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Finite time singularities for
Lagrangian mean curvature flow

By André Neves

Abstract

Given any embedded Lagrangian on a four-dimensional compact Calabi-

Yau, we find another Lagrangian in the same Hamiltonian isotopy class

that develops a finite time singularity under mean curvature flow. This

contradicts a weaker version of the Thomas-Yau conjecture regarding long

time existence and convergence of Lagrangian mean curvature flow.

1. Introduction

One of the hardest open problems regarding the geometry of Calabi-Yau

manifolds consists in determining when a given Lagrangian admits a minimal

Lagrangian (SLag) in its homology class or Hamiltonian isotopy class. If such

SLag exists, then it is area-minimizing, and so one could approach this problem

by trying to minimize area among all Lagrangians in a given class. Schoen and

Wolfson [12] studied the minimization problem and showed that, when the real

dimension is four, a Lagrangian minimizing area among all Lagrangians in a

given class exists, is smooth everywhere except finitely many points, but is not

necessarily a minimal surface. Later Wolfson [19] found a Lagrangian sphere

with nontrivial homology on a given K3 surface such that the Lagrangian that

minimizes area among all Lagrangians in this class is not an SLag and the

surface that minimizes area among all surfaces in this class is not Lagrangian.

This shows the subtle nature of the problem.

In another direction, Smoczyk [14] observed that when the ambient man-

ifold is Kähler-Einstein, the Lagrangian condition is preserved by the gradient

flow of the area functional (mean curvature flow), and so a natural question

is whether one can produce SLag’s using Lagrangian mean curvature flow. To

that end, R. P. Thomas and S.-T. Yau [15, §7] considered this question and

proposed a notion of “stability” for Lagrangians in a given Calabi-Yau, which

we now describe.
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Let (M2n, ω, J,Ω) be a compact Calabi-Yau with metric g, where Ω stands

for the unit parallel section of the canonical bundle. Given L ⊆M Lagrangian,

it is a simple exercise ([15, §2] for instance) to see that

ΩL = eiθvolL,

where volL denotes the volume form of L and θ is a multivalued function

defined on L called the Lagrangian angle. All the Lagrangians considered will

be zero-Maslov class, meaning that θ can be lifted to a well-defined function

on L. Moreover if L is zero-Maslov class with oscillation of Lagrangian angle

less than π (called almost-calibrated), there is a natural choice for the phase

of
∫
L Ω, which we denote by φ(L). Finally, given any two Lagrangians L1, L2,

a connected sum operation L1#L2 is defined in [15, §3] (more involved than

a simply topological connected sum). We refer the reader to [15, §3] for the

details.

Definition 1.1 (Thomas-Yau Flow-Stability). Without loss of generality,

suppose that the almost-calibrated Lagrangian L has φ(L) = 0. Then L is

flow-stable if either of the following two happen:

• L Hamiltonian isotopic to L1#L2, where L1, L2 are two almost-calibrated

Lagrangians, implies that

[φ(L1), φ(L2)] * (inf
L
θ, sup

L
θ).

• L Hamiltonian isotopic to L1#L2, where L1, L2 are almost-calibrated

Lagrangians, implies that

area(L) ≤
∫
L1

e−iφ(L1)Ω +

∫
L2

e−iφ(L2)Ω.

Remark 1.2. The notion of flow-stability defined in [15, §7] applies to

a larger class than almost-calibrated Lagrangians. For simplicity, but also

because the author (unfortunately) does not fully understand that larger class,

we chose to restrict the definition to almost calibrated.

In [15, §7] it is then conjectured

Conjecture (Thomas-Yau Conjecture). Let L be a flow-stable Lagrangian

in a Calabi-Yau manifold. Then the Lagrangian mean curvature flow will exist

for all time and converge to the unique SLag in its Hamiltonian isotopy class.

The intuitive idea is that if a singularity occurs, it is because the flow is

trying to decompose the Lagrangian into “simpler” pieces and so, if we rule out

this possibility, no finite time singularities should occur. Unfortunately, their

stability condition is, in general, hard to check. For instance, the definition

does not seem to be preserved by Hamiltonian isotopies, and so the existence of

Lagrangians that are flow-stable and not SLag is a highly nontrivial problem.

As a result, it becomes quite hard to disprove the conjecture because not many
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examples of flow-stable Lagrangians are known. For this reason there has been

considerable interest in the following simplified version of the above conjecture

(see [17, §1.4]).

Conjecture. Let M be Calabi-Yau and Σ be a compact embedded La-

grangian submanifold with zero Maslov class. Then the mean curvature flow of

Σ exists for all time and converges smoothly to a special Lagrangian submani-

fold in the Hamiltonian isotopy class of Σ.

We remark that in [17] this conjecture is attributed to Thomas and Yau,

but this is not correct because there is no mention of stability. For this reason,

this conjecture, due to Mu-Tao Wang, is a weaker version of Thomas-Yau

conjecture.

Schoen and Wolfson [13] constructed solutions to Lagrangian mean cur-

vature flow that become singular in finite time and where the initial condition

is homologous to a SLag Σ. On the other hand, we remark that the flow

does distinguish between isotopy class and homology class. For instance, on a

two-dimensional torus, a curve γ with a single self-intersection that is homol-

ogous to a simple closed geodesic will develop a finite time singularity under

curve shortening flow, while if we make the more restrictive assumption that

γ is isotopic to a simple closed geodesic, Grayson’s Theorem [5] implies that

the curve shortening flow will exist for all time and sequentially converge to a

simple closed geodesic.

The purpose of his paper is to prove

Theorem 6.1. Let M be a four real-dimensional Calabi-Yau and Σ an

embedded Lagrangian. There is L Hamiltonian isotopic to Σ so that the La-

grangian mean curvature flow starting at L develops a finite time singularity.

Remark 1.3. (1) If we take Σ to be a SLag, the theorem implies the second

conjecture is false because L is then a zero-Maslov class Lagrangian.

(2) Theorem A provides the first examples of compact embedded Lagrangians

that are not homologically trivial and for which mean curvature flow de-

velops a finite time singularity. The main difficulty comes from the fact,

due to the high codimension, that barrier arguments or maximum principle

arguments do not seem to be as effective as in the codimension-one case

and thus new ideas are needed.

(3) One way to picture L is to imagine a very small Whitney sphere N (a

Lagrangian sphere with a single transverse self-intersection at p in Σ) and

consider L = Σ#N . (See the local picture in Figure 1.)

(4) If Σ is SLag, then for every ε we can make the oscillation for the Lagrangian

angle of L lying in [−ε, π+ε]. Thus L is not almost-calibrated and so does

not qualified to be flow-stable in the sense of Thomas-Yau.
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(5) It is a challenging open question whether or not one can find L Hamiltonian

isotopic to a SLag with arbitrarily small oscillation of the Lagrangian angle

such that mean curvature flow develops finite time singularities. More

generally, it is a fascinating problem to state a Thomas-Yau type conjecture

that has an easier to check hypothesis on the initial condition and allows

(or not) for the formation of a restricted type of singularities.

Acknowledgements. The author would like to thank Sigurd Angenent for

his remarks regarding Section 7.2 and Richard Thomas and Dominic Joyce for

their kindness in explaining the notion of stability for the flow. He would also

like to express his gratitude to Felix Schulze for his comments on Lemma 5.13

and to one of the referees for the extensive comments and explanations that

greatly improved the exposition of this paper.

2. Preliminaries and sketch of proof

In this section we describe the mains ideas that go into the proof of The-

orem A, but first we have to introduce some notation.

2.1. Preliminaries. Fix (M,J, ω,Ω) a four-dimensional Calabi-Yau mani-

fold with Ricci flat metric g, complex structure J , Kähler form ω, and calibra-

tion form Ω. For every R, set gR = R2g, and consider G to be an isometric

embedding of (M, gR) into some Euclidean plane Rn. L denotes a smooth La-

grangian surface contained in M and (Lt)t≥0 a smooth solution to Lagrangian

mean curvature flow with respect to one of the metrics gR. (Different R simply

change the time scale of the flow.) It is simple to recognize the existence of

Ft : L −→ Rn so that the surfaces Lt = Ft(L) solve the equation

dFt
dt

(x) = H(Ft(x)) = H̄(Ft(x)) + E(Ft(x), TFt(x)Lt),

where H(Ft(x)) stands for the mean curvature with respect to gR, H̄(Ft(x))

stands for the mean curvature with respect to the Euclidean metric and E is

some vector valued function defined on Rn × G(2, n), with G(2, n) being the

set of 2-planes in Rn. The term E can be made arbitrarily small by choosing R

sufficiently large. In order to avoid introducing unnecessary notation, we will

not be explicit whether we are regarding Lt being a submanifold of M or Rn.

Given any (x0, T ) in Rn × R, we consider the backwards heat kernel

Φ(x0, T )(x, t) =
exp

(
− |x−x0|

2

4(T−t)

)
4π(T − t)

.

We need the following extension of Huisken’s monotonicity [6] formula which

follows trivially from [16, formula (5.3)].
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Lemma 2.1 (Huisken’s monotonicity formula). Let ft be a smooth family

of functions with compact support on Lt. Then

d

dt

∫
Lt

ftΦ(x0, T )dH2 =

∫
Lt

(∂tft −∆ft) Φ(x0, T )dH2

−
∫
Lt

∣∣∣∣∣H̄ +
E

2
+

(x− x0)⊥

2(T − t0)

∣∣∣∣∣
2

Φ(x0, T )dH2 +

∫
Lt

ftΦ(x0, T )
|E|2

4
dH2.

We denote

A(r1, r2) = {x ∈ Rn | r1 < |x| < r2}, Br = A(−1, r),

and define the C2,α norm of a surface N at a point x0 in Rn as in [18, §2.5].

This norm is scale invariant and, given an open set U , the C2,α(U) norm of N

denotes the supremum in U of the pointwise C2,α norms. We say N̄ is ν-close

in C2,α to N if there is an open set U and a function u : N ∩U −→ Rn so that

N̄ = u(N ∩ U) and the C2,α norm of u (with respect to the induced metric

on N) is smaller than ν.

2.1.1. Definition of N(ε,R). Let c1, c2, and c3 be three half-lines in C so

that c1 is the positive real axis and c2, c3 are, respectively, the positive line

segments spanned by eiθ2 and eiθ3 , where π/2 < θ2 < θ3 < π. These curves

generate three Lagrangian planes in R4, which we denote by P1, P2, and P3

respectively. Consider a curve γ(ε) : [0,+∞) −→ C such that (see Figure 1)

• γ(ε) lies in the first and second quadrant and γ(ε)−1(0) = 0;

• γ(ε)∩A(3,∞) = c+
1 ∩A(3,∞) and γ(ε)∩A(ε, 1) = (c+

1 ∪c2∪c3)∩A(ε, 1);

• γ(ε)∩B1 has two connected components γ1 and γ2, where γ1 connects

c2 to c+
1 and γ2 coincides with c3;

• the Lagrangian angle of γ1, arg
Ä
γ1

dγ1
ds

ä
, has oscillation strictly smaller

than π/2.

Set γ(ε,R) = Rγ(ε/R). We define

(1) N(ε,R) = {(γ(ε,R)(s) cosα, γ(ε,R)(s) sinα) | s ≥ 0, α ∈ S1}.

We remark that one can make the oscillation for the Lagrangian angle of

N(ε,R) as close to π as desired by choosing θ2 and θ3 very close to π/2.

2.1.2. Definition of a self-expander. A surface Σ ⊆ R4 is called a self-

expander if H = x⊥

2 , which is equivalent to saying that Σt =
√
tΣ is a solution

to mean curvature flow. We say that Σ is asymptotic to a varifold V if, when

t tends to zero, Σt converges in the Radon measure sense to V . For instance,

Anciaux [1, §5] showed there is a unique curve χ in C so that

(2) S = {(χ(s) cosα, χ(s) sinα) | s ∈ R, α ∈ S1}

is a self-expander for Lagrangian mean curvature flow asymptotic to P1 +P2.
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Figure 1. Curve γ(ε) ∪ −γ(ε).

Figure 2. Curve χ ∪ −χ.

2.2. Sketch of Proof.

Theorem 6.1. Let M be a four real-dimensional Calabi-Yau and Σ an

embedded Lagrangian. There is L Hamiltonian isotopic to Σ so that the La-

grangian mean curvature flow starting at L develops a finite time singularity.

Remark 2.2. The argument to prove Theorem 6.1 has two main ideas.

The first is to construct L so that if the flow (Lt)t≥0 exists smoothly, then L1

and L will be in different Hamiltonian isotopy classes. Unfortunately this does

not mean the flow must become singular because Lagrangian mean curvature

flow is not an ambient Hamiltonian isotopy. This is explained below in the

First Step and the Second Step.

The second main idea is to note that L1 is very close to an SO(2)-invariant

Lagrangian M1 that has the following property. The flow (Mt)t≥1 develops

a singularity at some time T with the Lagrangian angle jumping by 2π at

instant T . Because the solution (Lt)t≥1 will be “nearby” (Mt)t≥1, this jump
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will also occur on (Lt)t≥1 around time T , which means that it must have a

singularity as well.

Sketch of proof. It suffices to find a singular solution to Lagrangian mean

curvature flow with respect to the metric gR = R2g for R sufficiently large.

Pick Darboux coordinates defined on B4R that send the origin into p ∈ Σ so

that TpΣ coincides with the real plane oriented positively and the pullback

metric at the origin is Euclidean. (We can increase R by making R larger.)

The basic approach is to remove Σ ∩ B2R and replace it with N(ε,R) ∩ B2R.

Denote the resulting Lagrangian by L which, due to [4, Th. 1.1.A], we know

to be Hamiltonian isotopic to Σ.

Assume that the Lagrangian mean curvature flow (Lt)t≥0 exists for all

time. The goal is to get a contradiction when R, R are large enough and ε is

small enough.

First Step. Because L ∩ A(1, 2R) consists of three planes that intersect

transversely at the origin, we will use standard arguments based on White’s

Regularity Theorem [18] and obtain estimates for the flow in a smaller annular

region. Hence, we will conclude the existence of R1 uniform so that Lt ∩
A(R1, R) is a small C2,α perturbation of L ∩ A(R1, R) for all 1 ≤ t ≤ 2 and

the decomposition of Lt ∩BR into two connected components Q1,t, Q2,t for all

0 ≤ t ≤ 2, where Q2,0 = P3 ∩ BR. Moreover, we will also show that Q2,t is a

small C2,α perturbation of P3 for all 1 ≤ t ≤ 2. This is done in Section 3, and

the arguments are well-known among the experts.

