Finite time singularities for Lagrangian mean curvature flow

Abstract

Given any embedded Lagrangian on a four-dimensional compact Calabi-Yau, we find another Lagrangian in the same Hamiltonian isotopy class that develops a finite time singularity under mean curvature flow. This contradicts a weaker version of the Thomas-Yau conjecture regarding long time existence and convergence of Lagrangian mean curvature flow.

  • [anciaux] Go to document H. Anciaux, "Construction of Lagrangian self-similar solutions to the mean curvature flow in $\Bbb C^n$," Geom. Dedicata, vol. 120, pp. 37-48, 2006.
    @article {anciaux, MRKEY = {2252892},
      AUTHOR = {Anciaux, Henri},
      TITLE = {Construction of {L}agrangian self-similar solutions to the mean curvature flow in {$\Bbb C\sp n$}},
      JOURNAL = {Geom. Dedicata},
      FJOURNAL = {Geometriae Dedicata},
      VOLUME = {120},
      YEAR = {2006},
      PAGES = {37--48},
      ISSN = {0046-5755},
      CODEN = {GEMDAT},
      MRCLASS = {53C44 (35K55 53D12)},
      MRNUMBER = {2252892},
      MRREVIEWER = {Christine Guenther},
      DOI = {10.1007/s10711-006-9082-z},
      ZBLNUMBER = {1098.35074},
      }
  • [angenent0] Go to document S. Angenent, "Parabolic equations for curves on surfaces. I. Curves with $p$-integrable curvature," Ann. of Math., vol. 132, iss. 3, pp. 451-483, 1990.
    @article {angenent0, MRKEY = {1078266},
      AUTHOR = {Angenent, Sigurd},
      TITLE = {Parabolic equations for curves on surfaces. {I}. {C}urves with {$p$}-integrable curvature},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {132},
      YEAR = {1990},
      NUMBER = {3},
      PAGES = {451--483},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {35K15 (35B45 53C42 58E99)},
      MRNUMBER = {1078266},
      MRREVIEWER = {Yong-Geun Oh},
      DOI = {10.2307/1971426},
      ZBLNUMBER = {0789.58070},
     }
  • [angenent] Go to document S. Angenent, "Parabolic equations for curves on surfaces. II. Intersections, blow-up and generalized solutions," Ann. of Math., vol. 133, iss. 1, pp. 171-215, 1991.
    @article {angenent, MRKEY = {1087347},
      AUTHOR = {Angenent, Sigurd},
      TITLE = {Parabolic equations for curves on surfaces. {II}. {I}ntersections, blow-up and generalized solutions},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {133},
      YEAR = {1991},
      NUMBER = {1},
      PAGES = {171--215},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {58E10 (35A30 35D05 35K99 53A04)},
      MRNUMBER = {1087347},
      MRREVIEWER = {Yong-Geun Oh},
      DOI = {10.2307/2944327},
      ZBLNUMBER = {0749.58054},
     }
  • [yasha] Go to document Y. Eliashberg and L. Polterovich, "Local Lagrangian $2$-knots are trivial," Ann. of Math., vol. 144, iss. 1, pp. 61-76, 1996.
    @article {yasha, MRKEY = {1405943},
      AUTHOR = {Eliashberg, Y. and Polterovich, L.},
      TITLE = {Local {L}agrangian {$2$}-knots are trivial},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {144},
      YEAR = {1996},
      NUMBER = {1},
      PAGES = {61--76},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {58F05 (57Q45 57R40)},
      MRNUMBER = {1405943},
      MRREVIEWER = {Serge L. Tabachnikov},
      DOI = {10.2307/2118583},
      ZBLNUMBER = {0872.57030},
      }
  • [grayson] Go to document M. A. Grayson, "Shortening embedded curves," Ann. of Math., vol. 129, iss. 1, pp. 71-111, 1989.
