Abstract
By the relative trace formula approach of Jacquet–Rallis, we prove the global Gan–Gross–Prasad conjecture for unitary groups under some local restrictions for the automorphic representations.
-
[HLR] G. Harder, R. P. Langlands, and M. Rapoport, "Algebraische Zyklen auf Hilbert-Blumenthal-Flächen," J. Reine Angew. Math., vol. 366, pp. 53-120, 1986.
@article{HLR,
author = {Harder, G. and Langlands, R. P. and Rapoport, M.},
journal = {J. Reine Angew. Math.},
pages = {53--120},
title = {Algebraische {Z}yklen auf {H}ilbert-{B}lumenthal-{F}lächen},
volume = {366},
year = {1986},
issn = {0075-4102},
} -
[GZ]
B. H. Gross and D. B. Zagier, "Heegner points and derivatives of $L$-series," Invent. Math., vol. 84, iss. 2, pp. 225-320, 1986.
@article{GZ,
author = {Gross, Benedict H. and Zagier, Don B.},
journal = {Invent. Math.},
number = {2},
pages = {225--320},
title = {Heegner points and derivatives of {$L$}-series},
volume = {84},
year = {1986},
doi = {10.1007/BF01388809},
issn = {0020-9910},
} -
[YZZ] X. Yuan, S. -W. Zhang, and W. Zhang, The Gross–Zagier Formula on Shimura Curves, Princeton, NJ: Princeton Univ. Press, 2012, vol. 184.
@book{YZZ, address = {Princeton, NJ},
author = {Yuan, X. and Zhang, S.-W. and Zhang, W.},
publisher = {Princeton Univ. Press},
series = {Ann. of Math. Stud.},
title = {The {G}ross--{Z}agier {F}ormula on {S}himura {C}urves},
volume = {184},
year = {2012},
} -
[KRY] S. S. Kudla, M. Rapoport, and T. Yang, Modular Forms and Special Cycles on Shimura Curves, Princeton, NJ: Princeton Univ. Press, 2006, vol. 161.
@book{KRY, address = {Princeton, NJ},
author = {Kudla, Stephen S. and Rapoport, Michael and Yang, Tonghai},
pages = {x+373},
publisher = {Princeton Univ. Press},
series = {Ann. of Math. Stud.},
title = {Modular Forms and Special Cycles on {S}himura Curves},
volume = {161},
year = {2006},
isbn = {978-0-691-12551-0; 0-691-12551-1},
} -
[BO]
J. Bruinier and K. Ono, "Heegner divisors, $L$-functions and harmonic weak Maass forms," Ann. of Math., vol. 172, iss. 3, pp. 2135-2181, 2010.
@article{BO,
author = {Bruinier, Jan and Ono, Ken},
journal = {Ann. of Math.},
number = {3},
pages = {2135--2181},
title = {Heegner divisors, {$L$}-functions and harmonic weak {M}aass forms},
volume = {172},
year = {2010},
doi = {10.4007/annals.2010.172.2135},
issn = {0003-486X},
} -
[W1]
J. -L. Waldspurger, "Sur les valeurs de certaines fonctions $L$ automorphes en leur centre de symétrie," Compositio Math., vol. 54, iss. 2, pp. 173-242, 1985.
@article{W1,
author = {Waldspurger, J.-L.},
journal = {Compositio Math.},
number = {2},
pages = {173--242},
title = {Sur les valeurs de certaines fonctions {$L$} automorphes en leur centre de symétrie},
volume = {54},
year = {1985},
issn = {0010-437X},
url = {http://www.numdam.org/item?id=CM_1985__54_2_173_0},
} -
[GP1]
B. H. Gross and D. Prasad, "On the decomposition of a representation of ${ SO}_n$ when restricted to ${ SO}_{n-1}$," Canad. J. Math., vol. 44, iss. 5, pp. 974-1002, 1992.
@article{GP1,
author = {Gross, Benedict H. and Prasad, Dipendra},
journal = {Canad. J. Math.},
number = {5},
pages = {974--1002},
title = {On the decomposition of a representation of {${\rm SO}\sb n$} when restricted to {${\rm SO}\sb {n-1}$}},
volume = {44},
year = {1992},
doi = {10.4153/CJM-1992-060-8},
issn = {0008-414X},
} -
[GP2]
B. H. Gross and D. Prasad, "On irreducible representations of ${ SO}_{2n+1}\times{ SO}_{2m}$," Canad. J. Math., vol. 46, iss. 5, pp. 930-950, 1994.
