notation as above, one has a birational morphism
of 3-folds
f:0%(Ch) — Y,
which is an isomorphism outside a curve contained in e (77 (q)). The map
J\(mef)-1(q) corresponds to forgetting the Ex-aspect of each limil linear series.
Accordingly, the vector bundles &g+ (c,) and Fo=(c,) are pull-backs under € o f
of vector bundles on Y .

Proof. We fix a point y € C — {¢q}. We denote by v : C — Cy, the
normalization map, with v(y) = v(¢g). We investigate the variety Wil(qu) C
WM(qu) of torsion-free sheaves L on Cy, with deg(L) =14 and h°(Cyq, L) >5.
A locally free L € Wﬁ(qu) is determined by v*(L) € W{,(C), which has the
property h%(C,v*L @ Oc(—y — q)) = 4. (Since W (C) = 0, there exists a
section of L that does not vanish simultaneously at both y and ¢.) However,
the bundles of type A ® O¢(y) or A® Oc(q) with A € Wi(C) do not appear
in this association, though (y, A ® Oc(v)), (v, A ® Oc(q)) € Y. In fact, they
correspond to the situation when L € W£114(qu) is not locally free, in which case
necessarily L = v,(A) for some A € Wi, (C). Thus, for a point y € C — {q},
there is a birational morphism 77 !(y) — W;L4(qu) that is an isomorphism
over the locus of locally free sheaves. More precisely, Wﬁ(qu) is obtained
from 77 !(y) by identifying the disjoint divisors I'y N7y ' (y) and Ty N7y ().

A special analysis is required when y = ¢, when C,, degenerates to C' U,
E, where E is a rational nodal cubic. If {l¢,lg,_} € 07} ([C Uy Ex)), then
the corresponding Brill-Noether numbers with respect to ¢ satisfy p(l¢,q) >0
and p(lg,,,q) < 2. The statement about the restrictions &j,-(cy) and Fo«(cy)
follows because both restrictions are defined by dropping the information com-
ing from the elliptic tail. ([

To describe o*(C}) C &%, where [C] € M1, we define the determinantal
3-fold
X ={(y,L) € C x W(C) : h°(L ® Oc(—2y)) = 4}.
In what follows we use notation from [EH86] to denote vanishing sequences of
limit linear series.
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PROPOSITION 6.6. With notation as above, the 3-fold X is an irreducible
component of 0*(Cy). Moreover, one has that

63((]:— Sym25)|g*(cl)> = 63((]:— Sym25)|X).
Proof. By the additivity of the Brill-Noether number, if
{le,lg} € a7 H([C Uy E)),

we have that 2 = p(12,4,14) > p(lc,y) + p(lg,y). Since p(lg,y) > 0, we
obtain that p(lc,y) < 2. If p(lg,y) = 0, then lp = 9y + |Op(5y)|; that is, Ig
is uniquely determined, while the aspect lc € G14(C) is a complete g}, with a
cusp at the variable point y € C. This gives rise to an element from X. The
remaining components of 0*(C1) are indexed by Schubert indices

a=0<a) < <ay <10)
such that @ > (0,1,1,1,1) and 5 < Z?:o aj < 7. For such a, we set
a‘:= (10 — ay,...,10 — ap)
to be the complementary Schubert index. We then define
= {(ylc) € C x GL(C) : de(y) > a}

&

and

S

={lg € Gil(E) : ozlE(y) > a}.

Then 0*(C1) = X 4+ 4 X X Z5. The last claim follows by dimension reasons.
Since dim Xq = 1+ p(11,4,14) — Y5_gay < 3 for every @ > (0,1,1,1,1) and
the restrictions of both £ and F are pulled back from Xg, one obtains that
63(.7:—Sym25)|xaxz& =0. O

We also recall standard facts about intersection theory on Jacobians. For
a Brill-Noether general curve [C] € Mg, we denote by P a Poincaré bundle
on C x Pic?(C). The projections are denoted by 71 : C' x Pic?(C) — C and
7y : O x Picd(C) — Pic?(C). We define the cohomology class n = 7} ([point]) €
H?(C x Pic%(C)), and if d1,...,02 € HY(C,Z) = H'(Pic!(C),Z) is a sym-
plectic basis, then we set
g

7= = > (710273 (0gra) = i (5g1a)75(0a) ) € HA(C x Pic!(C)),
a=1
One has the formula ¢;(P) = dn++y, corresponding to the Hodge decomposition
of ¢1(P), as well as the relations v3 = 0, yn = 0, n? = 0 and v? = —2n75(6). On
W (C) there is a tautological rank r+1 vector bundle M := (m2).(Pjcxwr(c))-
To compute the Chern numbers of M we employ the Harris-Tu formula [HT84].

