Fourier transform and the global Gan–Gross–Prasad conjecture for unitary groups

Abstract

By the relative trace formula approach of Jacquet–Rallis, we prove the global Gan–Gross–Prasad conjecture for unitary groups under some local restrictions for the automorphic representations.

  • [HLR] G. Harder, R. P. Langlands, and M. Rapoport, "Algebraische Zyklen auf Hilbert-Blumenthal-Flächen," J. Reine Angew. Math., vol. 366, pp. 53-120, 1986.
    @article{HLR,
      author = {Harder, G. and Langlands, R. P. and Rapoport, M.},
      journal = {J. Reine Angew. Math.},
      pages = {53--120},
      title = {Algebraische {Z}yklen auf {H}ilbert-{B}lumenthal-{F}lächen},
      volume = {366},
      year = {1986},
      issn = {0075-4102},
      }
  • [GZ] Go to document B. H. Gross and D. B. Zagier, "Heegner points and derivatives of $L$-series," Invent. Math., vol. 84, iss. 2, pp. 225-320, 1986.
    @article{GZ,
      author = {Gross, Benedict H. and Zagier, Don B.},
      journal = {Invent. Math.},
      number = {2},
      pages = {225--320},
      title = {Heegner points and derivatives of {$L$}-series},
      volume = {84},
      year = {1986},
      doi = {10.1007/BF01388809},
      issn = {0020-9910},
      }
  • [YZZ] X. Yuan, S. -W. Zhang, and W. Zhang, The Gross–Zagier Formula on Shimura Curves, Princeton, NJ: Princeton Univ. Press, 2012, vol. 184.
    @book{YZZ, address = {Princeton, NJ},
      author = {Yuan, X. and Zhang, S.-W. and Zhang, W.},
      publisher = {Princeton Univ. Press},
      series = {Ann. of Math. Stud.},
      title = {The {G}ross--{Z}agier {F}ormula on {S}himura {C}urves},
      volume = {184},
      year = {2012},
      }
  • [KRY] S. S. Kudla, M. Rapoport, and T. Yang, Modular Forms and Special Cycles on Shimura Curves, Princeton, NJ: Princeton Univ. Press, 2006, vol. 161.
    @book{KRY, address = {Princeton, NJ},
      author = {Kudla, Stephen S. and Rapoport, Michael and Yang, Tonghai},
      pages = {x+373},
      publisher = {Princeton Univ. Press},
      series = {Ann. of Math. Stud.},
      title = {Modular Forms and Special Cycles on {S}himura Curves},
      volume = {161},
      year = {2006},
      isbn = {978-0-691-12551-0; 0-691-12551-1},
      }
  • [BO] Go to document J. Bruinier and K. Ono, "Heegner divisors, $L$-functions and harmonic weak Maass forms," Ann. of Math., vol. 172, iss. 3, pp. 2135-2181, 2010.
    @article{BO,
      author = {Bruinier, Jan and Ono, Ken},
      journal = {Ann. of Math.},
      number = {3},
      pages = {2135--2181},
      title = {Heegner divisors, {$L$}-functions and harmonic weak {M}aass forms},
      volume = {172},
      year = {2010},
      doi = {10.4007/annals.2010.172.2135},
      issn = {0003-486X},
      }
  • [W1] Go to document J. -L. Waldspurger, "Sur les valeurs de certaines fonctions $L$ automorphes en leur centre de symétrie," Compositio Math., vol. 54, iss. 2, pp. 173-242, 1985.
    @article{W1,
      author = {Waldspurger, J.-L.},
      journal = {Compositio Math.},
      number = {2},
      pages = {173--242},
      title = {Sur les valeurs de certaines fonctions {$L$} automorphes en leur centre de symétrie},
      volume = {54},
      year = {1985},
      issn = {0010-437X},
      url = {http://www.numdam.org/item?id=CM_1985__54_2_173_0},
      }
  • [GP1] Go to document B. H. Gross and D. Prasad, "On the decomposition of a representation of ${ SO}_n$ when restricted to ${ SO}_{n-1}$," Canad. J. Math., vol. 44, iss. 5, pp. 974-1002, 1992.
