Abstract
We prove that every quasisymmetric self-homeomorphism of the standard 1/3-Sierpiński carpet $S_3$ is a Euclidean isometry. For carpets in a more general family, the standard $1/p$-Sierpiński carpets $S_p$, $p\ge 3$ odd, we show that the groups of quasisymmetric self-maps are finite dihedral. We also establish that $S_p$ and $S_q$ are quasisymmetrically equivalent only if $p=q$. The main tool in the proof for these facts is a new invariant—a certain discrete modulus of a path family—that is preserved under quasisymmetric maps of carpets.
-
[lA66] L. V. Ahlfors, Lectures on Quasiconformal Mappings, New York: D. Van Nostrand Co., 1966, vol. 10.
@book {lA66, MRKEY = {0200442},
AUTHOR = {Ahlfors, Lars V.},
TITLE = {Lectures on Quasiconformal Mappings},
SERIES={Math. Stud.},
VOLUME={10},
PUBLISHER = {D. Van Nostrand Co.},
ADDRESS={New York},
YEAR = {1966},
PAGES = {v+146},
MRCLASS = {30.47},
MRNUMBER = {0200442},
MRREVIEWER = {P. Caraman},
ZBLNUMBER = {0138.06002},
} -
[bB87]
B. Bojarski, "Remarks on Sobolev imbedding inequalities," in Complex Analysis, Joensuu 1987, New York: Springer-Verlag, 1988, vol. 1351, pp. 52-68.
@incollection {bB87, MRKEY = {0982072},
AUTHOR = {Bojarski, B.},
TITLE = {Remarks on {S}obolev imbedding inequalities},
BOOKTITLE = {Complex Analysis, {J}oensuu 1987},
SERIES = {Lecture Notes in Math.},
VOLUME = {1351},
PAGES = {52--68},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1988},
MRCLASS = {46E35},
MRNUMBER = {0982072},
MRREVIEWER = {V. M. Gol$'$dshte{\u\i}n},
DOI = {10.1007/BFb0081242},
ZBLNUMBER = {0662.46037},
} -
[mB04]
M. Bonk, "Uniformization of Sierpiński carpets in the plane," Invent. Math., vol. 186, iss. 3, pp. 559-665, 2011.
@article {mB04, MRKEY = {2854086},
AUTHOR = {Bonk, Mario},
TITLE = {Uniformization of {S}ierpiński carpets in the plane},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {186},
YEAR = {2011},
NUMBER = {3},
PAGES = {559--665},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {37F30 (30C62 30F10 30F45)},
MRNUMBER = {2854086},
MRREVIEWER = {Peter Ha{ï}ssinsky},
DOI = {10.1007/s00222-011-0325-8},
ZBLNUMBER = {1242.30015},
} -
[Bo2] M. Bonk, "Quasiconformal geometry of fractals," in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1349-1373.
@incollection {Bo2, MRKEY = {2275649},
AUTHOR = {Bonk, Mario},
TITLE = {Quasiconformal geometry of fractals},
BOOKTITLE = {International {C}ongress of {M}athematicians. {V}ol. {II}},
PAGES = {1349--1373},
PUBLISHER = {Eur. Math. Soc., Zürich},
YEAR = {2006},
MRCLASS = {30C65 (20F67 28A80 30F10 31C15 31C20 57M07)},
MRNUMBER = {2275649},
MRREVIEWER = {Jeremy T. Tyson},
ZBLNUMBER = {1102.30016},
} -
[BK02]
M. Bonk and B. Kleiner, "Quasisymmetric parametrizations of two-dimensional metric spheres," Invent. Math., vol. 150, iss. 1, pp. 127-183, 2002.
@article {BK02, MRKEY = {1930885},
AUTHOR = {Bonk, Mario and Kleiner, Bruce},
TITLE = {Quasisymmetric parametrizations of two-dimensional metric spheres},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {150},
YEAR = {2002},
NUMBER = {1},
PAGES = {127--183},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {53C24 (30C65 51F99 57M99)},
MRNUMBER = {1930885},
MRREVIEWER = {D. Drasin},
DOI = {10.1007/s00222-002-0233-z},
ZBLNUMBER = {1037.53023},
} -
[BK02a]
M. Bonk and B. Kleiner, "Rigidity for quasi-Möbius group actions," J. Differential Geom., vol. 61, iss. 1, pp. 81-106, 2002.
