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The geometry of the moduli space
of odd spin curves

By Gavril Farkas and Alessandro Verra

Abstract

The spin moduli space Sg is the parameter space of theta characteristics

(spin structures) on stable curves of genus g. It has two connected com-

ponents, S−g and S+
g , depending on the parity of the spin structure. We

establish a complete birational classification by Kodaira dimension of the

odd component S−g of the spin moduli space. We show that S−g is uniruled

for g < 12 and even unirational for g ≤ 8. In this range, introducing the

concept of cluster for the Mukai variety whose one-dimensional linear sec-

tions are general canonical curves of genus g, we construct new birational

models of S−g . These we then use to explicitly describe the birational struc-

ture of S−g . For instance, S−8 is birational to a locally trivial P7-bundle

over the moduli space of elliptic curves with seven pairs of marked points.

For g ≥ 12, we prove that S−g is a variety of general type. In genus 12, this

requires the construction of a counterexample to the Slope Conjecture on

effective divisors on the moduli space of stable curves of genus 12.

The set of odd theta characteristics on a general curve C of genus g is

in bijection with the set θ(C) of theta hyperplanes H ∈ (Pg−1)∨ everywhere

tangent to the canonically embedded curve C
|KC |
↪→ Pg−1. Even though the

geometry and the intricate combinatorics of θ(C) have been studied classically,

see [Dol12], [DK93] for a modern account, it has only been recently proved in

[CS03] that one can reconstruct a general curve [C] ∈Mg from the hyperplane

configuration θ(C).

Odd theta characteristics form a moduli space π : S−g → Mg. At the

level of stacks, π is an étale cover of degree 2g−1(2g − 1). The normalization

of Mg in the function field of S−g gives rise to a finite covering π : S−g →Mg.

Furthermore, S−g has a modular meaning being isomorphic to the coarse moduli

space of the Deligne-Mumford stack of odd stable spin curves; cf. [Cor89],

[CCC07], [AJ03]. The map π is branched along the boundary ofMg, and one

expects KS−g
to enjoy better positivity properties than KMg

.
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The aim of this paper is to describe the birational geometry of S−g for all

g. Our goals are (1) to understand the transition from rationality to maximal

Kodaira dimension for S−g as g increases, and (2) to use the existence of Mukai

models ofMg in order to construct explicit unirational parametrizations of S−g
for small genus. Remarkably, we end up having no gaps in the classification of

S−g . First, we show that in the range where the general curve [C] ∈ Mg lies

on a K3 surface, the existence of special theta pencils on K3 surfaces provides

an explicit uniruled parametrization of S−g :

Theorem 0.1. The odd spin moduli space S−g is uniruled for g ≤ 11.

We fix a general spin curve [C, η] ∈ S−g ; therefore h0(C, η) = 1. When

g ≤ 9 or g = 11, the underlying curve C is the hyperplane section of a K3

surface X ⊂ Pg such that if d ∈ Cg−1 is the (unique) effective divisor with

η = OC(d), then the linear span 〈d〉 ⊂ Pg is a codimension 2 linear subspace.

A rational curve P ⊂ S−g is induced by the pencil PH0(X, Id/X(C)) of hy-

perplanes containing 〈d〉. We show in Section 3 that P ⊂ S−g is a covering

rational curve, satisfying

P ·KS−g = 2g − 24 < 0.

Thus P · KS−g < 0 precisely when g ≤ 11, which highlights the fact that the

nature of S−g is expected to change exactly when g ≥ 12. This is something

we shall achieve in the course of proving Theorem 0.4.

The previous argument no longer works for S−10, when the condition that

a curve [C] ∈M10 lie on a K3 surface is divisorial in moduli [FP05]. This case

is a specialization of the genus 11 case. A general one-nodal irreducible curve

[C] ∈ ∆0 ⊂ M11 of arithmetic genus 11 lies on a K3 surface X ⊂ P11. By

a degeneration argument, we show that this construction can also be carried

out in such a way that if ν : C ′ → C denotes the normalization of C, then the

points x, y ∈ C ′ with ν(x) = ν(y) (that is, mapping to the node of C) lie in the

support of the zero locus of one of the odd theta characteristics of [C ′] ∈M10.

Ultimately, this produces a rational curve P ⊂ S−10 through a general point,

which shows that S−10 is uniruled as well.

In the range in which a Mukai model of Mg exists, our results are more

precise:

Theorem 0.2. S−g is unirational for g ≤ 8.

The proof relies on the existence of Mukai varieties Vg ⊂ Png+g−2, where

ng = dim(Vg), which have the property that general 1-dimensional linear sec-

tions of Vg are canonical curves [C] ∈ Mg with general moduli. We fix an

integer 1 ≤ δ ≤ g − 1 and consider the correspondence

Pog,δ :=
{

(C,Γ, Z) : Z ⊂ C ∩ Γ ⊂ Vg, |sing(Γ)| = δ, sing(Γ) ⊂ Z
}
,
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where Z ⊂ Vg is a cluster, that is, a 0-dimensional subscheme of Vg of length

2g− 2, supported at g− 1 points and such that dim〈Z〉 = g− 2 (see Section 3

for a precise definition), Γ ⊂ Vg is an irreducible δ-nodal curve section of Vg
whose nodes are among the points in the support of Z, and C ⊂ Vg is an

arbitrary curve linear section of Vg containing Z as a subscheme. Thus if C is

smooth, then Z ⊂ C is a divisor of even degree at each point in its support, and

OC(Z/2) can be viewed as an odd theta characteristic. The quotient variety

Pg,δ := Pog,δ//Aut(Vg) comes equipped with two projections,

S−g
α←− Pg,δ

β−→ B−g,δ,

where B−g,δ ⊂ S
−
g denotes the moduli space of irreducible δ-nodal curves of

arithmetic genus g together with an odd theta characteristic on the normal-

ization. It is easy to see that Pg,δ is birational to a projective bundle over the

irreducible variety B−g,δ. Thus the unirationality of S−g follows once we prove

that (i) α is dominant, and (ii) B−g,δ itself is unirational. We carry out this

program when g ≤ 8. When δ = ng−1, we show in Section 3 that the map α is

birational; hence in this case β realizes a birational isomorphism between S−g
and a (Zariski trivial) projective bundle over B−g,ng−1. Very interesting is the

case g = 8, when ng = 8 (see [Muk93]) and B−8,7 is isomorphic to the moduli

space M1,14/Z⊕7
2 of elliptic curves with seven pairs of points; here each copy

of Z2 identifies a pair of points.

Theorem 0.3. S−8 is birational to P7 ×
Ä
M1,14/Z⊕7

2

ä
.

In the process of proving Theorem 0.2, we establish some facts of inde-

pendent interest concerning the Mukai models

Mg := G(g − 1, ng + g − 2)ss//Aut(Vg).

These are birational models ofMg having Pic(Mg) = Z and appearing as GIT

quotients of Grassmannians; they can be viewed as log-minimal models ofMg

emerging from the constructions carried out in [Muk93], [Muk95], [Muk10].

Theorem 0.1 is sharp and the remaining moduli spaces S−g are of general

type:

Theorem 0.4. The space S−g is a variety of general type for g > 11.

The border case of S−12 is particularly challenging and takes up the entire

Section 6. We remark that in the range 11 < g < 17, of the two moduli spaces

S−g and Mg, one is of general type whereas the other has negative Kodaira

dimension. More strikingly, Theorems 0.4 and 0.1 coupled with results from

[Far10] show that for 9 ≤ g ≤ 11, the space S−g is uniruled while S+
g is of general
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type! Finally, we note that S−8 is unirational whereas S+
8 is of Calabi-Yau type

[FV12].

We describe the main steps in the proof of Theorem 0.4. First, we use

that for all g ≥ 4 and ` ≥ 0, if ε : Ŝg → S
−
g denotes a resolution of singularities,

then there is an induced isomorphism at the level of global sections

ε∗ : H0
(
S−g,reg,K

⊗`
S−g

) ∼−→ H0
(
Ŝg,K⊗`

Ŝg

)
;

see [Lud10]. Thus to conclude that S−g is of general type, it suffices to exhibit an

effective divisor D on S−g such that for appropriately chosen rational constants

α, β > 0, a relation of the type KS−g
≡ α λ+ β D+E ∈ Pic(S−g ) holds, where

λ ∈ Pic(S−g ) is the pullback to S−g of the Hodge class and E is an effective

Q-class that is typically a combination of boundary divisors. It is essential to

pick D so that (i) its class can be explicitly computed, that is, points in D

have good geometric characterization, and (ii) [D] ∈ Pic(S−g ) is in some way

an extremal point of the effective cone of divisors so that the coefficients α, β

stand a chance of being positive. In the case of S+
g , the role of D is played

by the divisor Θnull of vanishing theta nulls; see [Far10]. In the case of S−g we

compute the class of degenerate theta characteristics, that is, curves carrying

a nonreduced odd theta characteristic.

Theorem 0.5. We fix g ≥ 3. The locus consisting of odd spin curves

Zg :=
{

[C, η] ∈ S−g : η = OC(2x1 + x2 + · · ·+ xg−2)

where xi ∈ C for i = 1, . . . , g − 2
}

is a divisor on S−g . The class of its compactification inside S−g equals

Zg ≡ (g + 8)λ− g + 2

4
α0 − 2β0 −

[g/2]∑
i=1

2(g − i) αi −
[g/2]∑
i=1

2i βi ∈ Pic(S−g ),

where λ, α0, β0, . . . , α[g/2], β[g/2] are the standard generators of Pic(S−g ).

For low genus, Zg specializes to well-known geometric loci. For instance,

Z3 is the divisor of hyperflexes on plane quartics. In particular, Theorem 0.5

yields the formula

π∗(Z3) ≡ 308λ− 32δ0 − 76δ1 ∈ Pic(M3)

for the class of quartic curves having a hyperflex. This matches [Cuk89, eq.

(5.5)]. Moreover, one has the following relation in Pic(M3):[
{[C] ∈M3 : ∃x ∈ C with 4x ≡ KC}

]−
≡ 8 · M1

3,2 + π∗(Z3),
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where M1
3,2 ≡ 9λ − δ0 − 3δ1 is the hyperelliptic class and the multiplicity 8

accounts for the number of Weierstrass points.

We briefly explain how Theorem 0.5 implies that S−g is of general type

for g > 11. We choose an effective divisor D ∈ Eff(Mg) of small slope; for

composite g+1, one can take D =Mr
g,d the closure of the Brill-Noether divisor

of curves with a grd, where ρ(g, r, d) = −1. There exists a constant cg,d,r > 0

such that [EH87]

Mr
g,d ≡ cg,d,r

(
(g + 3)λ− g + 1

6
δ0 −

[g/2]∑
i=1

i(g − i)δi
)
∈ Pic(Mg).

We form the linear combination of divisors on S−g ,

2

g − 2
Zg +

3(3g − 10)

cg,d,r(g − 2)(g + 1)
π∗(Mr

g,d)

≡ 11g + 37

g + 1
λ− 2α0 − 3β0 −

[g/2]∑
i=1

(ai · αi + bi · βi),

where ai, bi ≥ 2 for i 6= 1 and a1, b1 > 3 are explicitly known rational constants.

The canonical class of S−g is given by the Riemann-Hurwitz formula

KS−g
≡ π∗(KMg

) + β0 ≡ 13λ− 2α0 − 3β0 − 2

[g/2]∑
i=1

(αi + βi)− (α1 + β1),

and by comparison it follows that for g > 12, one can find a constant µg ∈ Q>0

such that

KS−g
− µg · λ ∈ Q≥0〈[Zg], α1, β1, . . . , α[g/2], β[g/2]〉,

which shows that KS−g
is big and thus proves Theorem 0.4.

For g = 12, there is no Brill-Noether divisor, and the reasoning above

shows that in order to conclude that S−12 is of general type, one needs an

effective divisor D12 of slope s(D12) < 6 + 12
13 , that is, a counterexample to the

Slope Conjecture on effective divisors onM12; see [FP05]. We define the locus

D12 :=
{

[C] ∈M12 : ∃L ∈W 4
14(C)

with Sym2H0(C,L)
µ0(L)−→ H0(C,L⊗2) not injective

}
;

that is, points in D12 correspond to curves that admit an embedding C⊂P4

with deg(C) = 14 such that H0(P4, IC/P4(2)) 6= 0. The computation of the

class of the closure D12 ⊂ M12 is carried out in Section 6, and it turns out

that s(D12) = 4415
642 < 6 + 12

13 . In particular, D12 violates the Slope Conjecture

on M12, and as such, it contains the locus

K12 := {[C] ∈M12 : C lies on a K3 surface}.
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We discuss the structure of the paper. Section 1 is of preliminary nature

and establishes basic facts about the moduli space S−g that will be used both

in Section 3 in the course of proving Theorem 0.2 as well as in Section 5,

when calculating the class [Zg]. In Section 2, we prove Theorem 0.1, whereas

Section 3 is devoted to the construction of Mukai models for S−g and to estab-

lishing Theorem 0.2. The proof of Theorems 0.4 for g > 12 is completed in

Section 5. Finally, in Section 6 we construct two counterexamples to the Slope

Conjecture on M12, which implies that S−12 is of general type.

1. Families of stable spin curves

We briefly review some relevant facts about the moduli space S−g that will

be used throughout the paper; see also [Cor89], [Far10], [Lud10] for details. As

a matter of notation, we follow the convention set in [FL10]; if M is a Deligne-

Mumford stack, then we denote by M its associated coarse moduli space.

Slightly abusing notation, if C is a smooth curve of genus g and η ∈ Picg−1(C)

an isolated odd theta characteristic, that is, satisfying h0(C, η) = 1, we define

the support supp(η) := supp(D), where D ∈ Cg−1 is the unique effective divisor

with η = OC(D). An isolated theta characteristic η is said to be nonreduced

if supp(η) is a nonreduced divisor on C.

A connected, nodal curve X is called quasi-stable if for any component

E ⊂ X that is isomorphic to P1, one has that (i) kE := |E∩(X − E)| ≥ 2, and

(ii) any two rational components E,E′ ⊂ X with kE = kE′ ≥ 2 are disjoint.

Such irreducible components are called exceptional. We recall the following

definition from [Cor89]:

Definition 1.1. A stable spin curve of genus g consists of a triple (X, η, β),

where X is a genus g quasi-stable curve, η ∈ Picg−1(X) is a line bundle of

total degree g − 1 with ηE = OE(1) for all exceptional components E ⊂ X,

and β : η⊗2 → ωX is a homomorphism of sheaves that is generically nonzero

along each nonexceptional component of X.

Sometimes the morphism β ∈ PH0(X,ωX ⊗ η⊗(−2)) appearing in Defini-

tion 1.1 is uniquely determined by X and η and is accordingly dropped from

the notation. In such a case, to ease notation, we view spin curves as pairs

[X, η] ∈ Sg. It follows from the definition that if (X, η, β) is a spin curve with

exceptional components E1, . . . , Er and {pi, qi} = Ei∩(X − Ei) for i = 1, . . . , r,

then βEi = 0. Moreover, if ‹X := X −⋃ri=1Ei (viewed as a subcurve of X),

then we have an isomorphism of sheaves η⊗2

X̃

∼→ ω
X̃
.