Second Step. In Section 4 we show that Q1,1 must be close to S, the

smooth self-expander asymptotic to P1 and P2. (See (2) and Figure 2.) The

geometric argument is that self-expanders act as attractors for the flow; i.e.,

because Q1,0 is very close to P1 ∪ P2 and
√
tS tends to P1 + P2 when t tends

to zero, then Q1,t must be very close to
√
tS for all 1 ≤ t ≤ 2. It is crucial for

this part of the argument that (Q1,t)0≤t≤2 exists smoothly and that P1 + P2

is not area-minimizing. (See Theorem 4.2 and Remark 4.3 for more details.)

This step is the first main idea of this paper.

From the first two steps it follows that L1 is very close to a Lagrangian

M1 generated by a curve σ like the one in Figure 3. Because Q1,0 is isotopic to

P1#P2 but Q1,1 is isotopic to P2#P1 (in the notation of [15]), we have that M1

is not Hamiltonian isotopic to L. Thus it is not possible to connect the two by

an ambient Hamiltonian isotopy. Nonetheless, as it was explained to the author

by Paul Seidel, it is possible to connect them by smooth Lagrangian immersions

that are neither rotationally symmetric nor embedded. Unfortunately it is not

known whether Lagrangian mean curvature flow is a Hamiltonian isotopy (only

infinitesimal Hamiltonian deformation is known), and so there is no topological

obstruction to go from L to L1 without singularities.
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Figure 3. Curve σ ∪ −σ.

Naturally we conjecture that does not occur and that (Lt)0≤t≤1 has a

finite time singularity that corresponds to the flow developing a “neck-pinch”

in order to get rid of the noncompact “Whitney Sphere” N(ε,R) we glued

to Σ. If the initial condition is simply N(ε,R) instead of L, we showed in

[9, §4] that this conjecture is true, but the arguments relied on the rotationally

symmetric properties of N(ε,R) and thus cannot be extended to arbitrarily

small perturbations like L. If this conjecture were true, then the proof of

Theorem 6.1 would finish here.

After several attempts, the author was unable to prove this conjecture,

and this lead us to the second main idea of this paper described below. Again

we stress that, conjecturally, this case will never occur without going through

“earlier” singularities.

Third step. Denote by (Mt)t≥1 the evolution by mean curvature flow of

M1, the Lagrangian that corresponds to the curve σ. In Theorem 5.3 we will

show that Mt is SO(2)-invariant and can be described by curves σt that evolve

the following way (see Figure 4). There is a singular time T so that for all

t < T , the curves σt look like σ but with a smaller enclosed loop. When t = T ,

this enclosed loop collapses and we have a singularity for the flow. For t > T ,

the curves σt will become smooth and embedded.

We can now describe the second main idea of this paper. (See Remark 5.2

and Corollary 5.5 for more details.) Because σt “loses” a loop when t passes

through the singular time, winding number considerations will show that the

Lagrangian angle of Mt must suffer a discontinuity of 2π. Standard arguments

will show that, because L1 is very close to M1, then Lt will be very close to Mt

as well and so the Lagrangian angle of Lt should also suffer a discontinuity of

approximately 2π when t passes through T . But this contradicts the fact that

(Lt)t≥0 exists smoothly. �
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Figure 4. Evolution of σt.

2.3. Organization. The first step in the proof is done in Section 3. It

consists mostly of standard but slightly technical results, all of which are well

known. The second step is done in Section 4, and the third step is done in

Section 5. Finally, in Section 6 the proof of Theorem 6.1 is made rigorous and

in the appendix some basic results are collected.

Some parts of this paper are long and technical but can be skipped on a

first reading. Section 3 can be skipped and consulted only when necessary. In

Section 4 the reader can skip the proofs of Propositions 4.4 and 4.6 and read

instead the outlines in Remarks 4.5 and 4.7. In Section 5 the reader can skip

the proof of Theorem 5.3.

3. First Step: General Results

3.1. Setup of Section 3.

3.1.1. Hypothesis on ambient space. We assume the setting of Section 2.1

and the existence of a Darboux chart

φ : B4R −→M,

meaning φ∗ω coincides with the standard symplectic form in R4 and φ∗J and

φ∗Ω coincide, respectively, with the standard complex structure and dz1 ∧ dz2

at the origin. Moreover, we assume that

• φ∗gR is 1/R-close in C3 to the Euclidean metric,

• G ◦ φ is 1/R-close in C3 to the map that sends x in R4 to (x, 0) in Rn,

• the C0,α norm of E (defined in Section 2.1) is smaller than 1/R,

• and G(M) ∩B4R−1 ⊆ G ◦ φ(B4R).

For the sake of simplicity, given any subset B of M , we freely identify B with

φ−1(B) in B4R or G(B) in Rn.
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3.1.2. Hypothesis on Lagrangian L. We assume that L ⊆ M Lagrangian

is such that

(3) L ∩B2R = N(ε,R) ∩B2R for some R ≥ 4R,

where N(ε,R) was defined in (1). Thus L ∩ B2R consists of two connected

components Q1 and Q2, where

(4) Q1 \Bε = (P1 + P2) ∩A(ε, 2R) and Q2 = P3 ∩B2R.

To be rigorous, one should use the notation Lε,R for L. Nonetheless, for the

sake of simplicity, we prefer the latter. Finally, we assume the existence of K0

so that

• area(L ∩Br(x)) ≤ K0r
2 for every x ∈M and r ≥ 0,

• the norm of second fundamental form of M in Rn is bounded by K0,

• supQ1 |θ| ≤ π/2−K−1
0 and we can find β ∈ C∞(Q1) such that dβ = λ,

and

(5) |β(x)| ≤ K0(|x|2 + 1) for all x ∈ Q1.

3.2. Main results. We start with two basic lemmas and then state the two

main theorems.

Lemma 3.1. For all ε small, R large, and T1 > 0, there is D = D(T1,K0)

so that

H2(Br(x) ∩ Lt) ≤ Dr2 for all x ∈ Rn, r > 0, and 0 ≤ t ≤ T1.

Proof. Assuming a uniform bound on the second fundamental form of

M in Rn, it is a standard fact that uniform area bounds for Lt hold for all

0 ≤ t ≤ T1. (See, for instance, [9, Lemma A.3] if g is the Euclidean metric. A

general proof could be given along the same lines provided we use the modifi-

cation of monotonicity formula given in Lemma 2.1.) �

Lemma 3.2. For every δ small, T1 > 1, and R > 0, there is R =

R(T1, δ, R) so that, for every 1 ≤ t ≤ T1, Lt is δ-close in C2,α to the plane P1

in the annular region A(R,R).

Proof. Apply Lemma 3.9 with ν being δ given in this lemma, S = 1, and

κ = 1/T1. Because L0 ∩ A(3R, 2R) = P1 ∩ A(3R, 2R), it is simple to see that

conditions (a), (b), and (c) of Lemma 3.9 are satisfied for all x0 ∈ L0∩A(R,R)

provided we choose R suitably large. Thus, the desired result follows from

Lemma 3.9(ii). �

The next theorem is one of the main results of this section. The proof will

be given at the end of Section 3 and can be skipped on a first reading.

Theorem 3.3. Fix ν. The constant Λ0 mentioned below is universal.
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There are ε1 and R1, depending on the planes P1, P2, P3, K0, and ν, such

that if ε ≤ ε1 and R ≥ 2R1 in (3), then

(i) for every 0 ≤ t ≤ 2, the C2,α(A(R1, R)) norm of Lt is bounded by

Λ0t
−1/2 and

Ft(x) ∈ A(R1, R) =⇒ |Fs(x)− x| < Λ0

√
s for all 0 ≤ s ≤ 2;

(ii) for every 1 ≤ t ≤ 2, Lt ∩A(R1, R) is ν-close in C2,α to L.

Moreover, setting

Q1,t = Ft(Q
1 ∩BR) and Q2,t = Ft(Q

2 ∩BR),

we have that

(iii) for every 0 ≤ t ≤ 2,

Lt ∩BR−Λ0 ⊆ Q1,t ∪Q2,t ⊆ BR+Λ0 ;

(iv) for every 1 ≤ t ≤ 2, Q2,t is ν-close in C2,α(BR1) to P3.

Remark 3.4. (1) We remark that Theorem 3.3(i) and (iii) have no ν de-

pendence in their statements and so could have been stated independently of

Theorem 3.3(ii) and (iv).

(2) The content of Theorem 3.3(i) and (ii) is that for all ε small and R

large we have good control of Lt on an annular region A(R1, R) for all t ≤ 2.

This is expected because, as we explain next, for all ε small and R sufficiently

large, L ∩ A(1, 2R) has small C2,α norm and area ratios close to one. In the

region A(1, R) this follows because, as defined in (3),

L ∩A(1, R) = (P1 ∪ P2 ∪ P3) ∩A(1, R).

In the region A(R, 2R) this follows because the C2,α norm and the area ratios

of L ∩A(R, 2R) tend to zero as R tends to infinity.

(3) The content of Theorem 3.3(iii) is that Lt ∩BR has two distinct con-

nected components for all 0 ≤ t ≤ 2, which we call Q1,t and Q2,t. The idea

is that initially L ∩ BR has two connected components and because we have

control of the flow on the annulus A(R1, R) due to Theorem 3.3(i), then no

connected component in Lt ∩BR can be “lost” or “gained.” Without the con-

trol on the annular region it is simple to construct examples where a solution

to mean curvature flow in B1(0) consists initially of disjoint straight lines and

at a later time is a single connected component.

(4) Theorem 3.3(iv) is also expected because Q2,0 initially is just a disc

and we have good control on ∂Q2,t for all 0 ≤ t ≤ 2.

The next theorem collects some important properties of Q1,t. The proof

will be given at the end of Section 3 and, because it is largely standard, can

be skipped on a first reading.
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Theorem 3.5. There are D1, R2, and ε2 depending only on K0 so that

if R ≥ R2 and ε ≤ ε2 in (3), then for every 0 ≤ t ≤ 2, the following properties

hold :

(i) sup
0≤t≤2

sup
Q1,t

|θt| ≤ π/2− 1/(2K0).

(ii) H2(B̂r(y)) ≥ D1r
2,

where B̂r(y) denotes the intrinsic ball of radius r in Q1,t centered at y ∈
Q1,t and r < dist(y, ∂Q1,t).

(iii) All Q1,t are exact, and one can choose βt ∈ C∞(Q1,t) with

dβt = λ =
2∑
i=1

xidyi − yidxi

and
d

dt
(βt + 2tθt) = ∆(βt + 2tθt) + E1,

where E1 =
∑2
i=1∇eiλ(ei) and {e1, e2} is an orthonormal basis for Q1,t.

(iv) |βt|(x) ≤ D1(|x|2 + 1) for every x ∈ Q1,t.

(v) If µ = x1y2 − x2y1, then

dµ2

dt
≤ ∆µ2 − 2|∇µ|2 + E2,

where E2 = (|x|3 + 1)O(1/R).

Remark 3.6. (1) We comment on Theorem 3.5(i). Recall that we are

assuming supQ1 |θ| ≤ π/2 − K−1
0 , where Q1 is defined in (4). Because θt

evolves by the heat equation, we have

sup
0≤t≤2

sup
Q1,t

|θt| ≤ max

{
sup
Q1,0

|θ|, sup
0≤t≤2

sup
∂Q1,t

|θt|
}
.

Hence we need to control the Lagrangian angle along ∂Q1,t in order to obtain

Theorem 3.5(i). The idea is to use the fact that Q1 is very “flat” near ∂Q1,0

to show that Ft(Q
1) is a small C1 perturbation of Q1 near ∂Q1,0, which means

the Lagrangian angle along ∂Q1,t will not change much.

(2) Theorem 3.5(ii) is a consequence of the fact that Q1,t is almost-

calibrated.

(3) Theorem 3.5(iii) and (v) are just derivations of evolution equations

taking into account the error term one obtains from the metric gR (defined in

Section 2.1) not being Euclidean.

(4) Theorem 3.5(iv) gives the expected growth for βt on Q1,t, and its proof

is a simple technical matter.
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3.3. Abstract results. We derive some simple results that will be used to

prove Theorems 3.3 and 3.5 as well as throughout the rest of the paper. They

are presented in a fairly general setting in order to be used in various circum-

stances. The proofs are based on White’s Regularity Theorem and Huisken’s

monotonicity formula.

Let E be a vector valued function defined on Rn × G(2, n), Σ a smooth

surface possibly with boundary, and Ft : Σ −→ Rn a smooth solution to

(6)
dFt
dt

(x) = H(Ft(x)) + E(Ft(x), TFt(x)Mt),

where Mt = Ft(Σ) and F0 is the identity map.

In what follows, Ω denotes a closed set of Rn and we use the notation

Ω(s) = {x ∈ Rn | dist(x,Ω) < s}.

We derive two lemmas that are well known among the experts. Denote

Ē = sup |E|0,α, and let ε0 be the constant given by White’s Regularity Theorem

[18, Th. 4.1].

Lemma 3.7. Assume T ≤ 4. There is Λ=Λ(Ē, n) so that for every s≥0,

if

(a) for all 0 ≤ t ≤ 2T , y ∈ Ω(s+ 2Λ
√
T ), and l ≤ 2T∫

Mt

Φ(y, l)dH2 ≤ 1 + ε0;

(b) for all 0 ≤ t ≤ 2T , ∂Mt ∩ Ω(s+ 2Λ
√
T ) = ∅;

then for every 0 ≤ t ≤ T , we have

(i) the C2,α norm of Mt on Ω(s+ Λ
√
T ) is bounded by Λ/

√
t;

(ii) F ′t(x) ∈ Ω(s) =⇒ |Ft(x)− x| < Λ
√
t for all 0 ≤ t ≤ T .

Remark 3.8. The content of Lemma 3.9 is that if we know the Gaussian

density ratios at a scale smaller than 2T in a region U are all close to one and

∂Mt lies outside U for all t ≤ 2T , then we have good control of Mt for all

0 ≤ t ≤ T on a slightly smaller region. The proof is a simple consequence of

White’s Regularity Theorem.