@article{GP2,
author = {Gross, Benedict H. and Prasad, Dipendra},
journal = {Canad. J. Math.},
number = {5},
pages = {930--950},
title = {On irreducible representations of {${\rm SO}\sb {2n+1}\times{\rm SO}\sb {2m}$}},
volume = {46},
year = {1994},
doi = {10.4153/CJM-1994-053-4},
issn = {0008-414X},
} -
[II]
A. Ichino and T. Ikeda, "On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture," Geom. Funct. Anal., vol. 19, iss. 5, pp. 1378-1425, 2010.
@article{II,
author = {Ichino, Atsushi and Ikeda, Tamutsu},
journal = {Geom. Funct. Anal.},
number = {5},
pages = {1378--1425},
title = {On the periods of automorphic forms on special orthogonal groups and the {G}ross-{P}rasad conjecture},
volume = {19},
year = {2010},
doi = {10.1007/s00039-009-0040-4},
issn = {1016-443X},
} -
[GGP] W. T. Gan, B. H. Gross, and D. Prasad, "Symplectic local root numbers, central critical ${L}$-values, and restriction problems in the representation theory of classical groups," in Sur les Conjectures de Gross et Prasad. I, Paris: Soc. Math. France, 2012, vol. 346, pp. 1-110.
@incollection{GGP, address = {Paris},
author = {Gan, W. T. and Gross, B. H. and Prasad, D.},
booktitle = {Sur les Conjectures de {G}ross et {P}rasad. {I}},
pages = {1--110},
publisher = {Soc. Math. France},
series = {Astérisque},
title = {Symplectic local root numbers, central critical ${L}$-values, and restriction problems in the representation theory of classical groups},
volume = {346},
year = {2012},
} -
[Z2]
W. Zhang, "Automorphic period and the central value of Rankin-Selberg L-function," J. Amer. Math. Soc., vol. 27, iss. 2, pp. 541-612, 2014.
@article{Z2,
author = {Zhang, Wei},
journal = {J. Amer. Math. Soc.},
number = {2},
pages = {541--612},
title = {Automorphic period and the central value of {R}ankin-{S}elberg \hbox{{L}-function}},
volume = {27},
year = {2014},
doi = {10.1090/S0894-0347-2014-00784-0},
issn = {0894-0347},
} -
[HL]
M. Harris and J. Labesse, "Conditional base change for unitary groups," Asian J. Math., vol. 8, iss. 4, pp. 653-683, 2004.
@article{HL,
author = {Harris, Michael and Labesse, Jean-Pierre},
journal = {Asian J. Math.},
number = {4},
pages = {653--683},
title = {Conditional base change for unitary groups},
volume = {8},
year = {2004},
doi = {10.4310/AJM.2004.v8.n4.a19},
issn = {1093-6106},
} -
[Mok] C. -P. Mok, Endoscopic classification of representations of quasi-split unitary groups.
@misc{Mok,
author = {Mok, C.-P.},
note = {to appear in \emph{Mem. Amer. Math. Soc.}},
title = {Endoscopic classification of representations of quasi-split unitary groups},
} -
[IY] A. Ichino and S. Yamana, Periods of automorphic forms: the case of GL$_{n+1}\times \hbox{{GL}}_n,\hbox{{GL}}_n)$, 2013.
@misc{IY,
author = {Ichino, Atsushi and Yamana, S.},
note = {preprint},
title = {Periods of automorphic forms: {t}he case of {GL}$_{n+1}\times \hbox{{GL}}_n,\hbox{{GL}}_n)$},
year = {2013},
} -
[Gar]
P. B. Garrett, "Decomposition of Eisenstein series: Rankin triple products," Ann. of Math., vol. 125, iss. 2, pp. 209-235, 1987.
@article{Gar,
author = {Garrett, Paul B.},
journal = {Ann. of Math.},
number = {2},
pages = {209--235},
title = {Decomposition of {E}isenstein series: {R}ankin triple products},
volume = {125},
year = {1987},
doi = {10.2307/1971310},
issn = {0003-486X},
} -
[H-K] M. Harris and S. S. Kudla, "On a conjecture of Jacquet," in Contributions to Automorphic Forms, Geometry, and Number Theory, Johns Hopkins Univ. Press, 2004, pp. 355-371.