We denote by Sg the nonsingular Deligne-Mumford stack of spin curves of

genus g. Because the parity h0(X, η) mod 2 of a spin curve is invariant under

deformations [Mum71], the stack Sg splits into two connected components S
+
g
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and S
−
g of relative degree 2g−1(2g+1) and 2g−1(2g−1) respectively. It is proved

in [Cor89] that the coarse moduli space of Sg is isomorphic to the normalization

of Mg in the function field of Sg. There is a proper morphism π : Sg →Mg

given by π([X, η, β]) := [st(X)], where st(X) denotes the stable model of X

obtained by contracting all exceptional components.

1.1. Spin curves of compact type. We recall the description of the pull-

back boundary divisors π∗(∆i) for 1 ≤ i ≤ [g/2]. We choose a stable spin curve

[X, η, β] ∈ π−1([C ∪y D]), where [C, y] ∈Mi,1 and [D, y] ∈Mg−i,1. Then nec-

essarily X := C ∪y1 E ∪y2 D, where E is an exceptional component such that

C ∩ E = {y1} and D ∩ E = {y2}. Moreover, η =
Ä
ηC , ηD, ηE = OE(1)

ä
∈

Picg−1(X). Since βE = 0, it follows that η⊗2
C = KC and η⊗2

D = KD; that is, ηC
and ηD are “honest” theta characteristics on C and D respectively. The condi-

tion h0(X, η) ≡ 1 mod 2 implies that ηC and ηD must have opposite parities.

We denote by Ai ⊂ S
−
g the closure in S−g of the locus corresponding to pairs

([C, ηC , y], [D, ηD, y]) ∈ S−i,1 × S
+
g−i,1

and by Bi ⊂ S
−
g the closure in S−g of the locus corresponding to pairs

([C, ηC , y], [D, ηD, y]) ∈ S+
i,1 × S

−
g−i,1.

One has the relation π∗(∆i)=Ai+Bi, and clearly

deg(Ai/∆i)=2g−2(2i − 1)(2g−i + 1), deg(Bi/∆i) = 2g−2(2i + 1)(2g−i − 1).

One denotes αi := [Ai], βi := [Bi] ∈ Pic(S−g ).

1.2. Spin curves with an irreducible stable model. In order to describe

π∗(∆0) we pick a point [X, η, β] such that st(X) = Cyq := C/y ∼ q, where

[C, y, q] ∈Mg−1,2 is a general point of ∆0. Unlike the case of curves of compact

type, here there are two possibilities depending on whether X possesses an

exceptional component or not. If X = Cyq and ηC := ν∗(η) where ν : C → X

denotes the normalization map, then η⊗2
C = KC(y + q). For each choice of

ηC ∈ Picg−1(C) as above, there is precisely one choice of gluing the fibres

ηC(y) and ηC(q) such that h0(X, η) ≡ 1 mod 2. We denote by A0 the closure

in S−g of the locus of those points [Cyq, ηC ∈
»
KC(y + q)] with ηC(y) and

ηC(q) glued as above. One has that deg(A0/∆0) = 22g−2.

If X = C∪{y,q}E where E is an exceptional component, then since βE = 0,

it follows that βC ∈ H0(C,ωX|C ⊗ η
⊗(−2)
C ) must vanish at both y and q and

then for degree reasons ηC := η ⊗ OC is a theta characteristic on C. The

condition H0(X,ω) ∼= H0(C,ωC) ≡ 1 mod 2 implies that [C, ηC ] ∈ S−g−1. In

an étale neighborhood of a point [X, η, β], the covering π is given by

(τ1, τ2, . . . , τ3g−3) 7→ (τ2
1 , τ2, . . . , τ3g−3),
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where one identifies C3g−3
τ with the versal deformation space of (X, η, β) and

the hyperplane (τ1 = 0) ⊂ C3g−3
τ denotes the locus of spin curves where the

exceptional component E persists. This discussion shows that π is simply

branched over ∆0, and we denote the ramification divisor by B0 ⊂ S
−
g , that is,

the closure of the locus of spin curves [C∪{y,q}E, (C, ηC) ∈ S−g−1, ηE = OE(1)].

If α0 = [A0] ∈ Pic(S−g ) and β0 = [B0] ∈ Pic(S−g ), we then have the relation

(1) π∗(δ0) = α0 + 2β0.

We define several test curves in the boundary of S−g that will be later used

to compute divisor classes on the moduli space.

1.3. The family Fi. We fix 1 ≤ i ≤ [g/2] and construct a covering family

for the boundary divisor Ai. We fix general curves [C] ∈ Mi and [D, q] ∈
Mg−i,1 as well as an odd theta characteristic η−C on C and an even theta

characteristic η+
D on D. If E ∼= P1 is a fixed exceptional component, we define

the family of spin curves

Fi :=
{

[C ∪y ∪E ∪q D, η] : ηC = η−C , ηE = OE(1), ηD = η+
D,

E ∩ C = {y}, E ∩D = {q}
}
y∈C

.

One has that Fi · βi = 0 and then Fi · αi = −2i + 2; furthermore, Fi has

intersection number zero with the remaining generators of Pic(S−g ).

1.4. The family Gi. As above, we fix an integer 1 ≤ i ≤ [g/2] and curves

[C] ∈ Mi and [D, q] ∈ Mg−i,1. This time we choose an even theta character-

istic η+
C on C and an odd theta characteristic η−D on D. The following family

covers the divisor Bi:

Gi :=
{

[C ∪y ∪E ∪q D, η] : ηC = η+
C , ηE = OE(1),

ηD = η−D, E ∩ C = {y}, E ∩D = {q}
}
y∈C

.

Clearly Gi · αi = 0, Gi · βi = 2− 2i and Gi · λ = Gi · αj = Gi · βj = 0 for j 6= i.

1.5. Two elliptic pencils. The boundary divisor ∆1 ⊂ Mg is covered by

a standard elliptic pencil R obtained by attaching to a fixed general pointed

curve [C, y] ∈Mg−1,1 a pencil of plane cubic curves {Eλ = f−1(λ)}λ∈P1 where

f : Bl9(P2) → P1. The points of attachment on the elliptic pencil are given

by a section σ : P1 → Bl9(P2) given by one of the base points of the pencil

of cubics. We lift this pencil in two possible ways to the space S−g , depending

on the parity of the theta characteristic on the varying elliptic tail. We fix an

even theta characteristic η+
C ∈ Picg−2(C), and E ∼= P1 will again denote an
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exceptional component. We define the family

F0 :=
{

[C ∪q E ∪σ(λ) f
−1(λ), ηC = η+

C , ηE = OE(1),

ηf−1(λ) = Of−1(λ)] : λ ∈ P1
}
⊂ S−g .

Since F0 ∩B1 = ∅, we find that F0 · α1 = π∗(F0) · δ1 = −1. Similarly, F0 · λ =

π∗(F0) · λ = 1 and obviously F0 · αi = F0 · βi = 0 for 2 ≤ i ≤ [g/2]. For each

of the 12 points λ∞ ∈ P1 corresponding to singular fibres of R, the associated

ηλ∞ ∈ Pic
g−1

(C ∪E ∪ f−1(λ∞)) are actual line bundles on C ∪E ∪ f−1(λ∞);

that is, we do not have to blow up the extra node. Thus we obtain that

F0 · β0 = 0 and then F0 · α0 = π∗(F0) · δ0 = 12.

A second lift of the elliptic pencil to S−g is obtained by choosing an odd

theta characteristic η−C ∈ Picg−2(C), whereas on Eλ one takes each of the three

possible even theta characteristics; that is,

G0 :=
{î
C ∪q E ∪σ(λ) f

−1(λ), ηC = η−C ,

ηE = OE(1), ηf−1(λ) ∈ γ−1[f−1(λ)]
ó

: λ ∈ P1
}
,

where γ : S+
1,1 →M1,1 is the projection of degree 3. Since π∗(G0) = 3R ⊂ ∆1,

we obtain that G0 ·λ=3. Obviously G0 ·α1 =0, and hence G0 ·β1 =π∗(G0) · δ1

= −3. The map γ : S+
1,1 →M1,1 is simply ramified over the point correspond-

ing to j-invariant ∞. Hence, G0 · α0 = 12 and G0 · β0 = 12.

1.6. A covering family in B0. We fix a general pointed spin curve [C, q, η−C ]

∈ S−g−1,1, and as usual E ∼= P1 denotes an exceptional component. We con-

struct a family of spin curves H0 ⊂ B0 with general memberî
C ∪{y,q} E, ηC = η−C , ηE = OE(1)

ó
y∈C ⊂ S

−
g

and with special fibre corresponding to y = q being the odd spin curve with

support

C ∪q E′ ∪q′ E2 ∪{y2,q2} E,

where E′ and E2 are both smooth rational curves and y2, q2 ∈ E, E2 ∩ E =

{y2, q2}, while E2 ∩E′ = {q′}. The stable model of this curve is C ∪q
Ä

E2
y2∼q2

ä
,

having an elliptic tail of j-invariant ∞. The underlying line bundle η ∈
Picg−1(C ∪ E′ ∪ E2 ∪ E) satisfies ηC = η−C , ηE′ = OE′(1), ηE = OE(1) and,

for degree reasons, ηE2 = OE2(−1). We have the following relations for the

numerical parameters of H0:

H0 · λ = 0, H0 · β0 = 1− g, H0 · α0 = 0, H0 · β1 = 1, H0 · α1 = 0.

(The only nontrivial calculation here uses that H0 ·β0 = π∗(H0) · δ0/2 = 1− g;

cf. [HM82].)
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2. Theta pencils on K3 surfaces

In this section we prove Theorem 0.1. As usual, we denote by Fg the

moduli space of polarized K3 surfaces [X,H], where X is a K3 surface and

H ∈ Pic(X) is a (primitive) polarization of degree H2 = 2g − 2; see [Muk96].

For an integer 0 ≤ δ ≤ g, we introduce the universal Severi variety consisting

of pairs

Vg,δ :=
{Ä

[X,H], C
ä

: [X,H] ∈ Fg and

C ∈ |OX(H)| is an integral δ − nodal curve
}
.

If σ : Vg,δ → Fg is the obvious projection, we set Vg,δ(|H|) := σ−1([X,H]). It

is known that every irreducible component of Vg,δ has dimension 19 + g − δ
and maps dominantly onto Fg. It is conjectured that Vg,δ is irreducible. This

is established in [CD12] in the range g ≤ 9 and g = 11.

For a point [X,H] ∈ Fg, we consider a pencil of curves P ⊂ |H|, and we

denote by Z the base locus of P . We assume that a general member C ∈ P is

a nodal integral curve. It follows that C −Z is smooth and that S := sing(C)

is a, possibly empty, subset of Z. Let ε : X ′ := BlS(X) → X be the blow-up

of X along the locus S of nodes, and denote by E the exceptional divisor of ε.

Let

P ′ ⊂ |ε∗H ⊗OX′(−2E)|

be the strict transform of P by ε, and let Z ′ be its base locus. Since a general

member C ∈ P is nodal precisely along S, a general curve C ′ ∈ P ′ is smooth.

We view h′ := Z ′+E ·C ′ as a divisor on the smooth curve C ′. By the adjunction

formula, h′ ∈ |ωC′ |.

Definition 2.1. We say that P is a theta pencil if h′ has even multiplicity

at each of its points; that is, OC′(1
2h
′) is an odd theta characteristic for every

smooth curve C ′ ∈ P ′.

The definition implies that the intersection multiplicity of two curves in

P is even at each point p ∈ supp(Z). For every pair [X,H] ∈ Fg, we have that

Proposition 2.2. Every smooth curve C ∈ |H| belongs to a theta pencil.

Proof. Let η be an odd theta characteristic with h0(C, η) = 1, and write

η = OC(d), with d ∈ Cg−1. Then PH0
Ä
X, Id/X(H)

ä
is a theta pencil. �

We can reverse the construction of a theta pencil, starting instead with

the normalization of a nodal section of a K3 surface. Suppose

t := [C ′, x1, y1, . . . , xδ, yδ, η] ∈Mg−δ,2δ ×Mg−δ S
−
g−δ
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is a 2δ-pointed curve C ′ together with an isolated odd theta characteristic η

such that

(i) h0
(
C ′, η

Ä
−∑δ

i=1(xi + yi)
ä)
≥ 1; we write η = OC′

Ä∑δ
i=1(xi + yi) + d

ä
,

where d ∈ C ′g−3δ−1 is the residual divisor.

(ii) There exists a polarized K3 surface [X,H] ∈ Fg and a map f : C ′ → X,

such that f(xi) = f(yi) = pi for all i = 1, . . . , δ , f∗(C
′) ∈ |H| and,

moreover, f : C ′ → C is the normalization map of the δ-nodal curve

C := f(C ′).

If ε : X ′ → X is the blow-up of X at the points p1, . . . , pδ and E ⊂ X ′ denotes

the exceptional divisor, we may view C ′ ⊂ X ′ as a smooth curve in the linear

system |ε∗H ⊗OX′(−2E)|. Note that

OC′(C ′) = KC′

(
−

δ∑
i=1

(xi + yi)
)

= η ⊗OC′(d).

We pass to cohomology in the following short exact sequences:

0 −→ OX′ −→ Id/X′(C ′) −→ OC′(C ′)(−d) −→ 0

and

0 −→ OX′ −→ I2d+
∑δ

i=1
(xi+yi)/X′

(C ′) −→ OC′ −→ 0,

respectively, in order to obtain that∣∣∣Id/X′(C ′)∣∣∣ =
∣∣∣I2d/X′(C

′)
∣∣∣ =

∣∣∣I
2d+
∑δ

i=1
(xi+yi)/X′

(C ′)
∣∣∣ = P1

is a theta pencil of δ-nodal curves on X. The link between this description of

a theta pencil and the one provided by Definition 2.1 is given by the relation

h′ = 2E · C ′ + 2d.

IfK−g−δ,δ⊂Mg−δ,2δ×Mg−δS
−
g−δ is the locus of elements [C, (xi, yi)i=1,...,δ, η]

satisfying conditions (i) and (ii), the previous discussion proves the following:

Proposition 2.3. Every irreducible component of K−g−δ,δ is uniruled.

This implies the following consequence of Proposition 3.4 to be established

in the next section:

Theorem 2.4. We set g ≤ 9 and 0 ≤ δ ≤ (g + 1)/3. Then the variety

K−g−δ,δ is nonempty, uniruled, and dominates the spin moduli space S−g−δ .

Definition 2.5. We say that a theta pencil P is δ-nodal if its general mem-

ber is a δ-nodal curve; that is, |S| = δ. We say that P is regular if the support

supp(Z) of its base locus consists of g − 1 distinct points.

