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Quasisymmetric rigidity of
square Sierpiński carpets

By Mario Bonk and Sergei Merenkov

Abstract

We prove that every quasisymmetric self-homeomorphism of the stan-

dard 1/3-Sierpiński carpet S3 is a Euclidean isometry. For carpets in a more

general family, the standard 1/p-Sierpiński carpets Sp, p ≥ 3 odd, we show

that the groups of quasisymmetric self-maps are finite dihedral. We also

establish that Sp and Sq are quasisymmetrically equivalent only if p = q.

The main tool in the proof for these facts is a new invariant—a certain dis-

crete modulus of a path family—that is preserved under quasisymmetric

maps of carpets.

1. Introduction

In this paper we establish rigidity properties of Sierpiński carpets under

quasisymmetric maps. In order to formulate our results, we first discuss some

background and fix terminology.

The well-known standard Sierpiński carpet S3 is a self-similar fractal in

R2 defined as follows. Let

Q0 = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

denote the closed unit square in R2. We subdivide Q0 into 3 × 3 subsquares

of equal size in the obvious way and remove the interior of the middle square.

The resulting set Q1 consists of eight squares of sidelength 1/3. Inductively,

Qn+1, n ≥ 1, is obtained from Qn by subdividing each of the remaining squares

in the subdivision of Qn into 3 × 3 subsquares and removing the interiors of

the middle squares. The standard Sierpiński carpet S3 is the intersection of

all the sets Qn, n ≥ 0 (see Figure 1). For arbitrary p ≥ 3 odd, the standard
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Figure 1. The standard Sierpiński carpet S3.

1/p-Sierpiński carpet Sp is the subset of the plane obtained in a similar way

by subdividing the square Q0 into p× p subsquares of equal size, removing the

interior of the middle square, and repeating these operations as above.

In general, a (Sierpiński) carpet is a metrizable topological space S home-

omorphic to the standard Sierpiński carpet S3. According to the topological

characterization of Whyburn [Why58], S is a carpet if and only if it is a planar

continuum of topological dimension 1 that is locally connected and has no local

cut points.

Let

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}
denote the unit sphere in R3. In the following we often identify S2 with the

extended complex plane “C = C ∪ {∞} by stereographic projection. For sub-

sets of S2, a more explicit characterization of carpets can be given as follows

[Why58]. A set S ⊆ S2 is a carpet if and only if it can be written as

(1.1) S = S2 \
⋃
i∈N

Di,

where for each i ∈ N, the set Di ⊆ S2 is a Jordan region and the following

conditions are satisfied: S has empty interior, diam(Di) → 0 as i → ∞, and

Di ∩Dj = ∅ for i 6= j. This characterization implies that all the sets Sp, p ≥ 3

odd, are indeed carpets.

A Jordan curve in a carpet S is called a peripheral circle if its complement

in S is a connected set. If S ⊆ S2 is a carpet, written as in (1.1), then the

peripheral circles of S are precisely the boundaries ∂Di of the Jordan regions

Di, i ∈ N.

Let f : X → Y be a homeomorphism between two metric spaces (X, dX)

and (Y, dY ). The map f is called quasisymmetric if there exists a homeomor-

phism η : [0,∞)→ [0,∞) such that

dY (f(u), f(v))

dY (f(u), f(w))
≤ η
Ç
dX(u, v)

dX(u,w)

å
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whenever u, v, w ∈ X, u 6= w. If we want to emphasize the distortion function

η, we say that f is η-quasisymmetric. When we speak of a quasisymmetric map

f from X to Y , then it is understood that f is a homeomorphism of X onto

Y and that the underlying metrics on the spaces have been specified. Unless

otherwise indicated, a carpet as in (1.1) is equipped with the spherical metric.

The carpets Sp will carry the Euclidean metric. Note that for a compact

subset K of C ⊆ C ∪ {∞} ∼= S2, the Euclidean and the spherical metrics are

comparable. So for the notion of a quasisymmetric map on K, it does not

matter which of these two metrics we choose on K.

It is immediate that restrictions, inverses, and compositions of quasisym-

metric maps are quasisymmetric. If there is a quasisymmetric map between

two metric spaces X and Y , we say that X and Y are quasisymmetrically

equivalent. The quasisymmetric self-maps on a metric space X, i.e., the qua-

sisymmetric homeomorphisms of X onto itself, form a group that we denote

by QS(X). If two metric spaces X and Y are quasisymmetrically equivalent,

then QS(X) and QS(Y ) are isomorphic groups.

From the topological point of view, all carpets are the same and so the

topological universe of all carpets consists of a single point. A much richer

structure emerges if we look at metric carpets from the point of view of quasi-

conformal geometry. In this case, we identify two metric carpets if and only if

they are quasisymmetrically equivalent. Even if we restrict ourselves to carpets

contained in S2, then the set of quasisymmetric equivalence classes of carpets

is uncountable.

One way to see this is to invoke a rigidity result that has recently been

established in [BKM09]. To formulate it, we call a carpet S ⊆ S2 round if its

peripheral circles are geometric circles. So if S is written as in (1.1), then each

Jordan region Di is an open spherical disk. According to [BKM09], two round

carpets S and S′ of measure zero are quasisymmetrically equivalent only if

they are Möbius equivalent, i.e., one is the image of the other under a Möbius

transformation on “C ∼= S2. Since the group of Möbius transformations depends

on six real parameters and the set of round carpets is a family depending on

essentially a countably infinite set of real parameters (specifying the radii and

the locations of the centers of the complementary disks of the round carpet),

it easily follows that the set of quasisymmetric equivalence classes of round

carpets in S2 has the cardinality of the continuum.

Among the round carpets there is a particular class of carpets that are

distinguished by their symmetry. Namely, suppose that K is a convex subset of

hyperbolic 3-space H3 with nonempty interior and nonempty totally geodesic

boundary, suppose that there exists a group G of isometries of H3 that leave K

invariant, and suppose that G acts cocompactly and properly discontinuously

on K. If we identify S2 with the boundary at infinity ∂∞H3 of H3, then the
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limit set Λ∞(G) ⊆ ∂∞H3 = S2 of G is a round carpet. The group G induces

an action on S2 by Möbius transformations that leave S = Λ∞(G) invariant.

Moreover, this action is cocompact on triples of S. We can consider G as a

subgroup of QS(S). An immediate consequence is that QS(S) is infinite and

that there are only finitely many distinct orbits of peripheral circles under the

action of G, and hence of QS(S), on S. In this sense, S is very symmetric.

According to an open conjecture by Kapovich and Kleiner [KK00], up to

virtual isomorphism the groupsG as above are precisely the Gromov hyperbolic

groups whose boundaries at infinity are Sierpiński carpets. In order to get a

better understanding of the relevant issues in this problem, it seems desirable

to characterize the carpets S that arise from such groups G from the point of

view of their quasiconformal geometry.

To formulate these questions more precisely, let S, R, G, respectively,

denote the set of all quasisymmetric equivalence classes of all carpets in S2,

all round carpets, and all round group carpets, i.e., all carpets arising as limit

sets Λ∞(G) of groups G as above. Then G ⊆ R ⊆ S. Let [S] denote the

quasisymmetric equivalence class of a carpet S ⊆ S2.

An obvious problem is where [Sp] is placed in the universe S. It follows

from the main result in [Bon11] that each standard carpet Sp is quasisymmet-

rically equivalent to a round carpet. Hence [Sp] ∈ R. The question whether

actually [Sp] ∈ G arose in discussions with B. Kleiner and the first author

about ten years ago. At the time this problem was considered as completely

inaccessible, and one stood helpless in front of these and other problems of

quasiconformal geometry. (Another well-known hard problem related to car-

pets is the question of the (Ahlfors regular) conformal dimension of S3; see

[MT10] for general background and [Kig10] for specific results on S3.)

The main results of this paper give answers to some of these questions.

We consider them as an important step in a better understanding of the qua-

siconformal geometry of Sierpiński carpets and hope that some of our results

and techniques may be useful for progress on the Kapovich-Kleiner conjecture.

Theorem 1.1. Every quasisymmetric self-map of the standard Sierpiński

carpet S3 is a Euclidean isometry.

The isometries of S3 are given by the Euclidean symmetries that leave S3,

and also the unit square Q0, invariant. They form a dihedral group with eight

elements. We conjecture that also for p > 3, each quasisymmetric self-map of

Sp is an isometry. (See Remark 8.3 for more discussion.)

We are able to prove that QS(Sp) is a finite dihedral group for each odd p.

Theorem 1.2. For every odd integer p ≥ 3, the group of quasisymmetric

self-maps QS(Sp) of the standard Sierpiński carpet Sp is finite dihedral.
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Theorems 1.1 and 1.2 are quite unexpected as the group of all homeomor-

phisms on Sp is large. For example, if u and v are two points in Sp that do not

lie on a peripheral circle of Sp, then there exists a homeomorphism f : Sp → Sp
with f(u) = v.

Every bi-Lipschitz homeomorphism between metric spaces (that is, every

homeomorphism that distorts distances by an at most bounded multiplicative

amount) is a quasisymmetry. So Theorems 1.1 and 1.2 remain true if one

only considers bi-Lipschitz homeomorphisms instead of quasisymmetries. In

general, these maps form a rather restricted subclass of all quasisymmetries. In

view of this, one may wonder whether the bi-Lipschitz versions of Theorems 1.1

and 1.2 are easier to establish. Our methods do not offer any simplifications

for this more restricted class, and it seems that there is no straightforward way

to benefit from the stronger bi-Lipschitz hypothesis on the maps.

An immediate consequence of Theorem 1.2 is that [Sp] 6∈ G. Indeed,

QS(Sp) is a finite group, while QS(S) is infinite if [S] ∈ G. So the points

[S3], [S5], [S7], . . . lie in R \ G. As the following theorem shows, these points

are actually all distinct.

Theorem 1.3. Two standard Sierpiński carpets Sp and Sq , p, q ≥ 3 odd,

are quasisymmetrically equivalent if and only if p = q.

It was previously known that if |p− q| is large, then Sp and Sq cannot be

quasisymmetrically equivalent; more precisely, if p > q say, and

1 +
log(p− 1)

log p
>

log(q2 − 1)

log q
,

then [Sp] 6= [Sq]. Here the quantity on the right of the inequality is the

Hausdorff dimension of Sq, while the quantity on the left is a lower bound

for the (Ahlfors regular) conformal dimension of Sp, i.e., for the infimum of

the Hausdorff dimensions of all Ahlfors regular metric spaces quasisymmet-

rically equivalent to Sp. So the inequality guarantees that [Sp] 6= [Sq]. The

bi-Lipschitz version of Theorem 1.3 is easy to establish. Namely, if p 6= q,

then Sp and Sq have different Hausdorff dimensions. So there cannot be any

bi-Lipschitz homeomorphism between these spaces, because bi-Lipschitz maps

preserve Hausdorff dimension.