We write
I8

docMY) = (L +wr) - (L4 zra),

1=0
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and then for every class ¢ € H*(Pic?(C), Z), one has the following formula:
go+r—dti;—j+l

(g+r—d+i;—j+ l)!)ISJ:lST“ -

(5) a2yt ¢ = det(

We compute the classes of the 3-folds that appear in Propositions 6.5 and
6.6:

PROPOSITION 6.7. Let [C,q] € My11 be a Brill-Noether general pointed
curve. If M denotes the tautological rank 5 vector bundle over Wi,(C) and
ci = c;(MV) € H¥(W}(C),C), then one has the following relations:

(1) [X] = m3(ca) — 6nOm3(ca) + (480 + 29)m3(cs) € H(C x Wiy(C), C);
(i) [Y] =75 (ca) — 2n0m5(c2) 4+ (13n + )75 (c3) € H¥(C x Wiy (C),C).

Proof. We start by noting that W4 (C) is a smooth 6-fold isomorphic to
the symmetric product Cs. We realize X as the degeneracy locus of a vector
bundle morphism defined over C' x W34 (C). For each pair (y, L) € C x Wi (C),

there is a natural map
HY(C,L ® Oy,)" — H(C, L)"

that globalizes to a vector bundle morphism ¢ : J1(P)Y — 75(M)Y over C x
W(C). Then we have the identification X = Z;(¢), and the Thom-Porteous
formula gives that [X] = ¢4 (7r’2k (M) —Jq (PV)). From the usual exact sequence
over C' x Pic'*(0),

0 — m(Kg)®@P — J1(P) — P —0,

we can compute the total Chern class of the jet bundle
(A (P)) ™ = (3L +7)7) - (3(29(C) =2+ (L) +7))
Jj=0 Jj=0
= 1— 600 + 48 + 2,
which quickly leads to the formula for [X]. To compute [Y] we proceed in a
similar way. We denote by pu,v : C x C x Pic!*(C) — C x Pic!*(C) the two

projections, and we denote by A C C x C x Pic**(C) the diagonal. We set
I, := {q} x Pic"*(C). We introduce the rank 2 vector bundle

B = () (v*(P) ® Orye(ry)

defined over C' x Wi (C).
We note that there is a bundle morphism x : BY — (m3)*(M)" such that
Y = Z1(x). Since we also have that

a(BY) ™ = (14 (d(L)n+7v) + [dL)n+7)°+-- ) (1 —n),

we immediately obtained the stated expression for [Y]. O
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PROPOSITION 6.8. For a smooth curve C of genus 11, the natural projec-
tions are denoted by p,v : C x C x Pic**(C) — C x Pic'*(C). We define the
vector bundles Ay and By on C x Pic'*(C) having fibres

As(y, L) = H(C, L#*©@0c(=2y)) and Ba(y,L) = H'(C, L*?©Oc(~y—q)),
respectively. One has the following formulas:

c1(Ag) = =404~y — T6n 1 (By) = —4602y — 27T,

ca(Az) = 802 + 280n0 + 1670, co(Bs) = 86% + 1006 + 86,

32 32
c3(Az) = —3«93 — 51200% — 320%y and c3(Ba) = —393 — 18470% — 166%.
Proof. Immediate application of Grothendieck-Riemann-Roch with respect
to v. O

Before our next result, we recall that if V is a vector bundle of rank r + 1
on a variety X, we have the following formulas:

(i) e1(Sym*(V)) = (r + 2)er (V);
(i) ca(Sym®(V)) = “GEARWV) + (r + B)ea(V);
(iii) e3(Sym?(V)) = =N B0V)) 1 (1 45)e3 (V) + (2 +4r—1)er (V)ea (V).
We expand o, (c;;(]-" — Sym2€)) = a)\ — bydp — b10y € AY(MY,) and deter-
mine the coefficients a, by and b1. This will suffice in order to compute s(D12).