A δ-nodal theta pencil P on a K3 surface X induces a map

m′ : P ′ ∼= P1 → S−g−δ,
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obtained by sending a general C ′∈P ′ to the moduli point
î
C ′,OC′

Ä
1
2h
′
äó
∈S−g−δ.

We note in passing that a theta pencil also induces a map m : P ′ → S−g defined

as follows. Consider the pencil E+P ′ having fixed component E. The general

member is a quasi-stable curve D ∈ (E + P ′) of arithmetic genus g, with

exceptional components {Ei}i=1,...,δ corresponding to the exceptional divisors

of the blow-up ε : X ′ → X. Then

m(C) :=
[
C ∪

Ä
∪δi=1Ei

ä
, ηEi = OEi(1), ηC′ = OC′

Ä1

2
h′
ä]
∈ S−g .

These pencils will be used extensively in the proof of Theorem 0.2.

Assume that [X,H]∈Fg is a general point; in particular, Pic(X)=Z ·H.

Then every smooth curve C ∈ |H| is Brill-Noether general (see [Laz86]), which

implies that h0(C, η) = 1 for every odd theta characteristic η on C. Theta pen-

cils with smooth general member define a locally closed subset in the Grassman-

nian G(2, H0(S,OS(H)) of lines in |H|. Let Θ−(X,H) be its Zariski closure

in G(2, H0(S,OS(H)).

Proposition 2.6. Θ−(X,H) is pure of dimension g − 1.

Proof. Let f : P−(X,H) → |H| be the projection map from the pro-

jectivized universal bundle over Θ−(X,H), and let Vg,0(|H|) ⊂ |H| be the

open locus of smooth curves. Under our assumptions f has finite fibres over

Vg,0(|H|). Thus P−(X,H) has pure dimension g, and Θ−(X,H) has pure

dimension g − 1. �

For a general (thus necessarily regular) theta pencil P ∈ Θ−(X,H), we

study in more detail the map m : P ′ → S−g . Let ∆(X,H) ⊂ |H| be the

discriminant locus. Since [X,H] ∈ Fg is general, ∆(X,H) is an integral hy-

persurface parametrizing the singular elements of |H|. It is well known that

deg ∆(X,H) = 6g + 18.

Proposition 2.7. Let P ∈ Θ−(X,H) be a general theta pencil with base

locus Z . Then every singular curve C ∈ P is nodal. Furthermore,

P ·∆(X,H) = 2(a1 + · · ·+ ag−1) + b1 + · · ·+ b4g+20,

where ai is the parameter point of a curve Ai ∈ P having a point of Z as its

only singularity and bj is the parameter point of a curve Bj ∈ P such that

sing(Bj) ⊂ X − Z . Accordingly,

P · α0 = 4g + 20 and P · β0 = g − 1.

Proof. We set supp(Z) = {p1, . . . , pg−1}. Since P is regular, for i =

1, . . . , g − 1, there exists a unique curve Ai ∈ P singular at pi. Moreover, for

degree reasons, pi is the unique double point of Ai. Each pencil T ⊂ |H| having

pi in its base locus is a tangent line to ∆(X,H) at Ai. Hence the intersection
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multiplicity
Ä
P ·∆(X,H)

ä
Ai

is at least 2. It follows that the assertion to prove

is open on any family of pairs (P, [X,H]) such that P ∈ Θ−(X,H). Since Fg
is irreducible, it suffices to produce one polarized K3 surface (X,H) satisfying

this condition.

For this purpose, we use hyperelliptic polarized K3 surfaces (X,H). Con-

sider a rational normal scroll F := Fa ⊂ Pg, where a ∈ {0, 1} and g = 2n+1−a.

A general section R ∈ |OF(1)| is a rational normal curve of degree g− 1. From

the exact sequence

0→ OF(−2KF −R)→ OF(−2KF)→ OR(−2KF)→ 0,

one finds that there exist a smooth curve B ∈ | − 2KF| and distinct points

o1, . . . , og−1 ∈ B such that the pencil Q ⊂ |OF(R)| of hyperplane sections

through o1, . . . , og−1 cuts out a pencil with simple ramification on B.

Let ρ : X → F be the double covering of F branched along B. Then

X is a K3 surface and |H| := |OX(ρ∗R)| is a hyperelliptic linear system on

X of genus g. Then ρ∗(Q) is a regular theta pencil on X with the required

properties. �

Since theta pencils cover S−g when g ≤ 11 and g 6= 10, the following

consequence of Proposition 2.7 is very suggestive concerning the variation of

κ(S−g ) as g increases; in particular, in highlighting the significance of the case

g = 12.

Corollary 2.8. With the same notation as above, we have that P ·KS−g
=2g−24. In particular, general theta pencils of genus g<12 are KS−g

-negative.

Proof. Use that (P · λ)S−g
= (π∗(P ) · λ)Mg

= g + 1, P · α0 = 4g + 20 and

P · β0 = g − 1. �

Proposition 2.9. The locally closed set of nodal theta pencils in Θ−(X,H)

is nonempty. If P is a general nodal theta pencil, then a general curve C ∈ P
has one node as its only singularity.

Proof. We keep the notation from the previous proof and construct a

smooth curve B ∈ |− 2KF|. We choose general points o, o1, . . . , og−3 ∈ B such

that the pencil Q ⊂ |OF(R)| consisting of hyperplane sections passing through

o1 + · · · + og−3 + 2o cuts out a pencil with simple ramification on B. Then

ρ∗(Q) is a nodal theta pencil with the required properties. �

Theorem 2.10. S−g is uniruled for g ≤ 11.

Proof. By [M1-4], a general curve [C] ∈Mg is embedded in a K3 surface

X precisely when g ≤ 9 or g = 11. By Proposition 2.7, C belongs to a theta
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pencil P ⊂ |OX(C)| (which, moreover, is KS−g
-negative). Thus the statement

follows for g ≤ 9 and g = 11. To settle the case of S−10, we show that K−10,1

is nonempty and irreducible. Indeed, then by Proposition 2.3 it follows that

K−10,1 is uniruled, and since the projection map K−10,1 → S
−
10 is finite, K−10,1

dominates S−10. This implies that S−10 is uniruled.

The variety K−10,1 is an open subvariety of the irreducible locus

U :=
{Ä

[C, x, y], η
ä
∈M10,2 ×M10 S−10 : h0(C, η ⊗OC(−x− y)) ≥ 1

}
,

and hence it is irreducible as well. To establish its nonemptiness, it suffices

to produce an example of an element
Ä
[C, x, y], η]

ä
∈ U such that the curve

Cxy can be embedded in a K3 surface. We specialize to the case when C is

hyperelliptic and x, y ∈ C are distinct Weierstrass points, in which case one

can choose η = OC(x + y + w1 + · · · + w7), where wi are distinct Weierstrass

points in C − {x, y}. Again we let ρ : X → F ⊂ P11 be a hyperelliptic K3

surface branched along B ∈ | − 2KF|, with polarization H := ρ∗OF(1), so that

[X,H] ∈ F11. We set C := ρ∗(R), where R ∈ |OF(1)| is a rational normal

curve of degree 10. We need to ensure that C is 1-nodal, with its node p ∈ C
such that if f : C ′ → C denotes the normalization map, then both points in

f−1(p) are Weierstrass points. This is satisfied once we choose R in such a way

that B ·R ≥ 2ρ(p). �

3. Unirationality of S−g for g ≤ 8

To prove the claimed unirationality results, we use that a general curve

[C] ∈ Mg has a sextic plane model when g ≤ 6, or is a linear section of a

Mukai variety when 7 ≤ g ≤ 9. We start with the easy case of small genus

before moving on to the more substantial study of Mukai models.

Theorem 3.1. S−g is unirational for g ≤ 6.

Proof. We fix 3 ≤ g ≤ 6 and a general odd spin curve [C, η] ∈ S−g . Write

η = OC(d), where d ∈ Cg−1. Then choose a general linear system A ∈ G2
6(C).

The induced morphism φA : C → Γ ⊂ P2 realizes C as a sextic with δ = 10−g
nodes. By choosing [C, η] and A generically, we may assume that supp(d)

consists of g − 1 points and is disjoint from φ−1
A (sing(Γ)). Accordingly, we

identify d with its image φA(d) on Γ. By adjunction,

OC(2d) = ωC = OC(3)
(
−φ−1

A (sing(Γ))
)
,

therefore the unique plane cubic E ∈ |OP2(3)| passing through the 10−g nodes

of Γ as well as through the g − 1 points of supp(d) is actually tangent to Γ

along supp(d).
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We denote by U ⊂ (P2)9 the open set parametrizing general 9-tuples of

points (x̄, ȳ) := (x1, . . . , xδ, y1, . . . , yg−1), where g = 10− δ. Over U lies a pro-

jective bundle P whose fibre at (x̄, ȳ) is the linear system of plane sextics Γ that

are singular along x̄ and totally tangent to Ex̄,ȳ along ȳ. Here Ex̄,ȳ ∈ |OP2(3)|
denotes the unique plane cubic through the points x1, . . . , xδ, y1, . . . , yg−1.

Then P is a rational variety, and by the previous remark, it dominates S−g .

Thus S−g is unirational. �

We assume now that 7 ≤ g ≤ 10 and denote by Vg ⊂ PNg the rational

homogeneous space defined as follows (see [Muk93], [Muk95], [Muk10]):

– V10: the 5-dimensional varietyG2/P ⊂P13corresponding to the Lie groupG2;

– V9: the Plücker embedding of the symplectic Grassmannian SG(3, 6) ⊂ P13;

– V8: the Plücker embedding of the Grassmannian G(2, 6) ⊂ P14;

– V7: the Plücker embedding of the orthogonal Grassmannian OG(5, 10)⊂P15.

Note that Ng = g + dim(Vg)− 2. Inside the Hilbert scheme Hilb(Vg) of curvi-

linear sections of Vg, we consider the open set Ug classifying curves C ⊂ Vg
such that

• C is a nodal integral section of Vg by a linear space of dimension g − 1;

• the residue map ρ : H0(C,ωC)→ H0(C,ωC ⊗Osing(C)) is surjective.

A general point [C ↪→ Pg−1] ∈ Ug is a smooth, canonical curve of genus g.

Mukai’s results [Muk93], [Muk95], [Muk10] imply that C has general moduli

if g ≤ 9. For each 0 ≤ δ ≤ g − 1, we define the locally closed sets of δ-nodal

curvilinear sections of Vg,

Ug,δ := {[C ↪→ Pg−1] ∈ Ug : |sing(C)| = δ}.
Proposition 3.2. For g ≤ 9, the variety Ug,δ is smooth of pure codimen-

sion δ in Ug .

Proof. A general 2-dimensional linear section of Vg is a polarized K3 sur-

face [X,H] ∈ Fg with general moduli. It is known [Tan82] that δ-nodal hy-

perplane sections of S form a pure (g− δ)-dimensional family Vg,δ(|H|) ⊂ |H|.
Thus, Ug,δ 6= ∅ and codim(Ug,δ,Ug) ≤ δ. We fix a curve [C] ∈ Ug,δ and then con-

sider the normal bundle NC of C in Vg and the map r : H0(C,NC)→ Osing(C)

induced by the exact sequence

(2) 0→ TC → TVg ⊗OC → NC
r→ T 1

C → 0,

where T 1
C = Osing(C) is the Lichtenbaum-Schlessinger sheaf of C classifying the

deformations of sing(C). Using the identification T[C](Ug) = H0(C,NC), it is

known that Ker(r) is isomorphic to T[C](Ug,δ); see, e.g., [HH85]. Furthermore,

NC
∼= ω

⊕(Ng−g+1)
C and r = ρ⊕(Ng−g+1), where ρ : H0(C,ωC)→ H0(C,Osing(C))

is the map given by the residues at the nodes. Since ρ is surjective, Ker(r) has

codimension δ inside T[C](Ug) and the statement follows. �
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The automorphism group Aut(Vg) acts in the natural way on Hilb(Vg).

The locus of singular curvilinear sections [C] ∈ Ug is an Aut(Vg)-invariant

divisor that misses a general point of Ug; therefore, U ss
g := Ug ∩Hilb(Vg)

ss 6= ∅.
Since ρ(Vg) = 1, the notion of stability is independent of the polarization. The

(quasi-projective) GIT-quotient

Mg := U ss
g //Aut(Vg)

is said to be the Mukai model of Mg. We have the following commutative

diagram:

U ss
g −−−−→ Ug

ug

y mg

y
Mg

φg−−−−→ Mg,

where ug : U ss
g → Mg is the quotient map and mg : Ug → Mg is the moduli

map. The general fibre of mg is an Aut(Vg)-orbit. Summarizing results from

[Muk93], [Muk95], [Muk10], we state the following:

Theorem 3.3. For 7 ≤ g ≤ 9, the map φg : Mg 99KMg is a birational

isomorphism. The inverse map φ−1
g contracts the (unique) Brill-Noether di-

visor Mr
g,d ⊂ Mg of curves with a grd when ρ(g, r, d) = −1, as well as the

boundary divisors ∆i with 1 ≤ i ≤ [g/2].

Next, let ∆δ
g ⊂ ∆0 ⊂ Mg be the locus of integral stable curves of arith-

metic genus g with δ nodes. Then ∆δ
g is irreducible of codimension δ in Mg.

Lemma 3.4. Set 7 ≤ g ≤ 9, and let D be any irreducible component

of Ug,δ . Then the restriction morphism mg|D : D → ∆δ
g is dominant. In

particular, a general δ-nodal curve [C] ∈ ∆δ
g lies on a smooth K3 surface.

Proof. Since Ug,δ is smooth, D is a connected component of Ug,δ; that is,

for [C] ∈ D, the tangent spaces to D and to Ug,δ coincide. We consider again

the sequence (2):

0→ TC → TVg ⊗OC → N ′C → 0,

whereN ′C := Im {TVg⊗OC → NC} is the equisingular sheaf of C. We have that

H0(C,N ′C) = Ker(r). As remarked in the proof of Proposition 3.2, H0(C,N ′C)

is the tangent space T[C](Ug,δ) and its codimension in H0(C,NC) equals δ.

Consider the coboundary map ∂ : H0(C,N ′C) → H1(C, TC). Since H1(C, TC)

classifies topologically trivial deformations of the nodal curve C, the image

Im(∂) is isomorphic to the image of the tangent map dmg|Ug,δ at [C]. On the

other hand, H0(C, TVg ⊗OC) is the tangent space to the orbit of C under the

action of Aut(Vg). This is reduced and the stabilizer of C, being a subgroup
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of Aut(C), is finite. Hence we obtain

dim Im(∂) = h0(C,NC)− δ − dim Aut(Vg) = 3g − 3− δ.
Since ∆δ

g has codimension δ in Mg, it follows that mg|D is dominant. �

Proposition 3.5. Fix 0 ≤ δ ≤ g − 1 and D an irreducible component of

Ug,δ . Then Dss 6= ∅.