One of the main difficulties in the proof of Theorem 1.1 is that we have

no a priori normalization of a quasisymmetric self-map f of S3. If we knew

in advance, for example, that f sends each corner of the unit square to an-

other corner, then this statement would immediately follow from the following

theorem, which is relatively easy to establish.

Theorem 1.4. Let S and S̃ be square carpets of measure zero in rectangles

K = [0, a]×[0, 1] ⊆ R2 and K̃ = [0, ã]×[0, 1] ⊆ R2, respectively, where a, ã > 0.



596 MARIO BONK and SERGEI MERENKOV

If f is an orientation-preserving quasisymmetric homeomorphism from S onto

S̃ that takes the corners of K to the corners of K̃ such that f(0) = 0, then

a = ã, S = S̃, and f is the identity on S.

Here the expression square carpet in a rectangle is used in the specific

sense of the more general concept of a square carpet in a closed Jordan domain

defined in Section 6. A quasisymmetric map between carpets in S2 is called

orientation-preserving if it has an extension to a homeomorphism on S2 with

this property.

Theorem 1.4 is analogous to the uniqueness part of [Sch93, Th. 1.3]. Our

proof is similar in spirit, but we use the classical conformal modulus instead

of a discrete version of it.

Another situation where a natural normalization implies a strong rigidity

statement is for square carpets in C∗-cylinders.

Theorem 1.5. Let S and S̃ be square carpets of measure zero in C∗-cylin-

ders A and ‹A, respectively. Suppose that f is an orientation-preserving qua-

sisymmetric homeomorphism of S onto S̃ that maps the inner and outer bound-

ary components of A onto the inner and outer boundary components of ‹A, re-

spectively. Then f is (the restriction of ) a map of the form z 7→ f(z) = az,

where a ∈ C \ {0}.

See Section 4 for the relevant definitions. Similar rigidity results for other

types of carpets were established in [Mer10] (for slit carpets) and in [Mer12]

(for round carpets in general Jordan domains).

We now discuss some of the ideas in the proof of our main results and

give a general outline of the paper. Most of the results have been announced

in [Bon06].

The main new tool used in proving Theorems 1.1–1.3 is carpet modulus, a

version of Schramm’s transboundary modulus [Sch95] for path families adapted

to Sierpiński carpets. This is discussed in Section 2. We also need a notion

of carpet modulus that takes a group action into account; see Section 3. The

crucial feature of carpet modulus is that it is invariant under quasisymmetric

maps in a suitable sense (see Lemma 2.1).

We denote by O the boundary of the unit square Q0 and by M (for fixed

p ≥ 3 odd) the boundary of the first square removed from Q0 in the construc-

tion of Sp (“the middle square”). Then the pair {O,M} is distinguished by an

extremality property for carpet modulus among all pairs of peripheral circles

of Sp (Lemma 5.1). It follows that every quasiymmetric self-map f of Sp must

preserve the pair O and M , i.e., {f(O), f(M)} = {O,M} (Corollary 5.2). In

principle, f may interchange O and M , but by a more refined analysis we will

later establish that f(O) = O and f(M) = M (Lemma 8.1). This is quite in
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contrast to the behavior of general homeomorphisms on a carpet: if we have

two finite families each consisting of the same number of distinct peripheral

circles of a carpet S, then we can find a self-homeomorphism of S that sends

one family to the other family.

The proof of Corollary 5.2 relies on some previous work. In Section 4

we collect certain uniformization and rigidity results that were established

in [Bon11] and [BKM09], and we derive some consequences. Among these

results is Proposition 4.9, which gives an explicit description of extremal mass

distributions for carpet modulus of certain path families. This is an important

ingredient in the proof of Corollary 5.2. Corollaries 4.4, 4.5, 4.6, and 4.7 in

Section 4 give information on quasisymmetric maps on certain carpets under

various normalizing conditions for points and peripheral circles.

In Section 6 we prove Theorems 1.4 and 1.5. This is essentially indepen-

dent of the rest of the paper, but Theorem 1.4 will later be used in the proof

of Theorem 1.3.

The fact that every quasisymmetric self-map of Sp preserves the pair

{O,M} already has some strong consequences. For example, combined with

the results in Section 4, one can easily derive that the group QS(Sp) is finite

(Corollary 5.3). To push the analysis further and to arrive at proofs of Theo-

rems 1.1–1.3, we need one additional essential idea; namely, we will investigate

weak tangent spaces of the carpets Sp and induced quasisymmetric maps on

these weak tangents (see Section 7). In particular, we prove that the weak tan-

gent of Sp at a corner of O cannot be mapped to the weak tangent of Sp at a

corner of M by a (suitably normalized) quasisymmetric map (Proposition 7.3).

Actually, we conjecture that such maps only exist if the weak tangents are iso-

metric, but Proposition 7.3 is the only result in this direction that we are able

to prove.

Using these statements on weak tangents, we will give proofs of Theo-

rems 1.1–1.3 in the following Section 8. Overall, the ideas in these proofs are

very similar. In order to establish Theorem 1.3, for example, one wants to ap-

ply Theorem 1.4. For this, one essentially has to show that a quasisymmetric

map f : Sp → Sq preserves the set of corners of O. Let Mp and Mq denote the

boundary of the middle square for Sp and Sq, respectively. Using the extremal-

ity property for the pair {O,M}, one can show that {f(O), f(Mp)} = {O,Mq}.
This leads to various combinatorial possibilities, and in each case one analyzes

what happens to the corners of O under the map f . The case f(O) = O leads

to a favorable situation, where the set of corners of O is preserved and where

one can apply Theorem 1.4 to conclude Sp = Sq. One wants to rule out the

existence of the map f in the other cases, for example when f(O) = Mq. In

all these cases, one eventually ends up with a contradiction to Proposition 7.3.
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2. Carpet modulus

We first make some remarks about notation and terminology used in the

rest of the paper. We denote the imaginary unit in C by i . Let (X, d) be a

metric space. If x ∈ X and r > 0, we denote by B(x, r) the open ball and

by B(x, r) the closed ball in X that has radius r > 0 and is centered at x. If

λ > 0 and B = B(x, r), we let λB be the open ball of radius λr centered at x.

If A ⊆ X, then diam(A) is the diameter, χA the characteristic function, and

#A ∈ N0 ∪ {∞} the cardinality of A. If B ⊆ X is another set, then we let

dist(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}

be the distance between A and B.

If X is a set, then idX is the identity map on X. If f : X → Y is a map

between two sets X and Y , and A ⊆ X, then f |A denotes the restriction of f

to A.

Unless otherwise indicated, our ambient metric space is the sphere S2

equipped with the spherical metric induced by the standard Riemannian struc-

ture on S2. In this metric space the balls are spherical disks.

A Jordan region in S2 is an open connected set bounded by a Jordan curve,

i.e., a set homeomorphic to a circle. A closed Jordan region in S2 is the closure

of a Jordan region.

A path γ in a metric space X is a continuous map γ : I → X of a finite

interval I, i.e., a set of the form [a, b], [a, b), (a, b], or (a, b), where a < b are real

numbers, into the space X. If γ is a map from (a, b), we say that the path is

open. As is standard, we often denote by γ also the image set γ(I) in X. The

limits limt→a γ(t) and limt→b γ(t), if they exist, are called end points of γ. If

A,B ⊆ X, then we say that γ connects A and B if γ has end points and one

of them lies in A and the other in B. A path is called a subpath of γ it is of

the form γ|J for some interval J ⊆ I. We denote the length of γ by length(γ).

The path γ is called rectifiable if it has finite length and locally rectifiable if

γ|J is a rectifiable path for every compact subinterval J ⊆ I.

Let σ denote the spherical measure and ds the spherical line element on

S2 induced by the standard Riemannian metric. A density ρ is a nonnegative
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Borel function defined on S2. The density ρ provides a pseudo-metric with line

element ρ ds. If Γ is a family of paths in S2, then the conformal modulus of Γ,

denoted mod(Γ), is defined to be the infimum of the mass∫
ρ2 dσ

over all admissible densities ρ, i.e., all densities such that for ρ-length of each

locally rectifiable path γ ∈ Γ, we have the inequality∫
γ
ρ ds ≥ 1.

If ρ is admissible and has minimal mass among all densities admissible for Γ,

then ρ is called extremal. Often it is convenient to change the spherical metric

that was the underlying base metric in the definition of mod(Γ) to another

conformally equivalent metric. This leads to the same quantity mod(Γ). (See

[Bon11, Rem. 6.1] for more discussion.)

Conformal modulus is monotone [LV73, §4.2, p. 133]: If Γ and Γ′ are two

path families in S2 such that every path γ ∈ Γ contains a subpath γ′ ∈ Γ′, then

mod(Γ) ≤ mod(Γ′).

In particular, this inequality holds if Γ ⊆ Γ′.

Conformal modulus is also countably subadditive [LV73, §4.2, p. 133]: For

any countable union Γ =
⋃
i Γi of path families Γi in S2, we have

mod(Γ) ≤
∑
i

mod(Γi).

Here and in the following we adopt the convention that if the range of an index

such as i above is not specified, then it is extended over N; i.e., it runs through

1, 2, . . . .

An important property of conformal modulus is its invariance under con-

formal and its quasi-invariance under quasiconformal maps. The latter means

that if Γ is a family of paths contained in a region D ⊆ S2 and if f : D → ‹D is

a quasiconformal map onto another region ‹D ⊆ S2, then

(2.1)
1

K
mod(Γ) ≤ mod(f(Γ)) ≤ Kmod(Γ),

where f(Γ) := {f ◦ γ : γ ∈ Γ} and K depends only on the dilatation of

f [LV73, Th. 3.2, p. 171]. For the basic definitions and general background

on quasiconformal maps, see [Ahl66], [LV73], [Väi71]. We use the “metric

definition” of quasiconformal maps and allow them to be orientation-reversing.

If a certain property for paths in a family Γ holds for all paths outside an

exceptional family Γ0 ⊆ Γ with mod(Γ0) = 0, we say that it holds for almost

every path in Γ.
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Now let S ⊆ S2 be a carpet as in (1.1) and Γ be a family of paths

in S2. Then we define the carpet modulus of Γ (with respect to S), denoted by

modS(Γ), as follows. Let ρ be a mass distribution defined on the peripheral

circles of S, i.e., a function ρ that assigns to each peripheral circle Ci = ∂Di

of S a nonnegative number ρ(Ci). If γ is a path in S2, the ρ-length of γ is∑
γ∩Ci 6=∅

ρ(Ci).