    @article{GP1,
      author = {Gross, Benedict H. and Prasad, Dipendra},
      journal = {Canad. J. Math.},
      number = {5},
      pages = {974--1002},
      title = {On the decomposition of a representation of {${\rm SO}\sb n$} when restricted to {${\rm SO}\sb {n-1}$}},
      volume = {44},
      year = {1992},
      doi = {10.4153/CJM-1992-060-8},
      issn = {0008-414X},
      }
  • [GP2] Go to document B. H. Gross and D. Prasad, "On irreducible representations of ${ SO}_{2n+1}\times{ SO}_{2m}$," Canad. J. Math., vol. 46, iss. 5, pp. 930-950, 1994.
    @article{GP2,
      author = {Gross, Benedict H. and Prasad, Dipendra},
      journal = {Canad. J. Math.},
      number = {5},
      pages = {930--950},
      title = {On irreducible representations of {${\rm SO}\sb {2n+1}\times{\rm SO}\sb {2m}$}},
      volume = {46},
      year = {1994},
      doi = {10.4153/CJM-1994-053-4},
      issn = {0008-414X},
      }
  • [II] Go to document A. Ichino and T. Ikeda, "On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture," Geom. Funct. Anal., vol. 19, iss. 5, pp. 1378-1425, 2010.
    @article{II,
      author = {Ichino, Atsushi and Ikeda, Tamutsu},
      journal = {Geom. Funct. Anal.},
      number = {5},
      pages = {1378--1425},
      title = {On the periods of automorphic forms on special orthogonal groups and the {G}ross-{P}rasad conjecture},
      volume = {19},
      year = {2010},
      doi = {10.1007/s00039-009-0040-4},
      issn = {1016-443X},
      }
  • [GGP] W. T. Gan, B. H. Gross, and D. Prasad, "Symplectic local root numbers, central critical ${L}$-values, and restriction problems in the representation theory of classical groups," in Sur les Conjectures de Gross et Prasad. I, Paris: Soc. Math. France, 2012, vol. 346, pp. 1-110.
    @incollection{GGP, address = {Paris},
      author = {Gan, W. T. and Gross, B. H. and Prasad, D.},
      booktitle = {Sur les Conjectures de {G}ross et {P}rasad. {I}},
      pages = {1--110},
      publisher = {Soc. Math. France},
      series = {Astérisque},
      title = {Symplectic local root numbers, central critical ${L}$-values, and restriction problems in the representation theory of classical groups},
      volume = {346},
      year = {2012},
      }
  • [Z2] Go to document W. Zhang, "Automorphic period and the central value of Rankin-Selberg L-function," J. Amer. Math. Soc., vol. 27, iss. 2, pp. 541-612, 2014.
    @article{Z2,
      author = {Zhang, Wei},
      journal = {J. Amer. Math. Soc.},
      number = {2},
      pages = {541--612},
      title = {Automorphic period and the central value of {R}ankin-{S}elberg \hbox{{L}-function}},
      volume = {27},
      year = {2014},
      doi = {10.1090/S0894-0347-2014-00784-0},
      issn = {0894-0347},
      }
  • [HL] Go to document M. Harris and J. Labesse, "Conditional base change for unitary groups," Asian J. Math., vol. 8, iss. 4, pp. 653-683, 2004.
    @article{HL,
      author = {Harris, Michael and Labesse, Jean-Pierre},
      journal = {Asian J. Math.},
      number = {4},
      pages = {653--683},
      title = {Conditional base change for unitary groups},
      volume = {8},
      year = {2004},
      doi = {10.4310/AJM.2004.v8.n4.a19},
      issn = {1093-6106},
      }
  • [Mok] C. -P. Mok, Endoscopic classification of representations of quasi-split unitary groups.