Proof. It suffices to construct an Aut(Vg)-invariant divisor that does not

contain D. We carry out the construction when g = 8, the remaining cases

being largely similar.

We fix a complex vector space V ∼= C6, and then V8 := G(2, V ) ⊂ P(∧2V )

and U8 ⊂ G(8,∧2V ). For a projective 7-plane Λ ∈ G(8,∧2V ), we denote the

set of containing hyperplanes FΛ := {H ∈ P(∧2V )∨ : H ⊃ Λ} and define the

Aut(V8)-invariant divisor

Z := {Λ ∈ U8 : FΛ ∩G(2, V ∨) ⊂ P(∧2V )∨ is not a transverse intersection}.
We claim that D * Z. Indeed, let us fix a general point [C ↪→ Λ] ∈ D, where

Λ = 〈C〉, corresponding to a general curve [C] ∈ ∆δ
g. In particular, we may

assume that C lies outside the closure in Mg of curves violating the Petri

theorem. Thus C possesses no generalized g2
7’s, that is, W

2
7(C) = ∅, whereas

W
1
5(C) ⊂ Pic(C) consists of locally free pencils satisfying the Petri condition.

We recall from [Muk95] the construction of φ−1
g [C], which generalizes to ir-

reducible Petri general nodal curves: There exists a unique rank two vector

bundle E on C with det(E) = ωC and h0(C,E) = 6. This appears as an

extension
0→ A→ E → ωC ⊗A∨ → 0

for every A ∈ W
1
5(C). Then one sets φ−1

g ([C]) := [C ↪→ G(2, H0(C,E)∨)].

Moreover,

FΛ = P
Ä
Ker{∧2H0(C,E)→ H0(C,ωC)}

ä
.

In particular, the intersection FΛ ∩G(2, H0(C,E)) corresponds to the pencils

A ∈ W 1
5(C). Since C is Petri general, W

1
5(C) is a smooth scheme, and thus

[C ↪→ Λ] /∈ Z. �

We consider the quotient Mg,δ := U ss
g,δ//Aut(Vg) and the induced map

φg,δ : Mg,δ → ∆δ
g.

Theorem 3.6. The variety Mg,δ is irreducible, and φg,δ is a birational

isomorphism.

Proof. By Lemma 3.4, any irreducible component Y of Mg,δ dominates

∆δ
g. On the other hand, φg : Mg →Mg is a birational morphism and φg,δ =

φg|Mg,δ
. Since Mg is normal, each fibre of φg is connected. Thus Mg,δ is

irreducible and deg(φg,δ) = 1. �
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We lift our construction to the space of odd spin curves. Keeping 7≤g≤9,

we consider the Hilbert scheme Hilb2g−2(Vg) of 0-dimensional subschemes of

Vg having length 2g − 2.

Definition 3.7. Let Zg−1 ⊂ Hilb2g−2(Vg) be the parameter space of those

0-dimensional schemes Z ⊂ Vg such that

(1) Z is a hyperplane section of a smooth curve section [C] ∈ Ug,
(2) Z has multiplicity 2 at each point of its support,

(3) supp(Z) consists of g − 1 linearly independent points.

The space Zg−1 classifies clusters of length 2g−2 on Vg. The cycle associ-

ated under the Hilbert-Chow morphism to a general point of Zg−1 corresponds

to a 0-cycle of the form 2p1+· · ·+2pg−1 ∈ Sym2g−2(Vg) satisfying the condition

dim 〈p1, . . . , pg−1〉 ∩ Tpi(Vg) ≥ 1, for i = 1, . . . , g − 1.

Clearly dim(Zg−1) = dim G(g−1, Ng)−(Ng−g+1) = (g−1)(Ng−g+1). We

consider the incidence correspondence between clusters and curvilinear sections

of Vg,

U−g := {(C,Z) ∈ Ug × Zg−1 : Z ⊂ C}.

The first projection map π1 : U−g → Ug is finite of degree 2g−1(2g − 1); its fibre

at a general point [C] ∈ Ug is in bijective correspondence with the set of odd

theta characteristics of C. In particular, both U−g and Zg−1 are irreducible

varieties. The spin moduli map

m−g : U−g 99K S
−
g

is defined by m−g (C,Z) := [C,OC(Z/2)] for each point (C,Z) ∈ U−g corre-

sponding to a smooth curve C. Later we shall extend the rational map m−g to

a regular map over U−g . It is clear that m−g induces a map φ−g : Q−g 99K S
−
g

from the quotient

Q−g := π−1
1 (U ss

g )//Aut(Vg).

We may think of Q−g as being the Mukai model of S−g . If π− : Q−g → Mg is

the map induced by π at the level of Mukai models, we have a commutative

diagram

Q−g
φ−g−−−−→ S−g

π−

y π

y
Mg

φg−−−−→ Mg.

Proposition 3.8. The spin Mukai model Q−g is irreducible and φ−g :

Q−g → S
−
g is a birational isomorphism.
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One extends the rational map m−g (therefore φ−g as well) to a regular

morphism over the locus of points with nodal underlying curve section of

Vg as follows. Let (C,Z) ∈ U−g be an arbitrary point, and set supp(Z) :=

{p1, . . . , pg−1}. Assume that sing(C)∩supp(Z) = {p1, . . . , pδ}, where δ ≤ g−1.

Consider the partial normalization ν : N → C at the points p1, . . . , pδ. In par-

ticular, there exists an effective Cartier divisor e on C of degree g− δ− 1 such

that 2e = Z ∩ (C − sing(C)). Set ε := ON (ν∗e). Then m−g (C,Z) is the spin

curve [X, η] ∈ S−g defined as follows.

Definition 3.9. We describe the following stable spin curve:

(1) X := N ∪ E1 ∪ · · · ∪ Eδ, where Ei = P1 for i = 1, . . . , δ.

(2) Ei ∩N = ν−1(pi), for every node pi ∈ sing(C) ∩ supp(Z).

(3) η ⊗ON ∼= ε and η ⊗OEi ∼= OP1(1).

We note thatN is smooth of genus g−δ precisely when sing(C) ⊂ supp(Z).

In this case ε∈Picg−1−δ(N) is a theta characteristic and h0(N, ε)=1. Observe

also that there is an isomorphism

H0(X,ωX ⊗ η⊗(−2)) ∼= H0(N,ωN ⊗ ε⊗(−2)) = C,

so the spin curve in Definition 3.9 is uniquely determined by specifying X

and η.

For 1 ≤ δ ≤ g − 1, we refine our incidence correspondence and consider

U−g,δ :=
{

(C,Z) ∈ U−g : sing(C) ⊂ supp(Z), |sing(C)| = δ
}
.

We denote by B−g,δ the closure of m−g (U−g,δ) inside S−g ; this is the closure in S−g
of the locus of δ-nodal spin curves having δ exceptional components. Clearly

B−g,δ is an irreducible component of π−1(∆δ
g) and it is birationally isomorphic

to Sg−δ,2δ/Zδ2. We set

Q−g,δ := U−g,δ ∩ π
−1
1 (U ss

g )//Aut(Vg),

and we let u−g : U−g,δ 99K Q
−
g,δ denote the quotient map. Keeping all previous

notation, we have a further commutative diagram

U−g,δ
u−g−−−−→ Q−g,δ

φ−
g,δ−−−−→ B−g,δy π−

y π

y
Ug,δ

ug−−−−→ Mg,δ
φg,δ−−−−→ ∆δ

g,

where φ−g,δ is the morphism induced on Q−g,δ by m−g .

Theorem 3.10. We fix 7 ≤ g ≤ 9 and 1 ≤ δ ≤ g − 1. Then the map

φ−g,δ : Q−g,δ → B−g,δ is a birational isomorphism.
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Proof. It suffices to note that φg,δ is birational, and the vertical arrows of

the diagram are finite morphisms of the same degree, namely the number of

odd theta characteristics on a curve of genus g − δ. �

We construct a projective bundle over B−g,δ and then show that for cer-

tain values δ ≤ g − 1, the locus B−g,δ itself is unirational, whereas the above

mentioned bundle dominates S−g . Let Cg,δ ⊂ U−g,δ × Vg be the universal curve,

endowed with its two projection maps

U−g,δ
p←−−−− Cg,δ

q−−−−→ Vg.

We fix a point (Γ, Z) ∈ U−g,δ and let ν : N → Γ be the normalization map. Re-

call that sing(Γ) consists of δ linearly independent points and h0(N,ON (ν∗e))

= 1, where e is the effective divisor on Γ characterized by Z|Γreg
= 2e. Thus

the restriction map H0(Γ, ωΓ)→ H0(ωΓ ⊗OZ) has a 1-dimensional kernel. In

particular, the relative cotangent sheaf ωp admits a global section s inducing

an exact sequence

0→ OCg,δ → ωp → OW ⊗ ωp → 0,

which defines a subscheme W ⊂ Cg,δ, whose fibre at the point (Γ, Z) ∈ U−g,δ is

Z itself. We set

A := p∗
Ä
IW/Cg,δ ⊗ q

∗OVg(1)
ä
,

which is a vector bundle on U−g,δ of rank Ng − g + 2. The fibre of A(Γ, Z) is

identified with H0(Vg, IZ/Vg(1)). One has a natural identification

PH0(IZ/Vg(1))∨ = {1-dimensional linear sections of Vg containing Z}.

Definition 3.11. Pg,δ is the projectivized dual of A.

From the definitions and the previous remark, it follows that

Proposition 3.12. Pg,δ is the Zariski closure of the incidence correspon-

dence

Pog,δ :=
{Ä
C, (Γ, Z)

ä
∈ Ug × U−g,δ : Z ⊂ C

}
.

Consider the projection maps

U−g
α←−−−− Pog,δ

β−−−−→ U−g,δ.

We wish to know when is α a dominant map. For 1 ≤ δ < g ≤ 9, we have the

following:

Proposition 3.13. The morphism α is dominant if and only if

δ ≤ Ng + 1− g = dim(Vg)− 1.
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Proof. By definition, the morphism β is surjective. Let (Γ, Z) ∈ U−g,δ be

an arbitrary point, and set sing(Γ) := {p1, . . . , pδ} ⊂ Z. We define PZ to be

the locus of 1-dimensional linear sections of Vg containing Z. Inside PZ we

consider the space

PΓ,Z :=
¶

Γ′ ∈ PZ : sing(Γ′) ∩ Z ⊇ sing(Γ) ∩ Z
©
.

For p ∈ sing(Γ), the locus Hp := {Γ′ ∈ PZ : p ∈ sing(Γ′)} is a hyperplane in

PZ . Indeed, we identify PZ with the family of linear spaces L ∈ G(g − 1, Ng)

such that 〈Z〉 ⊂ L. By the definition of the cluster Z, it follows that Tp(Vg)
∩ 〈Z〉 is a line. For L ∈ PZ , the intersection L∩ Vg is singular at p if and only

if dim L ∩ Tp(Vg) ≥ 2. This is obviously a codimension 1 condition in PZ .

Therefore, if for 1 ≤ i ≤ δ we define the hyperplane

Hi := {L = 〈Γ′〉 ∈ PZ : dim L ∩ Tpi(Vg) ≥ 2},
then

PΓ,Z = H1 ∩ · · · ∩Hδ.
This shows that the general point in β−1(C,Z) corresponds to a smooth curve

C ⊃ Z. We now fix a general point (Γ, Z) ∈ U−g,δ corresponding to a general

cluster Z ∈ Zg−1.

Claim. PΓ,Z has codimension δ in PZ ; its general element is a nodal curve

with δ nodes.

Proof of the claim. Indeed PZ is a general fibre of the projective bundle

U−g → Zg−1. The claim follows since codim(U−g,δ,U−g ) = δ. �

The fibre α−1
Ä
(C,Z)

ä
over a general point (C,Z) ∈ U−g is the union of(g−1

δ

)
linear spaces H1 ∩ · · · ∩ Hδ ⊂ PZ as above. By the claim above, when

Z ∈ Zg−1 is a general cluster, this is a union of linear spaces PΓ,Z as before,

having codimension δ in PZ . Hence α−1
Ä
(C,Z)

ä
is not empty if and only if

δ ≤ dim PZ ; that is, δ ≤ Ng − g + 1. �

Let us fix the following notation:

Definition 3.14. (1) Pg,δ :=
Ä
Pog,δ
äss
//Aut(Vg).

(2) α : Pg,δ → S
−
g is the morphism induced by α at the level of quotients.

Note that β : Pg,δ → U−g,δ is a projective bundle and Aut(Vg) acts lin-

early on its fibres; therefore β descends to a projective bundle on B−g,δ. Then

it follows from the previous remark that Pg,δ is birationally isomorphic to

PNg−g+1×B−g,δ. To finish the proof of the unirationality of S−g , we proceed as

follows.

Theorem 3.15. Let 7 ≤ g ≤ 9 and assume that (i) B−g,δ is unirational

and (ii) δ ≤ Ng − g + 1. Then S−g is unirational.
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Proof. By assumption (ii), the map α : Pog,δ → U−g is dominant. Hence

the same is true for the induced morphism α : Pg,δ → S
−
g . By (i) and the

above remark, Pg,δ is unirational. Therefore S−g is unirational as well. �

Theorem 3.15 has some straightforward applications. The case δ = g − 1

is particularly convenient, since B−g,g−1 is isomorphic to the moduli space of

integral curves of geometric genus 1 with g − 1 nodes. For δ = g − 1, the

assumptions of Theorem 3.15 hold when g ≤ 8. In this range, the unirationality

of S−g follows from that of B−g,g−1.

Theorem 3.16. B−g,g−1 is unirational for g ≤ 10.

Proof. Let I ⊂ P2 × (P2)∨ be the natural incidence correspondence con-

sisting of pairs (x, `) such that x is a point on the line `. For δ ≤ 9, we

define

Πδ :=
¶

(x1, `1, . . . , xδ, `δ, E) ∈ Iδ ×PH0(P2,OP2(3)) : x1, . . . , xδ ∈ E
©
.

Then there exists a rational map fδ : Πδ 99KB
−
δ+1,δ sending (x1, `1, . . . , xδ, `δ, E)

to the moduli point of the δ-nodal, integral curve C obtained from the elliptic

curve E by identifying the pairs of points in E ∩ `i − {xi} for 1 ≤ i ≤ δ. It is

easy to see that Πδ is rational if δ ≤ 9. Clearly fδ is dominant, just because

every elliptic curve can be realized as a plane cubic. It follows that B−δ+1,δ is

unirational when δ ≤ 9. �

Unfortunately one cannot apply Theorem 3.16 to the case g = 9, since the

assumptions of Theorem 3.15 are satisfied only if δ ≤ 5.

4. The Scorza curve

This section serves as a preparation for the proof of Theorem 0.5, and we

discuss in detail a correspondence Tη ⊂ C×C associated to each (nonvanishing)

theta characteristic [C, η] ∈ S+
g − Θnull. This correspondence was used by

G. Scorza [Sco00] to provide a birational isomorphism between M3 and S+
3

(see also [DK93]) and recently in [TZ11], where several conditional statements

of Scorza’s have been rigourously established.