Proof. Assume for all 0 ≤ t ≤ 2T , y ∈ Ω(s+ (Λ + 1)
√
T ), and l ≤ 2T that∫

Mt

Φ(y, l)dH2 ≤ 1 + ε0,

where Λ ≥ 1 is a constant to be chosen later. From White’s Regularity The-

orem [18, Th. 4.1] there is K1 = K1(Ē, n) so that the C2,α norm of Mt on

Ω(s+ Λ
√
T ) is bounded by K1/

√
t and

sup
Mt∩Ω(s+Λ

√
T )

|A|2 ≤ K1

t
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for every t ≤ T . Thus from (6), we obtain∣∣∣∣dFtdt (x)

∣∣∣∣ ≤ K1√
t

+ Ē

whenever Ft(x) ∈ Ω(s + Λ
√
T ). Integrating the above inequality and using

T ≤ 2, we have the existence of K2 = K2(Ē,K1) so that if

Ft′(x) ∈ Ω(s+ (Λ−K2)
√
T ) for some 0 ≤ t′ ≤ T,

then

Ft(x) ∈ Ω(s+ Λ
√
T ) for every 0 ≤ t ≤ T

and

|Ft(x)− x| < K2

√
t for every 0 ≤ t ≤ T.

Choose Λ = max{K1,K2}. Then (i) and (ii) follow at once. �

Lemma 3.9. For every ν, S, and 0 < κ < 1, there is δ, R so that if

x0 ∈M0 and

(a) the C2,α norm of M0 in BR
√
T (x0) and the C0,α(Rn ×G(2,M)) norm

of E are smaller than δ/
√
T ;

(b) H2(M0 ∩Br(x0)) ≤ 7πr2 for all 0 ≤ r ≤ R
√
T ;

(c) ∂Mt ∩BR√T (x0) = ∅ for all 0 ≤ t ≤ T ;

then the following hold :

(i)

∫
Mt

Φ(y, l)dH2 ≤ 1 + ε0 for all y ∈ B(S+1)
√
T (x0), t ≤ T , and l ≤ 2T ;

(ii) For every κT ≤ t ≤ T , there is a function

ut : Tx0M0 ∩B(S+1)
√
T (x0) −→ (Tx0M0)⊥

with

sup
Tx0M0∩B(S+1)

√
T

Ä
|ut|/
√
T + |∇ut|+ |∇2ut|0,α

√
T
ä
≤ ν

and

Mt ∩BS√T (x0) ⊆ {ut(x) + x, |x ∈ Tx0M0 ∩B(S+1)
√
T (x0)}.

Remark 3.10. This lemma, roughly speaking, says that for every S, there

is R so that if the initial condition is very close to a disc in BR
√
T (x0) (condition

(a) and (b)) and ∂Mt lies outside BR
√
T (x0) for all 0 ≤ t ≤ T (condition (c)),

then we get good control of Mt inside BS
√
T (x0).

Proof. It suffices to prove this for T = 1 and x0 = 0. Consider a sequence

of flows (M i
t )0≤t≤1 satisfying all the hypotheses with δi converging to zero and

Ri tending to infinity. The sequence of flows (M i
t )t≥0 will converge weakly to

(M̄t)t≥0, a weak solution to mean curvature flow (see [7, §7.1]). The fact that

the C2,α
loc norm of M i

0 converges to zero implies that M i
0 converges in C2,α

loc to
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a union of planes. From (b) we conclude that M i
0 converges to a multiplicity

one plane P . Because ∂M i
t lies outside BRi for all 0 ≤ t ≤ 1 with Ri tending

to infinity and

lim
i→∞

∫
M i

0

Φ(y, l)dH2 =

∫
P

Φ(y, l)dH2 = 1 for every y and l,

we can still conclude from Huisken’s monotonicity formula that for all i suffi-

ciently large,∫
M i
t

Φ(y, l)dH2 ≤ 1 + ε0 for all y ∈ BS+1, t ≤ 1, and l ≤ 2.

This proves (i). Moreover, the above inequality also implies, via White’s Reg-

ularity Theorem, that M i
t converges in C2,α

loc to P for all κ ≤ t ≤ 1 and so (ii)

will also hold for all i sufficiently large. This implies the desired result. �

3.4. Proof of Theorems 3.3 and 3.5.

Proof of Theorem 3.3. We first prove part (ii). Consider δ and R given

by Lemma 3.9 when κ = 1/2, ν is the constant fixed in Theorem 3.3 and S is

large to be chosen later. The same reasoning used in Remark 3.4(2) shows the

existence of K1 (depending on R and δ) so that for all ε small and R sufficiently

large, the C2,α norm of L ∩ A(K1, 2R −K1) is smaller than δ/2 and the area

ratios with scale smaller than 2R are close to one. Thus, after relabelling K1

to be K1 −
√

2R, we can apply Lemma 3.9(ii) (with T = 4) to M0 = L for all

x0 in Ω = L ∩ A(K1, 2R − K1) and conclude Theorem 3.3(ii). Moreover, we

also conclude from Lemma 3.9(i) that

(7)

∫
Lt

Φ(y, l)dH2 ≤ 1 + ε0 for all y ∈ Ω(S), t ≤ 4, and l ≤ 4,

where Ω(S) denotes the tubular neighbourhood of Ω in Rn with radius S.

We now prove part (i). From (7), we see that hypotheses (a) and (b) of

Lemma 3.7 are satisfied with T = 2, s = 0, and r = S − 23/2Λ (which we

assume to be positive). Hence Lemma 3.7(i) gives that the C2,α norm of Lt in

Ω(S − 21/2Λ) is bounded by Λ/
√
t. Theorem 3.3(i) follows from this provided

(8) Lt ∩A(K1, 2R−K1) ⊂ Ω(S − 23/2Λ).

This inclusion follows because, according to Brakke’s Clearing Out Lemma [7,

§12.2] (which can be easily extended to our setting assuming small C0,α norm

of |E|), there is a universal constant S0 such that

Lt ∩A(K1, 2R−K1) ⊂ Ω(S0) for all 0 ≤ t ≤ 2.

Thus we simply need to require S − 23/2Λ > S0 in order to obtain (8). Fur-

thermore, Lemma 3.7(ii) implies

Ft(x) ∈ Ω(S − 23/2Λ) =⇒ |Fs(x)− x| < Λs1/2 for all 0 ≤ s ≤ 2,
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which combined with (8) gives

(9) Ft(x) ∈ A(K1, 2R−K1) =⇒ |Fs(x)− x| < Λs1/2 for all 0 ≤ s ≤ 2,

and this proves the second statement of Theorem 3.3(i).

We now prove the first statement of Theorem 3.3(iii). Suppose

Lt′ ∩BR−√2Λ * Ft′(L ∩BR) = Q1,t′ ∪Q2,t′ ,

meaning Ft′(x) ∈ BR−√2Λ but x /∈ BR. By continuity there is 0 ≤ t ≤ t′ so

that

Ft(x) ∈ A(K1, R),

and this implies from (8) that Ft(x) ∈ Ω(S−23/2Λ), in which case we conclude

from (9) that |Ft′(x)−x| <
√

2Λ, a contradiction. Similar reasoning shows the

other inclusion in Theorem 3.3(iii).

Finally we show (iv). Apply Lemma 3.9, with S = K1/
√

2, κ = 1/2, and

ν the constant fixed in this theorem, to M0 = Q2,0 = P3 ∩ BR where x0 = 0.

Note that hypotheses (a) and (b) of Lemma 3.9 are satisfied with T = 2 if one

assumes R sufficiently large. Moreover, hypothesis (c) is also satisfied because

due to Theorem 3.3(i) we have ∂Q2,t ⊂ A(R − 2Λ0, R + 2Λ0). Thus Q2,t is

ν-close in C2,α(BK1) to P3 for every 1 ≤ t ≤ 2. �

Proof of Theorem 3.5. During this proof we will use Theorem 3.3(i) and

(iii) with ν = 1. Λ0 is the constant given by that theorem.

From the maximum principle applied to θt we know that

sup
0≤t≤2

sup
Q1,t

|θt| ≤ max

{
sup
Q1,0

|θ|, sup
0≤t≤2

sup
∂Q1,t

|θt|
}
.

The goal now is to control the C1 norm of Q1,t along ∂Q1,t so that we control

sup∂Q1,t
|θt|.

Given η small, consider R and δ given by Lemma 3.9 when ν = η, S = 2Λ0,

and κ = 1/2. We have

∂Q1,0 = Q1 ∩ {|x| = R},

where Q1 is defined in (4). Thus, for all R sufficiently large and ε small, we

have that M0 = Q1 satisfies hypotheses (a) and (b) of Lemma 3.9 for every

x0 ∈ ∂Q1,0. Moreover ∂(Ft(Q
1))∩BR = ∅ by Theorem 3.3(i), and so hypothesis

(c) is also satisfied because we are assuming R ≥ 4R (see (3)).

This means Ft(Q
1)∩B2Λ0

√
t(x0) is graphical over Tx0Q

1 with the C1 norm

being smaller than η for all 0 ≤ t ≤ 2. Thus we can choose η small so that

(10) sup{|θt(y)− θ0(x0)| : y ∈ Ft(Q1) ∩B2Λ0

√
t(x0)} ≤ 1/(2K0).
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Using Theorem 3.3(i) we see that for every y ∈ ∂Q1,t, there is x0 ∈ ∂Q1,0 so

that y ∈ B2Λ0

√
t(x0). Thus from (10), we obtain

sup
∂Q1,t

|θt| ≤ sup
∂Q1,0

|θ|+ 1/(2K0)

and this implies (i) because we are assuming supQ1 |θ| ≤ π/2−K−1
0 .

We now prove (ii). Assume for a moment that the metric gR (defined in

Section 2.1) is Euclidean in B2R. Because Q1,t is almost-calibrated, we have

from [9, Lemma 7.1] the existence of a constant C depending only K0 so that,

for every open set B in Q1,t with rectifiable boundary,Ä
H2(B)

ä1/2 ≤ C length (∂B).

It is easy to recognize the same is true (for some slightly larger C) if gR is very

close to the Euclidean metric. Set

ψ(r) = H2
Ä
B̂r(x)

ä
which has, for almost all r < dist(y, ∂Q1,t), the derivative given by

ψ′(r) = length
Ä
∂B̂r(x)

ä
≥ C−1(ψ(r))1/2.

Hence, integration implies that for some other constant C, ψ(r) ≥ Cr2, and

so (ii) is proven.

We now prove (iii). The Lie derivative of λt = F ∗t (λ) is given by

LHλt = dF ∗t (Hyλ) + F ∗t (Hy2ω) = d(F ∗t (Hyλ)− 2θt),

and so we can find βt ∈ C∞(Q1,t) with dβt = λ and

(11)
dβt
dt

= Hyλ− 2θt.

A simple computation shows that ∆βt=Hyλ+
∑2
i=1∇eiλ(ei), which proves (iii).

We now prove (iv). Combining Theorem 3.3(i) and (11), we have that∣∣∣∣dβtdt (Ft(x))

∣∣∣∣ ≤ Λ0√
t
|Ft(x)|+ π −K−1

0

for every x ∈ L ∩ A(R1 + 2Λ0, R). Thus after integration in the t variable,

assuming t ≤ 2, and recalling (5), we obtain a constant C = C(K0,Λ0) such

that

|βt(Ft(x))| ≤ C(|Ft(x)|+ |β(x))|+ C ≤ C(|Ft(x)|2 + 1).

We are left to estimate βt on At = Ft(Q1,0 ∩ BR1+2Λ0). From Theorem 3.3(i)

we know that At ⊆ BC1(0) for some C1 = C1(K0,Λ0, R1) and thus, provided

we assume gR to be sufficiently close to the Euclidean metric,

|∇βt(x)| = |λ| ≤ 2C1 for every x ∈ At.
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Hence, if we fix x1 in ∂At, we can find C = C(K0,Λ0, R1) so that for every y

in At,

|βt(y)| ≤ |βt(x1)|+ CdistAt(x1, y) ≤ C(1 + distAt(x1, y)),

where distAt denotes the intrinsic distance in At. Property (ii) of this theorem,

At ⊆ BC1(0), and Lemma 3.1 are enough to bound uniformly the intrinsic

diameter of At and thus bound βt uniformly on At. Hence (iv) is proven.

We now prove (v). In what follows, Ej2 denotes any term with decay

(|x|j + 1)O(1/R). Given a coordinate function v = xi or yi, i = 1, 2, we have

dv

dt
= ∆v −

2∑
i=1

g(∇eiV, ei) = ∆v + E0
2 ,

where V denotes the gradient of v with respect to gR. Thus,

dµ

dt
= ∆µ+ E1

2 − 2gR(X>1 , Y
>

2 ) + 2gR(Y >1 , X>2 ),

where Xi, Yi, i = 1, 2 denote the gradient of the coordinate functions with

respect to gR. If the ambient Calabi-Yau structure were Euclidean, then

〈X>1 , Y >2 〉 − 〈Y >1 , X>2 〉 = −〈(JY1)>, Y2〉 − 〈Y >1 , X2〉

= −〈JY ⊥1 , Y2〉 − 〈Y >1 , X2〉 = −〈Y ⊥1 + Y >1 , X2〉 = −〈Y1, X2〉 = 0.

In general, it is easy to see that gR(X>1 , Y
>

2 )− gR(Y >1 , X>2 ) = E0
2 and so

dµ2

dt
≤ ∆µ2 − 2|∇µ|2 + E3

2 . �

4. Second Step: Self-expanders

The goal of this section is to prove the theorem below. For the reader’s

convenience, we recall that the planes P1, P2 are defined in Section 2.1.1, K0 is

defined at the beginning of Section 3, Q1 is defined in (4), and Q1,t is defined

in Theorem 3.3(iii). The self-expander equation is defined in Section 2.1.2, and

the self-expander S is defined in (2) (see Figure 2).

Theorem 4.1. Fix S0 and ν. There are ε3 and R3, depending on S0, ν,

and K0, such that if R ≥ R3, ε ≤ ε3 in (3), and

the flow Q1,t exists smoothly for all 0 ≤ t ≤ 2,

then t−1/2Q1,t is ν-close in C2,α(BS0) to S for every 1 ≤ t ≤ 2.

As we will see shortly, this theorem follows from Theorem 4.2. Recall

that, as seen in Theorem 3.5(iii), we can find βt on Q1,t so that

dβt = λ =
2∑
i=1

xidyi − yidxi.
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Theorem 4.2. Fix S0 and ν. There are ε4, R4, and δ depending on S0,

ν, and K0, such that if R ≥ R4, ε ≤ ε4 in (3), and

• the flow Q1,t exists smoothly for all 0 ≤ t ≤ 2;

•

(12)

∫
Q1∩BR

β2 exp(−|x|2/8)dH2 ≤ δ;

then t−1/2Q1,t is ν-close in C2,α(BS0) to a smooth embedded self-expander as-

ymptotic to P1 and P2 for every 1 ≤ t ≤ 2.

Remark 4.3. (1) If the ambient metric gR (defined in Section 2.1) were

Euclidean, then |∇β(x)| = |x⊥|, and thus β would be constant exactly on

cones. Hence, roughly speaking, the left-hand side of (12) measures how close

Q1 ∩BR is to a cone.