    @misc{Mok,
      author = {Mok, C.-P.},
      note = {to appear in \emph{Mem. Amer. Math. Soc.}},
      title = {Endoscopic classification of representations of quasi-split unitary groups},
      }
  • [IY] A. Ichino and S. Yamana, Periods of automorphic forms: the case of GL$_{n+1}\times \hbox{{GL}}_n,\hbox{{GL}}_n)$, 2013.
    @misc{IY,
      author = {Ichino, Atsushi and Yamana, S.},
      note = {preprint},
      title = {Periods of automorphic forms: {t}he case of {GL}$_{n+1}\times \hbox{{GL}}_n,\hbox{{GL}}_n)$},
      year = {2013},
      }
  • [Gar] Go to document P. B. Garrett, "Decomposition of Eisenstein series: Rankin triple products," Ann. of Math., vol. 125, iss. 2, pp. 209-235, 1987.
    @article{Gar,
      author = {Garrett, Paul B.},
      journal = {Ann. of Math.},
      number = {2},
      pages = {209--235},
      title = {Decomposition of {E}isenstein series: {R}ankin triple products},
      volume = {125},
      year = {1987},
      doi = {10.2307/1971310},
      issn = {0003-486X},
      }
  • [H-K] M. Harris and S. S. Kudla, "On a conjecture of Jacquet," in Contributions to Automorphic Forms, Geometry, and Number Theory, Johns Hopkins Univ. Press, 2004, pp. 355-371.
    @incollection{H-K,
      author = {Harris, Michael and Kudla, Stephen S.},
      booktitle = {Contributions to Automorphic Forms, Geometry, and Number Theory},
      pages = {355--371},
      publisher = {Johns Hopkins Univ. Press},
      title = {On a conjecture of {J}acquet},
      year = {2004},
      }
  • [G-K] Go to document B. H. Gross and S. S. Kudla, "Heights and the central critical values of triple product $L$-functions," Compositio Math., vol. 81, iss. 2, pp. 143-209, 1992.
    @article{G-K,
      author = {Gross, Benedict H. and Kudla, Stephen S.},
      journal = {Compositio Math.},
      number = {2},
      pages = {143--209},
      title = {Heights and the central critical values of triple product {$L$}-functions},
      volume = {81},
      year = {1992},
      issn = {0010-437X},
      url = {http://www.numdam.org/item?id=CM_1992__81_2_143_0},
      }
  • [I] Go to document A. Ichino, "Trilinear forms and the central values of triple product $L$-functions," Duke Math. J., vol. 145, iss. 2, pp. 281-307, 2008.
    @article{I,
      author = {Ichino, Atsushi},
      journal = {Duke Math. J.},
      number = {2},
      pages = {281--307},
      title = {Trilinear forms and the central values of triple product {$L$}-functions},
      volume = {145},
      year = {2008},
      doi = {10.1215/00127094-2008-052},
      issn = {0012-7094},
      }
  • [GI] Go to document W. T. Gan and A. Ichino, "On endoscopy and the refined Gross-Prasad conjecture for $( SO_5,SO_4)$," J. Inst. Math. Jussieu, vol. 10, iss. 2, pp. 235-324, 2011.
    @article{GI,
      author = {Gan, Wee Teck and Ichino, Atsushi},
      journal = {J. Inst. Math. Jussieu},
      number = {2},
      pages = {235--324},
      title = {On endoscopy and the refined {G}ross-{P}rasad conjecture for {$(\rm SO\sb 5,SO\sb 4)$}},
      volume = {10},
      year = {2011},
      doi = {10.1017/S1474748010000198},
      issn = {1474-7480},
      }
  • [GJR1] Go to document D. Ginzburg, D. Jiang, and S. Rallis, "On the nonvanishing of the central value of the Rankin-Selberg $L$-functions," J. Amer. Math. Soc., vol. 17, iss. 3, pp. 679-722, 2004.