For a fixed theta characteristic [C, η] ∈ S+
g −Θnull, we consider the curve

Tη :=
¶

(x, y) ∈ C × C : H0(C, η ⊗OC(x− y)) 6= 0
©
.

By Riemann-Roch, it follows that Tη is a symmetric correspondence that misses

the diagonal ∆ ⊂ C×C. The curve Tη has a natural fixed point free involution

and we denote by f : Tη → Γη the associated étale double covering. Under

the assumption that Tη is a reduced curve, its class is computed in [DK93,

Prop. 7.1.5]:

Tη ≡ (g − 1)F1 + (g − 1)F2 + ∆.
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Here Fi ∈ H2(C × C,Q) denotes the class of the fibre of the i-th projection

C × C → C.

Theorem 4.1. For a general theta characteristic [C, η] ∈ S+
g , the Scorza

curve Tη is a smooth curve of genus g(Tη) = 3g(g − 1) + 1.

Proof. It is straightforward to show that a point (x, y) ∈ Tη is singular if

and only if

(3) H0(C, η ⊗OC(x− 2y)) 6= 0 and H0(C, η ⊗OC(y − 2x)) 6= 0.

By induction on g, we show that for a general even spin curve, such a pair (x, y)

cannot exist. We assume the result holds for a general [C, ηC ] ∈ S+
g−1. We fix

a general point q ∈ C, an elliptic curve D together with ηD ∈ Pic0(D)−{OD}
with η⊗2

D = OD and consider the spin curve t := [C ∪ E ∪D, η|C = ηC , η|E =

OE(1), η|D = ηD] ∈ S+
g , obtained from C ∪q D by inserting an exceptional

component E. Since the exceptional component plays no further role in the

proof, we are going to suppress it.

We assume by contradiction that t ∈ S+
g lies in the closure of the locus

of spin curves with singular Scorza curve. Then there exists a nodal curve

C ∪q D′ semistably equivalent to C ∪q D obtained by inserting a possibly

empty chain on P1’s at the node q (therefore, pa(D
′) = 1 and we may regard

D as a subcurve of D′), as well as smooth points x, y ∈ C ∪ D′ together

with two limit linear series σ = {σC , σD′} and τ = {τC , τD′} of type g0
g−2 on

C ∪D′ such that the underlying line bundles corresponding to σ (resp. τ) are

uniquely determined twists at the nodes of the line bundle η ⊗OC∪D′(x− 2y)

(resp. η ⊗ OC∪D′(y − 2x)). The precise twists are determined by the limit

linear series condition that each aspect of a limit g0
g−2 have degree g − 2. We

distinguish three cases depending on which components of C ∪D′ the points

x and y specialize.

(i) x, y ∈ C. Then σC ∈ H0(C, ηC ⊗ OC(x − 2y + q)), τC ∈ H0(C, ηC ⊗
OC(y − 2x + q)), while σD, τD ∈ H0

Ä
D, ηD ⊗ OD((g − 2)q)

ä
. Denoting by

{q′} ∈ D ∩ (C ∪D′)−D the point where D meets the rest of the curve, one

has the compatibility conditions

ordq(σC) + ordq′(σD) ≥ g − 2 and ordq(τC) + ordq′(τD) ≥ g − 2,

which leads to ordq(σC) ≥ 1 and ordq(τC) ≥ 1; that is, we have found two

points x, y ∈ C such that H0(C, ηC(x − 2y)) 6= 0 and H0(C, ηC(y − 2x)) 6= 0,

which contradicts the inductive assumption on C.

(ii) x, y ∈ D′. This case does not appear if we choose ηC such that

H0(C, ηC) = 0. Indeed, for degree reason, both nonzero sections σC , τC must

lie in the space H0(C, ηC).
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(iii) x ∈ C, y ∈ D′. For simplicity, we assume first that y ∈ D. We find

that

σC ∈ H0(C, ηC ⊗OC(x− q)), σD ∈ H0(D, ηD ⊗OD(g · q′ − 2y))

and

τC ∈ H0(C, ηC ⊗OC(2q − 2x)), τD ∈ H0(D, ηD ⊗OC(y + (g − 3) · q′)).

We claim that ordq(σC) = ordq(τC) = 0, which can be achieved by a generic

choice of q ∈ C. Then ordq′(σD) ≥ g−2, which implies that ηD = OD(2y−2q).

Similarly, ordq(τD) ≥ g − 2, which yields that ηD = OD(q − y); that is, η⊗3
D =

OD. Since ηD was assumed to be a nontrivial point of order 2, this leads

to a contradiction. Finally, the case y ∈ D′ − D, that is, when y lies on

an exceptional subcurve E′ ⊂ D′, is dealt with similarly: Since ordq(σC) =

ordq(τC) = 0, by compatibility, after passing through the component E′, one

obtains that ordq′(σD) ≥ g − 2. Since σD ∈ H0(D, ηD ⊗ OD((g − 2)q′)) and

ηD 6= OD, we obtain a contradiction �

5. The stack of degenerate odd theta characteristics

In this section we define a Deligne-Mumford stack Xg → S
−
g parametrizing

limit linear series g0
g−1 that appear as limits of degenerate theta character-

istics on smooth curves. The push-forward of [Xg] is going to be precisely our

divisor Zg. Having a good description of Xg over the boundary will enable us

to determine all the coefficients in the expression of [Zg] in Pic(S−g ) and thus

prove Theorem 0.5. Throughout, we will use the test curves in S−g constructed

in Section 1.

We first define a partial compactification M̃g := Mg ∪ ‹∆0 ∪ · · · ∪ ‹∆[g/2]

of Mg, obtaining by adding to Mg the open sub-stack ‹∆0 ⊂ ∆0 of one-nodal

irreducible curves [Cyq := C/y ∼ q], where [C, y, q] ∈Mg−1,2 is a Brill-Noether

general curve together with their degenerations [C ∪D∞] where D∞ is an el-

liptic curve with j(D∞) = ∞, as well as the open substacks ‹∆j ⊂ ∆j for 1 ≤
j ≤ [g/2] classifying curves [C∪yD], where [C]∈Mj and [D]∈Mg−j are Brill-

Noether general curves in the respective moduli spaces. Let p : M̃g,1 → M̃g

be the universal curve. We denote S̃
−
g := π−1(M̃g) ⊂ S

−
g and note that for all

0 ≤ j ≤ [g/2], the boundary divisors A′j := Aj ∩ S̃−g , B′j := Bj ∩ S̃−g are mu-

tually disjoint inside S̃−g . Finally, we consider Z := S̃
−
g ×‹Mg

M̃g,1 and denote

by p1 : Z → S̃
−
g the projection.

Following the local description of the projection S
−
g →Mg carried out in

[Cor89], in order to obtain the universal spin curve over S̃
−
g one has first to
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blow up the codimension 2 locus V ⊂ Z corresponding to points

v =
(î
C ∪{y,q} E, η⊗2

C = KC , lh
0(ηC) ≡ 1 mod 2, ηE = OE(1)

ó
,

ν(y) = ν(q)
)
∈ B′0 ×‹Mg

M̃g,1.

(Recall that ν : C → Cyq denotes the normalization map, so v corresponds to

the marked point specializing to the node of the curve Cyq.)

Suppose that (τ1, . . . , τ3g−3) are local coordinates in an étale neighbour-

hood of [C ∪{y,q} E, ηC , ηE ] ∈ S̃−g such that the local equation of the divisor

B′0 is (τ1 = 0). Then Z around v admits local coordinates (x, y, τ1, . . . , τ3g−3)

verifying the equation xy = τ2
1 ; in particular, Z is singular along V . Next, for

1 ≤ j ≤ [g/2], one blows up the codimension 2 loci Vj ⊂ Z consisting of points(î
C ∪q D, ηC , ηD

ó
, q ∈ C ∩D

)
∈ (A′j ∪B′j)×‹Mg

M̃g,1.

This corresponds to inserting an exceptional component in each spin curve in

π∗(‹∆j). We denote by

C := BlV ∪V1∪...∪V[g/2]
(Z)

and by f : C → S̃
−
g the induced family of spin curves. Then for every [X, η, β] ∈

S̃−g , we have an isomorphism between f−1([X, η, β]) and the quasi-stable curve

X.

There exists a spin line bundle P ∈ Pic(C) of relative degree g − 1 as

well as a morphism of OC-modules B : P⊗2 → ωf having the property that

P|f−1([X,η,β]) = η and B|f−1([X,η,β]) = β : η⊗2 → ωX for all spin curves

[X, η, β] ∈ S̃−g . We note that for the even moduli space S̃+
g , one has an analo-

gous construction of the universal spin curve.

Next we define the stack τ : Xg → S̃
−
g classifying limit g0

g−1 that are twists

of degenerate odd-spin curves. For a tree-like curve X, we denote by G
r
d(X)

the scheme of limit linear series grd. The fibres of the morphism τ have the

following description:

• τ−1(S−g ) parametrizes triples
Ä
[C, η], σ, x

ä
, where [C, η] ∈ S−g , x ∈ C is a

point and σ ∈ PH0(C, η) is a section such that div(σ) ≥ 2x.

• For 1 ≤ j ≤ [g/2], the inverse image τ−1(A′j ∪B′j) parametrizes elements of

the form (
X,σ ∈ G0

g−1(X), x ∈ Xreg

)
,

where (X,x) is a 1-pointed quasi-stable curve semistably equivalent to the

underlying curve of a spin curve [C ∪q E ∪q′ D, ηC , ηE , ηD] ∈ A′j ∪B′j , with

E denoting the exceptional component, g(C) = j, g(D) = g − j, {q} =
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C ∩ E, {q′} = E ∩D and

σC ∈ PH0
Ä
C, ηC ⊗OC((g − j)q)), σD ∈ PH0

Ä
D, ηD ⊗OD(jq′)

ä
,

σE ∈ PH0(E,OE(g − 1))

are aspects of the limit linear series σ on X. Moreover, we require that

ordx(σ) ≥ 2.

• τ−1(B′0) parametrizes elements
Ä
X, η∈Picg−1(X), σ∈PH0(X, η), x∈Xreg

ä
,

where (X,x) is a 1-pointed quasi-stable curve equivalent to the curve un-

derlying a point [C ∪{y,q} E, ηC , ηE ] ∈ B′0, the line bundle η on X satisfies

η|C = ηC and η|E = ηE and η|Z = OZ for the remaining components of X.

Finally, we require ordx(σ) ≥ 2.

• τ−1(A′0) corresponds to points
Ä
X, η∈Picg−1(X), σ∈PH0(X, η), x∈Xreg

ä
,

where (X,x) is a 1-pointed quasi-stable curve equivalent to the curve under-

lying a point [Cyq, ηCyq ] ∈ A′0, and if µ : X → Cyq is the map contracting all

exceptional components, then µ∗(ηCyq) = η (in particular, η is trivial along

exceptional components), and finally ordx(σ) ≥ 2.

Using general constructions of stacks of limit linear series (cf. [EH86],

[Far09]), it is clear that Xg is a Deligne-Mumford stack. There exists a proper

morphism

τ : Xg → S̃
−
g

that factors through the universal curve, and we denote by χ : Xg → C the

induced morphism; hence τ = f ◦ χ. The push-forward of the coarse moduli

space τ∗([Xg]) equals scheme-theoretically Zg ∩ S̃−g . It appears possible to

extend Xg over the entire S
−
g , but this is not necessary in order to prove

Theorem 0.4, and so we skip the details.

We are now in a position to calculate the class of the divisor Zg, and we

expand its class in the Picard group of S−g ,

(4) Zg ≡ λ̄ · λ− ᾱ0 · α0 − β̄0 · β0 −
[g/2]∑
i=1

ᾱi · αi −
[g/2]∑
i=1

β̄i · βi ∈ Pic(S−g ),

where λ̄, ᾱi, β̄i ∈ Q for i = 0, . . . , [g/2]. We start by determining the coefficients

of the divisors αi and βi for 1 ≤ i ≤ [g/2].

Proposition 5.1. For 1 ≤ i ≤ [g/2], we have that Fi ·Zg = 4(g−i)(i−1)

and the intersection is everywhere transverse. It follows that ᾱi = 2(g − i).

Proof. We recall from the definition of Fi that we have fixed theta char-

acteristics of opposite parity η−C ∈ Pici−1(C) and η+
D ∈ Picg−i−1(D). Choose a

point t = (X, η, σ, x) ∈ τ−1(Fi). It is a simple exercise to show that the “dou-

ble” point x of σ ∈ G0
g−1(X) cannot specialize to the exceptional component;

therefore one has only two cases to consider depending on whether x lies on C
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or on D. Assume first that x ∈ C and then σC ∈ PH0(C, η−C ⊗OC((g − i)q))
and σD ∈ PH0(D, η+

D⊗OD(iq)), where {q} = C∩D is a point that moves on C

but is fixed on D. Then ordq(σD) ≤ i− 1; therefore ordq(σC) ≥ g− i and then

σC(−(g−i)q) ∈ PH0(C, η−C ). In particular, if we choose [C, η−C ] ∈ Si−Zi, then

the section σC(−(g− i)q) has only simple zeros, which shows that x cannot lie

on C, so this case does not occur.

We are left with the possibility x ∈ D−{q}. One observes that ordq(σC) =

g − i + 1 and ordq(σD) = i − 2. In particular, q ∈ supp(η−C ), which gives

i − 1 choices for the moving point q ∈ C. Furthermore, σD(−(i − 2)q) ∈
H0(D, η+

D⊗OD(2q−2x)); that is, x specializes to one of the ramification points

of the pencil η+
D⊗OD(2q) ∈W 1

g−i+1(D). We note that because of the generality

of [D, η+
D] ∈ S+

g−i as well as that of q ∈ D, the pencil is base point free and

complete. From the Hurwitz-Zeuthen formula one finds 4(g − i) ramification

points of |η+
D ⊗OD(2q)|, which leads to the formula Fi · Zg = 4(g − i)(i− 1).

The fact that τ∗(Xg) is transverse to Fi follows because the formation of Xg

commutes with restriction to B′0. Then one can easily show in a way similar

to [EH87, Lemma 3.4], or by direct calculation, that Xg ×
S̃
−
g

B′0 is smooth at

any of the points in τ−1(Fi). �

Proposition 5.2. For 1 ≤ i ≤ [g/2], we have that Gi · Zg = 4i(i − 1)

and the intersection is transversal. In particular, β̄i = 2i.

Proof. This time we fix general points [C, η+
C ] ∈ S+

i and [D, η−D] ∈ S−g−i
and q ∈ C ∩ D, which is a fixed general point on D but an arbitrary point

on C. Again, it is easy to see that if t = (X,σ, x) ∈ τ−1(Gi), then x must lie

either on C or on D. Assume first that x ∈ C − {q}. Then the aspects of σ

are described as follows:

σC ∈ PH0(C, η+
C ⊗OC((g − i)q)), σD ∈ PH0(D, η−D ⊗OD(iq))

and, moreover, ordx(σC) ≥ 2. The point q ∈ D can be chosen so that it

does not lie in supp(η−D); hence ordq(σD) ≤ i, and then ordq(σC) ≥ g − i− 1.