    @article {grayson, MRKEY = {0979601},
      AUTHOR = {Grayson, Matthew A.},
      TITLE = {Shortening embedded curves},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {129},
      YEAR = {1989},
      NUMBER = {1},
      PAGES = {71--111},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {53C22 (58E10)},
      MRNUMBER = {0979601},
      MRREVIEWER = {Gudlaugur Thorbergsson},
      DOI = {10.2307/1971486},
      ZBLNUMBER = {0686.53036},
      }
  • [huisken] Go to document G. Huisken, "Asymptotic behavior for singularities of the mean curvature flow," J. Differential Geom., vol. 31, iss. 1, pp. 285-299, 1990.
    @article {huisken, MRKEY = {1030675},
      AUTHOR = {Huisken, Gerhard},
      TITLE = {Asymptotic behavior for singularities of the mean curvature flow},
      JOURNAL = {J. Differential Geom.},
      FJOURNAL = {Journal of Differential Geometry},
      VOLUME = {31},
      YEAR = {1990},
      NUMBER = {1},
      PAGES = {285--299},
      ISSN = {0022-040X},
      CODEN = {JDGEAS},
      MRCLASS = {53A10 (35B99 53C45 58G11)},
      MRNUMBER = {1030675},
      MRREVIEWER = {Dennis M. DeTurck},
      URL = {http://projecteuclid.org/euclid.jdg/1214444099},
      ZBLNUMBER = {0694.53005},
      }
  • [ilmanen1] T. Ilmanen, "Elliptic regularization and partial regularity for motion by mean curvature," Mem. Amer. Math. Soc., vol. 108, iss. 520, p. x, 1994.
    @article {ilmanen1, MRKEY = {1196160},
      AUTHOR = {Ilmanen, Tom},
      TITLE = {Elliptic regularization and partial regularity for motion by mean curvature},
      JOURNAL = {Mem. Amer. Math. Soc.},
      FJOURNAL = {Memoirs of the American Mathematical Society},
      VOLUME = {108},
      YEAR = {1994},
      NUMBER = {520},
      PAGES = {x+90},
      ISSN = {0065-9266},
      CODEN = {MAMCAU},
      MRCLASS = {49Q20 (53A10 58E12)},
      MRNUMBER = {1196160},
      MRREVIEWER = {Wei Yue Ding},
      ZBLNUMBER = {0798.35066},
     }
  • [ilmanen] T. Ilmanen, Singularities of Mean Curvature Flow of Surfaces.
    @misc{ilmanen,
      author={Ilmanen, Tom},
      TITLE={Singularities of Mean Curvature Flow of Surfaces},
      NOTE={preprint},
      SORTYEAR={2013},
     }
  • [neves] Go to document A. Neves, "Singularities of Lagrangian mean curvature flow: zero-Maslov class case," Invent. Math., vol. 168, iss. 3, pp. 449-484, 2007.
    @article {neves, MRKEY = {2299559},
      AUTHOR = {Neves, Andr{é}},
      TITLE = {Singularities of {L}agrangian mean curvature flow: zero-{M}aslov class case},
      JOURNAL = {Invent. Math.},
      FJOURNAL = {Inventiones Mathematicae},
      VOLUME = {168},
      YEAR = {2007},
      NUMBER = {3},
      PAGES = {449--484},
      ISSN = {0020-9910},
      CODEN = {INVMBH},
      MRCLASS = {53C44 (53D12)},
      MRNUMBER = {2299559},
      MRREVIEWER = {Henri Anciaux},
      DOI = {10.1007/s00222-007-0036-3},
      ZBLNUMBER = {1119.53052},
      }
  • [neves2] A. Neves and G. Tian, Translating solutions to Lagrangian mean curvature flow.
    @misc{neves2,
      author={Neves, Andr{é} and Tian, G.},
      TITLE={Translating solutions to {L}agrangian mean curvature flow},
      NOTE={preprint},
      ARXIV = {0711.4341},
     }
  • [oaks] Go to document J. A. Oaks, "Singularities and self intersections of curves evolving on surfaces," Indiana Univ. Math. J., vol. 43, iss. 3, pp. 959-981, 1994.