@incollection{H-K,
author = {Harris, Michael and Kudla, Stephen S.},
booktitle = {Contributions to Automorphic Forms, Geometry, and Number Theory},
pages = {355--371},
publisher = {Johns Hopkins Univ. Press},
title = {On a conjecture of {J}acquet},
year = {2004},
} -
[G-K]
B. H. Gross and S. S. Kudla, "Heights and the central critical values of triple product $L$-functions," Compositio Math., vol. 81, iss. 2, pp. 143-209, 1992.
@article{G-K,
author = {Gross, Benedict H. and Kudla, Stephen S.},
journal = {Compositio Math.},
number = {2},
pages = {143--209},
title = {Heights and the central critical values of triple product {$L$}-functions},
volume = {81},
year = {1992},
issn = {0010-437X},
url = {http://www.numdam.org/item?id=CM_1992__81_2_143_0},
} -
[I]
A. Ichino, "Trilinear forms and the central values of triple product $L$-functions," Duke Math. J., vol. 145, iss. 2, pp. 281-307, 2008.
@article{I,
author = {Ichino, Atsushi},
journal = {Duke Math. J.},
number = {2},
pages = {281--307},
title = {Trilinear forms and the central values of triple product {$L$}-functions},
volume = {145},
year = {2008},
doi = {10.1215/00127094-2008-052},
issn = {0012-7094},
} -
[GI]
W. T. Gan and A. Ichino, "On endoscopy and the refined Gross-Prasad conjecture for $( SO_5,SO_4)$," J. Inst. Math. Jussieu, vol. 10, iss. 2, pp. 235-324, 2011.
@article{GI,
author = {Gan, Wee Teck and Ichino, Atsushi},
journal = {J. Inst. Math. Jussieu},
number = {2},
pages = {235--324},
title = {On endoscopy and the refined {G}ross-{P}rasad conjecture for {$(\rm SO\sb 5,SO\sb 4)$}},
volume = {10},
year = {2011},
doi = {10.1017/S1474748010000198},
issn = {1474-7480},
} -
[GJR1]
D. Ginzburg, D. Jiang, and S. Rallis, "On the nonvanishing of the central value of the Rankin-Selberg $L$-functions," J. Amer. Math. Soc., vol. 17, iss. 3, pp. 679-722, 2004.
@article{GJR1,
author = {Ginzburg, David and Jiang, Dihua and Rallis, Stephen},
journal = {J. Amer. Math. Soc.},
number = {3},
pages = {679--722},
title = {On the nonvanishing of the central value of the {R}ankin-{S}elberg {$L$}-functions},
volume = {17},
year = {2004},
doi = {10.1090/S0894-0347-04-00455-2},
issn = {0894-0347},
} -
[GJR2]
D. Ginzburg, D. Jiang, and S. Rallis, "On the nonvanishing of the central value of the Rankin-Selberg $L$-functions. II," in Automorphic Representations, $L$-Functions and Applications: Progress and Prospects, Berlin: de Gruyter, 2005, vol. 11, pp. 157-191.
@incollection{GJR2, address = {Berlin},
author = {Ginzburg, David and Jiang, Dihua and Rallis, Stephen},
booktitle = {Automorphic Representations, {$L$}-Functions and Applications: Progress and Prospects},
pages = {157--191},
publisher = {de Gruyter},
series = {Ohio State Univ. Math. Res. Inst. Publ.},
title = {On the nonvanishing of the central value of the {R}ankin-{S}elberg {$L$}-functions. {II}},
volume = {11},
year = {2005},
doi = {10.1515/9783110892703.157},
} -
[W2]
J. -L. Waldspurger, "Une formule intégrale reliée à la conjecture locale de Gross-Prasad," Compos. Math., vol. 146, iss. 5, pp. 1180-1290, 2010.
@article{W2,
author = {Waldspurger, J.-L.},
journal = {Compos. Math.},
number = {5},
pages = {1180--1290},
title = {Une formule intégrale reliée à la conjecture locale de {G}ross-{P}rasad},
volume = {146},
year = {2010},
doi = {10.1112/S0010437X10004744},
issn = {0010-437X},
} -
[W3] C. Moeglin and J. -L. Waldspurger, Sur les Conjectures de Gross et Prasad. II, Paris: Soc. Math. France, 2012, vol. 347.