(2) The content of the theorem is that given ν and S0, there is δ so

that if the initial condition is δ-close, in the sense of (12), to a non area-

minimizing configuration of two planes P1 + P2 and the flow exists smoothly

for all 0 ≤ t ≤ 2, then the flow will be ν-close to a smooth self-expander in

BS0 for all 1 ≤ t ≤ 2.

(3) The result is false if one removes the hypothesis that the flow exists

smoothly for all 0 ≤ t ≤ 2. For instance, there are known examples [9, Th. 4.1]

where Q1,0 is very close to P1 + P2 (see [9, Fig. 1]) and a finite-time singu-

larity happens for a very short time T . In this case, Q1,T can be seen as a

transverse intersection of small perturbations of P1 and P2 (see [9, Fig. 2]) and

we could continue the flow past the singularity by flowing each component of

Q1,T separately, in which case Q1,1 would be very close to P1 + P2 and this is

not a smooth self-expander. The fact the flow exists smoothly will be crucial

to prove Lemma 4.10.

(4) The result is also false if P1 + P2 is area-minimizing. The reason is

that in this case the self-expander asymptotic to P1 + P2 is simply P1 + P2,

which is singular at the origin and thus not smooth as it is guaranteed by

Theorem 4.2. The fact that P1 + P2 is not area-minimizing will be crucial to

prove Lemma 4.10.

(5) The strategy to prove Theorem 4.2 is the following. The first step

(Proposition 4.4) is to show that if the left-hand side of (12) is very small,

then

∫
Q1,1∩BR/2

(β1 + 2θ1)2Φ(0, 4− t)dH2 +

∫ 2

0

∫
Q1,t

|x⊥ − 2tH|2Φ(0, 4− t)dH2dt
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is also very small. The second step (Proposition 4.6) in the proof will be to

show that if∫
Q1,1∩BR/2

(β1 + 2θ1)2Φ(0, 4− t)dH2 +

∫ 2

0

∫
Q1,t

|x⊥ − 2tH|2Φ(0, 4− t)dH2dt

is very small, then t−1/2Q1,t will be ν-close in C2,α(BS0) to a smooth self-

expander. It is in this step that we use the fact that the flow exists smoothly

and P1 + P2 is not an area-minimizing configuration.

Proof of Theorem 4.1. The first step is to show that Theorem 4.2 can be

applied, which amounts to showing that (12) holds if we choose ε sufficiently

small and R sufficiently large. Thus, we obtain that t−1/2Q1,t is ν-close in

C2,α(BS0) to a smooth embedded self-expander asymptotic to P1 and P2 for

every 1 ≤ t ≤ 2. The second step is to show that self-expander must be S.

First Step. We note Q1∩A(1, R) (defined in (4)) coincides with (P1∪P2)

∩ A(1, R), and so the uniform control we have on β given by (5) implies that

for all δ, there is r1 large depending on K0 and δ so that

(13)

∫
Q1∩A(r1,R)

β2 exp(−|x|2/8)dH2 ≤ δ

2

for all ε small and R large. Also, if we make ε tend to zero and R tend to

infinity in (3), it is straightforward to see that Q1 tends to P1 ∪ P2 smoothly

on any compact set that does not contain the origin. Because β is constant on

cones, we can choose β on Q1 so that

lim
ε→0,R→∞

∫
Q1∩Br1

β2 exp(−|x|2/8)dH2 = 0.

Combining this with (13) we obtain that for all ε small and R large,∫
Q1∩BR

β2 exp(−|x|2/8)dH2 ≤ δ.

Hence all the hypotheses of Theorem 4.2 hold.

Second Step. Let Q denote a smooth embedded Lagrangian self-expander

asymptotic to P1 + P2. Then Qt =
√
tQ and limt→0+ Qt = P1 + P2 as Radon

measures. Thus, if we recall the function µ = x1y2 − y1x2 defined in Theo-

rem 3.5(v), we have

(14) lim
t→0+

∫
Qt

µ2Φ(0, T − t)dH2 =

∫
P1+P2

µ2Φ(0, T )dH2 = 0.

Using the evolution equation for µ given in Theorem 3.5(v) (E2 is identically

zero) into Huisken’s monotonicity formula (see Lemma 2.1), we have

d

dt

∫
Qt

µ2Φ(0, T − t)dH2 ≤ 0.
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This inequality and (14) imply at once that∫
Qt

µ2Φ(0, 1)dH2 = 0 for all t ≥ 0

and so Q ⊂ µ−1(0). A trivial modification of Lemma 7.1 implies the existence

of γ asymptotic to χ (the curve defined in (2)) so that

Q = {(γ(s) cosα, γ(s) sinα) | s ∈ R, α ∈ S1}.

From [1, §5] we know that χ = γ, and so the result follows. �

4.1. Proof of Theorem 4.2. Throughout this proof we assume that R is

sufficiently large and ε is sufficiently small so that Theorem 3.3 (with ν = 1)

and Theorem 3.5 apply. We also assume the flow (Q1,t)0≤t≤2 exists smoothly.

For simplicity, denote Q1,t simply by Qt. We also recall that the constant

K0, which will appear multiple times during this proof, was defined at the

beginning of Section 3.

Proposition 4.4. Fix η. There are ε5 and R5 depending on η and K0

so that if ε ≤ ε5 and R ≥ R5 in (3), then

sup
0≤t≤2

∫
Qt∩BR/2

(βt + 2tθt)
2Φ(0, 4− t)dH2

+

∫ 2

0

∫
Qt∩BR/2

|x⊥ − 2tH|2Φ(0, 4− t)dH2dt

≤ η

2
+

∫
Q1∩BR

β2Φ(0, 4)dH2.

Remark 4.5. The idea is to apply Huisken monotonicity formula for (β2 +

2tθt)
2. Some extra (technical) work has to be done because Qt has boundary

and the ambient metric gR (defined in Section 3) is not Euclidean.

Proof. Let φ ∈ C∞(R4) such that 0 ≤ φ ≤ 1,

φ = 1 on BR/2, φ = 0 on B2R/3, |Dφ|+ |D2φ| ≤ Λ

R
,

where Λ is some universal constant. By Theorem 3.3(i) we have that, provided

we chose R large and ε small, ∂Qt ∩BR/2 = and thus φ has compact support

in Qt.

Set γt = βt + 2tθt. Then on Qt, we have from Theorem 3.5(iii) that

d(γtφ)2

dt
= ∆(γtφ)2 − 2|∇γt|2φ2 + 〈H,Dφ2〉γ2

t − 2〈∇γ2
t , Dφ

2〉 − γ2
t ∆φ2 + φ2E1.
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Thus, using Theorem 3.3(i) to estimate H and Theorem 3.5(iv), we have that

for all R large and ε small,

d(γtφ)2

dt
≤ ∆(γtφ)2 − 2|∇γt|2φ2 +

C1√
tR

(|x|4 + 1)(1− χR/2) + |E1|,

where C1 = C1(K0,Λ0, D1) and χR/2 denotes the characteristic function of

BR/2. From Lemma 2.1, we conclude

d

dt

∫
Qt

(γtφ)2Φ(0, 4− t)dH2 + 2

∫
Qt

|∇γt|2φ2Φ(0, 4− t)dH2

≤
∫
Qt

Ç
γ2
t

|E|2

4
+ |E1|

å
Φ(0, 4−t)dH2+

C1√
tR

∫
Qt\BR/2

(|x|4+1)Φ(0, 4−t)dH2.

We now estimate the two terms on the right-hand side. If gR (defined at

the beginning of Section 3) were Euclidean, both terms |E|2 and E1 mentioned

above would vanish. Otherwise it is easy to see that making R sufficiently

large so that gR becomes close to Euclidean, both terms can be made arbitrarily

small. The growth of γt is quadratic (Theorem 3.5(i) and (iv)), and so choosing

R sufficiently large and ε sufficiently small, we have∫
Qt

Ç
γ2
t

|E|2

4
+ |E1|

å
Φ(0, 4− t)dH2 ≤ η

8
for all t ≤ 2.

Using that |x| ≥ |x|2/2 +R2/8 outside BR/2, it is easy to see that

Φ(0, 4− t) ≤ 21/2Φ(0, 2(4− t)) exp(−R2/(32(4− t))) on R4 \BR/2.

Thus, for all 0 ≤ t ≤ 2, the uniform area bounds given in Lemma 3.1 imply∫
Qt\BR/2

(|x|4 + 1)Φ(0, 4− t)dH2

≤ C2 exp(−R2/C2)

∫
Qt\BR/2

(|x|4 + 1)Φ(0, 2(4− t))dH2 ≤ C3 exp(−R2/C3),

where C2 and C3 depend only on K0. Therefore, we have

d

dt

∫
Qt

(γtφ)2Φ(0, 4− t)dH2 + 2

∫
Qt

|∇γt|2φ2Φ(0, 4− t)dH2

≤ C4√
tR

exp(−R2/C4) +
η

8
,

where C4 = C4(C1, C3). Integrating this inequality, for all t ≤ 2, we obtain

(15)

∫
Qt

γ2
t φ

2Φ(0, 4− t)dH2 + 2

∫ t

0

∫
Qs

|∇γt|2φ2Φ(0, 4− s)dH2ds

≤
∫
Q1∩BR

β2Φ(0, 4)dH2 + 23/2C4R
−1 exp(−R2/C4) +

η

4
.
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If the metric gR were Euclidean, then |∇γt|2 = |x⊥ − 2tH|2. Hence the result

follows from (15) if we assume R is large enough so that 2|∇γt|2 ≤ |x⊥−2tH|2
and

23/2C4R
−1 exp(−R2/C4) ≤ η

4
. �

The next proposition is crucial to prove Theorem 4.2.

Proposition 4.6. Fix ν and S0. There are ε6, R6, and η depending on

ν, K0, and S0, such that if R ≥ R5, ε ≤ ε5 in (3), and

(16) sup
0≤t≤2

∫
Qt∩BR/2

(βt + 2tθt)
2Φ(0, 4− t)dH2

+

∫ 2

0

∫
Qt∩BR/2

|x⊥ − 2tH|2Φ(0, 4− t)dH2dt ≤ η,

then t−1/2Qt is ν-close in C2,α(BS0) to a smooth embedded self-expander as-

ymptotic to P1 + P2 for every 1 ≤ t ≤ 2.

Remark 4.7. The strategy to prove this proposition is the following. We

argue by contradiction, and standard arguments will give us a sequence of flows

(Qit)0≤t≤2 converging weakly to a Brakke flow (Q̄t)0≤t≤2, where in (3) we have

Ri tending to infinity, εi tending to zero, and

(17) lim
i→∞

∫
Qi1∩BRi/2

(βi1 + 2θi1)2Φ(0, 4− t)dH2

+

∫ 2

0

∫
Qit∩BRi/2

|x⊥ − 2tH|2Φ(0, 4− t)dH2dt = 0.

Standard arguments (Lemma 4.8) imply Q̄t is a self-expander with

lim
t→0+

Q̄t = P1 + P2.

The goal is to show that Q̄1 is smooth because we could have, for instance,

Q̄1 = P1 + P2.

The first step (Lemma 4.10) is to show that Q̄1 is not stationary. The

idea is the following. If Q̄1 were stationary, then Q̄t = Q̄1 for all t and so

Q̄1 = limt→0+ Q̄t = P1 + P2. On the other hand, from the control given in

Theorem 3.3, we will be able to find r1 > 0 large so that Qi1∩Br1 is connected.

(If the flow had a singularity, this would not necessarily be true.) Furthermore,

we will deduce from (17) that∫
Qi1∩Br1

|∇βi1|2dH2 = lim
i→∞

∫
Qi1∩Br1

|x⊥|2dH2 = 0.
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Hence we can invoke [9, Prop. A.1] and conclude that βi1 must tend to constant

β̄ in L2. Combining this with (17), we have

lim
i→∞

∫
Qi1∩Br1

(β̄ + 2θi1)2dH2 = 0,

and thus Q̄1 must be Special Lagrangian with Lagrangian angle −β̄/2. This

contradicts the choice of P1 and P2.

The second step (Lemma 4.11) is to show the existence of l1 so that, for

every y ∈ C2 and l < l1, the Gaussian density ratios of Q̄1 centered at y with

scale l defined by

Θ(y, l) =

∫
Q̄1

Φ(y, l)dH2

are very close to one. If true, then standard theory implies Q̄1 is smooth

and embedded. The (rough) idea for the second step is the following. If this

step fails for some y ∈ C2, then y should be in the singular set of Q̄1. Now

TyQ̄1 should be a union of (at least two) planes. Hence the Gaussian density

ratios of Q̄1 at y for all small scales should not only be away from one but

actually bigger than or equal to two. We know from Huisken’s monotonicity

formula that the Gaussian density ratios of Q̄1 at y and scale l are bounded

from above by the Gaussian density ratios of Q̄0 = P1 +P2 at y and scale l+1.

But these latter Gaussian ratios are never bigger than two (see Remark 4.12),

which means equality must hold in Huisken’s monotonicity formula and so Q̄t
must be a self-shrinker. Now Q̄t is also a self-expander, and thus it must be

stationary. This contradicts the first step.

Proof. Consider a sequence (Ri) converging to infinity and a sequence (εi)

converging to zero in (3) that give rise to a sequence of smooth flows (Qit)0≤t≤2

satisfying

(18) sup
0≤t≤2

∫
Qit∩BRi/2

(βt + 2tθt)
2Φ(0, 4− t)dH2

+

∫ 2

0

∫
Qt∩BRi/2

|x⊥ − 2tH|2Φ(0, 4− t)dH2dt ≤ 1

i
.

We will show the existence of a smooth self-expander Q̄1 asymptotic to P1 and

P2 so that, after passing to a subsequence, t−1/2Qit converges in C2,α(BS0) to

Q̄1 for every 1 ≤ t ≤ 2.

From compactness for integral Brakke motions [7, §7.1] we know that, after

passing to a subsequence, (Qit)0≤t≤2 converges to an integral Brakke motion

(Q̄t)0≤t≤2, where Qi0 converges in the varifold sense to the varifold P1 + P2.

Furthermore,

lim
i→∞

∫ 2

0

∫
Qit∩BRi/2

|x⊥ − 2tH|2Φ(0, 4− t)dH2dt = 0,
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which means

(19) H =
x⊥

2t
on Q̄t for all t > 0,

and so Q̄t =
√
tQ̄1 as varifolds for every t > 0. (See proof of [10, Th. 3.1] for

this last fact.)