    @article {oaks, MRKEY = {1305955},
      AUTHOR = {Oaks, Jeffrey A.},
      TITLE = {Singularities and self intersections of curves evolving on surfaces},
      JOURNAL = {Indiana Univ. Math. J.},
      FJOURNAL = {Indiana University Mathematics Journal},
      VOLUME = {43},
      YEAR = {1994},
      NUMBER = {3},
      PAGES = {959--981},
      ISSN = {0022-2518},
      CODEN = {IUMJAB},
      MRCLASS = {58E10 (53A04)},
      MRNUMBER = {1305955},
      MRREVIEWER = {Anders Linn{é}r},
      DOI = {10.1512/iumj.1994.43.43042},
      ZBLNUMBER = {0835.53048},
      }
  • [schoen] Go to document R. Schoen and J. Wolfson, "Minimizing area among Lagrangian surfaces: the mapping problem," J. Differential Geom., vol. 58, iss. 1, pp. 1-86, 2001.
    @article {schoen, MRKEY = {1895348},
      AUTHOR = {Schoen, R. and Wolfson, J.},
      TITLE = {Minimizing area among {L}agrangian surfaces: the mapping problem},
      JOURNAL = {J. Differential Geom.},
      FJOURNAL = {Journal of Differential Geometry},
      VOLUME = {58},
      YEAR = {2001},
      NUMBER = {1},
      PAGES = {1--86},
      ISSN = {0022-040X},
      CODEN = {JDGEAS},
      MRCLASS = {53D12 (58E11)},
      MRNUMBER = {1895348},
      MRREVIEWER = {Yong-Geun Oh},
      URL = {http://projecteuclid.org/euclid.jdg/1090348282},
      ZBLNUMBER = {1052.53056},
      }
  • [schoen1] Go to document R. Schoen and J. Wolfson, Mean curvature flow and Lagrangian embeddings.
    @misc{schoen1,
      author = {Schoen, R. and Wolfson, J.},
      TITLE = {Mean curvature flow and {L}agrangian embeddings},
      NOTE={preprint},
      SORTYEAR={2014},
      URL={http://www.math.msu.edu/~wolfson/MCF_lagrangian.pdf},
      }
  • [Leon] L. Simon, Lectures on Geometric Measure Theory, Canberra: Australian National University Centre for Mathematical Analysis, 1983, vol. 3.
    @book {Leon, MRKEY = {0756417},
      AUTHOR = {Simon, Leon},
      TITLE = {Lectures on Geometric Measure Theory},
      SERIES = {Proceedings of the Centre for Mathematical Analysis, Australian National University},
      VOLUME = {3},
      PUBLISHER = {Australian National University Centre for Mathematical Analysis},
      ADDRESS = {Canberra},
      YEAR = {1983},
      PAGES = {vii+272},
      ISBN = {0-86784-429-9},
      MRCLASS = {49-01 (28A75 49F20)},
      MRNUMBER = {0756417},
      MRREVIEWER = {J. S. Joel},
      ZBLNUMBER = {0546.49019},
      }
  • [smo0] K. Smoczyk, A canonical way to deform a Lagrangian submanifold.
    @misc{smo0,
      author={Smoczyk, K.},
      TITLE={A canonical way to deform a {L}agrangian submanifold},
      NOTE={preprint},
      ARXIV = {dg-ga/9605005},
     }
  • [thomas] R. P. Thomas and S. -T. Yau, "Special Lagrangians, stable bundles and mean curvature flow," Comm. Anal. Geom., vol. 10, iss. 5, pp. 1075-1113, 2002.