    @article{GJR1,
      author = {Ginzburg, David and Jiang, Dihua and Rallis, Stephen},
      journal = {J. Amer. Math. Soc.},
      number = {3},
      pages = {679--722},
      title = {On the nonvanishing of the central value of the {R}ankin-{S}elberg {$L$}-functions},
      volume = {17},
      year = {2004},
      doi = {10.1090/S0894-0347-04-00455-2},
      issn = {0894-0347},
      }
  • [GJR2] Go to document D. Ginzburg, D. Jiang, and S. Rallis, "On the nonvanishing of the central value of the Rankin-Selberg $L$-functions. II," in Automorphic Representations, $L$-Functions and Applications: Progress and Prospects, Berlin: de Gruyter, 2005, vol. 11, pp. 157-191.
    @incollection{GJR2, address = {Berlin},
      author = {Ginzburg, David and Jiang, Dihua and Rallis, Stephen},
      booktitle = {Automorphic Representations, {$L$}-Functions and Applications: Progress and Prospects},
      pages = {157--191},
      publisher = {de Gruyter},
      series = {Ohio State Univ. Math. Res. Inst. Publ.},
      title = {On the nonvanishing of the central value of the {R}ankin-{S}elberg {$L$}-functions. {II}},
      volume = {11},
      year = {2005},
      doi = {10.1515/9783110892703.157},
      }
  • [W2] Go to document J. -L. Waldspurger, "Une formule intégrale reliée à la conjecture locale de Gross-Prasad," Compos. Math., vol. 146, iss. 5, pp. 1180-1290, 2010.
    @article{W2,
      author = {Waldspurger, J.-L.},
      journal = {Compos. Math.},
      number = {5},
      pages = {1180--1290},
      title = {Une formule intégrale reliée à la conjecture locale de {G}ross-{P}rasad},
      volume = {146},
      year = {2010},
      doi = {10.1112/S0010437X10004744},
      issn = {0010-437X},
      }
  • [W3] C. Moeglin and J. -L. Waldspurger, Sur les Conjectures de Gross et Prasad. II, Paris: Soc. Math. France, 2012, vol. 347.
    @book{W3, address = {Paris},
      author = {M{\oe}glin, C. and Waldspurger, J.-L.},
      pages = {xi+216},
      publisher = {Soc. Math. France},
      series = {Astérisque},
      title = {Sur les Conjectures de {G}ross et {P}rasad. {II}},
      volume = {347},
      year = {2012},
      isbn = {978-2-85629-350-8},
      issn = {0303-1179},
      }
  • [BP1] R. Beuzart-Plessis, La conjecture locale de Gross-Prasad pour les représentations tempérées des groupes unitaires.
    @misc{BP1,
      author = {Beuzart-Plessis, R.},
      title = {La conjecture locale de {G}ross-{P}rasad pour les représentations tempérées des groupes unitaires},
      }
  • [BP2] R. Beuzart-Plessis, Endoscopie et conjecture raffinée de Gan-Gross-Prasad pour les groupes unitaires.
    @misc{BP2,
      author = {Beuzart-Plessis, R.},
      title = {Endoscopie et conjecture raffinée de {G}an-{G}ross-{P}rasad pour les groupes unitaires},
      }
  • [N] R. N. Harris, The refined Gross-Prasad conjecture for unitary groups.
    @misc{N,
      author = {Harris, R. N.},
      title = {The refined {G}ross-{P}rasad conjecture for unitary groups},
      }
  • [F2] Go to document Y. Z. Flicker, "On distinguished representations," J. Reine Angew. Math., vol. 418, pp. 139-172, 1991.
    @article{F2,
      author = {Flicker, Yuval Z.},
      journal = {J. Reine Angew. Math.},
      pages = {139--172},
      title = {On distinguished representations},
      volume = {418},
      year = {1991},
      doi = {10.1515/crll.1991.418.139},
      issn = {0075-4102},
      }
  • [F1] Go to document Y. Z. Flicker, "Twisted tensors and Euler products," Bull. Soc. Math. France, vol. 116, iss. 3, pp. 295-313, 1988.