Lemma 4.8. As t tends to zero, Q̄t converges, as Radon measures, to

P1 + P2.

Remark 4.9. This lemma is needed because the Brakke flow theory only

assures that the support of the Radon measure obtained from limt→0 Q̄t is

contained in the support of limi→∞Q
i
0 = P1 + P2.

Proof. Set

µt(φ) =

∫
Q̄t

φdH2.

The Radon measure ν = limt→0+ µt is well defined by [7, Th. 7.2] and satisfies,

for every φ ≥ 0 with compact support,

(20) ν(φ) ≤ lim
i→∞

∫
Qi0

φdH2 =

∫
P1+P2

φdH2.

It is simple to recognize that ν must be either zero, P1, P2, or P1 + P2.

The measure ν is invariant under scaling, meaning that if we set φc(x) =

φ(cx), then

ν(φc) = lim
t→0+

∫
Q̄t

φcdH2 = c−2 lim
t→0+

∫
cQ̄t

φdH2

= c−2 lim
t→0+

∫
Q̄c2t

φdH2 = c−2 lim
t→0+

∫
Q̄t

φdH2 = c−2ν(φ).

From Theorem 3.3(i) and Theorem 3.5(ii) we have that the support of ν con-

tains (P1 + P2) ∩ A(K1,∞) which, combined with the invariance of the mea-

sure we just mentioned, implies the support of ν coincides with P1 ∪P2. Thus

ν = P1 + P2, as we wanted to show. �

Lemma 4.10. Q̄1 is not stationary.

Proof. If true, then Q̄1 needs to be a cone because x⊥ = 2H = 0 and so,

because Q̄t =
√
tQ̄1, they are also cones for all t > 0. Hence we must have

(from varifold convergence) that for every r > 0,

lim
i→∞

∫ 2

0

∫
Qit∩Br

|x⊥|2dH2dt = 0,

which implies from (18) that

lim
i→∞

∫ 2

0

∫
Qit∩Br

(t2|H|2 + |x⊥|2)dH2dt = 0.
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Therefore, we can assume without loss of generality that for every r > 0,

(21) lim
i→∞

∫
Qi1∩Br

(|H|2 + |x⊥|2)dH2 = 0

and thus, by [9, Prop. 5.1], Q̄1 is a union of Lagrangian planes with possi-

ble multiplicities. We will argue that Q̄1 must be a Special Lagrangian, i.e.,

all the planes in Q̄1 must have the same Lagrangian angle. This gives us a

contradiction for the following reason. On one hand, Q̄t = Q̄1 for all t > 0,

which means limt→0 Q̄t = Q̄1. On the other hand, from Lemma 4.8, we have

limt→0 Q̄t = P1 +P2, which means Q̄1 = P1 +P2 and therefore the Lagrangian

angle of P1 and P2 must be the identical (or differ by a multiple of π). This

contradicts how P1 and P2 were chosen.

From Theorem 3.3(ii) (which we apply with ν = 1) we have that for all i

sufficiently large, Qi1 ∩ A(R1, Ri/2) is graphical over (P1 ∪ P2) ∩ A(R1, Ri/2)

with the C2,α norm uniformly bounded. Hence we can find r1 ≥ R1 so that

if we set Ni = Qi1 ∩ B3r1 , we have for all i sufficiently large that Ni ∩ B2r1

connected. We note that if Qit had a singularity for some t < 1 then Ni could

be two discs intersecting transversally near the origin and thus Ni∩B2r1 would

not be connected.

Furthermore, we obtain from (21) that

lim
i→∞

∫
Ni

|∇βi|2dH2 = lim
i→∞

∫
Ni

|x⊥|2dH2 = 0

and so, because of Theorem 3.5(ii), we can apply [9, Prop. A.1] and conclude

the existence of a constant β̄ so that, after passing to a subsequence,

(22) lim
i→∞

∫
Ni∩Br1

(βi1 − β̄)2dH2 = 0.

Recall that from (18), we have

lim
i→∞

∫
Qi1∩Br1

(βi1 + 2θi1)2dH2 = 0,

which combined with (22) implies

lim
i→∞

∫
Qi1∩Br1

(β̄ + 2θi1)2dH2 = 0.

Therefore Q̄1 must be a Special Lagrangian cone with Lagrangian angle −β̄/2.

�

In the next lemma, ε0 denotes the constant given by White’s Regularity

Theorem [18].
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Lemma 4.11. There is l(t), a positive continuous function of 0 < t ≤ 2,

so that∫
Q̄t

Φ(y, l)dH2 ≤ 1 + ε0/2 for every l ≤ l(t), y ∈ R4, and t > 0.

Remark 4.12. During the proof the following simple formula will be used

constantly. Given y ∈ C2, let d1, d2 denote, respectively, the distance from y

to P1 and P2. Then

(23)

∫
P1+P2

Φ(y, l)dH2 = exp(−d2
1/(4l)) + exp(−d2

2/(4l)) ≤ 2.

Proof. It suffices to prove the lemma for t = 1 because, as we have seen,

Q̄t =
√
tQ̄1 for all t > 0.

Claim. There is C1 such that for every l ≤ 2 and y ∈ R4,

(24)

∫
Q̄1

Φ(y, l)dH2 ≤ 2− C−1
1 .

From the monotonicity formula for Brakke flows [8, Lemma 7],

(25)

∫
Q̄1

Φ(y, l)dH2 +

∫ 1

0

∫
Q̄t

∣∣∣∣∣H +
(x− y)⊥

2(l + 1− t)

∣∣∣∣∣
2

Φ(y, l + 1− t)dH2dt

=

∫
P1+P2

Φ(y, l + 1)dH2 ≤ 2.

Suppose there is a sequence (yi) and (li) with 0 ≤ li ≤ 2 such that∫
Q̄1

Φ(yi, li)dH2 ≥ 2− 1

i
.

Then, from (25) we obtain

lim
i→∞

∫
P1+P2

Φ(yi, li + 1)dH2 = 2

and so, from (23), (yi) must converge to zero. Assuming (li) converges to l̄, we

have again from (25) that∫ 1/2

0

∫
Q̄t

∣∣∣∣∣H +
x⊥

2(l̄ + 1− t)

∣∣∣∣∣
2

Φ(0, l̄ + 1− t)dH2dt

≤ lim
i→∞

∫ 1

0

∫
Q̄t

∣∣∣∣∣H +
(x− yi)⊥

2(li + 1− t)

∣∣∣∣∣
2

Φ(yi, li + 1− t)dH2dt

≤ 2− lim
i→∞

∫
Q̄1

Φ(yi, li)dH2 = 0.

As a result,

H +
x⊥

2(l̄ + 1− t)
= 0 on Q̄t for all 0 ≤ t ≤ 1/2,
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and combining this with the fact that H = x⊥

2t on Q̄t, we obtain that H = 0

on Q̄1 = t−1/2Q̄t, which contradicts Lemma 4.10. Thus, (24) must hold.

To finish the proof we argue again by contradiction and assume the lemma

does not hold. Hence, there is a sequence (yj)j∈N of points in R4 and a sequence

(lj)j∈N converging to zero for which

(26)

∫
Q̄1

Φ(yj , lj)dH2 ≥ 1 +
ε0

2
.

The first thing we do is to show (26) implies the existence of m so that

|yj | ≤ m for all j. The reason is that from (25) we obtain∫
P1+P2

Φ(yj , lj + 1)dH2 ≥ 1 +
ε0

2

and so, because (lj) tends to zero, we obtain from (23) that the sequence (yj)

must be bounded.

The motivation for the rest of the argument is the following. The sequence

(yj) has a subsequence that converges to ȳ ∈ C2. From (26) we have that ȳ

must belong to the singular set of Q̄1. The tangent cone to Q̄1 at ȳ is a union

of (at least two) Lagrangian planes, and thus for all l very small, we must have∫
Q̄1

Φ(ȳ, l)dH2 ≥ 2− 1

2C1
.

This contradicts (24).

Recalling that the flow (Qit)0≤t≤2 tends to (Q̄t)0≤t≤2, a standard diago-

nalization argument allows us to find a sequence of integers (kj)j∈N so that the

blow-up sequence

Q̃js = l
−1/2
j

(
Q
kj
1+slj

− yj
)
, 0 ≤ s ≤ 1

has

(27) − 1

j
≤
∫
Q̃j0

Φ(0, u)dH2 −
∫
l
−1/2
j (Q̄1−yj)

Φ(0, u)dH2 ≤ 1

j

for every 1 ≤ u ≤ j and

(28)

∫ 1+lj

1

∫
Q
kj
t ∩B1(yj)

∣∣∣∣∣H − x⊥

2t

∣∣∣∣∣
2

dH2dt ≤ l2j .

Thus, for every r > 0, we have from (28) and |yj | ≤ m that∫ 1

0

∫
Q̃js∩Br(0)

|H|2dH2ds = l−1
j

∫ 1+lj

1

∫
Q
kj
t ∩B√ljr(yj)

|H|2dH2dt

≤ l−1
j

∫ 1+lj

1

∫
Q
kj
t ∩B√ljr(yj)

∣∣∣∣∣H − x⊥

2t

∣∣∣∣∣
2

+

∣∣∣∣∣x⊥2t
∣∣∣∣∣
2

dH2dt ≤ lj + C2lj ,
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where C2 = C2(r,m,K0). Therefore,

lim
j→∞

∫ 1

0

∫
Q̃js∩Br(0)

|H|2dH2ds = 0

and so (Q̃js)0≤s≤1 converges to an integral Brakke flow (Q̃s)0≤s≤1 with Q̃s = Q̃

for all s. From Proposition 5.1 in [9] we conclude that Q̃ is a union of Special

Lagrangian currents. Note that∫
Q̃

Φ(0, 1)dH2 ≥ 1 + ε0

and so Q̃ cannot be a plane with multiplicity one. The blow-down C of Q̃ is

a union of Lagrangian planes (those are the only Special Lagrangian cones in

R4), and so

(29) lim
u→∞

lim
j→∞

∫
Q̃j0

Φ(0, u)dH2 = lim
u→∞

∫
Q̃

Φ(0, u)dH2 =

∫
C

Φ(0, 1)dH2 ≥ 2.

From (29) and (27) one can find u0 such that for every j sufficiently large, we

have

2− 1

2C1
≤
∫
Q̃j0

Φ(0, u0)dH2 ≤
∫
l
−1/2
j (Q̄1−yj)

Φ(0, u0)dH2 +
1

j

=

∫
Q̄1

Φ(yj , u0lj)dH2 +
1

j
.

This contradicts (24) for all j large. �

The lemma we have just proven allows us to find l0 so that for all R̂ and

all i sufficiently large,∫
Qit

Φ(y, l)dH2 ≤ 1 + ε0 for all y ∈ BR̂, l ≤ l0, and
1

2
≤ t ≤ 2.

Thus, from White’s Regularity Theorem [18] we have uniform bounds on the

second fundamental form and all its derivatives on compact sets of Qit for all

1 ≤ t ≤ 2. This implies Q̄t is smooth and t−1/2Qit converges in C2,α
loc to Q̄1,

a smooth self-expander asymptotic to P1 + P2 by Lemma 4.8, which must be

embedded due to Lemma 4.11. This finishes the proof of Proposition 4.6. �

Apply Proposition 4.6 with ν and S0 given by Theorem 4.2, and then

apply Proposition 4.4 with η being the one given by Theorem 4.2. Theorem 4.2

follows at once if we choose δ = η/2, ε3 = min{ε5, ε6}, and R3 = max{R5, R6}.



1058 ANDRÉ NEVES

5. Third Step: Equivariant flow

5.1. Setup of Section 5. Consider a smooth curve σ : [0,+∞) −→ C so

that

• σ−1(0) = 0 and σ ∪ −σ is smooth at the origin.

• σ has a unique self-intersection.

• Outside a large ball the curve σ can be written as the graph of a

function u defined over part of the negative real axis with

lim
r→−∞

|u|C2,α((−∞,r]) = 0.

• For some a small enough, we have

(30) σ ⊆ Ca = {r exp(iθ) | r ≥ 0, π/2 + 2a < θ < π + a}.

The curve σ shown in Figure 3 has all these properties. Condition (30) is there

for technical reasons that will be used during Lemma 5.6.

Denote by A1 the area enclosed by the self-intersection of σ.

We assume that L ⊂M is a Lagrangian surface as defined in (3) and that

ε, R are such that Theorem 3.3 (with ν = 1) and Theorem 3.5 hold. We also

assume that the solution to Lagrangian mean curvature flow (Lt)t≥0 satisfies

the following condition.

(?) There is a constant K1, a disc D, and Ft : D −→ C2 a normal defor-

mation defined for all 1 ≤ t ≤ 2 so that

Lt ∩BR/2 ⊂ Ft(D) ⊂ Lt ∩BR

and the C2,α norm of Ft is bounded by K1.

5.2. Main result.

Theorem 5.1. Assume condition (?) holds. There are η0 and R5, depend-

ing on K1 and σ, so that if R ≥ R5 in (3) and L1 is η0-close in C2,α(BR5)

to

M1 = {(σ(s) cosα, σ(s) sinα) | s ∈ [0,+∞), α ∈ S1},
then (Lt)t≥0 must have a singularity before T1 = 2A1/π + 1 (with A1 defined

in Section 5.1).

Remark 5.2. The content of the theorem is that if L1 is very close to

M1 and R sufficiently large, then the flow (Lt)1≤t≤T1 must have a finite time

singularity. The proof proceeds by contradiction, and we assume the existence

of smooth flows (Lit)0≤t≤T1 with R
i

tending to infinity and Li1 converging to M1

in C2,α
loc . Standard arguments show that (Lit)1≤t≤T1 converges to (Mt)1≤t≤T1

a (weak) solution to mean curvature flow starting at M1. The rest of the

argument will have two steps.
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The first step, see Theorem 5.3(ii)–(iv), is to show the existence of a family

of curves σt so that

Mt = {(σt(s) cosα, σt(s) sinα) | s ∈ [0,+∞), α ∈ S1}

and show that (σt)t≥1 behaves as depicted in Figures 3 and 4. More precisely,

there is a singular time T0 so that σt has a single self-intersection for all 1 ≤
t < T0, σT0 is embedded with a singular point, and σt is an embedded smooth

curve for t > T0. Finally, and this will be important for the second step, we

show in Theorem 5.3(i) that Lit converges in C2,α to Mt in a small ball around

the origin and outside a large ball for all t ≤ T0 + 1.