We say that a mass distribution ρ is admissible for modS(Γ) if for almost every

path γ ∈ Γ the ρ-length of γ is ≥ 1; so we require that there exists a family

Γ0 ⊆ Γ with mod(Γ0) = 0 such that∑
γ∩Ci 6=∅

ρ(Ci) ≥ 1

for every path γ ∈ Γ \ Γ0. We call Γ0 an exceptional family for ρ. Now we set

modS(Γ) = inf
ρ

®∑
i

ρ(Ci)
2

´
,

where the infimum is taken over all mass distributions ρ that are admissible for

modS(Γ). The sum
∑
i ρ(Ci)

2 is called the (total) mass of ρ, denoted mass(ρ).

Often we will consider a mass distribution ρ of finite mass as an element in

the Banach space `2 of square summable sequences. By definition, `2 consists

of all sequences a = (ai) with ai ∈ R for i ∈ N and

‖a‖`2 :=

Ç∑
i

a2
i

å1/2

<∞.

It is straightforward to check that the carpet modulus is monotone and

countably subadditive. A crucial property of carpet modulus is its invariance

under quasiconformal maps.

Lemma 2.1. Let D be a region in S2, let S be a carpet contained in D,

and let Γ be a path family such that γ ⊆ D for each γ ∈ Γ. If f : D → ‹D is a

quasiconformal map onto another region ‹D ⊆ S2 , S̃ := f(S), and Γ̃ := f(Γ),

then

mod
S̃

(Γ̃) = modS(Γ).

Proof. Note that S̃ is also a carpet. Then the peripheral circles of S and

of S̃ correspond to each other under the map f . So if Ci, i ∈ N, is the family

of peripheral circles of S, then f(Ci), i ∈ N, is the family of peripheral circles

of S̃.

Let ρ be an admissible mass distribution for modS(Γ) with an exceptional

path family Γ0. Then the function ρ̃ that takes the value ρ(Ci) at the peripheral

circle f(Ci) of S̃ = f(S) is admissible for Γ̃ with an exceptional path family
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Γ̃0 = f(Γ0). Indeed, the ρ̃-length of every path γ̃ = f ◦ γ, γ ∈ Γ, is the

same as the ρ-length of γ, and the vanishing of the conformal modulus of Γ̃0

is guaranteed by (2.1). The mass distributions ρ̃ and ρ have the same total

mass. Therefore mod
S̃

(Γ̃) ≤ modS(Γ). We also have the converse inequality,

since f−1 is also quasiconformal [LV73, §3.2, p. 17]. �

The role of the exceptional family Γ0 in the definition of carpet modulus

is somewhat subtle. One can define an alternative concept of carpet modulus

without the exceptional family by requiring the admissibility condition for all

paths in the family. Then one has invariance under arbitrary homeomorphisms

(in the sense of the previous lemma), but it turns out that this modulus is

useless, because it is trivial (i.e., equal to 0 or ∞) for many path families.

Allowing an exceptional path family Γ0 in the definition of admissibility

guarantees that for some relevant families Γ an admissible mass distribution

exists and that we have 0 < modS(Γ) < ∞. Moreover, the vanishing of

conformal modulus of a path family is invariant under quasiconformal maps.

This is essentially the reason why for our notion of carpet modulus we have a

quasiconformal invariance statement as given by the previous lemma.

An admissible mass distribution ρ is called extremal for modS(Γ) if

mass(ρ) = modS(Γ).

An elementary convexity argument shows that if modS(Γ) < ∞ and an ex-

tremal mass distribution exists, then it is unique. Proposition 2.4 below guar-

antees existence of an extremal mass distribution. To prove this proposition,

we need some auxiliary results. We first set up some notation.

We let L2 be the space of all functions f on S2 that are square-integrable

with respect to spherical measure σ, and set

‖f‖L2 :=

Ç∫
f2 dσ

å1/2

.

For two quantities A and B, we write A . B if there exists a constant C ≥ 0

(depending on some obvious ambient parameters) such that A ≤ CB.

A version of the following lemma can be found in [Boj88]; see also [Hei01,

Exercise 2.10].

Lemma 2.2. Let λ ≥ 1, and let I be a countable index set. Suppose

that Bi, i ∈ I , is a collection of spherical disks in S2 and that ai, i ∈ I , are

nonnegative real numbers. Then there exists a constant C ≥ 0 that depends

only on λ such that

(2.2)

∥∥∥∥∥∑
i∈I

aiχλBi

∥∥∥∥∥
L2

≤ C
∥∥∥∥∥∑
i∈I

aiχBi

∥∥∥∥∥
L2

.
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Proof. We may assume that
∑
i∈I aiχBi ∈ L2. Let φ ∈ L2, and let M(φ)

denote the uncentered maximal function of φ. (For the definition and the basic

properties of the maximal function operator, see [Ste70, Ch. 1]. ) Then there

is an absolute constant c such that∣∣∣∣∣
∫ Ç∑

i∈I
aiχλBi

å
φdσ

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈I

ai

∫
λBi

φdσ

∣∣∣∣∣
≤ cλ2

∑
i∈I

ai

∫
Bi

M(φ) dσ = cλ2
∫ Ç∑

i∈I
aiχBi

å
M(φ) dσ

≤ cλ2

∥∥∥∥∥∑
i∈I

aiχBi

∥∥∥∥∥
L2

‖M(φ)‖L2 .

It is known (see, e.g., [Ste70, Th. 1(c), p. 5]) that the maximal function satisfies

the inequality

‖M(φ)‖L2 ≤ H‖φ‖L2 ,

where H is an absolute constant. The self-duality of L2 now gives inequal-

ity (2.2) with C = cHλ2. �

A quasicircle in a metric space X is a Jordan curve that is quasisymmet-

rically equivalent to the unit circle in R2 equipped with the Euclidean metric.

We say that a family {Ci : i ∈ I} of Jordan curves in a metric space X consists

of uniform quasicircles if there exists a homeomorphism η : [0,∞) → [0,∞)

such that every curve Ci in the family is the image of an η-quasisymmetric

map of the unit circle.

Lemma 2.3. Let S be a carpet in S2 whose peripheral circles are uniform

quasicircles, and let Γ be a path family in S2. If modS(Γ)=0, then mod(Γ)=0.

Proof. We write S as in (1.1) and set Ci = ∂Di for i ∈ N. Under the

given hypotheses suppose that modS(Γ) = 0. It follows from the definitions

that then Γ cannot contain any constant paths. So if for k ∈ N we define

Γk := {γ ∈ Γ: diam(γ) ≥ 1/k},

then Γ =
⋃
k Γk, and it is enough to show that mod(Γk) = 0 for every k ∈ N.

By monotonicity of carpet modulus, we have modS(Γk) = 0. This means

that we are actually reduced to proving the statement of the lemma under the

additional assumption that diam(γ) ≥ δ for all γ ∈ Γ, where δ > 0.

Since modS(Γ) = 0, for each n ∈ N there exists ρn ∈ `2 with ‖ρn‖`2 < 1/2n

and an exceptional family Γ̃n ⊆ Γ with mod(Γ̃n) = 0 such that∑
γ∩Ci 6=∅

ρn(Ci) ≥ 1
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for all γ ∈ Γ \ Γ̃n. Let ρ =
∑
n ρn. Then

mass(ρ) = ‖ρ‖2`2 <∞.

Moreover, if Γ̃ :=
⋃
n Γ̃n, then mod(Γ̃) = 0 and

(2.3)
∑

γ∩Ci 6=∅
ρ(Ci) =∞

for all γ ∈ Γ \ Γ̃.

Since we assume that the peripheral circles Ci = ∂Di of S are uniform

quasicircles, there exists λ ≥ 1 with the following property (see, e.g., [Bon11,

Prop. 4.3]). For each i ∈ N, there exists xi ∈ S2, and 0 < ri ≤ Ri with

Ri/ri ≤ λ such that

B(xi, ri) ⊆ Di ⊆ B(xi, Ri).

Now we consider the density ρ̃ on the sphere defined by

ρ̃ =
∑
i

ρ(Ci)

Ri
χB(xi,2Ri).

If 4Ri < δ, then every path γ ∈ Γ that meets Ci must also meet the comple-

ment of B(xi, 2Ri), since diam(γ) ≥ δ. So γ will meet both complementary

components of B(xi, 2Ri) \B(xi, Ri). If γ is locally rectifiable, this implies∫
γ
χB(xi,2Ri) ds ≥ Ri.

Since there are only finitely many i ∈ N with 4Ri ≥ δ, it follows from (2.3)

that ∫
γ
ρ̃ ds =∞

for every locally rectifiable path γ ∈ Γ \ Γ̃. On the other hand, by Lemma 2.2,∫
ρ̃2 dσ .

∑
i

ρ(Ci)
2

R2
i

σ(B(xi, ri)) . mass(ρ) <∞.

This implies mod(Γ \ Γ̃) = 0, and so

mod(Γ) ≤ mod(Γ \ Γ̃) + mod(Γ̃) = 0.

Hence mod(Γ) = 0 as desired. �

Proposition 2.4. Let S be a carpet in S2 whose peripheral circles are

uniform quasicircles, and let Γ be an arbitrary path family in S2 with modS(Γ)

< ∞. Then the extremal mass distribution for modS(Γ) exists ; i.e., the infi-

mum in the definition of modS(Γ) is attained as a minimum.
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Proof. Let (ρn) be a sequence of admissible mass distributions for modS(Γ)

such that mass(ρn) → modS(Γ) as n → ∞. If Ci, i ∈ N, are the peripheral

circles of S, then each ρn is given by the sequence ρn = (ρn(Ci)) of weights it

assigns to the peripheral circles.

Since modS(Γ) < ∞, we may assume that for a suitable constant, we

have mass(ρn) ≤ C for all n. By passing to a subsequence using a standard

diagonalization argument, we may also assume that the limit

ρ(Ci) := lim
n→∞

ρn(Ci)

exists for each i ∈ N. We claim that the mass distribution ρ = (ρ(Ci)) is

extremal.

First, it is clear that mass(ρ) ≤ modS(Γ). Indeed, for every ε > 0 and

m ∈ N, there exists N ∈ N such that
m∑
i=1

ρn(Ci)
2 ≤ modS(Γ) + ε

for all n ≥ N . Taking the limit as n→∞, we get
m∑
i=1

ρ(Ci)
2 ≤ modS(Γ) + ε

for all m ∈ N. Since m and ε are arbitrary, this gives mass(ρ) ≤ modS(Γ).