@article {BK02a, MRKEY = {1949785},
AUTHOR = {Bonk, Mario and Kleiner, Bruce},
TITLE = {Rigidity for quasi-{M}öbius group actions},
JOURNAL = {J. Differential Geom.},
FJOURNAL = {Journal of Differential Geometry},
VOLUME = {61},
YEAR = {2002},
NUMBER = {1},
PAGES = {81--106},
ISSN = {0022-040X},
CODEN = {JDGEAS},
MRCLASS = {53C24 (20F67 30C65 37C85 37F30)},
MRNUMBER = {1949785},
MRREVIEWER = {Michel Coornaert},
URL = {http://projecteuclid.org/euclid.jdg/1090351321},
ZBLNUMBER = {1044.37015},
} -
[BKM06]
M. Bonk, B. Kleiner, and S. Merenkov, "Rigidity of Schottky sets," Amer. J. Math., vol. 131, iss. 2, pp. 409-443, 2009.
@article {BKM06, MRKEY = {2503988},
AUTHOR = {Bonk, Mario and Kleiner, Bruce and Merenkov, Sergei},
TITLE = {Rigidity of {S}chottky sets},
JOURNAL = {Amer. J. Math.},
FJOURNAL = {American Journal of Mathematics},
VOLUME = {131},
YEAR = {2009},
NUMBER = {2},
PAGES = {409--443},
ISSN = {0002-9327},
CODEN = {AJMAAN},
MRCLASS = {30C65 (30F45)},
MRNUMBER = {2503988},
MRREVIEWER = {Susan G. Staples},
DOI = {10.1353/ajm.0.0045},
ZBLNUMBER = {1168.30005},
} -
[BB01] D. Burago, . Burago, and S. Ivanov, A Course in Metric Geometry, Providence, RI: Amer. Math. Soc., 2001, vol. 33.
@book {BB01, MRKEY = {1835418},
AUTHOR = {Burago, Dmitri and Burago, {\relax{Yu}} and Ivanov, Sergei},
TITLE = {A Course in Metric Geometry},
SERIES = {Grad. Stud. Math.},
VOLUME = {33},
PUBLISHER = {Amer. Math. Soc.},
ADDRESS = {Providence, RI},
YEAR = {2001},
PAGES = {xiv+415},
ISBN = {0-8218-2129-6},
MRCLASS = {53C23},
MRNUMBER = {1835418},
MRREVIEWER = {Mario Bonk},
ZBLNUMBER = {0981.51016},
} -
[DS97] G. David and S. Semmes, Fractured Fractals and Broken Dreams, New York: The Clarendon Press Oxford University Press, 1997, vol. 7.
@book {DS97, MRKEY = {1616732},
AUTHOR = {David, Guy and Semmes, Stephen},
TITLE = {Fractured Fractals and Broken Dreams},
SERIES = {Oxford Lect. Ser. Math. Appl.},
VOLUME = {7},
PUBLISHER = {The Clarendon Press Oxford University Press},
ADDRESS = {New York},
YEAR = {1997},
PAGES = {x+212},
ISBN = {0-19-850166-8},
MRCLASS = {28A80 (26A16 28A78 30C65 42C15)},
MRNUMBER = {1616732},
MRREVIEWER = {Christopher Bishop},
ZBLNUMBER = {0887.54001},
} -
@book {jH01, MRKEY = {1800917},
AUTHOR = {Heinonen, Juha},
TITLE = {Lectures on Analysis on Metric Spaces},
SERIES = {Universitext},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {2001},
PAGES = {x+140},
ISBN = {0-387-95104-0},
MRCLASS = {30C65 (28A75 28A78 46E35)},
MRNUMBER = {1800917},
MRREVIEWER = {Christopher Bishop},
DOI = {10.1007/978-1-4613-0131-8},
ZBLNUMBER = {0985.46008},
} -
[HK98]
J. Heinonen and P. Koskela, "Quasiconformal maps in metric spaces with controlled geometry," Acta Math., vol. 181, iss. 1, pp. 1-61, 1998.