The second step (see details in Corollary 5.5) consists in considering the

function

f(t) = θt(∞)− θt(0),

where θt(0) is the Lagrangian angle of Mt at 0 ∈Mt and θt(∞) is the “asymp-

totic” Lagrangian angle of Mt, which makes sense because, due to Lemma 3.2,

Mt is asymptotic to the plane P1. On one hand, because the curve σt changes

from a curve with a single self-intersection to a curve that is embedded as t

crosses T0, we will see that

lim
t→T−0

f(t) = lim
t→T+

0

f(t)− 2π.

On the other hand, because Lit is smooth and converges to Mt in a small ball

around the origin and outside a large ball for all t ≤ T0 + 1, we will see that

the function f(t) is continuous. This gives us a contradiction.

Proof of Theorem 5.1. We argue by contradiction and assume the theorem

does not hold. In this case we can find (Lit)0≤t≤T1 a sequence of smooth flows

that satisfies condition (?) with R
i

tending to infinity and Li1 converging to

M1 in C2,α
loc .

Compactness for integral Brakke motions [7, §7.1] implies that, after

passing to a subsequence, (Lit)0≤t≤T1 converges to an integral Brakke motion

(Mt)0≤t≤T1 . The next theorem characterizes (Mt)0≤t≤T1 .

Theorem 5.3. There is δ0 small, r small, R large, T0 ∈ (1, T1), and a

continuous family of curves σt : [0,+∞) −→ C with

σ1 = σ, σ−1
t (0) = 0 for all 1 ≤ t ≤ T0 + δ0,

and such that

(i) For all 1 ≤ t ≤ T0 + δ0,

• Mt is smooth in Br ∪ C2 \BR and

• Lit converges in C2,α
loc to Mt in Br ∪ C2 \BR.
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(ii) For all 1 ≤ t < T0, σt is a smooth curve with a single self-intersection.

Moreover,

(31) Mt = {(σt(s) cosα, σt(s) sinα) | s ∈ [0,+∞), α ∈ S1}

and

(32)
dx

dt
= ~k − x⊥

|x|2
.

Finally, for each t < T0, Lit converge in C2,α
loc to Mt.

(iii) The curve σT0 has a singular point Q so that σT0 \ {Q} consists of two

disjoint smooth embedded arcs and, away from Q, σt converges to σT0
as t tends to T0.

(iv) For all T0 < t ≤ T0 + δ0, σt is a smooth embedded curve that satisfies

(31) and (32). Moreover, for each T0 < t ≤ T0 + δ0, L
i
t converge in

C2,α
loc to Mt.

Remark 5.4. (1) The content of this theorem is to justify the behavior

shown in Figures 3 and 4. More precisely, Theorem 5.3(ii) and (iii) say that

the solution (σt)t≥1 to (32) with σ1 = σ will have a singularity at time T0

that corresponds to the loop enclosed by the self-intersection of σt collaps-

ing. Theorem 5.3(iv) says that after T0, the curves σt become smooth and

embedded.

(2) The behavior described above follows essentially from Angenent’s work

[2], [3] on general one-dimensional curvature flows.

(3) We also remark that the fact Mt has the symmetries described in (31)

up to the singular time T0 is no surprise because that is equivalent to uniqueness

of solutions with smooth controlled data. After the singular time T0, there is no

general principle justifying why Mt has the symmetries described in (31). The

reason this occurs is because the function µ defined in Theorem 3.5(v) evolves

by the linear heat equation and is zero if and only if Mt can be expressed as

in (31). (See Claim 1 in the proof of Theorem 5.3 for details.)

(4) Theorem 5.3(i) is necessary so that we can control the flow in neigh-

borhood of the origin because the right-hand side of (32) is singular at the

origin. It is important for Corollary 5.5 that the convergence mentioned in

Theorem 5.3(i) holds for all t ≤ T0 + δ0 including the singular time.

(5) The proof is mainly technical and will be given at the end of this

section.

Corollary 5.5. Assuming Theorem 5.3 we have that, for all i suffi-

ciently large, (Lit)1≤T1 must have a finite time singularity.

In Remark 5.2 we sketched the idea behind the proof of this corollary.
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Proof. From Theorem 5.3(i) we can find a small interval I containing T0

(the singular time of σt) and pick at ∈ σt ∩A(r/3, r/2), bt ∈ σt ∩A(2R, 3R) so

that at, bt are the endpoints of a segment σ̄t ⊆ σt ∩ A(r/3, 3R) and the paths

(at)t∈I , (bt)t∈I are smooth. Consider the function

f(t) = θt(bt)− θt(at).

We claim that

(33) lim
t→T−0

f(t) = lim
t→T+

0

f(t)− 2π.

Recall that the Lagrangian angle θt equals, up to a constant, the argument of

the complex number σtσ
′
t. Hence, for all t ∈ I \ {T0}, we have

θt(bt)− θt(at) =

∫
σ̄t

dθt =

∫
σ̄t

〈~k, ν〉dH1 −
∫
σ̄t

Æ
x

|x|2
, ν

∏
dH1,

where ν is the normal obtained by rotating the tangent vector to σ̄t counter-

clockwise and we are assuming that this segment is oriented from at to bt.

The curves σ̄t are smooth near the endpoints by Theorem 5.3(i), have a single

self-intersection for t < T0 by Theorem 5.3(ii), and are embedded for t > T0 by

Theorem 5.3(ii) (see Figure 4). Thus, the rotation index of σt changes across

T0 and so

(34) lim
t→T+

0

∫
σ̄t

〈~k, ν〉dH1 = lim
t→T−0

∫
σ̄t

〈~k, ν〉dH1 + 2π.

The vector field X = x|x|−2 is divergence free and so, because none of the

segments σ̄t wind around the origin, the Divergence Theorem implies

(35) lim
t→T+

0

∫
σ̄t

Æ
x

|x|2
, ν

∏
dH1 = lim

t→T−0

∫
σ̄t

Æ
x

|x|2
, ν

∏
dH1.

Claim (33) follows at once from (34) and (35).

From Theorem 5.3(i) we can choose a sequence of smooth paths (ait)t∈I ,

(bit)t∈I converging to (at)t∈I , (bt)t∈I respectively, and such that ait, b
i
t ∈ Lit.

Consider the function

f i(t) = θit(b
i
t)− θit(ait).

For every t ∈ I \{T0}, we have from Theorem 5.3(ii) and (iv) that Lit converges

in C2,α
loc to Mt. As a result,

(36) fi(t) converges to f(t) for all t ∈ I \ {T0}.

Because the flow (Lit)t∈I exists smoothly, the function f i(t) is smooth and

df it (t)

dt
= ∆θit(b

i
t) + 〈∇θit, dbit/dt〉 −∆θit(a

i
t)− 〈∇θit, dait/dt〉.
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Hence, Theorem 5.3(i) shows that df i(t)/dt is uniformly bounded (indepen-

dently of i) for all t ∈ I. From (36) we obtain that the function f must be

Lipschitz continuous, and this contradicts (33). �

This corollary gives us the desired contradiction and finishes the proof of

the theorem. �

5.3. Proof of Theorem 5.3. Recall the function µ = x1y2 − y1x2 defined

in Theorem 3.5(v). We start by proving two claims.

Claim 1. Mt ⊆ µ−1(0) and |∇µ| = 0 for almost all 1 ≤ t ≤ T1.

From Lemma 2.1 and Theorem 3.5(v), we have

(37)

∫
Lit

µ2Φ(0, 1)dH2 +

∫ t

1

∫
Lis

|∇µ|2Φ(0, 1 + t− s)dH2ds ≤∫
Li1

µ2Φ(0, 1 + t)dH2 +

∫ t

1

∫
Lis

Ç
|E|2

4
µ2 + E2

å
Φ(0, 1 + t− s)dH2ds.

Because M1 ⊆ µ−1(0) and E,E2 converge uniformly to zero when i goes to

infinity, we obtain

lim
i→∞

∫
Li1

µ2Φ(0, 1 + t)dH2 +

∫ t

1

∫
Lis

Ç
|E|2

4
µ2 + E2

å
Φ(0, 1 + t− s)dH2ds

=

∫
M1

µ2Φ(0, 1 + t)dH2 = 0,

which combined with (37) implies∫
Mt

µ2Φ(0, 1)dH2 +

∫ t

1

∫
Ms

|∇µ|2Φ(0, 1 + t− s)dH2ds = 0.

This proves the claim.

Claim 2. For every δ, there is R = R(δ, T1) so that, in the annular region

A(R,Ri), L
i
t is δ-close in C2,α to the plane P1 for all 1 ≤ t ≤ T1 and i sufficiently

large.

According to Lemma 3.2 there is a constant R = R(δ, T1, Ri) so that, in

the annular region A(R,Ri), L
i
t is δ-close in C2,α to P1 for all 1 ≤ t ≤ T1.

Because Li1 converges to M1, we can deduce from Theorem 3.3(i) that Ri is

bounded and thus the constant R depends only on δ and T1 and not on the

index i. This prove the claim.

Definition of “singular time” T0: First we need to introduce some nota-

tion. Because condition (?) holds for the flow (Lit), there are a sequence of discs

Di of increasingly larger radius and normal deformations F it : Di −→ C2 so
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that, for all 1 ≤ t ≤ 2, F it (Di) ⊆ Lit, and F it converges in C2,α
loc to Ft : R2 −→ C2,

where Mt = Ft(R2).

Consider the following condition:

(38) F it converges in C2,α
loc to Ft : R2 −→ C2, where Mt = Ft(R2),

and set

(39) T0 = sup{l |F it is defined and condition (38) holds for all t ≤ l}∩[1, T1].

Proof of Theorem 5.3(ii). By the way T0 was chosen and Claim 1, we have

that Mt ⊆ µ−1(0) is a smooth surface diffeomorphic to R2. Thus Lemma 7.1

implies the existence of (σt)1≤t<T0 so that (31) holds. Because (Mt)1≤t<T0 is a

smooth solution to mean curvature flow, it is immediate to conclude (32). From

the definition of T0 it is also straightforward to conclude that Lit converges in

C2,α
loc to Mt if t < T0. We are left to argue that σt has a single self-intersection

for all 1 ≤ t < T0. From Lemma 5.6 below we conclude that if σt develops a

tangential self-intersection, it must be away from the origin. It is easy to see

from the flow (32) that this cannot happen.

Lemma 5.6. There exists r so that σt∩Br is embedded for all 1 ≤ t < T0.

Proof. Recall the definition of Ca in (30). We start by arguing that

(40) σt ⊆ Ca for all 1 ≤ t < T0.

The boundary of the cone Ca consists of two half-lines that are fixed points for

the flow (32). From Claim 2 we see that Mt is asymptotic to P1 and so σt does

not intersect ∂Ca outside a large ball. Thus, because σ1 ⊂ Ca, we conclude

from Lemma 7.3 that σt ⊆ Ca for all 1 ≤ t < T0.

Denote by Γ a curve in C that is asymptotic at infinity to

(41) {r exp(i(π + 3a/2)) | r ≥ 0} ∪ {r exp(i(π/2 + 3a/2)) | r ≥ 0}

and generates, under the S1 action described in (31), a Special Lagrangian

asymptotic to two planes (Lawlor Neck). In particular, the curves Γδ = δΓ are

fixed points for the flow (32) for all δ and, because of (40) and (41), σt does

not intersect Γδ outside a large ball for all 1 ≤ t < T0.

From the description of σ given at the beginning of Section 5, we find δ0

so that for every δ < δ0, the curve Γδ intersects σ only once. Hence, we can

apply [3, Variation on Th. 1.3] and conclude that Γδ and σt intersect only once

for all 1 ≤ t < T0 and all δ < δ0. It is simple to see that this implies the result

we want to show provided we choose r small enough. �

Proof of Theorem 5.3(i). This follows from Claim 2 and the next lemma.

Lemma 5.7. There are r small and δ small so that Mt ∩ Br is smooth,

embedded, and Lit converges in C2,α(Br) to Mt ∩ Br for all 1 ≤ t ≤ T0 + δ.
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In particular, the curve σt ∪−σt is smooth and embedded near the origin with

bounds on its C2,α norm for all 1 ≤ t ≤ T0 + δ.

Remark 5.8. The key step to show Lemma 5.7 is to argue that (Mt)t≥1

develops no singularity at the origin at time T0. The idea is the following.

First principles will show that a sequence of of blow-ups at the origin (σjt )s<0 of

(σt)t<T0 converge in C
1,1/2
loc (R2−{0}) to a union of half-lines. But Lemma (5.6)

implies σjt is embedded in B1 for all j sufficiently large and so it must converge

to a single half-line. White’s Regularity Theorem implies no singularity occurs.

Proof. From the way T0 was chosen (39) and Lemma 5.6 we know the

existence of r so that Mt ∩ Br is smooth, embedded, and Lit converges in

C2,α(Br) to Mt∩Br for all 1 ≤ t < T0. To extend this to hold up to t = T0 (with

possible smaller r) it suffices to show that (Mt)1≤t<T0 develops no singularity

at the origin at time T0.

Choose a sequence (λj)j∈N tending to infinity, and set

M j
t = λjMT0+t/λ2j

, for all t < 0.

From [9, Lemma 5.4] we have the existence of a union of planes Q with support

contained in µ−1(0) such that, after passing to a subsequence and for almost

all t < 0, M j
t converges in the varifold sense to Q and

(42) lim
j→∞

∫
Mj
t

(|H|2 + |x⊥|2) exp(−|x|2)dH2 = 0.

From (5.3) we can find curves σjt so that

M j
t = {(σjt (s) cosα, σjt (s) sinα) | s ∈ [0,+∞), α ∈ S1}.

We obtain from (42) that for almost all t and every 0 < η < 1,

lim
j→∞

∫
σjt∩A(η,η−1)

|~k|2 + |x⊥|2dH1 = 0,

which implies that σjt converges in C
1,1/2
loc (R2−{0}) to a union of half-lines with

endpoints at the origin. Lemma 5.6 implies that for all j sufficiently large σjt
is embedded inside the unit ball. Thus σjt must converge to a single half-line

and so Q is a multiplicity one plane. Thus there can be no singularity at time

T0 at the origin.

We now finish the proof of the lemma. So far we have proven that Mt is

smooth and embedded near the origin for all 1 ≤ t ≤ T0 .Thus we can find l0
small so that∫

Mt

Φ(x, l)dH2 ≤ 1 + ε0 for every x ∈ B2l0 , l ≤ 4l20, and 1 ≤ t ≤ T0.
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The monotonicity formula implies that∫
Mt

Φ(x, l)dH2 ≤ 1 + ε0 for every x ∈ Bl0 , l ≤ l20, and 1 ≤ t ≤ T0 + l20.