To complete the proof we have to show that ρ is admissible, which is

harder to establish. By Mazur’s Lemma (see, e.g., [Yos80, Th. 2, p. 120]) there

is a sequence of convex combinations (ρ̃N ), where

ρ̃N =
N∑
n=1

λNn ρn, λNn ≥ 0,
N∑
n=1

λNn = 1,

that converges to ρ in `2. Every element of the sequence (ρ̃N ) is admissible for

Γ, where the exceptional path family Γ̃N for ρ̃N is the union of the exceptional

path families for ρn, n = 1, 2, . . . , N . Since (ρ̃N ) converges to ρ in `2, it is also

a minimizing sequence for modS(Γ).

By passing to a subsequence, we may assume that

(2.4) ||ρ̃N − ρ||`2 ≤
1

2N

for all N ∈ N.

Let

Γ∞ =

®
γ ∈ Γ: lim sup

N→∞

∑
γ∩Ci 6=∅

|ρ̃N (Ci)− ρ(Ci)| 6= 0

´
and

ΓN =

®
γ ∈ Γ:

∑
γ∩Ci 6=∅

|ρ̃N (Ci)− ρ(Ci)| ≥
1

N

´
.
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Then Γ∞ ⊆
⋂
n
⋃
N≥n ΓN . Indeed, let γ ∈ Γ∞ be arbitrary. Then there exists

δ > 0 and a sequence of natural numbers (Nk) with Nk → ∞ as k → ∞ such

that ∑
γ∩Ci 6=∅

|ρ̃Nk(Ci)− ρ(Ci)| ≥ δ

for all k ∈ N. Now let n be arbitrary. We choose k so large that Nk ≥ n and

1/Nk ≤ δ. Then γ ∈ ΓNk ⊆
⋃
N≥n ΓN . Hence γ ∈ ⋂n⋃N≥n ΓN as desired.

It follows that the mass distributions

ρ∞,n =
∞∑
N=n

N |ρ̃N − ρ|, n = 1, 2, . . . ,

are admissible for modS(Γ∞). Since mass(ρ∞,n) → 0 as n → ∞ by (2.4),

this implies that modS(Γ∞) = 0. Invoking Lemma 2.3, we conclude that

mod(Γ∞) = 0.

If γ is in Γ \ (Γ∞ ∪
⋃
N Γ̃N ), then∑

γ∩Ci 6=∅
ρ(Ci) ≥ lim sup

N→∞

Ç ∑
γ∩Ci 6=∅

ρ̃N (Ci)−
∑

γ∩Ci 6=∅
|ρ̃N (Ci)− ρ(Ci)|

å
≥ 1− lim sup

N→∞

Ç ∑
γ∩Ci 6=∅

|ρ̃N (Ci)− ρ(Ci)|
å

= 1.

Moreover,

mod

Ç
Γ∞ ∪

⋃
N

Γ̃N

å
≤ mod(Γ∞) +

∑
N

mod(Γ̃N ) = 0.

It follows that ρ is admissible for Γ as desired. �

3. Carpet modulus with respect to a group

Let S be a carpet in S2. In this section we assume that S is written as

in (1.1) and that Ci = ∂Di, i ∈ N, denote the peripheral circles of S. Let

G be a group of homeomorphisms of S. If g ∈ G and C ⊆ S is a peripheral

circle of S, then g(C) is also a peripheral circle of S. So the whole orbit

O = {g(C) : g ∈ G} of C under the action of G consists of peripheral circles

of S. If Γ is a family of paths in S2, we define the carpet modulus modS/G(Γ)

of Γ with respect to the action of G as follows. A (invariant) mass distribution

ρ is a nonnegative function defined on the peripheral circles of S that takes

the same value on each peripheral circle in the same orbit; so ρ(g(C)) = ρ(C)

for all g ∈ G and all peripheral circles C of S. Such a mass distribution is

admissible for modS/G(Γ) if there exists an exceptional family Γ0 ⊆ Γ with

mod(Γ0) = 0 and

(3.1)
∑

γ∩Ci 6=∅
ρ(Ci) ≥ 1

for all γ ∈ Γ \ Γ0.
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If ρ is a mass distribution and O an orbit of peripheral circles, we set

ρ(O) := ρ(C), where C ∈ O. We define the (total) mass of ρ as

massS/G(ρ) =
∑
O
ρ(O)2,

where the sum is taken over all orbits of peripheral circles under the action

of G.

The carpet modulus of Γ with respect to the group G is defined as

modS/G(Γ) = inf
ρ
{massS/G(ρ)},

where the infimum is taken over all admissible mass distributions ρ. An

admissible mass distribution ρ realizing this infimum is called extremal for

modS/G(Γ).

Note that each orbit contributes with exactly one term to the total mass

of a mass distribution. In contrast, the admissibility condition is similar to

the one for carpet modulus: Each peripheral circle that intersects the curve γ

contributes a term to the sum in (3.1), and we may get multiple contributions

from each orbit; we restrict ourselves though to invariant mass distributions

that are constant on each orbit of the action of G on peripheral circles.

Carpet modulus with respect to a group has similar monotonicity and sub-

additivity properties as carpet modulus and conformal modulus. We formulate

its invariance property under quasiconformal maps explicitly.

Lemma 3.1. Let D be a region in S2, S a carpet contained in D, G a

group of homeomorphisms on S, and Γ a path family such that γ ⊆ D for each

γ ∈ Γ. If f : D → ‹D is a quasiconformal map onto another region ‹D ⊆ S2,

and we define S̃ := f(S), Γ̃ := f(Γ), and ‹G := (f |S) ◦G ◦ (f |S)−1, then

mod
S̃/G̃

(Γ̃) = modS/G(Γ).

Proof. Note that S̃ is a carpet and f |S is homeomorphism from S onto S̃.

Hence ‹G is a group of homeomorphisms on S̃. The argument is now along the

same lines as the proof of Lemma 2.1, and we omit the details. �

The following proposition gives a criterion for the existence of an extremal

mass distribution for carpet modulus with respect to the group.

Proposition 3.2. Let S be a carpet in S2 whose peripheral circles are

uniform quasicircles, let G be a group of homeomorphisms of S, and let Γ be

a path family in S2 with modS/G(Γ) <∞.

Suppose that for each k ∈ N, there exists a family of peripheral circles Ck
of S and a constant Nk ∈ N with the following properties :

(i) if O is any orbit of peripheral circles of S under the action of G, then

#(O ∩ Ck) ≤ Nk for all k ∈ N;
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(ii) if Γk is the family of all paths in Γ that only meet peripheral circles in

Ck, then Γ =
⋃
k Γk.

Then an extremal mass distribution for modS/G(Γ) exists ; i.e., the infimum in

the definition of modS/G(Γ) is attained.

Proof. We first observe that one has an analog of Lemma 2.3; namely, if

in addition to the given hypotheses modS/G(Γ) = 0, then mod(Γ) = 0.

The proof of this implication is very similar to the proof of Lemma 2.3. As

in the proof of this lemma, we can make the additional assumption that there

exists δ > 0 such that diam(γ) ≥ δ for all γ ∈ Γ. Using that modS/G(Γ) = 0,

one can find an invariant mass distribution ρ with massS/G(ρ) < ∞ and a

family Γ̃ ⊆ Γ with mod(Γ̃) = 0 such that

(3.2)
∑

γ∩Ci 6=∅
ρ(Ci) =∞

for all γ ∈ Γ \ Γ̃.

Since peripheral circles of S, represented as in (1.1), are uniform quasi-

circles, there exists λ ≥ 1 such that for each i ∈ N, we can find xi ∈ S2 and

0 < ri ≤ Ri with

B(xi, ri) ⊆ Di ⊆ B(xi, Ri),

and Ri/ri ≤ λ .

Now fix k ∈ N, consider the family Γ′k := (Γ \ Γ̃)∩ Γk of all paths in Γ \ Γ̃

that only intersect peripheral circles in the family Ck, and let

ρ̃ =
∑
Ci∈Ck

ρ(Ci)

Ri
χB(xi,2Ri).

Using our hypothesis (i) and Lemma 2.2, we see that∫
ρ̃2 dσ .

∑
Ci∈Ck

ρ(Ci)
2 ≤ NkmassS/G(ρ) <∞.

On the other hand, similarly as in the proof of Lemma 2.3, by (3.2) we have∫
γ
ρ̃ ds =∞

for every locally rectifiable path γ ∈ Γ′k. It follows that mod(Γ′k) = 0.

Our hypothesis (ii) implies that Γ = Γ̃ ∪ ⋃k Γ′k. Since all families in the

last union have vanishing modulus, we conclude mod(Γ) = 0 as desired.

Now the proof of the statement is almost identical to the proof of Propo-

sition 2.4. The only differences are that we use mass distributions that are

constant on each orbit of peripheral circles under the action of G and that for

control on the masses of the relevant distributions, we use an `2-space indexed

by these orbits. Note that hypothesis (ii) passes to every subfamily of Γ, so
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we can apply the first part of the proof to the family that corresponds to Γ∞
in the proof of Proposition 2.4. We omit the details. �

If ψ is a homeomorphism of the carpet S ⊆ S2, we denote by 〈ψ〉 the cyclic

group of homeomorphisms on S generated by ψ. If Γ is a path family in S2

and Ψ is a homeomorphism on S2, then Γ is called Ψ-invariant if Ψ(Γ) = Γ.

The following lemma gives a precise relationship between the carpet modulus

with respect to a cyclic group and its subgroups.

Lemma 3.3. Let S be a carpet in S2, let Ψ: S2 → S2 be a quasiconformal

map with Ψ(S) = S, and define ψ := Ψ|S. Suppose that Γ is a Ψ-invariant

path family in S2 such that for every peripheral circle C of S that meets some

path in Γ, we have ψn(C) 6= C for all n ∈ Z \ {0}.
Then

modS/〈ψk〉(Γ) = kmodS/〈ψ〉(Γ)

for every k ∈ N.

Proof. Fix k ∈ N. Let ε > 0, and let ρ be an admissible mass distribution

for modS/〈ψ〉(Γ) such that

massS/〈ψ〉(ρ) ≤ modS/〈ψ〉(Γ) + ε.

Here it is understood that ρ is invariant in the sense that it is constant on

orbits of peripheral circles under the action of 〈ψ〉. Then ρ is also constant on

orbits under the action of 〈ψk〉, and hence admissible for modS/〈ψk〉(Γ).