This leads to the conclusion H0(C, η+
C ⊗ OC(y − 2x)) 6= 0, or equivalently

(x, y) ∈ C × C is a ramification point of the degree i covering p1 : Tη+
C
→ C

from the associated Scorza curve. We have shown that Tη+
C

is smooth of genus

1 + 3i(i− 1) (cf. Theorem 4.1) and, moreover, all the ramification points of p1

are ordinary; therefore we find

deg Ram(p1) = 2g(TC
η+
C

)− 2− deg(p1)(2i− 2) = 4i(i− 1)

choices when x ∈ C. The next possibility is x ∈ D− {q}. The same reasoning

as above shows that ordq(σC) ≤ g − i− 1, and therefore ordq(σD) ≥ i as well

as ordx(σD) ≥ 2. Since σD(−iq) ∈ PH0(D, η−D), this case does not occur if

[D, η−D] ∈ S−g−i −Zg−i. �



954 G. FARKAS and A. VERRA

Next we prove that Zg is disjoint from both elliptic pencils F0 and G0.

Proposition 5.3. We have that F0 · Zg = 0 and G0 · Zg = 0. The

equalities ᾱ− 12ᾱ0 + ᾱ1 = 0 and 3ᾱ− 12ᾱ0 − 12β̄0 + 3β̄1 = 0 follow.

Proof. We first show that F0 ∩ Zg = ∅, and we assume by contradiction

that there exists t = (X,σ, x) ∈ τ−1(F0). Let us deal first with the case when

st(X) = C∩Eλ, with Eλ being a smooth curve of genus 1. The key point is that

the point of attachment q ∈ C ∩Eλ being general, we can assume that (x, q) /∈
Ram{p1 : Tη+

C
→ C} for all x ∈ C. This implies that H0(C, η+

C⊗OC(q−2x))=0

for all x ∈ C, and therefore a section σC ∈ PH0(C, η+
C ⊗OC(q)) cannot vanish

twice anywhere. Thus either x ∈ Eλ − {q}, or x lies on some exceptional

component of X. In the former case, since ordq(σC) = 0, it follows that

ordq(σEλ) ≥ g−1; that is, σEλ has no zeroes other than q (simple or otherwise).

In the latter case, when x ∈ E, with E being an exceptional component, we

denote by q′ ∈ E the point of intersection of E with the connected subcurve

of X containing C as a subcomponent. Since, as above, ordq(σC) = 0, by

compatibility it follows that ordq′(σE) = g− 1. But σE ∈ PH0(E,OE(g− 1));

that is, σE does not vanish at x, a contradiction. The proof that G0 ∩Zg = ∅
is similar, and we omit the details. �

The trickiest part in the calculation of [Zf ] is the computation of the

following intersection number:

Proposition 5.4. If H0 ⊂ B0 is the covering family lying in the ramifi-

cation divisor of S−g , then one has that H0 · Zg = 2(g− 2) and the intersection

consists of g−2 points each counted with multiplicity 2. Therefore the relation

(g − 1)β̄0 − β̄1 = 2(g − 2) holds.

Proof. We first describe the set-theoretic intersection τ∗(Xg) ∩ H0. We

recall that we have fixed [C, q, η−C ] ∈ S−g−1,1 and start by choosing a point

t = (X, η, σ, x) ∈ τ−1(H0). Assume first that X = C ∪{y,q} E, where y ∈ C;

that is, x does not specialize to one of the nodes of C ∪ E. Suppose first that

x ∈ C − {y, q}. From the Mayer-Vietoris sequence on X, we write

0 6= σ ∈ H0(X, η ⊗OX(−2x))

= Ker
¶
H0(C, η−C ⊗OC(−2x))⊕H0(E,OE(1))

evy,q−→ C2
{y,q}
©
,

and we obtain that H0(C, η−C ⊗ OC(−2x)) 6= 0. This case can be avoided by

choosing [C, η−C ] ∈ S−g−1 −Zg−1.

Next we consider the possibility x ∈ E−{y, q}. In this case he same Mayer-

Vietoris argument reads 0 6= Ker
¶
H0(C, η−C ) ⊕ H0(E,OE(−1))

evy,q−→ C2
{y,q}
©

;

that is, y + q ∈ supp(η−C ). This case can be avoided as well by starting with a
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general point q ∈ C − supp(η−C ). Thus the only possibility is that x specializes

to one of the nodes y or q.

We deal first with the case when x and q coalesce, and there is no loss of

generality in assuming that X = C∪E∪E′, where both components E and E′

are copies of P1 and C ∩E = {y}, C ∩E′ = {q}, E ∩E′ = {y′} and, moreover,

x ∈ E′ − {y′, q}. The restrictions of the line bundle η ∈ Picg−1(X) are such

that η|C = η−C , ηE = OE(1) and ηE′ = OE′ . We write

0 6= σ = (σC , σE , σE′)

∈ Ker
¶
H0(C, η−C )⊕H0(E,OE(1))⊕H0(E′,OE′(1))

evy,y′,q−→ Cy,y′,q
©
,

hence σE′ = 0, and then by compatibility σC(q) = 0; that is, q ∈ supp(η−C ),

and again this case can be ruled out by a suitable choice of q. The last pos-

sible situation is when x and the moving point y ∈ C coalesce, in which case

X = C ∪ E ∪ E′, where this time C ∩ E = {q}, C ∩ E′ = {y}, E ∩ E′ = {y′}
and again x ∈ E′ − {y′, q}. Writing one last time the Mayer-Vietoris se-

quence we find that σE′ = 0 and then σE(y′) = 0 and σC(y) = 0, that is,

y ∈ supp(η−C ), and then the section σC is uniquely determined up to a con-

stant. Finally σE ∈ H0(E,OE(1)(−y′)) is uniquely specified by the gluing

condition σE(q) = σC(q). All in all, H0 ∩ Zg = |supp(η−C )| = g − 2.

This discussion singles out an irreducible component Ξ ⊂ χ∗(Xg) ⊂ C of

the intersection χ(Xg) ∩ f−1(B′0); namely,

Ξ =
{Ä

[C ∪{y,q} E, ηC , ηE ], x) : y ∈ supp(η−C ) and x = y ∈ Xsing

}
,

where we recall that f : C → S̃
−
g is the universal spin curve. Since Ξ ⊂

Sing
Ä
χ∗(Xg)

ä
, after a simple local analysis, it follows that each point in τ−1(H0)

occurs counted with multiplicity 2. �

Remark 5.5. A partial independent check of Theorem 0.5 is obtained by

using the Porteous formula to determine the coefficient λ̄ in the expression of

[Zg]. By abuse of notation we still denote by f : C → S−g the restriction of

the universal spin curve to the locus of smooth curves and η ∈ Pic(C) the spin

bundle of relative degree g − 1. Then Zg is the push-forward via f : C → S−g
of the degeneration locus of the sheaf morphism φ : f∗(η) → J1(η). (Both

these sheaves are locally free away from a subset of codimension 3 in S−g , and

throwing away this locus has no influence on divisor class calculations.) Since

det(f∗η) = (f∗η)⊗2, it follows that c1

Ä
f∗(η)

ä
= −λ/4, whereas the Chern

classes of the first jet bundle J1(η) are calculated using the standard exact

sequence on C

0 −→ η ⊗ ωf −→ J1(η) −→ η −→ 0.
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Remembering Mumford’s formula f∗(c
2
1(ωf )) = 12λ, one finally writes that

[Zg] = f∗c2

(
J1(η)− f∗(η)

)
= f∗

(3

4
c1(ωf )2 − 2c1(ωf ) · c1(f∗(η))

)
= (g + 8) λ ∈ Pic(S−g ).

6. A divisor of small slope on M12

The aim of this section is to construct an effective divisor D ∈ Eff(M12)

of slope s(D) < 6 + 12/13, that is, violating the Slope Conjecture. As pointed

out in the proof of Theorem 0.4, this is precisely what is required in order to

show that S−12 is a variety of general type.

Theorem 6.1. The following locus consisting of curves of genus 12,

D12 := {[C] ∈M12 : ∃L ∈W 4
14(C)

with Sym2H0(C,L)
µ0(L)−→ H0(C,L⊗2) not injective},

is a divisor on M12. The class of its compactification inside M12 equals

D12 ≡ 13245 λ− 1926 δ0 − 9867 δ1 −
6∑
j=2

bj δj ∈ Pic(M12),

where bj ≥ b1 for j ≥ 2. In particular, s(D12) = 4415
642 < 6 + 12

13 .

This implies the following upper bound for the slope s(M12) of the moduli

space:

Corollary 6.2.

6 +
10

12
≤ s(M12) := infD∈Eff(M12)s(D) ≤ 4415

642

(
= 6 +

10

12
+

14

321

)
.

Another immediate application, via [Log03], [Far06], concerns the bira-

tional type of the moduli space Mg,n of n-pointed stable curves of genus g:

Theorem 6.3. The moduli space of n-pointed curves M12,n is of general

type for n ≥ 11.

The divisor D12 is constructed as the push-forward of a codimension 3

cycle in the stack G4
14 → M12 classifying linear series g4

14. We describe the

construction of this cycle, and then extend this determinantal structure over

a partial compactification of M12. This will be essential to understand the

intersection of D12 with the boundary divisors ∆0 and ∆1 ofM12. We denote

by Mp
12 the open substack of M12 consisting of curves [C] ∈ M12 such that

W 4
13(C) = ∅ and W 5

14(C) = ∅. Results in Brill-Noether theory guarantee that

codim(M12 −Mp
12,M12) ≥ 3. If Pic14

12 denotes the Picard stack of degree 14

over Mp
12, then we consider the smooth Deligne-Mumford substack G4

14 ⊂ Pic14
12
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parametrizing pairs [C,L], where [C] ∈Mp
12 and L ∈W 4

14(C) is a (necessarily

complete and base point free) linear series. We denote by σ : G4
14 →Mp

12 the

forgetful morphism. For a general [C] ∈ Mp
12, the fibre σ−1([C]) = W 4

14(C) is

a smooth surface.

Let π : Mp
12,1 →Mp

12 be the universal curve. Then the natural projection

is denoted by p2 : Mp
12,1 ×Mp

12
G4

14 → G4
14. If L is a Poincaré bundle over

Mp
12,1 ×Mp

12
G4

14 (or over an étale cover of it), then by Grauert’s Theorem,

both

E := (p2)∗(L) and F := (p2)∗(L⊗2)

are vector bundles over G4
14, with rank(E) = 5 and rank(F) = h0(C,L⊗2) = 17

respectively. There is a natural vector bundle morphism over G4
14 given by

multiplication of sections,

φ : Sym2(E)→ F ,

and we denote by U12 ⊂ G4
14 its first degeneracy locus. We set D12 := σ∗(U12).

Since the degeneracy locus U12 has expected codimension 3 inside G4
14, the

locus D12 is a virtual divisor on Mp
12.

We extend the vector bundles E and F over a partial compactification

of G4
14 given by limit g4

14. We denote by ∆p
1 ⊂ ∆1 ⊂ M12 the locus of

curves [C ∪y E], where E is an arbitrary elliptic curve, [C] ∈ M11 is a Brill-

Noether general curve and y ∈ C is an arbitrary point. We then denote by

∆p
0 ⊂ ∆0 ⊂M12 the locus consisting of curves [Cyq] ∈ ∆0, where [C, q] ∈M11,1

is Brill-Noether general and y ∈ C is arbitrary, as well as their degenerations

[C ∪q E∞], where E∞ is a rational nodal curve. Once we set

M
p
12 := Mp

12 ∪∆p
0 ∪∆p

1 ⊂M12,

we can extend the morphism σ to a proper morphism

σ : ‹G4
14 →M

p
12,

from the stack ‹G4
14 of limit linear series g4

14 over the partial compactification

M
p
12 of M12.

We extend the vector bundles E and F over the stack ‹G4
14. The proof of

the following result proceeds along the lines of the proof of Proposition 3.9 in

[Far06]:

Proposition 6.4. There exist two vector bundles E and F defined over‹G4
14 with rank(E) = 5 and rank(F) = 17, together with a vector bundle mor-

phism φ : Sym2(E)→ F , such that the following statements hold :

• For [C,L] ∈ G4
14, with [C] ∈Mp

12, we have that

E(C,L) = H0(C,L) and F(C,L) = H0(C,L⊗2).
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• For t = (C∪yE, lC , lE) ∈ σ−1(∆p
1), where g(C) = 11, g(E) = 1 and lC = |LC |

is such that LC ∈W 4
14(C) has a cusp at y ∈ C , then E(t) = H0(C,LC) and

F(t) = H0(C,L⊗2
C (−2y))⊕ C · u2,

where u ∈ H0(C,LC) is any section such that ordy(u) = 0. If LC has a base

point at y, then E(t) = H0(C,LC) = H0(C,LC ⊗OC(−y)) and the image of

a natural map F(t)→ H0(C,L⊗2
C ) is the subspace H0(C,L⊗2

C ⊗OC(−2y)).

• Fix t = [Cyq := C/y ∼ q, L] ∈ σ−1(∆p
0), with q, y ∈ C and L ∈ W 4

14(Cyq)

such that h0(C, ν∗L ⊗ OC(−y − q)) = 4, where ν : C → Cyq is the normal-

ization map. In the case when L is locally free, we have that

E(t) = H0(C, ν∗L) and F(t) = H0(C, ν∗L⊗2 ⊗OC(−y − q))⊕ C · u2,

where u ∈ H0(C, ν∗L) is any section not vanishing at y and q. In the case

when L is not locally free, that is, L ∈W 4
14(Cyq)−W 4

14(Cyq), then L = ν∗(A),

where A ∈W 4
13(C) and the image of the natural map F(t)→ H0(C, ν∗L⊗2)

is the subspace H0(C,A⊗2).

To determine the push-forward [D12]virt =σ∗
Ä
c3(F−Sym2(E)

ä
∈ A1(Mp

12),

we study the restriction of the morphism φ along the pull-backs of two curves

sitting in the boundary ofM12, which are defined as follows. We fix a general

pointed curve [C, q] ∈ M11,1 and a general elliptic curve [E, y] ∈ M1,1. Then

we consider the families

C0 : = {C/y ∼ q : y ∈ C} ⊂ ∆p
0 ⊂M12,

C1 : = {C ∪y E : y ∈ C} ⊂ ∆p
1 ⊂M12.

These curves intersect the generators of Pic(M12) as follows:

C0 ·λ = 0, C0 · δ0 = deg(ωCyq) = −22, C0 · δ1 = 1 and C0 · δj = 0 for 2 ≤ j ≤ 6,

and

C1 ·λ = 0, C1 ·δ0 = 0, C1 ·δ1 = −deg(KC) = −20 and C1 ·δj = 0 for 2 ≤ j ≤ 6.