    @article{F1,
      author = {Flicker, Yuval Z.},
      journal = {Bull. Soc. Math. France},
      number = {3},
      pages = {295--313},
      title = {Twisted tensors and {E}uler products},
      volume = {116},
      year = {1988},
      issn = {0037-9484},
      url = {http://www.numdam.org/item?id=BSMF_1988__116_3_295_0},
      }
  • [FZ] Go to document Y. Z. Flicker and D. Zinoviev, "On poles of twisted tensor $L$-functions," Proc. Japan Acad. Ser. A Math. Sci., vol. 71, iss. 6, pp. 114-116, 1995.
    @article{FZ,
      author = {Flicker, Yuval Z. and Zinoviev, Dmitrii},
      journal = {Proc. Japan Acad. Ser. A Math. Sci.},
      number = {6},
      pages = {114--116},
      title = {On poles of twisted tensor {$L$}-functions},
      volume = {71},
      year = {1995},
      issn = {0386-2194},
      url = {http://projecteuclid.org/euclid.pja/1195510651},
      }
  • [GJR] Go to document S. Gelbart, H. Jacquet, and J. Rogawski, "Generic representations for the unitary group in three variables," Israel J. Math., vol. 126, pp. 173-237, 2001.
    @article{GJR,
      author = {Gelbart, Stephen and Jacquet, Herv{é} and Rogawski, Jonathan},
      journal = {Israel J. Math.},
      pages = {173--237},
      title = {Generic representations for the unitary group in three variables},
      volume = {126},
      year = {2001},
      doi = {10.1007/BF02784154},
      issn = {0021-2172},
      }
  • [AG] Go to document A. Aizenbud and D. Gourevitch, "Generalized Harish-Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet-Rallis’s theorem," Duke Math. J., vol. 149, iss. 3, pp. 509-567, 2009.
    @article{AG,
      author = {Aizenbud, Avraham and Gourevitch, Dmitry},
      journal = {Duke Math. J.},
      note = {with an appendix by the authors and Eitan Sayag},
      number = {3},
      pages = {509--567},
      title = {Generalized {H}arish-{C}handra descent, {G}elfand pairs, and an {A}rchimedean analog of {J}acquet-{R}allis's theorem},
      volume = {149},
      year = {2009},
      doi = {10.1215/00127094-2009-044},
      issn = {0012-7094},
      }
  • [M] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, Third ed., New York: Springer-Verlag, 1994, vol. 34.
    @book{M, address = {New York},
      author = {Mumford, D. and Fogarty, J. and Kirwan, F.},
      edition = {Third},
      pages = {xiv+292},
      publisher = {Springer-Verlag},
      series = {Ergeb. Math. Grenzgeb.},
      title = {Geometric Invariant Theory},
      volume = {34},
      year = {1994},
      isbn = {3-540-56963-4},
      }
  • [Z] Go to document W. Zhang, "On arithmetic fundamental lemmas," Invent. Math., vol. 188, iss. 1, pp. 197-252, 2012.
    @article{Z,
      author = {Zhang, Wei},
      journal = {Invent. Math.},
      number = {1},
      pages = {197--252},
      title = {On arithmetic fundamental lemmas},
      volume = {188},
      year = {2012},
      doi = {10.1007/s00222-011-0348-1},
      issn = {0020-9910},
      }
  • [RS] S. Rallis and G. Schiffmann, Multiplicity one conjectures.
    @misc{RS,
      author = {Rallis, S. and Schiffmann, G.},
      title = {Multiplicity one conjectures},
      }
  • [JR] H. Jacquet and S. Rallis, "On the Gross-Prasad conjecture for unitary groups," in On Certain $L$-Functions, Providence, RI: Amer. Math. Soc., 2011, vol. 13, pp. 205-264.
    @incollection{JR, address = {Providence, RI},
      author = {Jacquet, Herv{é} and Rallis, Stephen},
      booktitle = {On Certain {$L$}-Functions},
      pages = {205--264},
      publisher = {Amer. Math. Soc.},
      series = {Clay Math. Proc.},
      title = {On the {G}ross-{P}rasad conjecture for unitary groups},
      volume = {13},
      year = {2011},
      }
  • [Ro] Go to document J. D. Rogawski, "Representations of ${ GL}(n)$ and division algebras over a $p$-adic field," Duke Math. J., vol. 50, iss. 1, pp. 161-196, 1983.