@book{W3, address = {Paris},
author = {M{\oe}glin, C. and Waldspurger, J.-L.},
pages = {xi+216},
publisher = {Soc. Math. France},
series = {Astérisque},
title = {Sur les Conjectures de {G}ross et {P}rasad. {II}},
volume = {347},
year = {2012},
isbn = {978-2-85629-350-8},
issn = {0303-1179},
} -
[BP1] R. Beuzart-Plessis, La conjecture locale de Gross-Prasad pour les représentations tempérées des groupes unitaires.
@misc{BP1,
author = {Beuzart-Plessis, R.},
title = {La conjecture locale de {G}ross-{P}rasad pour les représentations tempérées des groupes unitaires},
} -
[BP2] R. Beuzart-Plessis, Endoscopie et conjecture raffinée de Gan-Gross-Prasad pour les groupes unitaires.
@misc{BP2,
author = {Beuzart-Plessis, R.},
title = {Endoscopie et conjecture raffinée de {G}an-{G}ross-{P}rasad pour les groupes unitaires},
} -
[N] R. N. Harris, The refined Gross-Prasad conjecture for unitary groups.
@misc{N,
author = {Harris, R. N.},
title = {The refined {G}ross-{P}rasad conjecture for unitary groups},
} -
[F2]
Y. Z. Flicker, "On distinguished representations," J. Reine Angew. Math., vol. 418, pp. 139-172, 1991.
@article{F2,
author = {Flicker, Yuval Z.},
journal = {J. Reine Angew. Math.},
pages = {139--172},
title = {On distinguished representations},
volume = {418},
year = {1991},
doi = {10.1515/crll.1991.418.139},
issn = {0075-4102},
} -
[F1]
Y. Z. Flicker, "Twisted tensors and Euler products," Bull. Soc. Math. France, vol. 116, iss. 3, pp. 295-313, 1988.
@article{F1,
author = {Flicker, Yuval Z.},
journal = {Bull. Soc. Math. France},
number = {3},
pages = {295--313},
title = {Twisted tensors and {E}uler products},
volume = {116},
year = {1988},
issn = {0037-9484},
url = {http://www.numdam.org/item?id=BSMF_1988__116_3_295_0},
} -
[FZ]
Y. Z. Flicker and D. Zinoviev, "On poles of twisted tensor $L$-functions," Proc. Japan Acad. Ser. A Math. Sci., vol. 71, iss. 6, pp. 114-116, 1995.
@article{FZ,
author = {Flicker, Yuval Z. and Zinoviev, Dmitrii},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
number = {6},
pages = {114--116},
title = {On poles of twisted tensor {$L$}-functions},
volume = {71},
year = {1995},
issn = {0386-2194},
url = {http://projecteuclid.org/euclid.pja/1195510651},
} -
[GJR]
S. Gelbart, H. Jacquet, and J. Rogawski, "Generic representations for the unitary group in three variables," Israel J. Math., vol. 126, pp. 173-237, 2001.
@article{GJR,
author = {Gelbart, Stephen and Jacquet, Herv{é} and Rogawski, Jonathan},
journal = {Israel J. Math.},
pages = {173--237},
title = {Generic representations for the unitary group in three variables},
volume = {126},
year = {2001},
doi = {10.1007/BF02784154},
issn = {0021-2172},
} -
[AG]
A. Aizenbud and D. Gourevitch, "Generalized Harish-Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet-Rallis’s theorem," Duke Math. J., vol. 149, iss. 3, pp. 509-567, 2009.
@article{AG,
author = {Aizenbud, Avraham and Gourevitch, Dmitry},
journal = {Duke Math. J.},
note = {with an appendix by the authors and Eitan Sayag},
number = {3},
pages = {509--567},
title = {Generalized {H}arish-{C}handra descent, {G}elfand pairs, and an {A}rchimedean analog of {J}acquet-{R}allis's theorem},
volume = {149},
year = {2009},
doi = {10.1215/00127094-2009-044},
issn = {0012-7094},
} -
[M] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, Third ed., New York: Springer-Verlag, 1994, vol. 34.