THEOREM 6.9. Let [C] € M1y be a Brill-Noether general curve, and de-
note by C1 C A1 C Mia the associated test curve. Then the coefficient of &
in the expansion of Dao is equal to

1

=) —2

o*(Cy) - c3 (]: - Sym25) = 9867.

Proof. We intersect the degeneracy locus of the map ¢ : Sym?(&) — F
with the 3-fold 0*(C1) = X + Y4 Xa X Zs. As already explained in Proposi-
tion 6.6, it is enough to estimate the contribution coming from X, and we can
write
o*(C1) - e3(F — Sym*€) = e3(Fix) — e3(Sym*E|x) — e1(Fjx)ca(Sym?E x)

+ 2¢1 (Sym®€ x ) c2(Sym*E|x) — c1(Sym®E|x)e2(Fx)
+ ¢ (Sym*E x)er(Fix) — ¢ (Sym*E ).

We are going to compute each term in the right-hand side of this expression.
Recall that we have constructed in Proposition 6.7 a vector bundle mor-
phism ¢ : J1(P)Y — 75 (M)Y. We consider the kernel line bundle Ker(¢). If U
is the line bundle on X with fibre
H°(C,L)

Uly,L) = HY(C,L® Oc(—2y))

— H°(C,L ® Oy,)
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over a point (y, L) € X, then one has an exact sequence over X:
0— U — Ji(P) — Ker(¢)¥ — 0.

In particular, ¢y (U) = 2y + 48y — c1(Ker(¢))Y. The products of the Chern
class of Ker(¢)V with other classes on C' x Wi (C) can be computed from the
Harris-Tu formula [HT84]:

(6)  a(Ker(()") §x = —es(m3(M)Y = Ji(P)Y) - € x
= —(m3(cs) — 6n075(c3) + (48 + 2v)m3(ca)) - € x
for any class £ € H?(C x W{,(C),C).
If A3 denotes the rank 18 vector bundle on X having fibres As(y, L) =

HO(C, L®?), then there is an injective morphism U®? < A3/ As, and we con-
sider the quotient sheaf

G- As/ Az
= ez
Since the morphism U®2 — A3/ Ay vanishes along the locus of pairs (y, L)

where L has a base point, G has torsion along I' C X. A straightforward local
analysis now shows that F|x can be identified as a subsheaf of A3 with the
kernel of the map A3 — G. Therefore, there is an exact sequence of vector
bundles on X,
0— Ay x = Fix = U®? =0,
which over a general point of X corresponds to the decomposition
F(y, L) = H(C,L*?* ® Oc(—2y)) © C - u?,

where v € H%(C, L) is such that ord,(u) = 1. The analysis above shows that
the sequence stays exact over the curve I' as well. Hence

c1(Fix) = a(Agx) +2c1(U), co(Fix) = ca(Agix) + 2¢1(Agx)er(U)
and
c3(Flx) = c3(Az) + 2ca(Ag x)er (U).
Furthermore, since & x = 75(M)|x, we obtain that
a*(Ch) - c3 (.7-" - Sym25)
= c3(Agx) + c2(Agx)er (UP?) — e3(Sym®m5 M )

r(r+3)
_( 5

(er(Ayx) + e (U2) = 2(r + 2)er (ms M) )

— (r+ 2)er (TsMix)ea(Ag x) — (1 + 2)er (ms My )er (Agx)er (US2)
+ (r+2)%ci (s M x)e1 (Ag x)

+(r+ 2)2c%(7r§M|X)c1(U®2) —(r+ 2)3c§’(7r§M|X).

e (msMix) + (r+ B)ea(ms M)
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As before, cz(7r§./\/l|\3() = 7m3(c;) € H*(X,C). The coefficient of ¢;(Ker(¢)Y)
in the product o*(C1) - ¢3 <]: - Sym25) is evaluated via (6). The part of this
product that does not contain ¢ (Ker(¢)Y) equals

2875 (c2)0 — 8875 (c2)0 + 440nm3(c?) — 535 (cicz)
32
- ?03 + 128n6% — 4320075 (c1) + 6415 (c3)
— 140n73 (c2) + 486%73 (c1) 4 95 (c3) € HS(C x Wk(C), C).