    @article{Ro,
      author = {Rogawski, Jonathan D.},
      journal = {Duke Math. J.},
      number = {1},
      pages = {161--196},
      title = {Representations of {${\rm GL}(n)$} and division algebras over a {$p$}-adic field},
      volume = {50},
      year = {1983},
      doi = {10.1215/S0012-7094-83-05006-8},
      issn = {0012-7094},
      }
  • [Y] Go to document Z. Yun, "The fundamental lemma of Jacquet and Rallis," Duke Math. J., vol. 156, iss. 2, pp. 167-227, 2011.
    @article{Y,
      author = {Yun, Zhiwei},
      journal = {Duke Math. J.},
      note = {with an appendix by Julia Gordon},
      number = {2},
      pages = {167--227},
      title = {The fundamental lemma of {J}acquet and {R}allis},
      volume = {156},
      year = {2011},
      doi = {10.1215/00127094-2010-210},
      issn = {0012-7094},
      }
  • [R] D. Ramakrishnan, A theorem on ${{ GL}}(n)$ à là Tchebotarev, 2012.
    @misc{R,
      author = {Ramakrishnan, D.},
      note = {preprint},
      title = {A theorem on ${{\rm GL}}(n)$ à là {T}chebotarev},
      year = {2012},
      }
  • [AGRS] Go to document A. Aizenbud, D. Gourevitch, S. Rallis, and G. Schiffmann, "Multiplicity one theorems," Ann. of Math., vol. 172, iss. 2, pp. 1407-1434, 2010.
    @article{AGRS,
      author = {Aizenbud, Avraham and Gourevitch, Dmitry and Rallis, Stephen and Schiffmann, G{é}rard},
      journal = {Ann. of Math.},
      number = {2},
      pages = {1407--1434},
      title = {Multiplicity one theorems},
      volume = {172},
      year = {2010},
      doi = {10.4007/annals.2010.172.1413},
      issn = {0003-486X},
      }
  • [SZ] Go to document B. Sun and C. Zhu, "Multiplicity one theorems: the Archimedean case," Ann. of Math., vol. 175, iss. 1, pp. 23-44, 2012.
    @article{SZ,
      author = {Sun, Binyong and Zhu, Chen-Bo},
      journal = {Ann. of Math.},
      number = {1},
      pages = {23--44},
      title = {Multiplicity one theorems: the {A}rchimedean case},
      volume = {175},
      year = {2012},
      doi = {10.4007/annals.2012.175.1.2},
      issn = {0003-486X},
      }
  • [P] Go to document D. Prasad, "Relating invariant linear form and local epsilon factors via global methods," Duke Math. J., vol. 138, iss. 2, pp. 233-261, 2007.
    @article{P,
      author = {Prasad, Dipendra},
      journal = {Duke Math. J.},
      note = {with an appendix by Hiroshi Saito},
      number = {2},
      pages = {233--261},
      title = {Relating invariant linear form and local epsilon factors via global methods},
      volume = {138},
      year = {2007},
      doi = {10.1215/S0012-7094-07-13823-7},
      issn = {0012-7094},
      }
  • [BK] C. J. Bushnell and P. C. Kutzko, The Admissible Dual of ${ GL}(N)$ via Compact Open Subgroups, Princeton Univ. Press, Princeton, NJ, 1993, vol. 129.
    @book{BK,
      author = {Bushnell, Colin J. and Kutzko, Philip C.},
      pages = {xii+313},
      publisher = {Princeton Univ. Press, Princeton, NJ},
      series = {Ann. of Math. Stud.},
      title = {The Admissible Dual of {${\rm GL}(N)$} via Compact Open Subgroups},
      volume = {129},
      year = {1993},
      isbn = {0-691-03256-4; 0-691-02114-7},
      }
  • [Ig] J. Igusa, "Geometry of absolutely admissible representations," in Number Theory, Algebraic Geometry and Commutative Algebra, in Honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 373-452.