Each orbit of a peripheral circle under the action of 〈ψ〉 consists of at most

k orbits under the action of 〈ψk〉. Therefore, we obtain

modS/〈ψk〉(Γ)≤massS/〈ψk〉(ρ)

≤ kmassS/〈ψ〉(ρ) ≤ kmodS/〈ψ〉(Γ) + kε.

Since ε is arbitrary, we conclude

modS/〈ψk〉(Γ) ≤ kmodS/〈ψ〉(Γ).

Conversely, let ε > 0, and let ρ be an admissible invariant mass distribu-

tion for modS/〈ψk〉(Γ) such that

massS/〈ψk〉(ρ) ≤ modS/〈ψk〉(Γ) + ε.

Note that if C is a peripheral circle of S and no path in Γ meets C, then

by Ψ-invariance of Γ no path in Γ meets any of the peripheral circles in the

orbit of C under 〈ψ〉. This implies that we may assume that ρ(C) = 0 for all

peripheral circles C that do not meet any path in Γ.

Consider ρ̃ given by

ρ̃ =
1

k
(ρ+ ρ ◦ ψ + · · ·+ ρ ◦ ψk−1).
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Here ρ ◦ψj denotes the mass distribution that assigns the value ρ(ψj(C)) to a

peripheral circle C of S.

We have that ρ ◦ψk = ρ, since ρ is constant on orbits of peripheral circles

under the action of ψk. This implies that ρ̃ ◦ ψ = ρ̃ and so ρ̃ is constant on

orbits of peripheral circles under the action of ψ.

Let Γ0 be an exceptional family for ρ, and define

Γ̃0 =
⋃

n∈{−(k−1),...,−1,0}
Ψn(Γ0).

Since mod(Γ0) = 0, we have mod(Γ̃0) = 0. Moreover, the Ψ-invariance of Γ

implies that ∑
γ∩Ci 6=∅

ρ̃(Ci) ≥ 1

for all γ ∈ Γ \ Γ̃0. Hence ρ̃ is admissible for modS/〈ψ〉(Γ).

It follows that

modS/〈ψ〉(Γ) ≤ massS/〈ψ〉(ρ̃).

Since ρ assigns 0 to all peripheral circles of S that do not meet any path in Γ,

the same is true for ρ̃. So if C is a peripheral circle of S with ρ̃(C) 6= 0, then C

meets some path in Γ and so our hypotheses imply that the peripheral circles

ψn(C), n ∈ Z, are all distinct. Hence the 〈ψ〉-orbit of C consists of precisely k

orbits of C under 〈ψk〉. It follows that

massS/〈ψk〉(ρ̃) = kmassS/〈ψ〉(ρ̃).

Moreover, the convexity of the norm in `2 implies that

massS/〈ψk〉(ρ̃) ≤ massS/〈ψk〉(ρ).

We conclude

kmodS/〈ψ〉(Γ)≤ kmassS/〈ψ〉(ρ̃) = massS/〈ψk〉(ρ̃)

≤massS/〈ψk〉(ρ) ≤ modS/〈ψk〉(Γ) + ε.

Since ε was arbitrary, this gives the other desired inequality

kmodS/〈ψ〉(Γ) ≤ modS/〈ψk〉(Γ).

The statement follows. �

4. Auxiliary results

In this section we state results from [Bon11] and [BKM09] that are used

in this paper and derive some consequences.
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Proposition 4.1. Let S be a carpet in S2 whose peripheral circles are

uniform quasicircles, and let f be a quasisymmetric map of S onto another

carpet S̃ ⊆ S2. Then there exists a quasiconformal map F on S2 whose restric-

tion to S is f .

This follows immediately from [Bon11, Prop. 5.1].

Suppose {Ci : i ∈ I} is a family of continua in a metric space X; i.e., each

set Ci is a compact connected set consisting of more than one point. These

continua are said to be uniformly relatively separated if the pairwise relative

distances are uniformly bounded away from zero; i.e., there exists δ > 0 such

that

∆(Ci, Cj) :=
dist(Ci, Cj)

min{diam(Ci), diam(Cj)}
≥ δ

for any two distinct i and j. The uniform relative separation property is

preserved under quasisymmetric maps; see [Bon11, Cor. 4.6].

Recall that a carpet S ⊆ S2 is called round if its peripheral circles are

geometric circles. So if S is written as in (1.1), then each Jordan region Di is

an open spherical disk.

Theorem 4.2 (Uniformization by round carpets). If S is a carpet in S2

whose peripheral circles are uniformly relatively separated uniform quasicircles,

then there exists a quasisymmetric map of S onto a round carpet.

This is [Bon11, Cor. 1.2].

Theorem 4.3 (Quasisymmetric rigidity of round carpets). Let S be a

round carpet in S2 of measure zero. Then every quasisymmetric map of S onto

any other round carpet is the restriction of a Möbius transformation.

This is [BKM09, Th. 1.2]. Here, by definition, a Möbius transformation

is a fractional linear transformation on S2 ∼= “C, or the complex-conjugate of

such a map. So we allow a Möbius transformation to be orientation-reversing.

Let S ⊆ S2 be a carpet, and let f : S → S2 be a homeomorphic embedding.

Then f has a homeomorphic extension to a homeomorphism F : S2 → S2. (See

the proof of Lemma 5.3 in [Bon11].) We call f orientation-preserving if F (and

hence every homeomorphic extension of f) is orientation-preserving on S2. On

a more intuitive level, the map f is orientation-preserving if the following is

true. If we orient any peripheral circle C of S so that S lies “to the left” of

C with this orientation, then the image carpet f(S) lies “to the left” of its

peripheral circle f(C) equipped with the induced orientation.

Corollary 4.4 (Three-Circle Theorem). Let S be a carpet in S2 of mea-

sure zero whose peripheral circles are uniformly relatively separated uniform

quasicircles. Let C1, C2, C3 be three distinct peripheral circles of S. If f
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and g are two orientation-preserving quasisymmetric self-maps of S such that

f(Ci) = g(Ci) for i = 1, 2, 3, then f = g.

This follows from [Bon11, Th. 1.5] applied to f−1 ◦ g.

Corollary 4.5. Let S be a carpet in S2 of measure zero whose periph-

eral circles are uniformly relatively separated uniform quasicircles. Let C be a

peripheral circle of S, and p, q two distinct points on C , and G be the group

of all orientation-preserving quasisymmetric self-maps of S that fix p and q.

Then G = {idS} or G is an infinite cyclic group.

In other words, either G is trivial or isomorphic to Z.

Proof. By Theorem 4.2 there exists a quasisymmetric map f of S onto a

round carpet S̃. Using Proposition 4.1 we can extend f to a quasiconformal

map on S2. Since quasiconformal maps preserve the class of sets of measure

zero [LV73, Th. 1.3, p. 165], S̃ has measure zero as well. According to The-

orem 4.3, the conjugate group ‹G = f ◦ G ◦ f−1 consists of the restrictions of

orientation-preserving Möbius transformations with two fixed points p̃, q̃ on a

peripheral circle ‹C of S̃. By post-composing f with a Möbius transformation

we may assume that p̃ = 0, q̃ = ∞, and that ‹C is the extended real line.

Moreover, we may assume that S̃ is contained in the upper half-plane. Then

the maps in ‹G are of the form z 7→ λz with λ > 0. The multiplicative group

of the factors λ that arise in this way must be discrete (this follows from the

fact that peripheral circles are mapped to peripheral circles) and hence forms a

cyclic group. It follows that ‹G, and hence also G, is the trivial group consisting

only of the identity map or an infinite cyclic group. �

Corollary 4.6. Let S be a carpet in S2 of measure zero whose peripheral

circles are uniformly relatively separated uniform quasicircles. Let C1 and C2

be two distinct peripheral circles of S, and let G be the group of all orientation-

preserving quasisymmetric self-maps of S that fix C1 and C2 setwise. Then G

is a finite cyclic group.

Proof. As in the proof of Corollary 4.5, we can reduce to the case that

S is a round carpet of measure zero. By applying an auxiliary Möbius-

transformation if necessary, we may also assume that C1 and C2 are Euclidean

circles both centered at 0. Then by Theorem 4.3, each element in G is (the

restriction of) a rotation around 0. Moreover, G must be a discrete group as it

maps peripheral circles of S to peripheral circles. Hence G is finite cyclic. �

Corollary 4.7. Let S be a carpet in S2 of measure zero whose peripheral

circles are uniformly relatively separated uniform quasicircles, C1 and C2 be two

distinct peripheral circles of S, and p ∈ S. If f is an orientation-preserving
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quasisymmetric self-map of S such that f(C1)=C1, f(C2)=C2, and f(p)=p,

then f is the identity on S.

Proof. By the argument as in the proof of Corollary 4.6, we can reduce to

the case where S is a round carpet, C1 and C2 are circles both centered at 0,

and f is a rotation around 0. Since C1 and C2 are distinct peripheral circles

of S, these sets are disjoint and bound two disjoint Jordan regions. This implies

that S is contained in the Euclidean annulus with boundary components C1

and C2. Since p ∈ S, it follows that p 6= 0,∞. Since f is a rotation around 0

and fixes p, the map f must be the identity on S. �

The metric on C∗ = C \ {0} induced by the length element |dz|/|z| is

called the flat metric (on C∗). Equipped with this metric, C∗ is isometric to

an infinite cylinder of circumference 2π. The following terminology is suggested

by this geometric picture.

A C∗-cylinder A is a set of the form

A = {z ∈ C : r ≤ |z| ≤ R},
where 0 < r < R < ∞. The boundary components {z ∈ C : |z| = r} and

{z ∈ C : |z| = R} are called the inner and outer boundary components of A,

respectively. A C∗-square Q is a Jordan region of the form

Q = {ρeiθ : a < ρ < b, α < θ < β},
where 0 < log(b/a) = β − α < 2π. We call the quantity

`C∗(Q) := log(b/a) = β − α
its side length, the set {aeiθ : α ≤ θ ≤ β} the bottom side, and the set

{beiθ : α ≤ θ ≤ β} the top side of Q. The sets {ρeiα : a ≤ ρ ≤ b} and

{ρeiβ : a ≤ ρ ≤ b} are referred to as the vertical sides of Q. The corners of Q

are the four points that are end points of one of the sides of Q.

A square carpet T in a C∗-cylinder A is a carpet that can be written as

T = A \
⋃
i

Qi,

where the sets Qi, i ∈ I, are C∗-squares whose closures are pairwise disjoint

and contained in the interior of A. Very similar terminology was employed in

[Bon11]. Note that in contrast to [Bon11], our C∗-cylinders A are closed and

the C∗-squares Q are open sets.