Next, we fix a general pointed curve [C, q] ∈ M11,1 and describe the

geometry of the pull-back σ∗(C0) ⊂ ‹G4
14. We consider the determinantal 3-fold

Y := {(y, L) ∈ C ×W 4
14(C) : h0(C,L⊗OC(−y − q)) = 4}

together with the projection π1 : Y → C. Inside Y we consider the following

divisors:

Γ1 := {(y,A⊗OC(y)) : y ∈ C, A ∈W 4
13(C)}

and

Γ2 := {(y,A⊗OC(q)) : y ∈ C, A ∈W 4
13(C)}
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intersecting transversally along the curve

Γ := {(q, A⊗OC(q)) : A ∈W 4
13(C)} ∼= W 4

13(C).

We introduce the blow-up Y ′ → Y of Y along Γ and denote by EΓ ⊂ Y ′

the exceptional divisor and by Γ̃1, Γ̃2 ⊂ Y ′ the strict transforms of Γ1 and Γ2

respectively. We then define ‹Y := Y ′/Γ̃1
∼= Γ̃2 to be the variety obtained from

Y ′ by identifying the divisors Γ̃1 and Γ̃2 over each (y,A) ∈ C ×W 4
13(C). Let

ε : ‹Y → Y be the projection map.

Proposition 6.5. With notation as above, one has a birational morphism

of 3-folds

f : σ∗(C0)→ ‹Y ,
which is an isomorphism outside a curve contained in ε−1(π−1

1 (q)). The map

f|(π1εf)−1(q) corresponds to forgetting the E∞-aspect of each limit linear series.

Accordingly, the vector bundles E|σ∗(C0) and F|σ∗(C0) are pull-backs under ε ◦ f
of vector bundles on Y .

Proof. We fix a point y ∈ C − {q}. We denote by ν : C → Cyq the

normalization map, with ν(y) = ν(q). We investigate the variety W
4
14(Cyq) ⊂

Pic
14

(Cyq) of torsion-free sheaves L on Cyq with deg(L)=14 and h0(Cyq, L)≥5.

A locally free L ∈ W 4
14(Cyq) is determined by ν∗(L) ∈ W 4

14(C), which has the

property h0(C, ν∗L ⊗ OC(−y − q)) = 4. (Since W 4
12(C) = ∅, there exists a

section of L that does not vanish simultaneously at both y and q.) However,

the bundles of type A⊗OC(y) or A⊗OC(q) with A ∈W 4
13(C) do not appear

in this association, though (y,A ⊗ OC(y)), (y,A ⊗ OC(q)) ∈ Y . In fact, they

correspond to the situation when L ∈W 4
14(Cyq) is not locally free, in which case

necessarily L = ν∗(A) for some A ∈ W 4
13(C). Thus, for a point y ∈ C − {q},

there is a birational morphism π−1
1 (y) → W

4
14(Cyq) that is an isomorphism

over the locus of locally free sheaves. More precisely, W
4
14(Cyq) is obtained

from π−1
1 (y) by identifying the disjoint divisors Γ1 ∩ π−1

1 (y) and Γ2 ∩ π−1
1 (y).

A special analysis is required when y = q, when Cyq degenerates to C ∪q
E∞, where E∞ is a rational nodal cubic. If {lC , lE∞} ∈ σ−1([C ∪q E∞]), then

the corresponding Brill-Noether numbers with respect to q satisfy ρ(lC , q) ≥ 0

and ρ(lE∞ , q) ≤ 2. The statement about the restrictions E|σ∗(C0) and F|σ∗(C0)

follows because both restrictions are defined by dropping the information com-

ing from the elliptic tail. �

To describe σ∗(C1) ⊂ ‹G4
14, where [C] ∈M11, we define the determinantal

3-fold

X := {(y, L) ∈ C ×W 4
14(C) : h0(L⊗OC(−2y)) = 4}.

In what follows we use notation from [EH86] to denote vanishing sequences of

limit linear series.
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Proposition 6.6. With notation as above, the 3-fold X is an irreducible

component of σ∗(C1). Moreover, one has that

c3

Ä
(F − Sym2E)|σ∗(C1)

ä
= c3

Ä
(F − Sym2E)|X

ä
.

Proof. By the additivity of the Brill-Noether number, if

{lC , lE} ∈ σ−1([C ∪y E]),

we have that 2 = ρ(12, 4, 14) ≥ ρ(lC , y) + ρ(lE , y). Since ρ(lE , y) ≥ 0, we

obtain that ρ(lC , y) ≤ 2. If ρ(lE , y) = 0, then lE = 9y + |OE(5y)|; that is, lE
is uniquely determined, while the aspect lC ∈ G4

14(C) is a complete g4
14 with a

cusp at the variable point y ∈ C. This gives rise to an element from X. The

remaining components of σ∗(C1) are indexed by Schubert indices

ᾱ := (0 ≤ α0 ≤ · · · ≤ α4 ≤ 10)

such that ᾱ > (0, 1, 1, 1, 1) and 5 ≤∑4
j=0 αj ≤ 7. For such ᾱ, we set

ᾱc := (10− α4, . . . , 10− α0)

to be the complementary Schubert index. We then define

Xᾱ := {(y, lC) ∈ C ×G4
14(C) : αlC (y) ≥ ᾱ}

and

Zᾱ := {lE ∈ G4
14(E) : αlE (y) ≥ ᾱc}.

Then σ∗(C1) = X+
∑
ᾱXᾱ×Zᾱ. The last claim follows by dimension reasons.

Since dim Xᾱ = 1 + ρ(11, 4, 14)−∑4
j=0 αj < 3 for every ᾱ > (0, 1, 1, 1, 1) and

the restrictions of both E and F are pulled back from Xᾱ, one obtains that

c3(F − Sym2E)|Xᾱ×Zᾱ = 0. �

We also recall standard facts about intersection theory on Jacobians. For

a Brill-Noether general curve [C] ∈ Mg, we denote by P a Poincaré bundle

on C × Picd(C). The projections are denoted by π1 : C × Picd(C) → C and

π2 : C×Picd(C)→ Picd(C). We define the cohomology class η = π∗1([point]) ∈
H2(C × Picd(C)), and if δ1, . . . , δ2g ∈ H1(C,Z) ∼= H1(Picd(C),Z) is a sym-

plectic basis, then we set

γ := −
g∑

α=1

(
π∗1(δα)π∗2(δg+α)− π∗1(δg+α)π∗2(δα)

)
∈ H2(C × Picd(C)).

One has the formula c1(P) = dη+γ, corresponding to the Hodge decomposition

of c1(P), as well as the relations γ3 = 0, γη = 0, η2 = 0 and γ2 = −2ηπ∗2(θ).On

W r
d (C) there is a tautological rank r+1 vector bundleM := (π2)∗(P|C×W r

d
(C)).

To compute the Chern numbers ofM we employ the Harris-Tu formula [HT84].

We write
r∑
i=0

ci(M∨) = (1 + x1) · · · (1 + xr+1),
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and then for every class ζ ∈ H∗(Picd(C),Z), one has the following formula:

(5) xi11 · · ·x
ir+1

r+1 ζ = det
( θg+r−d+ij−j+l

(g + r − d+ ij − j + l)!

)
1≤j,l≤r+1

ζ.

We compute the classes of the 3-folds that appear in Propositions 6.5 and

6.6:

Proposition 6.7. Let [C, q] ∈ M11,1 be a Brill-Noether general pointed

curve. If M denotes the tautological rank 5 vector bundle over W 4
14(C) and

ci := ci(M∨) ∈ H2i(W 4
14(C),C), then one has the following relations :

(i) [X] = π∗2(c4)− 6ηθπ∗2(c2) + (48η + 2γ)π∗2(c3) ∈ H8(C ×W 4
14(C),C);

(ii) [Y ] = π∗2(c4)− 2ηθπ∗2(c2) + (13η + γ)π∗2(c3) ∈ H8(C ×W 4
14(C),C).

Proof. We start by noting that W 4
14(C) is a smooth 6-fold isomorphic to

the symmetric product C6. We realize X as the degeneracy locus of a vector

bundle morphism defined over C×W 4
14(C). For each pair (y, L) ∈ C×W 4

14(C),

there is a natural map

H0(C,L⊗O2y)
∨ → H0(C,L)∨

that globalizes to a vector bundle morphism ζ : J1(P)∨ → π∗2(M)∨ over C ×
W 4

14(C). Then we have the identification X = Z1(ζ), and the Thom-Porteous

formula gives that [X] = c4

Ä
π∗2(M)− J1(P∨)

ä
. From the usual exact sequence

over C × Pic14(C),

0 −→ π∗1(KC)⊗ P −→ J1(P) −→ P −→ 0,

we can compute the total Chern class of the jet bundle

ct(J1(P)∨)−1 =
(∑
j≥0

(d(L)η + γ)j
)
·
(∑
j≥0

Ä
(2g(C)− 2 + d(L))η + γ

äj)
= 1− 6ηθ + 48η + 2γ,

which quickly leads to the formula for [X]. To compute [Y ] we proceed in a

similar way. We denote by µ, ν : C × C × Pic14(C) → C × Pic14(C) the two

projections, and we denote by ∆ ⊂ C × C × Pic14(C) the diagonal. We set

Γq := {q} × Pic14(C). We introduce the rank 2 vector bundle

B := (µ)∗
Ä
ν∗(P)⊗O∆+ν∗(Γq)

ä
defined over C ×W 4

14(C).

We note that there is a bundle morphism χ : B∨ → (π2)∗(M)∨ such that

Y = Z1(χ). Since we also have that

ct(B∨)−1 =
Ä
1 + (d(L)η + γ) + (d(L)η + γ)2 + · · ·

äÄ
1− η

ä
,

we immediately obtained the stated expression for [Y ]. �
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Proposition 6.8. For a smooth curve C of genus 11, the natural projec-

tions are denoted by µ, ν : C × C × Pic14(C) → C × Pic14(C). We define the

vector bundles A2 and B2 on C × Pic14(C) having fibres

A2(y, L) = H0(C,L⊗2⊗OC(−2y)) and B2(y, L) = H0(C,L⊗2⊗OC(−y−q)),

respectively. One has the following formulas :

c1(A2) = −4θ4γ − 76η c1(B2) = −4θ2γ − 27η,

c2(A2) = 8θ2 + 280ηθ + 16γθ, c2(B2) = 8θ2 + 100ηθ + 8θγ,

c3(A2) = −32

3
θ3 − 512ηθ2 − 32θ2γ and c3(B2) = −32

3
θ3 − 184ηθ2 − 16θ2γ.

Proof. Immediate application of Grothendieck-Riemann-Roch with respect

to ν. �

Before our next result, we recall that if V is a vector bundle of rank r+ 1

on a variety X, we have the following formulas:

(i) c1(Sym2(V)) = (r + 2)c1(V);

(ii) c2(Sym2(V)) = r(r+3)
2 c2

1(V) + (r + 3)c2(V);

(iii) c3(Sym2(V)) = r(r+4)(r−1)
6 c3

1(V)+(r+5)c3(V)+(r2+4r−1)c1(V)c2(V).

We expand σ∗
Ä
c3(F − Sym2E)

ä
≡ aλ− b0δ0 − b1δ1 ∈ A1(Mp

12) and deter-

mine the coefficients a, b0 and b1. This will suffice in order to compute s(D12).

Theorem 6.9. Let [C]∈M11 be a Brill-Noether general curve, and de-

note by C1 ⊂ ∆1 ⊂ M12 the associated test curve. Then the coefficient of δ1

in the expansion of D22 is equal to

b1 =
1

2g(C)− 2
σ∗(C1) · c3

Ä
F − Sym2E

ä
= 9867.

Proof. We intersect the degeneracy locus of the map φ : Sym2(E) → F
with the 3-fold σ∗(C1) = X +

∑
ᾱXᾱ × Zᾱ. As already explained in Proposi-

tion 6.6, it is enough to estimate the contribution coming from X, and we can

write

σ∗(C1) · c3(F − Sym2E) = c3(F|X)− c3(Sym2E|X)− c1(F|X)c2(Sym2E|X)

+ 2c1(Sym2E|X)c2(Sym2E|X)− c1(Sym2E|X)c2(F|X)

+ c2
1(Sym2E|X)c1(F|X)− c3

1(Sym2E|X).

We are going to compute each term in the right-hand side of this expression.

Recall that we have constructed in Proposition 6.7 a vector bundle mor-

phism ζ : J1(P)∨ → π∗2(M)∨. We consider the kernel line bundle Ker(ζ). If U

is the line bundle on X with fibre

U(y, L) =
H0(C,L)

H0(C,L⊗OC(−2y))
↪→ H0(C,L⊗O2y)
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over a point (y, L) ∈ X, then one has an exact sequence over X:

0→ U → J1(P)→ Ker(ζ)∨ → 0.

In particular, c1(U) = 2γ + 48η − c1(Ker(ζ))∨. The products of the Chern

class of Ker(ζ)∨ with other classes on C ×W 4
14(C) can be computed from the

Harris-Tu formula [HT84]:

c1(Ker(ζ)∨) · ξ|X = −c5(π∗2(M)∨ − J1(P)∨) · ξ|X(6)

= −
Ä
π∗2(c5)− 6ηθπ∗2(c3) + (48η + 2γ)π∗2(c4)

ä
· ξ|X

for any class ξ ∈ H2(C ×W 4
14(C),C).

If A3 denotes the rank 18 vector bundle on X having fibres A3(y, L) =

H0(C,L⊗2), then there is an injective morphism U⊗2 ↪→ A3/A2, and we con-

sider the quotient sheaf

G :=
A3/A2

U⊗2
.

Since the morphism U⊗2 → A3/A2 vanishes along the locus of pairs (y, L)

where L has a base point, G has torsion along Γ ⊂ X. A straightforward local

analysis now shows that F|X can be identified as a subsheaf of A3 with the

kernel of the map A3 → G. Therefore, there is an exact sequence of vector

bundles on X,

0→ A2|X → F|X → U⊗2 → 0,

which over a general point of X corresponds to the decomposition

F(y, L) = H0(C,L⊗2 ⊗OC(−2y))⊕ C · u2,

where u ∈ H0(C,L) is such that ordy(u) = 1. The analysis above shows that

the sequence stays exact over the curve Γ as well. Hence

c1(F|X) = c1(A2|X) + 2c1(U), c2(F|X) = c2(A2|X) + 2c1(A2|X)c1(U)

and

c3(F|X) = c3(A2) + 2c2(A2|X)c1(U).