    @incollection{Ig,
      author = {Igusa, Jun-ichi},
      booktitle = {Number Theory, Algebraic Geometry and Commutative Algebra, in Honor of {Y}asuo {A}kizuki},
      pages = {373--452},
      publisher = {Kinokuniya, Tokyo},
      title = {Geometry of absolutely admissible representations},
      year = {1973},
      }
  • [PV] È. B. Vinberg and V. L. Popov, "Invariant theory," in Algebraic Geometry, 4 (Russian), Moscow: Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1989, pp. 137-314, 315.
    @incollection{PV, address = {Moscow},
      author = {Vinberg, {È}. B. and Popov, V. L.},
      booktitle = {Algebraic Geometry, 4 ({R}ussian)},
      pages = {137--314, 315},
      publisher = {Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.},
      series = {Itogi Nauki i Tekhniki},
      title = {Invariant theory},
      year = {1989},
      }
  • [HC1] Harish-Chandra, Harmonic Analysis on Reductive $p$-adic Groups, New York: Springer-Verlag, 1970, vol. 162.
    @book{HC1, address = {New York},
      author = {Harish-Chandra},
      note = {notes by G. van Dijk},
      pages = {iv+125},
      publisher = {Springer-Verlag},
      series = {Lecture Notes in Math.},
      title = {Harmonic {A}nalysis on {R}eductive {$p$}-adic {G}roups},
      volume = {162},
      year = {1970},
      }
  • [HC2] Harish-Chandra, "Admissible invariant distributions on reductive $p$-adic groups," in Lie Theories and their Applications, Kingston, Ont.: Queen’s Univ., 1978, vol. 48, pp. 281-347.
    @incollection{HC2, address = {Kingston, Ont.},
      author = {Harish-Chandra},
      booktitle = {Lie Theories and their Applications},
      pages = {281--347},
      publisher = {Queen's Univ.},
      series = {Queen's Papers in Pure Appl. Math.},
      title = {Admissible invariant distributions on reductive {$p$}-adic groups},
      volume = {48},
      year = {1978},
      }
  • [D] Go to document J. Denef, "The rationality of the Poincaré series associated to the $p$-adic points on a variety," Invent. Math., vol. 77, iss. 1, pp. 1-23, 1984.
    @article{D,
      author = {Denef, J.},
      journal = {Invent. Math.},
      number = {1},
      pages = {1--23},
      title = {The rationality of the {P}oincaré series associated to the {$p$}-adic points on a variety},
      volume = {77},
      year = {1984},
      doi = {10.1007/BF01389133},
      issn = {0020-9910},
      }
  • [W95] Go to document J. -L. Waldspurger, "Une formule des traces locale pour les algèbres de Lie $p$-adiques," J. Reine Angew. Math., vol. 465, pp. 41-99, 1995.
    @article{W95,
      author = {Waldspurger, J.-L.},
      journal = {J. Reine Angew. Math.},
      pages = {41--99},
      title = {Une formule des traces locale pour les algèbres de {L}ie \hbox{{$p$}-adiques}},
      volume = {465},
      year = {1995},
      doi = {10.1515/crll.1995.465.41},
      issn = {0075-4102},
      }
  • [RR] C. Rader and S. Rallis, "Spherical characters on $\frak p$-adic symmetric spaces," Amer. J. Math., vol. 118, iss. 1, pp. 91-178, 1996.
    @article{RR,
      author = {Rader, Cary and Rallis, Steve},
      journal = {Amer. J. Math.},
      number = {1},
      pages = {91--178},
      title = {Spherical characters on {$\frak p$}-adic symmetric spaces},
      volume = {118},
      year = {1996},
      issn = {0002-9327},
      }
  • [BH] Go to document C. J. Bushnell and G. Henniart, The Local Langlands Conjecture for $ GL(2)$, New York: Springer-Verlag, 2006, vol. 335.