@book{M, address = {New York},
author = {Mumford, D. and Fogarty, J. and Kirwan, F.},
edition = {Third},
pages = {xiv+292},
publisher = {Springer-Verlag},
series = {Ergeb. Math. Grenzgeb.},
title = {Geometric Invariant Theory},
volume = {34},
year = {1994},
isbn = {3-540-56963-4},
} -
[Z]
W. Zhang, "On arithmetic fundamental lemmas," Invent. Math., vol. 188, iss. 1, pp. 197-252, 2012.
@article{Z,
author = {Zhang, Wei},
journal = {Invent. Math.},
number = {1},
pages = {197--252},
title = {On arithmetic fundamental lemmas},
volume = {188},
year = {2012},
doi = {10.1007/s00222-011-0348-1},
issn = {0020-9910},
} -
[RS] S. Rallis and G. Schiffmann, Multiplicity one conjectures.
@misc{RS,
author = {Rallis, S. and Schiffmann, G.},
title = {Multiplicity one conjectures},
} -
[JR] H. Jacquet and S. Rallis, "On the Gross-Prasad conjecture for unitary groups," in On Certain $L$-Functions, Providence, RI: Amer. Math. Soc., 2011, vol. 13, pp. 205-264.
@incollection{JR, address = {Providence, RI},
author = {Jacquet, Herv{é} and Rallis, Stephen},
booktitle = {On Certain {$L$}-Functions},
pages = {205--264},
publisher = {Amer. Math. Soc.},
series = {Clay Math. Proc.},
title = {On the {G}ross-{P}rasad conjecture for unitary groups},
volume = {13},
year = {2011},
} -
[Ro]
J. D. Rogawski, "Representations of ${ GL}(n)$ and division algebras over a $p$-adic field," Duke Math. J., vol. 50, iss. 1, pp. 161-196, 1983.
@article{Ro,
author = {Rogawski, Jonathan D.},
journal = {Duke Math. J.},
number = {1},
pages = {161--196},
title = {Representations of {${\rm GL}(n)$} and division algebras over a {$p$}-adic field},
volume = {50},
year = {1983},
doi = {10.1215/S0012-7094-83-05006-8},
issn = {0012-7094},
} -
[Y]
Z. Yun, "The fundamental lemma of Jacquet and Rallis," Duke Math. J., vol. 156, iss. 2, pp. 167-227, 2011.
@article{Y,
author = {Yun, Zhiwei},
journal = {Duke Math. J.},
note = {with an appendix by Julia Gordon},
number = {2},
pages = {167--227},
title = {The fundamental lemma of {J}acquet and {R}allis},
volume = {156},
year = {2011},
doi = {10.1215/00127094-2010-210},
issn = {0012-7094},
} -
[R] D. Ramakrishnan, A theorem on ${{ GL}}(n)$ à là Tchebotarev, 2012.
@misc{R,
author = {Ramakrishnan, D.},
note = {preprint},
title = {A theorem on ${{\rm GL}}(n)$ à là {T}chebotarev},
year = {2012},
} -
[AGRS]
A. Aizenbud, D. Gourevitch, S. Rallis, and G. Schiffmann, "Multiplicity one theorems," Ann. of Math., vol. 172, iss. 2, pp. 1407-1434, 2010.
@article{AGRS,
author = {Aizenbud, Avraham and Gourevitch, Dmitry and Rallis, Stephen and Schiffmann, G{é}rard},
journal = {Ann. of Math.},
number = {2},
pages = {1407--1434},
title = {Multiplicity one theorems},
volume = {172},
year = {2010},
doi = {10.4007/annals.2010.172.1413},
issn = {0003-486X},
} -
[SZ]
B. Sun and C. Zhu, "Multiplicity one theorems: the Archimedean case," Ann. of Math., vol. 175, iss. 1, pp. 23-44, 2012.
@article{SZ,
author = {Sun, Binyong and Zhu, Chen-Bo},
journal = {Ann. of Math.},
number = {1},
pages = {23--44},
title = {Multiplicity one theorems: the {A}rchimedean case},
volume = {175},
year = {2012},
doi = {10.4007/annals.2012.175.1.2},
issn = {0003-486X},
} -
[P]
D. Prasad, "Relating invariant linear form and local epsilon factors via global methods," Duke Math. J., vol. 138, iss. 2, pp. 233-261, 2007.