Theorem 4.8 (Cylinder Uniformization Theorem). Let S be a carpet of

measure zero in S2 whose peripheral circles are uniformly relatively separated

uniform quasicircles, and let C1 and C2 be distinct peripheral circles of S.

Then there exists a quasisymmetric map f from S onto a square carpet T in

a C∗-cylinder A such that f(C1) is the inner boundary component of A and

f(C2) is the outer one.
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This is [Bon11, Th. 1.6]. In this statement, S is equipped with the spher-

ical metric as by our convention adopted in the introduction. For the metric

on T , one can choose the spherical metric, the Euclidean metric, or the flat

metric on C∗; they are all comparable on A and hence on T .

Let S be a carpet in S2 and C1 and C2 be two distinct peripheral circles

of S that bound the complementary components D1 and D2 of S, respectively.

We denote by Γ(C1, C2;S) the family of all open paths γ in S2 \ (D1∪D2) that

connect D1 and D2.

The following proposition gives an explicit description for the extremal

mass distribution for the carpet modulus modS(Γ(C1, C2;S)) under suitable

conditions.

Proposition 4.9. Let S be a carpet of measure zero in S2 whose periph-

eral circles are uniformly relatively separated uniform quasicircles, and let C1

and C2 be two distinct peripheral circles of S. Then an extremal mass distri-

bution ρ for modS(Γ(C1, C2;S)) exists, has finite and positive total mass, and

is given as follows. Let f be a quasisymmetric map of S onto a square carpet

T in a C∗-cylinder A = {z ∈ C : r ≤ |z| ≤ R} such that C1 corresponds to the

inner and C2 to the outer boundary component of A. Then ρ(C1) = ρ(C2) = 0,

and for the peripheral circles C 6= C1, C2 of S, we have

ρ(C) =
`C∗(Q)

log(R/r)
,

where Q is the C∗-square bounded by f(C).

This is [Bon11, Cor. 12.2]. Note that a map f as in this proposition exists

by the previous Theorem 4.8. The map f is actually unique up to scaling and

rotation around 0 as follows from Theorem 1.5, which we will prove in Section 6.

It follows from Proposition 4.1 that f has a quasiconformal extension to S2,

and so T is also a set of measure zero [LV73, Th. 1.3, p. 165]. From the explicit

description of the extremal mass distribution, it follows that

0 < modS(Γ(C1, C2;S)) =
2π

log(R/r)
<∞.

In [Bon11] the proof of Proposition 4.9 was fairly straightforward but had

to rely on Theorem 4.8, whose proof was rather involved. The only consequence

of Proposition 4.9 that we will use is that for the extremal density ρ, we have

ρ(C) > 0 for all peripheral circles C 6= C1, C2. It is an interesting question

whether a direct proof of this statement can be given without resorting to

Theorem 4.8.
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5. Distinguished pairs of peripheral circles

In the following it is convenient to use the term square also for the bound-

ary of a solid Euclidean square in the usual sense. It will be clear from the

context which meaning of square is intended. If Q is a square in either sense,

then we denote by `(Q) its Euclidean side length. A corner of Q is an end

point of a side of Q.

With our terminology, we can refer to the peripheral circles of the standard

Sierpiński carpets Sp, p ≥ 3 odd, simply as squares. These squares arising as

peripheral circles of Sp form a family of uniform quasicircles in the Euclidean

metric, since each of them can be mapped to the boundary ∂Q0 of the solid unit

square Q0 by a Euclidean similarity. This family is also uniformly relatively

separated in the Euclidean metric, because if C and C ′ are two distinct squares

in this family, then for their Euclidean distance, we have

dist(C,C ′)≥ p− 1

2
min{`(C), `(C ′)}

=
p− 1

2
√

2
min{diam(C), diam(C ′)}.

Since Euclidean distance and spherical distance on Sp ⊆ S2 ∼= “C are com-

parable, it follows that the family of peripheral circles is uniformly relatively

separated and consists of uniform quasicircles also with respect to the spherical

metric. Since Sp has measure zero in addition, we can apply to Sp the results

that were stated in Section 4. Moreover, by the comparability of Euclidean

and spherical metric on Sp, the class of quasisymmetric self-maps on Sp is the

same for both metrics.

Our goal in this section is to prove that any quasisymmetric self-map of

Sp preserves the outer and the middle squares as a pair. By definition, the

outer square O is the peripheral circle that corresponds to the boundary of

the original unit square in the construction of Sp. The middle square M is

the boundary of the open middle square removed from the unit square in the

first step of the construction of Sp. It is the unique peripheral circle different

from O that is invariant under all Euclidean isometries of Sp. Note that these

isometries of Sp form a dihedral group with eight elements.

Lemma 5.1. Let p ≥ 3 be odd, and let C,C ′ be any (unordered) pair of

distinct peripheral circles of Sp other than M,O. Then

modSp(Γ(C,C ′;Sp)) < modSp(Γ(M,O;Sp)).

Proof. The self-similarity of the carpet Sp and the monotonicity property

of the modulus give

(5.1) modSp(Γ(C,C ′;Sp)) ≤ modSp(Γ(M,O;Sp)).
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Indeed, if l and l′ are the side lengths of the squares C and C ′, respectively,

then we may assume that l ≤ l′. Then l ≤ 1/p2. This implies that there

exists a copy S ⊂ Sp, S 6= Sp, of Sp, rescaled by the factor pl, so that C

corresponds to M , the middle square. Then the outer square o of S is the

rescaled copy of O, and the interior region of o is disjoint from C ′. Hence

every path in Γ(C,C ′;Sp) meets o (possibly in one of its end points) and

so contains a subpath in Γ(C, o;S). (See Figure 2 for an illustration of this

situation.) Therefore,

modSp(Γ(C,C ′;Sp)) ≤ modSp(Γ(C, o;S)).

On the other hand,

modSp(Γ(C, o;S)) = modS(Γ(C, o;S)),

since every path in Γ(C, o;S) meets exactly the same peripheral circles of S

and Sp. Moreover,

modS(Γ(C, o;S)) = modSp(Γ(M,O;Sp)),

by Lemma 2.1. Inequality (5.1) follows.

Figure 2. The part of the carpet on the right bounded by the

dashed line is a rescaled copy S of Sp.

To reach a contradiction, assume now that

(5.2) modSp(Γ(C,C ′;Sp)) = modSp(Γ(M,O;Sp)).

Note that all carpet moduli considered above are finite by Proposition 4.9,

and so an extremal mass distribution exists for each of them by Proposi-

tion 2.4. Then (5.2), the preceding discussion, and the uniqueness of the

extremal mass distributions implies that the extremal mass distribution for

modSp(Γ(C,C ′;Sp)) is obtained from the extremal mass distribution for

modSp(Γ(M,O;Sp)) by “transplanting” it to S using a suitable Euclidean sim-

ilarity between S and Sp (similarly as in the proof of Lemma 2.1). Hence

the extremal mass distribution for modSp(Γ(C,C ′;Sp)) is supported only on
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the set of peripheral circles of Sp that are also peripheral circles of S. This

is, however, not the case as follows from Proposition 4.9, and we arrive at a

contradiction. �

Corollary 5.2. Let p ≥ 3 be odd. Then every quasisymmetric self-map

of Sp preserves the middle and the outer squares M and O as a pair.

So if f : Sp → Sp is a quasisymmetric map, then {f(M), f(O)} = {M,O}.
This allows the possibility that f interchanges M and O, i.e., that f(M) = O

and f(O) = M . We will later see that actually f(M) = M and f(O) = O

(Lemma 8.1).

Proof. Assume that f maps the pairM,O to some pair of peripheral circles

C,C ′. By Proposition 4.1, the map f extends to a quasiconformal homeomor-

phism F on S2. In particular, Γ(C,C ′;Sp) = F (Γ(M,O;Sp)). Lemma 2.1 then

implies

(5.3) modSp(Γ(C,C ′;Sp)) = modSp(Γ(M,O;Sp)).

By Lemma 5.1, this is only possible if {C,C ′} = {M,O}. �

Corollary 5.3. Let p ≥ 3 be odd. Then the group QS(Sp) of quasisym-

metric self-maps of Sp is finite.

Proof. According to Corollary 5.2, the middle square M and the outer

square O of Sp are preserved as a pair under every quasisymmetric self-map

of Sp. Moreover, by Corollary 4.6, the group G of all orientation-preserving

quasisymmetric self-maps f of Sp with f(M) = M and f(O) = O is finite

cyclic. If f1, f2 ∈ QS(Sp) are orientation-reversing, then f−1
1 ◦ f2 ∈ QS(Sp) is

orientation-preserving. Likewise, if f1, f2 ∈ QS(Sp) interchange M and O, then

f−1
1 ◦ f2 preserves both M and O setwise. This implies that G is a subgroup

of QS(Sp) with index at most 4. Since G is a finite group, QS(Sp) is finite as

well. �

6. Quasisymmetric rigidity of square carpets

In this section we prove quasisymmetric rigidity results for square carpets

in rectangles and for square carpets in C∗-cylinders.

By definition, a square carpet S in a closed Jordan region D ⊆ R2 ∼= C is

a carpet S ⊆ D so that ∂D is a peripheral circle of S and all other peripheral

circles are squares with sides parallel to the coordinate axes (see Figure 3). We

equip such a carpet with the Euclidean metric.

We will now prove Theorem 1.4. In the ensuing proofs all metric concepts

refer to the Euclidean metric on R2 ∼= C. Moreover, we will use the Euclidean

metric also as a base metric in the definition of conformal modulus of a path

family.
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Figure 3. A square carpet in a closed Jordan region.

Proof of Theorem 1.4. Without loss of generality we may assume that

ã ≤ a. Suppose f is a quasisymmetric map as in the statement. Note that

the peripheral circles of S are uniform quasicircles; this is clear if we use the

Euclidean metric, but on K the Euclidean and the spherical metrics are com-

parable, and so the peripheral circles of S are uniform quasicircles also with

respect to the spherical metric. Hence by Proposition 4.1, the map f extends

to a quasiconformal map F on S2.

We denote by Ci, i ∈ N, the peripheral circles of S distinct from ∂K and

by Qi the closed solid square bounded by Ci. We set ‹Ci := f(Ci). Then the

sets ‹Ci, i ∈ N, are the peripheral circles of S̃ distinct from ∂K̃. For i ∈ N, let‹Qi be the closed solid square bounded by ‹Ci. Note that then ‹Qi = F (Qi).