    @book{BH, address = {New York},
      author = {Bushnell, Colin J. and Henniart, Guy},
      pages = {xii+347},
      publisher = {Springer-Verlag},
      series = {Grundl. Math. Wissen.},
      title = {The Local {L}anglands Conjecture for {$\rm GL(2)$}},
      volume = {335},
      year = {2006},
      doi = {10.1007/3-540-31511-X},
      isbn = {978-3-540-31486-8; 3-540-31486-5},
      }
  • [GGP2] W. T. Gan, B. H. Gross, and D. Prasad, "Restrictions of representations of classical groups: Examples," in Sur les Conjectures de Gross et Prasad. I, Paris: Soc. Math. France, 2012, vol. 346, pp. 111-170.
    @incollection{GGP2, address = {Paris},
      author = {Gan, Wee Teck and Gross, B. H. and Prasad, D.},
      booktitle = {Sur les Conjectures de {G}ross et {P}rasad. {I}},
      pages = {111--170},
      publisher = {Soc. Math. France},
      series = {Astérisque},
      title = {Restrictions of representations of classical groups: Examples},
      volume = {346},
      year = {2012},
      }
  • [A] Go to document A. Aizenbud, "A partial analog of the integrability theorem for distributions on $p$-adic spaces and applications," Israel J. Math., vol. 193, iss. 1, pp. 233-262, 2013.
    @article{A,
      author = {Aizenbud, Avraham},
      journal = {Israel J. Math.},
      number = {1},
      pages = {233--262},
      title = {A partial analog of the integrability theorem for distributions on {$p$}-adic spaces and applications},
      volume = {193},
      year = {2013},
      doi = {10.1007/s11856-012-0088-y},
      issn = {0021-2172},
      }
  • [SV] Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical varieties.
    @misc{SV,
      author = {Sakellaridis, Y. and Venkatesh, A.},
      title = {Periods and harmonic analysis on spherical varieties},
      }
  • [Mu] Go to document F. Murnaghan, "Spherical characters: the supercuspidal case," in Group Representations, Ergodic Theory, and Mathematical Physics: A Tribute to George W. Mackey, Providence, RI: Amer. Math. Soc., 2008, vol. 449, pp. 301-313.
    @incollection{Mu, address = {Providence, RI},
      author = {Murnaghan, Fiona},
      booktitle = {Group Representations, Ergodic Theory, and Mathematical Physics: A Tribute to {G}eorge {W}. {M}ackey},
      pages = {301--313},
      publisher = {Amer. Math. Soc.},
      series = {Contemp. Math.},
      title = {Spherical characters: the supercuspidal case},
      volume = {449},
      year = {2008},
      doi = {10.1090/conm/449/08717},
      }
  • [Si] A. J. Silberger, Introduction to Harmonic Analysis on Reductive $p$-adic Groups, Princeton, NJ: Princeton Univ. Press, 1979, vol. 23.
    @book{Si, address = {Princeton, NJ},
      author = {Silberger, Allan J.},
      note = {based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971--1973},
      pages = {iv+371},
      publisher = {Princeton Univ. Press},
      series = {Math. Notes},
      title = {Introduction to Harmonic Analysis on Reductive {$p$}-adic Groups},
      volume = {23},
      year = {1979},
      isbn = {0-691-08246-4},
      }
  • [K] R. E. Kottwitz, "Harmonic analysis on reductive $p$-adic groups and Lie algebras," in Harmonic Analysis, the Trace Formula, and Shimura Varieties, Amer. Math. Soc., Providence, RI, 2005, vol. 4, pp. 393-522.
    @incollection{K,
      author = {Kottwitz, Robert E.},
      booktitle = {Harmonic Analysis, the Trace Formula, and {S}himura Varieties},
      pages = {393--522},
      publisher = {Amer. Math. Soc., Providence, RI},
      series = {Clay Math. Proc.},
      title = {Harmonic analysis on reductive {$p$}-adic groups and {L}ie algebras},
      volume = {4},
      year = {2005},
      }

Authors

Wei Zhang

Columbia University, New York, NY