@article {HK98, MRKEY = {1654771},
AUTHOR = {Heinonen, Juha and Koskela, Pekka},
TITLE = {Quasiconformal maps in metric spaces with controlled geometry},
JOURNAL = {Acta Math.},
FJOURNAL = {Acta Mathematica},
VOLUME = {181},
YEAR = {1998},
NUMBER = {1},
PAGES = {1--61},
ISSN = {0001-5962},
CODEN = {ACMAA8},
MRCLASS = {30C65 (46E99)},
MRNUMBER = {1654771},
MRREVIEWER = {M. Yu. Vasil$'$chik},
DOI = {10.1007/BF02392747},
ZBLNUMBER = {0915.30018},
} -
[KK00]
M. Kapovich and B. Kleiner, "Hyperbolic groups with low-dimensional boundary," Ann. Sci. École Norm. Sup., vol. 33, iss. 5, pp. 647-669, 2000.
@article {KK00, MRKEY = {1834498},
AUTHOR = {Kapovich, Michael and Kleiner, Bruce},
TITLE = {Hyperbolic groups with low-dimensional boundary},
JOURNAL = {Ann. Sci. École Norm. Sup.},
FJOURNAL = {Annales Scientifiques de l'École Normale Supérieure. Quatrième Série},
VOLUME = {33},
YEAR = {2000},
NUMBER = {5},
PAGES = {647--669},
ISSN = {0012-9593},
CODEN = {ASENAH},
MRCLASS = {20F67 (57M07)},
MRNUMBER = {1834498},
MRREVIEWER = {Thomas Delzant},
DOI = {10.1016/S0012-9593(00)01049-1},
ZBLNUMBER = {0989.20031},
} -
[jK10] J. Kigami, Quasisymmetric modification of metrics on self-similar sets, 2010.
@misc{jK10,
author={Kigami, J.},
TITLE={Quasisymmetric modification of metrics on self-similar sets},
NOTE={preprint},
YEAR={2010},
} -
[LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Second ed., New York: Springer-Verlag, 1973.
@book {LV, MRKEY = {0344463},
AUTHOR = {Lehto, O. and Virtanen, K. I.},
TITLE = {Quasiconformal Mappings in the Plane},
EDITION = {Second},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1973},
PAGES = {viii+258},
MRCLASS = {30A60},
MRNUMBER = {0344463},
ZBLNUMBER = {0267.30016},
} -
[MT] J. M. Mackay and J. T. Tyson, Conformal Dimension. Theory and Application, Providence, RI: Amer. Math. Soc., 2010, vol. 54.
@book {MT, MRKEY = {2662522},
AUTHOR = {Mackay, John M. and Tyson, Jeremy T.},
TITLE = {Conformal Dimension. Theory and Application},
SERIES = {Univ. Lecture Ser.},
VOLUME = {54},
PUBLISHER = {Amer. Math. Soc.},
ADDRESS = {Providence, RI},
YEAR = {2010},
PAGES = {xiv+143},
ISBN = {978-0-8218-5229-3},
MRCLASS = {30L10 (28A78 28A80 37F35)},
MRNUMBER = {2662522},
MRREVIEWER = {Leonid V. Kovalev},
ZBLNUMBER = {1201.30002},
} -
[sM10]
S. Merenkov, "A Sierpiński carpet with the co-Hopfian property," Invent. Math., vol. 180, iss. 2, pp. 361-388, 2010.
@article {sM10, MRKEY = {2609245},
AUTHOR = {Merenkov, Sergei},
TITLE = {A {S}ierpiński carpet with the co-{H}opfian property},
JOURNAL = {Invent. Math.},
FJOURNAL = {Inventiones Mathematicae},
VOLUME = {180},
YEAR = {2010},
NUMBER = {2},
PAGES = {361--388},
ISSN = {0020-9910},
CODEN = {INVMBH},
MRCLASS = {30L10 (20F65)},
MRNUMBER = {2609245},
MRREVIEWER = {Stephan Rosebrock},
DOI = {10.1007/s00222-010-0231-5},
ZBLNUMBER = {1194.37044},
} -
[sM12]
S. Merenkov, "Planar relative Schottky sets and quasisymmetric maps," Proc. Lond. Math. Soc., vol. 104, iss. 3, pp. 455-485, 2012.