Because Lit converges to Mt as Radon measures, White’s Regularity Theorem

implies uniform C2,α bounds in Bl0/2 for Lit whenever i is sufficiently large and

t ≤ T0 + l20. The lemma then follows straightforwardly. �

Proof of Theorem 5.3(iii). We need two lemmas first.

Lemma 5.9. T0 < T1.

Remark 5.10. The idea is to show that if T0 ≥ T1, then the loop of σt
created by its self-intersection would have negative area.

Proof. Suppose T0 = T1. Denote by qt the single self-intersection of σt,

by ct ⊆ σt the closed loop with endpoint qt, by αt ∈ [−π, π] the exterior angle

that ct has at the vertex qt, by ν the interior unit normal, and by At the area

enclosed by the loop. From the Gauss-Bonnet Theorem, we have∫
ct

〈~k, ν〉dH1 + αt = 2π =⇒
∫
ct

〈~k, ν〉dH1 ≥ π.

A standard formula shows that

d

dt
At = −

∫
ct

Æ
~k − x⊥

|x|2
, ν

∏
dH1 ≤ −π +

∫
ct

Æ
x

|x|2
, ν

∏
dH1 = −π,

where the last identity follows from the Divergence Theorem combined with

the fact that ct does not contain the origin in its interior. Hence 0 ≤ At ≤ A1−
(t− 1)π. Making t tending to T1 = 2A1/π + 1, we obtain a contradiction. �

Lemma 5.11. The curve σt must become singular when t tends to T0.

Remark 5.12. The flow (Mt)t≥0 is only a weak solution to mean curvature

flow which means that, in principle, σT0 could be a smooth curve with a self-

intersection and, right after, σt could split off the self-intersection and become

instantaneously a disjoint union of a circle with a half-line. This lemma shows

that, becauseMt is a limit of smooth flows Lit, this phenomenon cannot happen.

The proof is merely technical.

Proof. We are assuming F it converges in C2,α
loc to Ft for all t < T0. Assum-

ing σT0 is smooth, we have from parabolic regularity that (σt)t≤T0 is a smooth

flow. Thus, MT0 is also smooth and the maps Ft converge smoothly to a map

FT0 : R2 −→ C2. Therefore, there is a constant C that bounds the C2 norm of

Ft for all T0 − 1 ≤ t ≤ T0. Hence, using Claim 2 to control the C2,α norm of

F it outside a large ball, we obtain that for t̄ < T0 and i sufficiently large, the

C2 norm of F it̄ is bounded by 2C. Looking at the evolution equation of |A|2
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it is then a standard application of the maximum principle to find δ = δ(C)

such that the second fundamental form of the immersion F it is bounded by 4C

for all t̄ ≤ t ≤ t̄ + δ. Therefore, choosing t̄ such that T0 < t̄ + δ, parabolic

regularity implies condition (38) holds for all t slightly larger than T0 which,

due to Lemma 5.9, contradicts the maximality of T0. �

Claim 2 and Lemma 5.7 give us control of the flow (32) outside an annulus.

Hence we apply Theorem 7.2 and conclude the singular curve σT0 contains a

point Q distinct from the origin such that σT0 \ {Q} consists of two smooth

disjoint arcs and, away from the singular point, the curves σt converge smoothly

to σT0 (see Figure 4).

Proof of Theorem 5.3(iv). From Theorem 5.3(i) and Claim 1, we can ap-

ply Lemma 7.1 and conclude that Mt can be described by a one-dimensional

varifold σt ⊂ C for almost all T0 < t < T1.

In [2, §8] Angenent constructed an embedded smooth solution (γt)t>0 that

tends to σT0 when t tends to zero and that looks like the solution described on

Figure 4. The next lemma is the key to showing Theorem 5.3(iv).

Lemma 5.13. There is δ small so that γt = σT0+t for all 0 < t < δ.

Remark 5.14. This lemma amounts to showing that there is a unique

(weak) solution to the flow (32) that starts at σT0 .

The idea to prove this lemma, which we now sketch, is well known among

the specialists. Consider γi+, γ
i
− two sequences of smooth embedded curves

with an endpoint at the origin and converging to σT0 , with γi+, γ
i
− lying above

and below σT0 , respectively. There is a region Ai that has σT0 ⊆ Ai and

∂Ai = γi+ ∪ γi−. Denote the flows starting at γi+ and γi− by γi+,t and γi−,t
respectively, and use Ai(t) to denote the region below γi+,t and above γi−,t.

For the sake of the argument, we can assume that Ai is finite and tends to

zero when i tends to infinity. A simple computation will show that area(Ai(t))

≤ area(Ai) and so, like Ai, the area of Ai(t) tends to zero when i tends to

infinity. The avoidance principle for the flow implies that σT0+t, γt ⊆ Ai(t) for

all i and t, and thus, making i tend to infinity, we obtain that σT0+t = γt.

The proof requires some technical work to go around the fact that the

curves γi+, γ
i
− are noncompact and thus Ai could be infinity.

Proof. Let γi+, γ
i
− : [0,+∞] −→ C be two sequences of smooth embedded

curves converging to σT0 with γi+, γ
i
− lying above (below) σT0 and such that

(43) (γi±)−1(0) = 0, γi± ∪ −γi± is smooth, θi+(0) < θT0(0) < θi−(0).

The convergence is assumed to be strong on compact sets not containing the

cusp point of σT0 . Denote by γi±,t the solution to the equivariant flow (32) with

initial condition γi±. Short time existence was proven in [9, §4] provided we
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assume controlled behavior at infinity. The same arguments used to study σt
(namely Lemma 5.7) show that embeddedness is preserved and no singularity of

γi±,t can occur at the origin. Hence an immediate consequence of Theorem 7.2

is that the flow exists smoothly for all time.

From the last condition in (43) we know that γi+ intersects γi− transversely

at the origin. Furthermore we can choose γi+, γ
i
− to be not asymptotic to each

other at infinity. Thus we can apply Lemma 7.3 and conclude that γi+,t and

γi−,t intersect each other only at the origin. Hence there is an open region

Ai(t) ⊂ C so that γi+,t ∪ γi−,t = ∂Ai(t).

From Claim 2 we know that γT0 is asymptotic to a straight line. Thus we

can reason as in the proof of Theorem 3.5(i) and conclude the existence of Ri
tending to infinity so that γi±,t ∩ A(Ri/2, 2Ri) is graphical over the real axis

with C1 norm smaller than 1/i for all 0 ≤ t ≤ 1.

Consider Bi(t) = Ai(t) ∩ {(x, y) |x ≥ −Ri}. This region has the origin as

one of its “vertices” and is bounded by three smooth curves. The top curve

is part of γi+,t, the bottom curve is part of γi−,t, and left-side curve is part of

{x = −Ri}. Using the fact that

area(Bi(t)) =

∫
∂Bi(t)

λ,

differentiation shows that

d

dt
area(Bi(t)) = −

Ä
θi+,t(−Ri)− θi−,t(−Ri)

ä
+
Ä
θi+,t(0)− θi−,t(0)

ä
,

where θi±,t(−Ri) denote the Lagrangian angle of γi±,t at the intersection with

{x = −Ri} and θi±,t(0) denotes the Lagrangian angle of γi±,t at the origin.

Because γi+,t lies above γi−,t and they intersect at the origin, we have θi+,t(0) ≤
θi−,t(0). Thus,

d

dt
area(Bi(t)) ≤ −

Ä
θi+,t(−Ri)− θi−,t(−Ri)

ä
.

Recalling that γi±,t∩A(Ri/2, 2Ri) is graphical over the real axis with C1 norm

smaller than 1/i for all t ≤ 1, we have that the term on the right side of the

above inequality tends to zero when i tends to infinity. Finally the curves can

be chosen so that area(Bi(0)) ≤ 1/i and thus

(44) lim
i→∞

area(Bi(t)) ≤ lim
i→∞

area(Bi(0)) = 0.

We now argue the existence of δ so that

(45) γt, σT0+t ⊆ Ai(t) for all t ≤ δ and all i.

The inclusion for γt follows from Lemma 7.3. Next we want to deduce the

inclusion for the varifolds σT0+t (recall Lemma 7.1), which does not follow

directly from Lemma 7.3 because σT0+t might not be smooth. We remark that
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the right-hand side of (32) is the geodesic curvature with respect to the metric

h = (x2
1 + y2

1)(dx2
1 + dy2

1). Because (Mt)t≥1 is a Brakke flow, it is not hard to

deduce from Lemma 7.1 that (σt)t≥1 is also a Brakke flow with respect to the

metric h. This metric is singular at the origin and has unbounded curvature

but fortunately, due to Claim 2 and Lemma 5.7, we already know that σt
is smooth in a neighborhood of the origin and outside a compact set for all

t ≤ T0 + δ. Thus, the Inclusion Theorem proven in [7, 10.7 Inclusion Theorem]

adapts straightforwardly to our setting, and this implies σT0+t ⊆ Ai(t) for all

t ≤ δ.
Combining (44) with (45) we obtain that γt = σT0+t all 0 < t < δ. �

From Lemma (5.13) we obtain that Mt is smooth, embedded, and satisfies

(31), (32) for all T0 < t < T0 + δ. Finally, from the fact that Mt is embedded,

it follows in a straightforward manner from White’s Regularity Theorem that

Lit converges in C2,α
loc to Mt. This completes the proof of Theorem 5.3.

6. Main Theorem

Theorem 6.1. For any embedded closed Lagrangian surface Σ in M ,

there is L Lagrangian in the same Hamiltonian isotopy class so that the La-

grangian mean curvature flow with initial condition L develops a finite time

singularity.

Proof. Setup. Given R large we can find a metric gR = R2g (see Sec-

tion 2.1) so that the hypothesis on ambient space described in Section 3.1.1

are satisfied. Pick p ∈ Σ, and assume the Darboux chart φ sends the origin into

p ∈ Σ and TpΣ coincides with the real plane R⊕ iR ⊆ C2 oriented positively.

We can assume Σ ∩ B4R is given by the graph of the gradient of some

function defined over the real plane, where the C2 norm can be made arbitrarily

small. It is simple to find Σ Hamiltonian isotopic to Σ that coincides with the

real plane in B3R. Denote by L the Lagrangian that is obtained by replacing

Σ ∩ B3R with N(ε,R) defined in (1). Using [4, Th. 1.1.A] we obtain at once

that L is Hamiltonian isotopic to Σ and hence to Σ as well. Moreover, there is

K0 depending only on Σ so that the hypothesis on L described in Section 3.1.2

are satisfied for all R large.

We recall once more that L depends on ε,R, R and that R ≥ 4R. Assume

the Lagrangian mean curvature flow (Lt)t≥0 with initial condition L exists

smoothly for all time.

First Step. Pick ν0 small (to be fixed later), and choose ε, R, and R

so that Theorem 3.3 (with ν = ν0) and Theorem 3.5 hold. Thus, there is

R1 = R1(ν0,K0) so that (see Theorem 3.3(ii))

(A) for every 1 ≤ t ≤ 2, Lt ∩A(R1, R) is ν0-close in C2,α to L.
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Moreover, from Theorem 3.3(iii) and (iv), Lt ∩ BR1 is contained in two con-

nected components Q1,t ∪Q2,t where

(B) for every 1 ≤ t ≤ 2, Q2,t is ν0-close in C2,α(BR1) to P3.

Second Step. We need to control Q1,t. Apply Theorem 4.1 with S0 = R1

and ν = ν0. Thus for all ε small and R large, we have that

(C) for every 1 ≤ t ≤ 2, t−1/2Q1,t is ν0-close in C2,α(BR1) to S,

where S is the self-expander defined in (2) (see Figure 2). One immediate

consequence of (A), (B), and (C) is the existence of K1 so that for all ε small

and R large, we have

(??) the existence of a disc D, and Ft : D −→ C2 a normal deformation

defined for all 1 ≤ t ≤ 2, so that

Lt ∩BR/2 ⊂ Ft(D) ⊂ Lt ∩BR
and the C2,α norm of Ft is bounded by K1.

Third Step. Fix ε and R in the definition of L so that (A), (B), (C), and

(??) hold, but let R tend to infinity. We then obtain a sequence of smooth flows

(Lit)t≥0, where Li0 converges strongly to N(ε,R) defined in (1) (see Figure 1).

Lemma 6.2. If ν0 is chosen small enough, there is a curve σ ⊂ C with all

the properties described in Section 5.1 (see Figure 3) and such that Li1 tends

in C2,α
loc to

(46) M1 = {(σ(s) cosα, σ(s) sinα) |α ∈ S1, s ∈ [0,+∞)}.

Assuming this lemma, we will show that (Lit)t≥0 must have a singularity

for all i sufficiently large, which finishes the proof of Theorem 6.1. Indeed,

because the flow (Lit)t≥0 has property (??), we have at once that condition

(?) of Section 5.1 is satisfied. Hence Lemma 6.2 implies that Li1 satisfies the

hypothesis of Theorem 5.1 for all i sufficiently large, and thus Theorem 5.1

implies that (Lit)t≥0 must have a finite time singularity.

Proof of Lemma 6.2. From condition (??) we have that Li1 converges in

C2,α
loc to a smooth Lagrangian M1 diffeomorphic to R2. Moreover, from (B)

and (C) we see that we can choose ν0 small so that M1 is embedded in a

small neighborhood the origin. We argue that M1 ⊂ µ−1(0), where the func-

tion µ = x1y2 − y1x2 was defined in Theorem 3.5(v). From Lemma 2.1 and

Theorem 3.5(v), we have

(47)

∫
Li1

µ2Φ(0, 1)dH2 +

∫ 1

0

∫
Lit

|∇µ|2Φ(0, 2− t)dH2dt

≤
∫
Li0

µ2Φ(0, 2)dH2 +

∫ 1

0

∫
Lit

Ç
|E|2

4
µ2 + E2

å
Φ(0, 2− t)dH2dt.
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The terms E,E2 converge uniformly to zero when i goes to infinity because the

ambient metric converges to the Euclidean one. Moreover N(ε,R) ⊂ µ−1(0),

and so we obtain from (47) that∫
M1

µ2Φ(0, 1)dH2 = lim
i→∞

∫
Li1

µ2Φ(0, 1)dH2

≤ lim
i→∞

∫
Li0

µ2Φ(0, 2)dH2 +

∫ 1

0

∫
Lit

Ç
|E|2

4
µ2 + E2

å
Φ(0, 2− t)dH2dt

=

∫
N(ε,R)

µ2Φ(0, 2)dH2 = 0.

Hence, M1 ⊂ µ−1(0) and we can apply Lemma 7.1 to conclude the existence

of a curve σ so that (46) holds.