Multiplying this quantity by the class [X] obtained in Proposition 6.7 and
then adding to it the contribution coming from c;(Ker(¢)"), one obtains a
homogeneous polynomial of degree 7 in 1,0 and 75(¢;) for 1 < ¢ < 4. The
only nonzero monomials are those containing 7. After retaining only these
monomials, the resulting degree 6 polynomial in 6, ¢; € H*(W}4(C),Z) can be
brought to a manageable form by noting that, since h'(C, L) = 1, the classes
¢; are not independent. Precisely, if one fixes a divisor D € C, of large degree,
there is an exact sequence

0= M = (m2)(P © O(x* D)) — (m2)+(P ® O(}D)jrsp)
) —

— RITFQ* (7)|C><Wf4(C) 0,

from which, via the well-known fact Ct((ﬂ'z)*(P ® (’)(WTD))) = e~ it follows
that

i (Posyer) - = 31
i=0

Hence c;1 1 = 0%c;/i! —i0"1 /(i 4+ 1)! for all i > 2. After routine manipulations,

one finds that b; = 0*(C1) - c3(F — Sym?(£))/20 = 9867. O

THEOREM 6.10. Let [C,q] € Mi1,1 be a general pointed curve, and denote
by Cy C Ag C Mis the associated test curve. Then o*(Cy) - c3(F — Sym2E) =
22bg — by = 32505. It follows that by = 1926.

Proof. As already noted in Proposition 6.5, the vector bundles &,- ()
and F+(c,) are both pull-backs of vector bundles on Y, and we denote these
vector bundles £ and F as well; that is, £j,«(coy = (e0 f)*(Ey) and Fipx(cy) =
(eof)*(Fly)- Like in the proof of Theorem 6.9, we evaluate each term appearing
in 0*(Cp) - c3(F — Sym?(€)).

Let V be the line bundle on Y with fibre
_ HY(C, L)

HO(C,L® Oc(~y —q))

over a point (y, L) € Y. There is an exact sequence of vector bundles over Y

V(y,L) s HY(C,L® Oyy,)

0 —V — B— Ker(x)" — 0,
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where x : BY — 75(M)" is the bundle morphism defined in the second part of
Proposition 6.7. In particular, c¢;(V) = 13n + v — c¢1(Ker(x"). Again by using
[HT84], we find the following formulas for the Chern numbers of Ker(y)":
c1(Ker(x)Y) - §y = —cs(m3(M)Y = BY) - &y
= —(ma(cs) + my(ca) (130 + ) — 2m3(c3)n0) - &)y
for any class & € H?(C x Wi,(C),C). Recall that we introduced the vector
bundle By over C' x Wi (C) with fibre By(y, L) = H°(C,L®? @ Oc(—y — q)).
We claim that one has an exact sequence of bundles over Y:
(7) 0 — Byy — Fly — V& — 0.
If B3 is the vector bundle on Y with fibres Bs(y, L) = H°(C, L®?), we have an
injective morphism of sheaves V®2 — Bs /B, locally given by
v®% 1 v? mod HY(C, L*? @ Oc(—y — q)),

where v € HY(C, L) is any section not vanishing at ¢ and y. Then Fy is
canonically identified with the kernel of the projection morphism
B; /B
Ve’
and the exact sequence (7) now becomes clear. Therefore

c1l(Fy) = ec1(Byy) + 2c1(V), co(Fy) = ca(Byy) + 2¢1(Bay)er (V)

Bg—)

and

c3(Fly) = c3(Byy) + 2c2(Bajy )er (V).
The part of the total intersection number o*(Cp) - c3(F — Sym?(£)) that does
not contain c1(Ker(x")) equals

32
2875 (o) — 8875 (c2)022nm5 (c3) — 53w (c1ez) — 393

— 8162 + 24n07h(c1) + 64w (c3) + Tnms(c2)

+ 480%735 (1) + 93 (c3) € HS(C x W4(C),C),
and this gets multiplied with the class [Y] from Proposition 6.7. The coefficient
of ¢1(Ker(¢)Y) in a*(Cp) - c3 (.7-" — Sym25) equals

—2¢5(Bayy) — 2(r + 2)*m5(c1) — 2(r + 2)c1 (Byyy )5 (c1)
+7(r + 3)m3(c2) 4 2(r + 3)m3(c2).