For t ∈ [0, a], we denote by γt the path u 7→ t + iu, u ∈ [0, 1], and let

Γ = {γt : t ∈ [0, a]}. So Γ consists precisely of the closed vertical line segments

connecting the horizontal sides of K. Then mod(Γ) = a and the function

ρ0 ≡ 1 on K is an extremal density for mod(Γ). If ρ̃ is another extremal

density for mod(Γ), then ρ̃(z) = 1 for almost every z ∈ K.

We define a Borel density ρ1 on K as follows. For z ∈ K, we set ρ1(z) =

`(‹Qi)/`(Qi) if z ∈ Qi for some i ∈ I, and ρ1(z) = 0 otherwise. We will show

that
∫
γ ρ1 ds ≥ 1 for almost every path γ ∈ Γ. This will make it possible to

adjust ρ1 on a set of measure zero so that the resulting density is admissible

for Γ.

To see this, let E be the set of all t ∈ [0, a] for which γt ∩ S has positive

length, i.e., E = {t ∈ [0, a] :
∫
γt
χS ds > 0}. Since S has measure zero, it follows

from Fubini’s theorem that E has 1-dimensional measure zero.

Moreover, since quasiconformal maps are absolutely continuous on almost

every line [LV73, Th. 3.1, p. 170], there exists a set E′ ⊆ [0, a] of 1-dimensional

measure zero such that the map u 7→ F (t + iu) is absolutely continuous on

[0, 1] for each t ∈ [0, a] \ E′.
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If we define E0 = E ∪E′ ⊆ [0, a], then E0 also has 1-dimensional measure

zero. Moreover, if t ∈ [0, a] \ E, then the map u 7→ F (t + iu) is absolutely

continuous on [0, 1], and γt ∩ S has length zero. It follows that F (γt ∩ S) =

F (γt) ∩ S̃ also has length zero. By our normalization assumption, the map f ,

and hence also its extension F , sends each horizontal side of K to a horizontal

side of K̃. Thus F (γt) joins the horizontal sides of K̃ and we conclude that∫
γt

ρ1 ds =
∑

γt∩Qi 6=∅
`(‹Qi) =

∑
F (γt)∩Q̃i 6=∅

`(‹Qi) ≥ 1.

For z ∈ K, define ρ2(z) = ∞ if z ∈ E0 × [0, 1] and ρ2(z) = 0 otherwise.

Then
∫
γt
ρ2 ds =∞ for t ∈ E0. It follows that ρ = ρ1 + ρ2 is admissible for Γ.

Moreover, since ρ2(z) = 0 for almost every z ∈ K, we have∫
K
ρ2 dA =

∫
K
ρ2

1 dA =
∑
i

`(‹Qi)2 = ã ≤ a = mod(Γ),

where dA indicates integration with respect to 2-dimensional Lebesgue mea-

sure. Therefore, ã = a, K̃ = K, and ρ is extremal for mod(Γ). Hence ρ(z) = 1

for almost every z ∈ K, which in turn implies that `(Qi) = `(‹Qi) for all i ∈ N.

So each square Qi has the same side length as its image square ‹Qi = F (Qi).

We will next show that actually Qi = ‹Qi for each i ∈ N. To see this, let

i ∈ N be arbitrary, and consider the family Γ′ of all open line segments that

are parallel to the real axis and connect the left vertical side of K to the left

vertical side of Qi (so these sides face each other). Let γ ∈ Γ′, and assume in

addition that γ ∩ S has length zero and that F is absolutely continuous on γ.

Then the intersection F (γ) ∩ S̃ also has length zero, and we have

length(γ) =
∑

γ∩Qj 6=∅
`(Qj).

Since F sends each peripheral square to a square of the same side length, we

conclude that for the length L of the projection of F (γ) to the real axis, we

have

L ≤
∑

F (γ)∩Q̃j 6=∅

`(‹Qj) =
∑

γ∩Qj 6=∅
`(Qj) = length(γ).

In other words, the length of the projection of γ to the real axis (which is equal

to the length of γ) does not increase under the map F .

Similarly as above, one can see that the family Γ′0 of all line segments

γ ∈ Γ′ for which γ ∩ S has positive length or for which F is not absolutely

continuous on γ has modulus zero. In particular, for each γ ∈ Γ′, there are

line segments γ′ ∈ Γ′ \ Γ′0 that are arbitrarily close to γ. Since the length of

the projection of each such line segment γ′ to the real axis does not increase

under F , it cannot increase for any γ ∈ Γ′ either.
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We conclude that the distance of ‹Qi to the left vertical side of K̃ = K is

bounded from above by the distance of Qi to the left vertical side of K. Using

the same argument for the inverse map, we conclude that these distances are

actually equal. We can apply the same reasoning for other pairs of respective

sides of K and Qi. Hence Qi and ‹Qi are squares in K = K̃ with the same

distances to all sides of K. This implies Qi = ‹Qi.
Moreover, we can actually deduce that F maps each side of Ci = ∂Qi into

itself. Indeed, let p ∈ Ci be a point on the left vertical side of Ci, say. If Γ′ is

as above, then there is a line segment γ ∈ Γ′ that has p as one of its end points.

Then F (p) ∈ ‹Ci = Ci is one end point of F ◦ γ, while the other end point lies

on the left vertical side of K. As we have seen, the length of the projection

of F ◦ γ to the real axis is bounded by the length of γ, which is equal to the

distance of Ci to the left vertical side of K. This is only possible if F (p) lies

on the left vertical side of Ci. So F maps this side into itself and, similarly,

each side of Ci into itself. This in turn implies F must fix each corner of Ci.

Since i ∈ N was arbitrary, we conclude that S = S̃ and that F , and hence

also f , fixes the corners of all squares Qi, i ∈ N.

Now every subset of a carpet that meets all but finitely many peripheral

circles is dense. In particular, the set D consisting of all corners of the squares

Ci, i ∈ N, is a dense subset of S. Since f is the identity on D, it follows that

the map f is the identity on S. �

We now prove Theorem 1.5. The argument is very similar to the proof

of Theorem 1.4. In the proof, metric notions refer to the flat metric on C∗
given by the length element |dz|/|z|. We will also use it as a base metric for

modulus. For terminology related to C∗-cylinders and C∗-squares used in the

ensuing proof, see the discussion before Theorem 4.8.

Proof of Theorem 1.5. Let f be as in the statement. Each C∗-square Q

(equipped with the flat metric on C∗) that satisfies `(Q) ≤ π is isometric to a

Euclidean square of the same sidelength. So the family of all peripheral circles

of S that bound such C∗-squares consists of uniform quasicircles. There are

only finitely many peripheral circles not in this family, namely the boundary

components of A and boundaries of complementary components of S that are

C∗-squares Q with π < `(Q) < 2π. Since each of these finitely many peripheral

circles (equipped with the flat metric on C∗) is bi-Lipschitz equivalent to the

unit circle, it follows that the family of all peripheral circles of S consists of

uniform quasicircles. So again by Proposition 4.1, we can extend the map f to a

quasiconformal map F on S2. Then F , as the map f , is orientation-preserving.

We may assume that the inner components of A and ‹A are equal to the

unit circle and that the outer boundary components of A and ‹A are equal to

{z ∈ C : |z| = R} and {z ∈ C : |z| = ‹R}, respectively, where 1 < R ≤ ‹R.
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We denote by Qi, i ∈ N, the (open) C∗-squares whose boundaries give the

peripheral circles of S distinct from the boundary components of A, and we

set ‹Qi = F (Qi) for i ∈ N. Then ∂‹Qi, i ∈ N, is the family of all peripheral

circles of S̃ distinct from the boundary components of ‹A.

We now consider the family Γ of closed radial line segments joining the

boundary components of A. Then mod(Γ) = 2π/ log(R), and ρ0 = 1/ log(R) is

the essentially unique extremal density (with the flat metric as the underlying

base metric). On the other hand, we define a density ρ1 on A such that

ρ1(z) =
`C∗(‹Qi)

log(‹R)`C∗(Qi)

if z ∈ Qi for some i ∈ N, and ρ(z) = 0 elsewhere on A. As in the proof of

Theorem 1.4, one shows that up to adjustment on a set of measure zero, ρ1 is

admissible for Γ. Moreover,∫
A
ρ2

1 dAC∗ =
1

log2(‹R)

∑
i

`C∗(‹Qi)2 =
2π

log(‹R)
≤ 2π

log(R)
= mod(Γ),

where dAC∗ means integration with respect to the area element induced by

the flat metric. Hence R = ‹R, A = ‹A, and ρ1 (up to a change on a set

of measure zero) is extremal for mod(Γ). We conclude that ρ1 = 1/ log(R)

almost everywhere on A, which implies that `C∗(Qi) = `C∗(‹Qi) for all i ∈ N.

So again, each C∗-square Qi has the same side length as its image ‹Qi under F .

Using this and arguments similar to the ones in the proof of Theorem 1.4,

one can show that for each i ∈ N, the squares Qi and ‹Qi have the same

distances to the inner and outer boundary components of A and that F maps

the bottom and top sides of Qi to the bottom and top sides of ‹Qi, respectively.

This implies that F sends the corners of Qi to the corners of ‹Qi. Since F is

orientation-preserving, the cyclic order of the corners is preserved under the

map F . It follows that for each i ∈ N, there exits a rotation ri around 0 such

that ri(Qi) = F (Qi) = ‹Qi and such that ri(c) = f(c) = F (c) if c is a corner

of Qi.

So far, we exclusively used the behavior of F on radial directions. We

will now investigate the behavior of F on “circular directions.” To do this, we

consider the circular projection

Pi := {t ∈ (0,∞) : teiα ∈ Qi for some α ∈ [0, 2π]}

of Qi to the positive real axis. Each set Pi, i ∈ N, is an open subinterval of

(1, R).

If Pi ∩ Pj 6= ∅ for i, j ∈ N, i 6= j, then the circular projections of the

squares Qi and Qi overlap, and so we can find a family Γ′ of closed circular

arcs γ, each contained in a circle of radius t ∈ Pi ∩ Pj centered at 0, that join

two vertical sides of Qi and Qj facing each other. This family Γ′ has positive
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modulus, and similarly as in the proof of Theorem 1.4, one can show that the

length of the radial projection of each path γ ∈ Γ′ to the unit circle does not

increase under the map F . Applying the same argument to the other pair of

vertical sides of Qi and Qj facing each other, we conclude that the circular

distance of Qi and Qj is the same as the circular distance of the image squares‹Qi and ‹Qj . This implies that ri = rj .