@article{P,
author = {Prasad, Dipendra},
journal = {Duke Math. J.},
note = {with an appendix by Hiroshi Saito},
number = {2},
pages = {233--261},
title = {Relating invariant linear form and local epsilon factors via global methods},
volume = {138},
year = {2007},
doi = {10.1215/S0012-7094-07-13823-7},
issn = {0012-7094},
} -
[BK] C. J. Bushnell and P. C. Kutzko, The Admissible Dual of ${ GL}(N)$ via Compact Open Subgroups, Princeton Univ. Press, Princeton, NJ, 1993, vol. 129.
@book{BK,
author = {Bushnell, Colin J. and Kutzko, Philip C.},
pages = {xii+313},
publisher = {Princeton Univ. Press, Princeton, NJ},
series = {Ann. of Math. Stud.},
title = {The Admissible Dual of {${\rm GL}(N)$} via Compact Open Subgroups},
volume = {129},
year = {1993},
isbn = {0-691-03256-4; 0-691-02114-7},
} -
[Ig] J. Igusa, "Geometry of absolutely admissible representations," in Number Theory, Algebraic Geometry and Commutative Algebra, in Honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 373-452.
@incollection{Ig,
author = {Igusa, Jun-ichi},
booktitle = {Number Theory, Algebraic Geometry and Commutative Algebra, in Honor of {Y}asuo {A}kizuki},
pages = {373--452},
publisher = {Kinokuniya, Tokyo},
title = {Geometry of absolutely admissible representations},
year = {1973},
} -
[PV] È. B. Vinberg and V. L. Popov, "Invariant theory," in Algebraic Geometry, 4 (Russian), Moscow: Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1989, pp. 137-314, 315.
@incollection{PV, address = {Moscow},
author = {Vinberg, {È}. B. and Popov, V. L.},
booktitle = {Algebraic Geometry, 4 ({R}ussian)},
pages = {137--314, 315},
publisher = {Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.},
series = {Itogi Nauki i Tekhniki},
title = {Invariant theory},
year = {1989},
} -
[HC1] Harish-Chandra, Harmonic Analysis on Reductive $p$-adic Groups, New York: Springer-Verlag, 1970, vol. 162.
@book{HC1, address = {New York},
author = {Harish-Chandra},
note = {notes by G. van Dijk},
pages = {iv+125},
publisher = {Springer-Verlag},
series = {Lecture Notes in Math.},
title = {Harmonic {A}nalysis on {R}eductive {$p$}-adic {G}roups},
volume = {162},
year = {1970},
} -
[HC2] Harish-Chandra, "Admissible invariant distributions on reductive $p$-adic groups," in Lie Theories and their Applications, Kingston, Ont.: Queen’s Univ., 1978, vol. 48, pp. 281-347.
@incollection{HC2, address = {Kingston, Ont.},
author = {Harish-Chandra},
booktitle = {Lie Theories and their Applications},
pages = {281--347},
publisher = {Queen's Univ.},
series = {Queen's Papers in Pure Appl. Math.},
title = {Admissible invariant distributions on reductive {$p$}-adic groups},
volume = {48},
year = {1978},
} -
[D]
J. Denef, "The rationality of the Poincaré series associated to the $p$-adic points on a variety," Invent. Math., vol. 77, iss. 1, pp. 1-23, 1984.
@article{D,
author = {Denef, J.},
journal = {Invent. Math.},
number = {1},
pages = {1--23},
title = {The rationality of the {P}oincaré series associated to the {$p$}-adic points on a variety},
volume = {77},
year = {1984},
doi = {10.1007/BF01389133},
issn = {0020-9910},
} -
[W95]
J. -L. Waldspurger, "Une formule des traces locale pour les algèbres de Lie $p$-adiques," J. Reine Angew. Math., vol. 465, pp. 41-99, 1995.
@article{W95,
author = {Waldspurger, J.-L.},
journal = {J. Reine Angew. Math.},
pages = {41--99},
title = {Une formule des traces locale pour les algèbres de {L}ie \hbox{{$p$}-adiques}},
volume = {465},
year = {1995},
doi = {10.1515/crll.1995.465.41},
issn = {0075-4102},
} -
[RR] C. Rader and S. Rallis, "Spherical characters on $\frak p$-adic symmetric spaces," Amer. J. Math., vol. 118, iss. 1, pp. 91-178, 1996.