    @article {thomas, MRKEY = {1957663},
      AUTHOR = {Thomas, R. P. and Yau, S.-T.},
      TITLE = {Special {L}agrangians, stable bundles and mean curvature flow},
      JOURNAL = {Comm. Anal. Geom.},
      FJOURNAL = {Communications in Analysis and Geometry},
      VOLUME = {10},
      YEAR = {2002},
      NUMBER = {5},
      PAGES = {1075--1113},
      ISSN = {1019-8385},
      MRCLASS = {53C38 (32Q25 53C44)},
      MRNUMBER = {1957663},
      MRREVIEWER = {Yong-Geun Oh},
      ZBLNUMBER = {1115.53054},
      }
  • [Wa1] Go to document M. Wang, "Mean curvature flow of surfaces in Einstein four-manifolds," J. Differential Geom., vol. 57, iss. 2, pp. 301-338, 2001.
    @article {Wa1, MRKEY = {1879229},
      AUTHOR = {Wang, Mu-Tao},
      TITLE = {Mean curvature flow of surfaces in {E}instein four-manifolds},
      JOURNAL = {J. Differential Geom.},
      FJOURNAL = {Journal of Differential Geometry},
      VOLUME = {57},
      YEAR = {2001},
      NUMBER = {2},
      PAGES = {301--338},
      ISSN = {0022-040X},
      CODEN = {JDGEAS},
      MRCLASS = {53C44 (35K55 53C25)},
      MRNUMBER = {1879229},
      URL = {http://projecteuclid.org/euclid.jdg/1090348113},
      ZBLNUMBER = {1035.53094},
      }
  • [wang] M. Wang, "Some recent developments in Lagrangian mean curvature flows," in Surveys in Differential Geometry. Vol. XII. Geometric Flows, Int. Press, Somerville, MA, 2008, vol. 12, pp. 333-347.
    @incollection {wang, MRKEY = {2488942},
      AUTHOR = {Wang, Mu-Tao},
      TITLE = {Some recent developments in {L}agrangian mean curvature flows},
      BOOKTITLE = {Surveys in Differential Geometry. {V}ol. {XII}. {G}eometric Flows},
      SERIES = {Surv. Differ. Geom.},
      VOLUME = {12},
      PAGES = {333--347},
      PUBLISHER = {Int. Press, Somerville, MA},
      YEAR = {2008},
      MRCLASS = {53C44},
      MRNUMBER = {2488942},
      MRREVIEWER = {Henri Anciaux},
      ZBLNUMBER = {1169.53052},
      }
  • [white] Go to document B. White, "A local regularity theorem for mean curvature flow," Ann. of Math., vol. 161, iss. 3, pp. 1487-1519, 2005.
    @article {white, MRKEY = {2180405},
      AUTHOR = {White, Brian},
      TITLE = {A local regularity theorem for mean curvature flow},
      JOURNAL = {Ann. of Math.},
      FJOURNAL = {Annals of Mathematics. Second Series},
      VOLUME = {161},
      YEAR = {2005},
      NUMBER = {3},
      PAGES = {1487--1519},
      ISSN = {0003-486X},
      CODEN = {ANMAAH},
      MRCLASS = {53C44},
      MRNUMBER = {2180405},
      MRREVIEWER = {James McCoy},
      DOI = {10.4007/annals.2005.161.1487},
      ZBLNUMBER = {1091.53045},
      }
  • [wolfson] Go to document J. Wolfson, "Lagrangian homology classes without regular minimizers," J. Differential Geom., vol. 71, iss. 2, pp. 307-313, 2005.
    @article {wolfson, MRKEY = {2197143},
      AUTHOR = {Wolfson, Jon},
      TITLE = {Lagrangian homology classes without regular minimizers},
      JOURNAL = {J. Differential Geom.},
      FJOURNAL = {Journal of Differential Geometry},
      VOLUME = {71},
      YEAR = {2005},
      NUMBER = {2},
      PAGES = {307--313},
      ISSN = {0022-040X},
      CODEN = {JDGEAS},
      MRCLASS = {53D12 (53C25 53D35)},
      MRNUMBER = {2197143},
      MRREVIEWER = {Justin Sawon},
      URL = {http://projecteuclid.org/euclid.jdg/1143651771},
      ZBLNUMBER = {1097.53052},
      }

Authors

André Neves

Department of Mathematics, Imperial College London, South Kensington Campus, London S27 2AZ, United Kingdom