All in all, 22by — by = 0*(Cp) - c3(F — Sym2E), and we evaluate this using
(6). O

The following result follows from the definition of the vector bundles &
and F given in Proposition 6.4:
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THEOREM 6.11. Let [C,q] € M1 be a Brill-Noether general pointed
curve and R C Mis the pencil obtained by attaching at the fived point q € C
a pencil of plane cubics. Then

a—12bg + by = ovc3(F — Sym*€) - R = 0.

End of the proof of Theorem 6.1. First we note that the virtual divisor
D19 is a genuine divisor on Mys. Assuming by contradiction that for every
curve [C] € M there exists L € W{(C) such that ug(L) is not-injective, one
can construct a stable vector bundle E of rank 2 sitting in an extension

0 —Kc®LV —FE—L—0
such that h°(C, E) = h%(C, L) + h'(C,L) = 7 and for which the Mukai-Petri
map Sym?H°(C, E) — H°(C,Sym?FE) is not injective. This contradicts the
main result from [Tei08]. To determine the slope of D12, we write

6
Dy =a\ — Z bj5j S Pic(ﬂlz).
=0
Since % = %7125 < %, we can apply Corollary 1 E from [FPO05], which gives the
inequalities b; > by for 1 < j < 6. Therefore s(D12) = % <6+ % O

We close by discussing a second counterexample to the Slope Conjecture

on mlg.

Definition 6.12. Let V' be a vector space. We say that a pencil of quadrics
¢ C P(Sym?(V)) is degenerate if the intersection of ¢ with the discriminant
divisor D(V) € P(Sym?(V')) is nonreduced.

A general curve [C] € M3 has finitely many linear systems A € W75 (C).
As a consequence of the maximal rank conjecture [Voi92], the multiplication
map
po(A) : Sym?HO(C, A) — HO(C, A®?)
is surjective for each A € Wp5(C); in particular, Po 4 = P(Ker MO(A)) is

a pencil of quadrics in P® containing the image of the map C ﬂ P5. One
expects the pencil P 4 to be nondegenerate. By imposing the condition that
it be degenerate, we produce a divisor on M3, whose class we compute.

We shall make essential use of the following result [FR]. Let X be a
smooth projective variety, £ and F vector bundles on X with rk(€) = e and
rk(F) = (e;rl) —2, and ¢ : Sym?(€) — F a surjective vector bundle morphism.
Then the class of the locus

H = {x €X: P(Ker <p(x)> C P(SmeS(w)) is a degenerate pencil},
assuming it is of codimension 1 in X, is equal to

(8) [H] :(e—l)<e cl(}")—(ez—i-e—él)cl(é')) c AY(X).
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THEOREM 6.13. The locus consisting of smooth curves of genus 12,
Hio = {[C} € Mg : Pc a is degenerate for a A € W155(C)},

is an effective divisor. The slope of its closure Hig inside Mio equals

— 373 12
S(le) = 574 < 6+ ﬁ

Proof. We only sketch the main steps. We retain the notation in the proof
of Theorem 6.1 and consider the stack o : 6?5 — MY, of limit linear series
of type g35. Using [Far09, Prop. 2.8], there exist two vector bundles & and
F over @?5 together with a morphism ¢ : Sym?(£) — F such that over a
point [C, A] € o071 (MY,) corresponding to a smooth underlying curve, one has
the description of its fibres £(C, A) = H(C, A) and F(C,A) = H°(C, A®?).
Moreover, ¢(C, A) is the multiplication map po(A). The extension of & and F
over the boundary of 6‘;’5 is identical to the one appearing in Proposition 6.4.
Applying (8), the class of the restriction Hio = Hia N MY, is equal to

[H12]¥™ = 100, (6¢1(F) — 38c1(E)) € A' (M)

The push-forward classes 0. (c1(€)) and o, (c1(F)) can be determined following
[Far09, Props. 2.12, 2.13], which after manipulations leads to the claimed slope.

To prove that H;2 is indeed a divisor, note first that &3 being isomorphic
to the Hurwitz space ®1 is irreducible. To establish that for a general curve
[C] € Mz, the pencil P¢ 4 is nondegenerate for all linear systems A € Wi (C),
it suffices to produce one ezample of a smooth curve C' C P5 with g(C) = 12
and deg(C) = 15, with P (1) nondegenerate. This is carried out via the
use of Macaulay in a way similar to the proof of Theorem 2.7 in [Far06] for a
curve C lying on a particular rational surface in P°. ([
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