@article {sM12, MRKEY = {2900233},
AUTHOR = {Merenkov, Sergei},
TITLE = {Planar relative {S}chottky sets and quasisymmetric maps},
JOURNAL = {Proc. Lond. Math. Soc.},
FJOURNAL = {Proceedings of the London Mathematical Society. Third Series},
VOLUME = {104},
YEAR = {2012},
NUMBER = {3},
PAGES = {455--485},
ISSN = {0024-6115},
MRCLASS = {30L10 (30C65)},
MRNUMBER = {2900233},
DOI = {10.1112/plms/pdr038},
ZBLNUMBER = {06021277},
} -
@article {oS95, MRKEY = {1370355},
AUTHOR = {Schramm, Oded},
TITLE = {Transboundary extremal length},
JOURNAL = {J. Anal. Math.},
FJOURNAL = {Journal d'Analyse Mathématique},
VOLUME = {66},
YEAR = {1995},
PAGES = {307--329},
ISSN = {0021-7670},
CODEN = {JOAMAV},
MRCLASS = {30C35},
MRNUMBER = {1370355},
MRREVIEWER = {Shan Shuang Yang},
DOI = {10.1007/BF02788827},
ZBLNUMBER = {0842.30006},
} -
[oS93]
O. Schramm, "Square tilings with prescribed combinatorics," Israel J. Math., vol. 84, iss. 1-2, pp. 97-118, 1993.
@article {oS93, MRKEY = {1244661},
AUTHOR = {Schramm, Oded},
TITLE = {Square tilings with prescribed combinatorics},
JOURNAL = {Israel J. Math.},
FJOURNAL = {Israel Journal of Mathematics},
VOLUME = {84},
YEAR = {1993},
NUMBER = {1-2},
PAGES = {97--118},
ISSN = {0021-2172},
CODEN = {ISJMAP},
MRCLASS = {52C20},
MRNUMBER = {1244661},
MRREVIEWER = {Richard Kenyon},
DOI = {10.1007/BF02761693},
ZBLNUMBER = {0788.05019},
} -
[eS70] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, N.J.: Princeton Univ. Press, 1970, vol. 30.
@book {eS70, MRKEY = {0290095},
AUTHOR = {Stein, Elias M.},
TITLE = {Singular Integrals and Differentiability Properties of Functions},
SERIES = {Princeton Math. Ser.},
VOLUME={30},
PUBLISHER = {Princeton Univ. Press},
ADDRESS = {Princeton, N.J.},
YEAR = {1970},
PAGES = {xiv+290},
MRCLASS = {46.38 (26.00)},
MRNUMBER = {0290095},
MRREVIEWER = {R. E. Edwards},
ZBLNUMBER = {0207.13501},
} -
[Va] J. Väisälä, Lectures on $n$-Dimensional Quasiconformal Mappings, New York: Springer-Verlag, 1971, vol. 229.
@book {Va, MRKEY = {0454009},
AUTHOR = {V{ä}is{ä}l{ä},
Jussi},
TITLE = {Lectures on {$n$}-Dimensional Quasiconformal Mappings},
SERIES = {Lecture Notes in Math.},
VOLUME={229},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1971},
PAGES = {xiv+144},
MRCLASS = {30A60},
MRNUMBER = {0454009},
MRREVIEWER = {F. W. Gehring},
ZBLNUMBER = {0221.30031},
} -
[gW58] G. T. Whyburn, "Topological characterization of the Sierpiński curve," Fund. Math., vol. 45, pp. 320-324, 1958.
@article {gW58, MRKEY = {0099638},
AUTHOR = {Whyburn, G. T.},
TITLE = {Topological characterization of the {S}ierpiński curve},
JOURNAL = {Fund. Math.},
FJOURNAL = {Polska Akademia Nauk. Fundamenta Mathematicae},
VOLUME = {45},
YEAR = {1958},
PAGES = {320--324},
ISSN = {0016-2736},
MRCLASS = {54.00},
MRNUMBER = {0099638},
MRREVIEWER = {A. H. Stone},
ZBLNUMBER = {0081.16904},
} -
[kY80] K. Yosida, Functional Analysis, Sixth ed., New York: Springer-Verlag, 1980, vol. 123.
@book {kY80, MRKEY = {0617913},
AUTHOR = {Yosida, K{ô}saku},
TITLE = {Functional Analysis},
SERIES = {Grundl. Math. Wissen.},
VOLUME = {123},
EDITION = {Sixth},
PUBLISHER = {Springer-Verlag},
ADDRESS = {New York},
YEAR = {1980},
PAGES = {xii+501},
ISBN = {3-540-10210-8},
MRCLASS = {46-01 (47-01)},
MRNUMBER = {0617913},
ZBLNUMBER = {0435.46002},
}