@article{RR,
author = {Rader, Cary and Rallis, Steve},
journal = {Amer. J. Math.},
number = {1},
pages = {91--178},
title = {Spherical characters on {$\frak p$}-adic symmetric spaces},
volume = {118},
year = {1996},
issn = {0002-9327},
} -
[BH]
C. J. Bushnell and G. Henniart, The Local Langlands Conjecture for $ GL(2)$, New York: Springer-Verlag, 2006, vol. 335.
@book{BH, address = {New York},
author = {Bushnell, Colin J. and Henniart, Guy},
pages = {xii+347},
publisher = {Springer-Verlag},
series = {Grundl. Math. Wissen.},
title = {The Local {L}anglands Conjecture for {$\rm GL(2)$}},
volume = {335},
year = {2006},
doi = {10.1007/3-540-31511-X},
isbn = {978-3-540-31486-8; 3-540-31486-5},
} -
[GGP2] W. T. Gan, B. H. Gross, and D. Prasad, "Restrictions of representations of classical groups: Examples," in Sur les Conjectures de Gross et Prasad. I, Paris: Soc. Math. France, 2012, vol. 346, pp. 111-170.
@incollection{GGP2, address = {Paris},
author = {Gan, Wee Teck and Gross, B. H. and Prasad, D.},
booktitle = {Sur les Conjectures de {G}ross et {P}rasad. {I}},
pages = {111--170},
publisher = {Soc. Math. France},
series = {Astérisque},
title = {Restrictions of representations of classical groups: Examples},
volume = {346},
year = {2012},
} -
[A]
A. Aizenbud, "A partial analog of the integrability theorem for distributions on $p$-adic spaces and applications," Israel J. Math., vol. 193, iss. 1, pp. 233-262, 2013.
@article{A,
author = {Aizenbud, Avraham},
journal = {Israel J. Math.},
number = {1},
pages = {233--262},
title = {A partial analog of the integrability theorem for distributions on {$p$}-adic spaces and applications},
volume = {193},
year = {2013},
doi = {10.1007/s11856-012-0088-y},
issn = {0021-2172},
} -
[SV] Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical varieties.
@misc{SV,
author = {Sakellaridis, Y. and Venkatesh, A.},
title = {Periods and harmonic analysis on spherical varieties},
} -
[Mu]
F. Murnaghan, "Spherical characters: the supercuspidal case," in Group Representations, Ergodic Theory, and Mathematical Physics: A Tribute to George W. Mackey, Providence, RI: Amer. Math. Soc., 2008, vol. 449, pp. 301-313.
@incollection{Mu, address = {Providence, RI},
author = {Murnaghan, Fiona},
booktitle = {Group Representations, Ergodic Theory, and Mathematical Physics: A Tribute to {G}eorge {W}. {M}ackey},
pages = {301--313},
publisher = {Amer. Math. Soc.},
series = {Contemp. Math.},
title = {Spherical characters: the supercuspidal case},
volume = {449},
year = {2008},
doi = {10.1090/conm/449/08717},
} -
[Si] A. J. Silberger, Introduction to Harmonic Analysis on Reductive $p$-adic Groups, Princeton, NJ: Princeton Univ. Press, 1979, vol. 23.
@book{Si, address = {Princeton, NJ},
author = {Silberger, Allan J.},
note = {based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971--1973},
pages = {iv+371},
publisher = {Princeton Univ. Press},
series = {Math. Notes},
title = {Introduction to Harmonic Analysis on Reductive {$p$}-adic Groups},
volume = {23},
year = {1979},
isbn = {0-691-08246-4},
} -
[K] R. E. Kottwitz, "Harmonic analysis on reductive $p$-adic groups and Lie algebras," in Harmonic Analysis, the Trace Formula, and Shimura Varieties, Amer. Math. Soc., Providence, RI, 2005, vol. 4, pp. 393-522.
@incollection{K,
author = {Kottwitz, Robert E.},
booktitle = {Harmonic Analysis, the Trace Formula, and {S}himura Varieties},
pages = {393--522},
publisher = {Amer. Math. Soc., Providence, RI},
series = {Clay Math. Proc.},
title = {Harmonic analysis on reductive {$p$}-adic groups and {L}ie algebras},
volume = {4},
year = {2005},
}