In order to check that σ has the properties described in Section 5.1, it

suffices to see that σ has a single self-intersection and is contained in the cone

Ca (defined in (30)) because the remaining properties follow from M1 being

diffeomorphic to R2, embedded near the origin, and asymptotic to the plane

P1 ( Lemma 3.2).

Recall that γ(ε,R), χ, and c3 are the curves in C that define, respectively,

the Lagrangian N(ε,R), the self-expander S, and the plane P3. Now M1, being

the limit of Li1, also satisfies (A), (B), and (C). Hence we know that σ is ν0-close

in C2,α to γ(ε,R) in C \BR1 and that σ∩BR1 has two connected components,

one ν0-close in C2,α(BR1) to c3 and the other ν0-close in C2,α(BR1) to χ. It

is simple to see that if ν0 is small, then indeed all the desired properties for σ

follow. �

7. Appendix

7.1. Lagrangians with symmetries. Recall that µ(x1, y1, x2, y2) = x1y2 −
x2y1, and consider two distinct conditions on M .

(C1) M is an integral Lagrangian varifold which is a smooth embedded sur-

face in a neighborhood of the origin;

(C2) There is a smooth Lagrangian immersion F : R2 −→ C2 so that M =

F (R2) and M is a smooth embedded surface in a neighborhood of the

origin.

Lemma 7.1. Assume M ⊆ µ−1(0). If (C1) holds, then there is a one-

dimensional integral varifold γ ⊂ C so that for every function φ with compact

support,

(48)

∫
M
φdH2 =

∫
γ
|z|
∫ 2π

0
φ(z cosα, z sinα)dαdH1.
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If (C2) holds, then there is a smooth immersed curve γ : [0,∞) −→ C
with γ−1(0) = 0, and

(49) M = {(γ(s) cosα, γ(s) sinα) | s ∈ [0,+∞), θ ∈ S1}.

In both cases the curve (or varifold) γ ∪ −γ is smooth near the origin.

Proof. Consider the vector field

X = −JDµ = (−x2,−y2, x1, y1).

A simple computation shows that for any Lagrangian plane P with orthonormal

basis {e1, e2}, we have

(50) divPX =
2∑
i=1

〈DeiX, ei〉 = 0.

Finally, consider (Fα)α∈S1 to be the one-parameter family of diffeomorphisms

in SU(2) such that

dFα
dα

(x) = X(Fα(x))

Consider the functions f1(x) = arctan(x2/x1) and f2(x) = arctan(y2/y1),

which are defined, respectively, in U1 = {x1 6= 0}, U2 = {y1 6= 0}. Assume

that (C1) holds. We now make several remarks that will be important when

one applies the co-area formula.

First, Fα(M) = M ; i.e.,∫
M
φ ◦ FαdH2 =

∫
M
φdH2 for all φ with compact support.

Because M ⊆ µ−1(0) and M is Lagrangian, we have that X is a tangent vector

to M . Hence,

d

dα

∫
M
φ ◦ FαdH2 =

∫
M
〈D(φ ◦ Fα), X〉dH2 = −

∫
M

(φ ◦ Fα)divMXdH2 = 0,

where the last identity follows from (50).

Second, on M we have |∇fi|(x) = |x|−1. Indeed, for every x ∈ Ui with

µ(x) = 0, it is a simple computation to see that Dfi ∈ span{X(x), JX(x)}
and thus, because X is a tangent vector,

|∇fi|(x) = |〈Dfi(x), X(x)〉||x|−1 = |x|−1.

Third, for almost all α and i = 1, 2, f−1
i (α) ∩ M is a one-dimensional

varifold. Moreover, a simple computation shows fi ◦ Fα(x) = α+ fi(x) for all

x ∈ Ui and all α ∈ (−π/2, π/2), and thus

Fα(f−1
i (0) ∩M) = f−1

i (α) ∩ Fα(M) = f−1
i (α) ∩M.
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Fourth, the fact that M ⊆ µ−1(0) implies that f−1
i (0) ∩M has support

contained in {x2 = y2 = 0} = C. Moreover, f1 = f2 on M , and so we set

Γ = f−1
1 (0) ∩M = f−1

2 (0) ∩M.

Fifth, one can check that Fπ coincides with the antipodal map A. Thus

A(Γ) = A(f−1
i (0)) ∩A(M) = f−1

i (0) ∩M = Γ.

As a result, there is a one-dimensional varifold γ such that Γ = A(γ)+γ. (The

choice of γ is not unique.)

Finally, we can apply the co-area formula and obtain for every φ with

compact support in Ui,∫
M
φdH2 =

∫ π/2

−π/2

∫
f−1
i (α)∩M

φ

|∇fi|
dH1dα =

∫ π/2

−π/2

∫
f−1
i (α)∩M

|x|φdH1dα

=

∫ π/2

−π/2

∫
f−1
i (0)∩M

|Fα(x)|(φ ◦ Fα)dH1dα

=

∫
Γ
|x|
∫ π/2

−π/2
φ(Fα(x))dαdH1

=

∫
Γ
|z|
∫ π/2

−π/2
φ(z cosα, z sinα)dαdH1

=

∫
γ
|z|
∫ 2π

0
φ(z cosα, z sinα)dαdH1.

This proves (48) for functions with support contained in Ui. Because M is

smooth and embedded near the origin, it is straightforward to extend that

formula to all functions with compact support.

Assume that (C2) holds. From what we have done it is straightforward

to obtain the existence of a curve γ : I −→ C, where I is a union of intervals,

so that (49) holds. The fact that M is diffeomorphic to R2 implies that γ

is connected and that γ−1(0) must be nonempty. The condition that M is

embedded when restricted to a small neighborhood of the origin implies that

γ−1(0) must have only one element, which we set to be zero. Finally, the fact

that the map F is an immersion is equivalent to the curve γ∪−γ being smooth

at the origin. �

7.2. Regularity for equivariant flow. In [2] and [3] Angenent developed the

regularity theory for a large class of parabolic flows of curves in surfaces. We

collect the necessary results, along with an improvement done in [11], which

will be used in our setting.

Let γt : [0, a] −→ C, 0 ≤ t < T, be a one-parameter family of smooth

curves so that
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(A1) There is r > 0 and p ∈ C so that for all 0 ≤ t < T , γt(0) = 0, γt(a) ∈
Br(p), γt has no self-intersections in B2r(0)∪B2r(p), and the curvature

of γt along with x⊥

|x|2 and all its derivatives are bounded (independently

of t) in B2r(0) ∪B2r(p).

(A2) Away from the origin and for all 0 ≤ t < T , the curves γt solve the

equation

dx

dt
= ~k − x⊥

|x|2
.

A simple modification of [3, Th. 1.3] implies that, for t>0, the self-intersections

of γt are finite and nonincreasing with time.

Theorem 7.2. There is a continuous curve γT and a finite number of

points {Q1, . . . , Qm} ⊆ C \ B2r(0) ∪ B2r(p) such that γT \ {Q1, . . . , Qm} con-

sists of smooth arcs and away from the singular points the curves γt converge

smoothly to γT . Any two smooth arcs intersect only in finitely many points.

For each of the singular points Qi and for each small ε, the number

of self-intersections of γT in Bε(Qi) is strictly less than the number of self-

intersections of γtj in Bε(Qi) for some sequence (tj)j∈N converging to T .

Proof. Condition (A1) implies that the curves γt converge smoothly in

B2r(0) ∪ B2r(p) as t tends to T . A slight modification of [2, Th. 4.1] shows

that the quantity ∫
γt

|~k|dH1

is uniformly bounded. Indeed the only change one has to make concerns the

existence of boundary terms when integration by parts is performed. Fortu-

nately, (A1) implies that the contribution from the boundary terms is uniformly

bounded and so all the other arguments in [2, Th. 4.1] carry through.

The fact that the total curvature is uniformly bounded and that, on

C \ B2r(0), the deformation vector ~k − x⊥

|x|2 satisfies conditions (V ∗1 ), (V2),

(V3), (V ∗5 ), and (S) of [2], shows that we can apply [3, Th. 5.1] to con-

clude the existence of a continuous curve γT and a finite number of points

{Q1, . . . , Qm} ⊆ C \ (B2r(0) ∪B2r(p)) such that γT \ {Q1, . . . , Qm} consists of

smooth arcs and away from the singular points the curves γt converge smoothly

to γT . We note that [3, Th. 5.1] is applied to close curves, but an inspection

of the proof shows that all the arguments are local and so they apply with no

modifications to γt provided hypothesis (A1) holds.

Oaks [11, Th. 6.1] showed that for each of the singular points Qi and for

each small ε, there is a sequence (tj)j∈N converging to T so that γtj has self-

intersections in Bε(Qi) and either a closed loop of γtj in Bε(Qi) contracts as

tj tends to T or else there are two distinct arcs in the smooth part of γT that

coincide in a neighborhood of Qi (see [3, Fig. 6.2.]). Using the fact that the
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deformation vector is analytic in its arguments on C \B2r(0), we can argue as

in [3, pp. 200–201] and conclude that the smooth part of γT must in fact be

real analytic in C \ B2r(0). Therefore, any two smooth arcs intersect only in

finitely many points and this excludes the second possibility. �

7.3. Nonavoidance principle for equivariant flow.

Lemma 7.3. For each j = 1, 2, consider smooth curves σj,t : [−a, a] −→ C
defined for all 0 ≤ t ≤ T so that

(i) σj,t(−s) = −σj,t(s) for all 0 ≤ t ≤ T and s ∈ [−a, a].

(ii) The curves γt solve the equation

dx

dt
= ~k − x⊥

|x|2
.

(iii) σ1,0∩σ2,0 = {0} (nontangential intersection) and (∂σ1,t)∩σ2,t = σ1,t∩
(∂σ2,t) = ∅ for all 0 ≤ t ≤ T .

For all 0 ≤ t ≤ T , we have σ1,t ∩ σ2,t = {0}.

Proof. Away from the origin, it is simple to see the maximum principle

holds and so two disjoint solutions cannot intersect for the first time away

from the origin. Thus it suffices to focus on what happens around the origin.

Without loss of generality we assume that σj,t(s) = (s, fj,t(s)) for all s ∈ [−δ, δ]
for all t ≤ T1. The functions αj,t(s) = s−1fj,t(s) are smooth by (i), and so

we consider ut = α1,t − α2,t which, form (iii), we can assume to be initially

positive and ut(δ) = ut(−δ) > 0 for all t ≤ T1. It is enough to show that ut is

positive for all t ≤ T1. We have at once that

dfj,t
dt

= (arctan(αj,t))
′ +

f ′′j,t
1 + (f ′j,t)

2

=⇒ dαj,t
dt

=
α′′j,t

1 + (sα′j,t + αj,t)2
+
α′j,t
s

1

1 + α2
j,t

+
α′j,t
s

2

1 + (sα′j,t + αj,t)2
.

The functions s−1α′j,t are smooth for all s, and so we obtain

dut
dt

=
u′′t

1 + C2
1

+ C2u
′
t + C3ut +

u′t
s
C2

4 ,

where Ck are smooth time dependent bounded functions for k = 1, . . . , 4.

Suppose T1 is the first time at which ut becomes zero, and consider vt =

ute
−Ct + ε(t− T1) with ε small and C large. The function vt becomes zero for

a first time t ≤ T1 at some point s0 for all small positive ε. At that time we

have u′′t (s0) ≥ 0, u′t(s0) = 0, and thus, with an obvious abuse of notation,

0 ≥ dvt
dt

(s0) = ε+
d

dt
(ute

−Ct)(s0) ≥ ε+
u′t(s0)

s0
C2

4e
−Ct.
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If s0 is not zero, the last term on the right is zero. If s0 is zero, then the last

term on the right is u′′t (0)C2
4e
−Ct, which is nonnegative. In any case we get a

contradiction. �
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[15] R. P. Thomas and S.-T. Yau, Special Lagrangians, stable bundles and

mean curvature flow, Comm. Anal. Geom. 10 (2002), 1075–1113. MR 1957663.

Zbl 1115.53054.

[16] M.-T. Wang, Mean curvature flow of surfaces in Einstein four-manifolds, J.

Differential Geom. 57 (2001), 301–338. MR 1879229. Zbl 1035.53094. Available

at http://projecteuclid.org/euclid.jdg/1090348113.

[17] M.-T. Wang, Some recent developments in Lagrangian mean curvature flows, in

Surveys in Differential Geometry. Vol. XII. Geometric Flows, Surv. Differ. Geom.

12, Int. Press, Somerville, MA, 2008, pp. 333–347. MR 2488942. Zbl 1169.53052.

[18] B. White, A local regularity theorem for mean curvature flow, Ann. of Math. 161

(2005), 1487–1519. MR 2180405. Zbl 1091.53045. http://dx.doi.org/10.4007/

annals.2005.161.1487.

[19] J. Wolfson, Lagrangian homology classes without regular minimizers, J. Dif-

ferential Geom. 71 (2005), 307–313. MR 2197143. Zbl 1097.53052. Available at

http://projecteuclid.org/euclid.jdg/1143651771.

(Received: September 8, 2010)

(Revised: March 30, 2012)

Imperial College London, London, UK

E-mail : aneves@imperial.ac.uk

http://www.ams.org/mathscinet-getitem?mr=1957663
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1115.53054
http://www.ams.org/mathscinet-getitem?mr=1879229
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1035.53094
http://projecteuclid.org/euclid.jdg/1090348113
http://www.ams.org/mathscinet-getitem?mr=2488942
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1169.53052
http://www.ams.org/mathscinet-getitem?mr=2180405
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1091.53045
http://dx.doi.org/10.4007/annals.2005.161.1487
http://dx.doi.org/10.4007/annals.2005.161.1487
http://www.ams.org/mathscinet-getitem?mr=2197143
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1097.53052
http://projecteuclid.org/euclid.jdg/1143651771
mailto:aneves@imperial.ac.uk

	1. Introduction
	2. Preliminaries and sketch of proof
	2.1. Preliminaries
	2.2. Sketch of Proof
	2.3. Organization

	3. First Step: General Results
	3.1. Setup of [geral]Section 3
	3.2. Main results
	3.3. Abstract results
	3.4. Proof of [connected]Theorems 3.3 and 3.5

	4. Second Step: Self-expanders
	4.1. Proof of [proximity.total]Theorem 4.2

	5. Third Step: Equivariant flow
	5.1. Setup of [sta]Section 5
	5.2. Main result
	5.3. Proof of [sing.flow]Theorem 5.3

	6. Main Theorem
	7. Appendix
	7.1. Lagrangians with symmetries
	7.2. Regularity for equivariant flow
	7.3. Nonavoidance principle for equivariant flow

	References