Furthermore, since E|X = π∗2(M)|X , we obtain that

σ∗(C1) · c3

Ä
F − Sym2E

ä
= c3(A2|X) + c2(A2|X)c1(U⊗2)− c3(Sym2π∗2M|X)

−
(r(r + 3)

2
c1(π∗2M|X) + (r + 3)c2(π∗2M|X)

)
·
(
c1(A2|X) + c1(U⊗2)− 2(r + 2)c1(π∗2M|X)

)
− (r + 2)c1(π∗2M|X)c2(A2|X)− (r + 2)c1(π∗2M|X)c1(A2|X)c1(U⊗2)

+ (r + 2)2c2
1(π∗2M|X)c1(A2|X)

+ (r + 2)2c2
1(π∗2M|X)c1(U⊗2)− (r + 2)3c3

1(π∗2M|X).
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As before, ci(π
∗
2M∨|X) = π∗2(ci) ∈ H2i(X,C). The coefficient of c1(Ker(ζ)∨)

in the product σ∗(C1) · c3

Ä
F − Sym2E

ä
is evaluated via (6). The part of this

product that does not contain c1(Ker(ζ)∨) equals

28π∗2(c2)θ − 88π∗2(c2
1)θ + 440ηπ∗2(c2

1)− 53π∗2(c1c2)

− 32

3
θ3 + 128ηθ2 − 432ηθπ∗2(c1) + 64π∗2(c3

1)

− 140ηπ∗2(c2) + 48θ2π∗2(c1) + 9π∗2(c3) ∈ H6(C ×W 4
14(C),C).

Multiplying this quantity by the class [X] obtained in Proposition 6.7 and

then adding to it the contribution coming from c1(Ker(ζ)∨), one obtains a

homogeneous polynomial of degree 7 in η, θ and π∗2(ci) for 1 ≤ i ≤ 4. The

only nonzero monomials are those containing η. After retaining only these

monomials, the resulting degree 6 polynomial in θ, ci ∈ H∗(W 4
14(C),Z) can be

brought to a manageable form by noting that, since h1(C,L) = 1, the classes

ci are not independent. Precisely, if one fixes a divisor D ∈ Ce of large degree,

there is an exact sequence

0→M→ (π2)∗
Ä
P ⊗O(π∗D)

ä
→ (π2)∗

Ä
P ⊗O(π∗1D)|π∗1D

ä
→ R1π2∗

Ä
P|C×W 4

14(C)

ä
→ 0,

from which, via the well-known fact ct
Ä
(π2)∗(P ⊗ O(π∗1D))

ä
= e−θ, it follows

that

ctR
1π2∗
Ä
P|C×W 4

14(C)

ä
· e−θ =

4∑
i=0

(−1)ici.

Hence ci+1 = θici/i!− iθi+1/(i+ 1)! for all i ≥ 2. After routine manipulations,

one finds that b1 = σ∗(C1) · c3(F − Sym2(E))/20 = 9867. �

Theorem 6.10. Let [C, q] ∈M11,1 be a general pointed curve, and denote

by C0 ⊂ ∆0 ⊂M12 the associated test curve. Then σ∗(C0) · c3(F − Sym2E) =

22b0 − b1 = 32505. It follows that b0 = 1926.

Proof. As already noted in Proposition 6.5, the vector bundles E|σ∗(C0)

and F|σ∗(C0) are both pull-backs of vector bundles on Y , and we denote these

vector bundles E and F as well; that is, E|σ∗(C0) = (ε ◦ f)∗(E|Y ) and F|σ∗(C0) =

(ε◦f)∗(F|Y ). Like in the proof of Theorem 6.9, we evaluate each term appearing

in σ∗(C0) · c3(F − Sym2(E)).

Let V be the line bundle on Y with fibre

V (y, L) =
H0(C,L)

H0(C,L⊗OC(−y − q))
↪→ H0(C,L⊗Oy+q)

over a point (y, L) ∈ Y . There is an exact sequence of vector bundles over Y

0 −→ V −→ B −→ Ker(χ)∨ −→ 0,
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where χ : B∨ → π∗2(M)∨ is the bundle morphism defined in the second part of

Proposition 6.7. In particular, c1(V ) = 13η + γ − c1(Ker(χ∨). Again by using

[HT84], we find the following formulas for the Chern numbers of Ker(χ)∨:

c1(Ker(χ)∨) · ξ|Y = −c5

Ä
π∗2(M)∨ − B∨

ä
· ξ|Y

= −(π∗2(c5) + π∗2(c4)(13η + γ)− 2π∗2(c3)ηθ) · ξ|Y
for any class ξ ∈ H2(C ×W 4

14(C),C). Recall that we introduced the vector

bundle B2 over C ×W 4
14(C) with fibre B2(y, L) = H0(C,L⊗2 ⊗ OC(−y − q)).

We claim that one has an exact sequence of bundles over Y :

(7) 0 −→ B2|Y −→ F|Y −→ V ⊗2 −→ 0.

If B3 is the vector bundle on Y with fibres B3(y, L) = H0(C,L⊗2), we have an

injective morphism of sheaves V ⊗2 ↪→ B3/B2 locally given by

v⊗2 7→ v2 mod H0(C,L⊗2 ⊗OC(−y − q)),

where v ∈ H0(C,L) is any section not vanishing at q and y. Then F|Y is

canonically identified with the kernel of the projection morphism

B3 →
B3/B2

V ⊗2
,

and the exact sequence (7) now becomes clear. Therefore

c1(F|Y ) = c1(B2|Y ) + 2c1(V ), c2(F|Y ) = c2(B2|Y ) + 2c1(B2|Y )c1(V )

and

c3(F|Y ) = c3(B2|Y ) + 2c2(B2|Y )c1(V ).

The part of the total intersection number σ∗(C0) · c3(F − Sym2(E)) that does

not contain c1(Ker(χ∨)) equals

28π∗2(c2)θ − 88π∗2(c2
1)θ22ηπ∗2(c2

1)− 53π∗2(c1c2)− 32

3
θ3

− 8ηθ2 + 24ηθπ∗2(c1) + 64π∗2(c3
1) + 7ηπ∗2(c2)

+ 48θ2π∗2(c1) + 9π∗2(c3) ∈ H6(C ×W 4
14(C),C),

and this gets multiplied with the class [Y ] from Proposition 6.7. The coefficient

of c1(Ker(ζ)∨) in σ∗(C0) · c3

Ä
F − Sym2E

ä
equals

−2c2(B2|Y )− 2(r + 2)2π∗2(c2
1)− 2(r + 2)c1(B2|Y )π∗2(c1)

+ r(r + 3)π∗2(c2
1) + 2(r + 3)π∗2(c2).

All in all, 22b0 − b1 = σ∗(C0) · c3(F − Sym2E), and we evaluate this using

(6). �

The following result follows from the definition of the vector bundles E
and F given in Proposition 6.4:
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Theorem 6.11. Let [C, q] ∈ M11,1 be a Brill-Noether general pointed

curve and R ⊂ M12 the pencil obtained by attaching at the fixed point q ∈ C
a pencil of plane cubics. Then

a− 12b0 + b1 = σ∗c3

Ä
F − Sym2E

ä
·R = 0.

End of the proof of Theorem 6.1. First we note that the virtual divisor

D12 is a genuine divisor on M12. Assuming by contradiction that for every

curve [C] ∈M12 there exists L ∈W 4
14(C) such that µ0(L) is not-injective, one

can construct a stable vector bundle E of rank 2 sitting in an extension

0 −→ KC ⊗ L∨ −→ E −→ L −→ 0

such that h0(C,E) = h0(C,L) + h1(C,L) = 7 and for which the Mukai-Petri

map Sym2H0(C,E) → H0(C,Sym2E) is not injective. This contradicts the

main result from [Tei08]. To determine the slope of D12, we write

D12 ≡ aλ−
6∑
j=0

bjδj ∈ Pic(M12).

Since a
b0

= 4415
642 ≤

71
10 , we can apply Corollary 1.2 from [FP05], which gives the

inequalities bj ≥ b0 for 1 ≤ j ≤ 6. Therefore s(D12) = a
b0
< 6 + 12

13 . �

We close by discussing a second counterexample to the Slope Conjecture

on M12.

Definition 6.12. Let V be a vector space. We say that a pencil of quadrics

` ⊂ P(Sym2(V )) is degenerate if the intersection of ` with the discriminant

divisor D(V ) ⊂ P(Sym2(V )) is nonreduced.

A general curve [C] ∈M12 has finitely many linear systems A ∈W 5
15(C).

As a consequence of the maximal rank conjecture [Voi92], the multiplication

map

µ0(A) : Sym2H0(C,A)→ H0(C,A⊗2)

is surjective for each A ∈ W 5
15(C); in particular, PC,A := P

Ä
Ker µ0(A)

ä
is

a pencil of quadrics in P5 containing the image of the map C
|A|−→ P5. One

expects the pencil PC,A to be nondegenerate. By imposing the condition that

it be degenerate, we produce a divisor on M12, whose class we compute.

We shall make essential use of the following result [FR]. Let X be a

smooth projective variety, E and F vector bundles on X with rk(E) = e and

rk(F) =
(e+1

2

)
−2, and ϕ : Sym2(E)→ F a surjective vector bundle morphism.

Then the class of the locus

H :=
{
x ∈ X : P

Ä
Ker ϕ(x)

ä
⊂ P

Ä
Sym2E(x)

ä
is a degenerate pencil

}
,

assuming it is of codimension 1 in X, is equal to

(8) [H] = (e− 1)
Ä
e c1(F)− (e2 + e− 4)c1(E)

ä
∈ A1(X).
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Theorem 6.13. The locus consisting of smooth curves of genus 12,

H12 :=
¶

[C] ∈M12 : PC,A is degenerate for a A ∈W 5
15(C)

©
,

is an effective divisor. The slope of its closure H12 inside M12 equals

s(H12) =
373

54
< 6 +

12

13
.

Proof. We only sketch the main steps. We retain the notation in the proof

of Theorem 6.1 and consider the stack σ : ‹G5
15 → M

p
12 of limit linear series

of type g5
15. Using [Far09, Prop. 2.8], there exist two vector bundles E and

F over ‹G5
15 together with a morphism ϕ : Sym2(E) → F such that over a

point [C,A] ∈ σ−1(Mp
12) corresponding to a smooth underlying curve, one has

the description of its fibres E(C,A) = H0(C,A) and F(C,A) = H0(C,A⊗2).

Moreover, ϕ(C,A) is the multiplication map µ0(A). The extension of E and F
over the boundary of ‹G5

15 is identical to the one appearing in Proposition 6.4.

Applying (8), the class of the restriction ‹H12 := H12 ∩Mp
12 is equal to

[‹H12]virt = 10σ∗
Ä
6c1(F)− 38c1(E)

ä
∈ A1(M

p
12).

The push-forward classes σ∗(c1(E)) and σ∗(c1(F)) can be determined following

[Far09, Props. 2.12, 2.13], which after manipulations leads to the claimed slope.

To prove that H12 is indeed a divisor, note first that G5
15 being isomorphic

to the Hurwitz space G1
7 is irreducible. To establish that for a general curve

[C] ∈M12, the pencil PC,A is nondegenerate for all linear systems A ∈W 5
15(C),

it suffices to produce one example of a smooth curve C ⊂ P5 with g(C) = 12

and deg(C) = 15, with PC,OC(1) nondegenerate. This is carried out via the

use of Macaulay in a way similar to the proof of Theorem 2.7 in [Far06] for a

curve C lying on a particular rational surface in P5. �
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Norm. Sup. 4 (1971), 181–192. MR 0292836. Zbl 0216.05904. Available at

http://www.numdam.org/item?id=ASENS 1971 4 4 2 181 0.

[Sco00] G. Scorza, Sopra le curve canoniche di uno spazio lineare qualunque e sopra

certi loro covarianti quartici, Atti Accad. Reale Sci. Torino 35 (1900), 765–773.

[TZ11] H. Takagi and F. Zucconi, Spin curves and Scorza quartics, Math. Ann.

349 (2011), 623–645. MR 2422346. Zbl 1208.14051. http://dx.doi.org/10.

1007/s00208-010-0530-6.

[Tan82] A. Tannenbaum, Families of curves with nodes on K3 surfaces, Math. Ann.

260 (1982), 239–253. MR 0664378. Zbl 0474.14013. http://dx.doi.org/10.

1007/BF01457238.

[Tei08] M. Teixidor i Bigas, Petri map for rank two bundles with canonical deter-

minant, Compos. Math. 144 (2008), 705–720. MR 2422346. Zbl 1143.14028.

http://dx.doi.org/10.1112/S0010437X07003442.

[Voi92] C. Voisin, Sur l’application de Wahl des courbes satisfaisant la condition de

Brill-Noether-Petri, Acta Math. 168 (1992), 249–272. MR 1161267. Zbl 0767.

14012. http://dx.doi.org/10.1007/BF02392980.

(Received: April 30, 2010)

http://www.ams.org/mathscinet-getitem?mr=0805332
http://www.zentralblatt-math.org/zmath/en/search/?q=an:574.14028
http://dx.doi.org/10.1007/BFb0074998
http://www.ams.org/mathscinet-getitem?mr=0852158
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0608.14026
http://projecteuclid.org/euclid.jdg/1214440116
http://projecteuclid.org/euclid.jdg/1214440116
http://www.ams.org/mathscinet-getitem?mr=1953519
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1066.14030
http://dx.doi.org/10.1353/ajm.2003.0005
http://www.ams.org/mathscinet-getitem?mr=2551759
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1248.14033
http://dx.doi.org/10.1090/S1056-3911-09-00505-0
http://dx.doi.org/10.1090/S1056-3911-09-00505-0
http://www.ams.org/mathscinet-getitem?mr=1285374
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0846.14030
http://www.ams.org/mathscinet-getitem?mr=1363081
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0871.14025
http://dx.doi.org/10.2307/2375032
http://dx.doi.org/10.2307/2375032
http://www.ams.org/mathscinet-getitem?mr=1397987
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0884.14010
http://www.ams.org/mathscinet-getitem?mr=2726093
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1210.14034
http://dx.doi.org/10.4007/annals.2010.172.1539
http://dx.doi.org/10.4007/annals.2010.172.1539
http://www.ams.org/mathscinet-getitem?mr=0292836
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0216.05904
http://www.numdam.org/item?id=ASENS_1971_4_4_2_181_0
http://www.ams.org/mathscinet-getitem?mr=2422346
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1208.14051
http://dx.doi.org/10.1007/s00208-010-0530-6
http://dx.doi.org/10.1007/s00208-010-0530-6
http://www.ams.org/mathscinet-getitem?mr=0664378
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0474.14013
http://dx.doi.org/10.1007/BF01457238
http://dx.doi.org/10.1007/BF01457238
http://www.ams.org/mathscinet-getitem?mr=2422346
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1143.14028
http://dx.doi.org/10.1112/S0010437X07003442
http://www.ams.org/mathscinet-getitem?mr=1161267
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0767.14012
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0767.14012
http://dx.doi.org/10.1007/BF02392980


970 G. FARKAS and A. VERRA

(Revised: October 18, 2013)

Humboldt-Universität zu Berlin, Berlin, Germany

E-mail : farkas@math.hu-berlin.de
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