We can write

U :=
⋃
i

Pi =
⋃
k∈J

Mk,

where J is a countable index set and the sets Mk, k ∈ J , are pairwise disjoint

open subintervals of (1, R) forming the connected components of U . Suppose

that Mk = (ak, bk), where 1 ≤ ak < bk ≤ R, and set Ak := {z ∈ C : ak <

|z| < bk}. For every i ∈ N, there exists precisely one k ∈ J such that Qi ⊆ Ak.
Moreover, since any two points u, v ∈ Mk can be connected by a chain of

intervals Pi ⊆ Ak, it follows that ri = rj whenever Pi, Pj ⊆ Mk for some

k ∈ J . So for each k ∈ J , there exists a rotation r̃k around 0 such that ri = r̃k
whenever Qi ⊆ Ak.

We claim that

(6.1) f |S ∩Ak = r̃k|S ∩Ak
for each k ∈ J . To see this, let k ∈ J and z0 ∈ S∩Ak be arbitrary. Since the set

of corners of the C∗-squares Qi is dense in S, there exists a sequence (cn) of such

corners with cn → z0 as n → ∞. If cn is a corner of the C∗-square Qin , then

Qin ⊆ Ak for sufficiently large n. For these n, we have r̃k(cn) = rin(cn) = f(cn).

Passing to the limit n→∞, we conclude that indeed r̃k(z0) = f(z0) as desired.

We also have

(6.2) f |∂Qi = ri|∂Qi
for each i ∈ N. Indeed, let i ∈ N be arbitrary. By (6.1), it is clear that f and

ri agree on the interior of each vertical side of Qi, because these interiors are

contained in a suitable set S ∩ Ak. Let u be a point on one of the other sides

of Qi, say on the bottom side of Qi. Pick a corner v of Qi on the same side.

We will construct a sequence (kj) in J , and sequences (uj) and (vj) of points

such that uj , vj ∈ S ∩ Akj for j ∈ N, and uj → u and vj → v as j → ∞.

Then by (6.1), we have r̃kj (uj) = f(uj) and r̃kj (vj) = f(vj). By passing to a

subsequence if necessary, we may assume that the rotations r̃kj converge to a

rotation r′ uniformly on A as j → ∞. Then r′(u) = f(u) and r′(v) = f(v).

Since v is a corner of Qi, we also have ri(v) = f(v) = r′(v). Hence r′ = ri, and

so ri(u) = r′(u) = f(u) as desired.

To produce the sequences (uj) and (vj), we consider the set of E=[1, R]\U .

This is the set of all radii of circles centered at 0 that lie in S. Since S has

measure zero, E has 1-dimensional measure zero.
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Suppose that u = seiα, where 1 < s = |u| = |v| < R and α ∈ [0, 2π]. Since

E is a set of measure zero, we can find a sequence (sj) of “good radii” such

that sj ∈ (1, s) \ E and sj → s as j →∞. Then there exists kj ∈ J such that

sj ∈ Akj for j ∈ N. Define u′j = sje
iα for j ∈ N. Then u′j ∈ Akj ⊆ A for j ∈ N,

and u′j → u as j →∞, but the sequence (u′j) is not necessarily contained in S.

To achieve this, we shift each point u′j on the circle {z : |z| = sj} if necessary.

More precisely, if u′j ∈ S, we let uj := u′j . If u′j does not lie in S, then u′j is

contained in one of the C∗-squares Ql, l ∈ N. We can then move u′j on the

circle {z : |z| = sj} to a point uj on one of the vertical sides of Ql. Note

that Ql 6= Qi, and so the diameter of Ql is small if j is large, since C∗-squares

Ql 6= Qi exceeding a given size cannot be arbitrarily close to Qi. So we have

uj ∈ S ∩ Akj and uj → u as j → ∞. A sequence (vj) with vj ∈ S ∩ Akj for

j ∈ N and with vj → v as j → ∞ is constructed similarly. Note that our

construction guarantees that uj and vj lie in S and in the same set Akj , which

was crucial for the argument in the previous paragraph.

Now that we have established (6.2), we can finish the argument as follows.

The proof of Proposition 5.1 in [Bon11] combined with (6.2) shows that one

can find a quasiconformal extension ‹F of f to S2 such that ‹F |Qi = ri|Qi for

each i ∈ N. Then ‹F is conformal on each Qi. Since ‹F is quasiconformal

and the squares Qi fill A up to a set of measure zero, it follows that ‹F is a

1-quasiconformal map on the interior of A. Hence ‹F is a conformal map on

the interior of A [LV73, Th. 5.1, p. 28]. Since ‹F = r1 on Q1, it follows that‹F |A is a rotation around 0. Then on S, the map f = ‹F |A also agrees with

such a rotation. The statement follows. �

7. Weak tangent spaces

In this section we discuss some facts about weak tangents of the carpets

Sp. The most important result here is Proposition 7.3, which will be crucial in

the proofs of our main theorems.

In general, weak tangent spaces can be defined as Gromov-Hausdorff limits

of pointed metric spaces obtained by rescaling the underlying metric. (See

[BBI01, Chs. 7, 8] and [DS97, Ch. 8] for the general definitions, and see

[BK02] for applications very similar in spirit to the present paper.) As we will

need this only for the carpets Sp, we will first present a suitable definition for

arbitrary subsets of “C = C ∪ {∞} ∼= S2 and then further adjust the definition

for the carpets Sp.

If a, b ∈ C, a 6= 0, and M ⊆ “C, we denote by aM + b the image of M

under the Möbius transformation z 7→ az + b on “C. Let A be a subset of “C
with a distinguished point z0 ∈ A, z0 6=∞. We say that a closed set A∞ ⊆ “C
is a weak tangent of A (at z0) if there exists a sequence (λn) of positive real

numbers with λn → ∞ such that the sets An := λn(A − z0) tend to A∞ as
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n→∞ in the sense of Hausdorff convergence on “C equipped with the spherical

metric. (See [BBI01, Ch. 7, §7.3.1] for the definition of Hausdorff convergence

of sets in a metric space.) In this case, we use the notation

A∞ = lim
n→∞

(A, z0, λn).

So a weak tangent of A at z0 is obtained by extracting a limit from “blowing

up” A at z0 by suitable scaling factors λn → ∞. Every weak tangent of A

contains 0 and, if A is not a singelton set, also the point ∞.

A set A ⊆ “C has weak tangents at each point z0 ∈ A \ {∞}, because for

every sequence (λn) of positive numbers with λn →∞, there is a subsequence

(λnk) such that the sequence of the sets Ank = λnk(A − z0) converges as

k → ∞ ([BBI01, Th. 7.3.8, p. 253]). In general, weak tangents at a point are

not unique. In particular, if λ > 0 and A∞ is a weak tangent of A at a point,

then λA∞ is also a weak tangent.

It is advantageous to avoid this scaling ambiguity of weak tangents for the

standard carpets Sp, p ≥ 3 odd, and restrict the scaling factors λn used in the

definition of a weak tangent to powers of p. So in the following, a weak tangent

of Sp at a point z0 ∈ Sp is a closed set A∞ ⊆ “C such that

A∞ = lim
n→∞

(Sp, z0, p
kn),

where kn ∈ N0 and kn → ∞ as n → ∞. If this limit exists along the full

sequence (pn), i.e., if

A∞ = lim
n→∞

(Sp, z0, p
n)

exists, then A∞ is the unique weak tangent of Sp at z0. We equip each weak

tangent of Sp with the spherical metric unless otherwise indicated.

We now exhibit some points in Sp, where we have unique weak tangents,

and set up some notation for the weak tangents thus obtained.

Fix an odd integer p ≥ 3. At the point 0, the carpet Sp has the unique

weak tangent

(7.1) Wπ/2 := lim
n→∞

(Sp, 0, p
n) = {∞} ∪

⋃
n∈N0

pnSp.

The existence of this and similar limits below can easily be justified by observ-

ing that by self-similarity of Sp, the relevant sets involved form an increasing

sequence. Here (7.1) follows from the inclusions pnSp ⊆ pn+1Sp for n ∈ N0.

Similarly, at each corner of O, there exists a unique weak tangent of Sp
obtained by a suitable rotation of the set Wπ/2 around 0.

Let m = 1/2 be the midpoint of the bottom side of O. Then at the point

m the carpet Sp has the unique weak tangent

Wπ := lim
n→∞

(Sp, 1/2, p
n) = {∞} ∪

⋃
n∈N0

pn(Sp −m).
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Figure 4. The weak tangent space Wπ/2 for p = 3.

Moreover, if z0 is any midpoint of a side of a square that is a peripheral

circle of Sp, then Sp has a unique weak tangent at z0 obtained by a suitable

rotation of the set Wπ around 0. This easily follows from the fact that for the

existence and uniqueness of a weak tangent at a point z0, only an arbitrary

small (not necessarily open) relative neighborhood of z0 in Sp is relevant, as

the complement of such a neighborhood will “disappear to infinity” if the set is

blown up at z0. Moreover, by self-similarity of Sp, for each of these midpoints

z0, we can choose a relative neighborhood N of z0 in Sp so that a suitable

Euclidean similarity maps N to Sp and z0 to m, and where the scaling factor

of the similarity is an integer power of p.

Let

c :=
p− 1

2p
+
p− 1

2p
i

be the lower left corner of M . Then at c, the carpet Sp has a unique weak

tangent

W3π/2 := lim
n→∞

(Sp, c, p
n) = {∞} ∪

⋃
n∈N0

pn
Ä
iSp ∪ (−i)Sp ∪ (−1)Sp

ä
.

Note that W3π/2 can be obtained by pasting together three copies of Wπ/2. If

z0 is any corner of a square C 6= O that is a peripheral circle of Sp, then Sp has

a unique weak tangent at z0 obtained by a suitable rotation of the set W3π/2

around 0.

The angles π/2, π, 3π/2 used as indices of the above weak tangents in-

dicate that the corresponding space is contained in the closure of the quarter,

half-, and three-quarter plane, respectively. Mostly, it will be clear from the
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context what p is, so we will usually omit an additional label p from the no-

tation; if we want to indicate p, then we write Wπ/2(p) for the weak tangent

Wπ/2 of Sp, etc.

For p ≥ 3 odd, we denote by Dp the set of all midpoints of sides and all

corners of squares that are peripheral circles of Sp. It follows from our previous

discussion that at each point z0 ∈ Dp, the carpet Sp has a unique weak tangent

W isometric to one of the sets Wπ/2, Wπ, or W3π/2. The weak tangent W of

Sp at z0 ∈ Dp can always be written as

(7.2) W = {∞} ∪
⋃
n∈N0

pn(N − z0),

where N is a suitable relative neighborhood of z0 in Sp such that

(7.3) pn(N − z0) ⊆ pn+1(N − z0)

for all n ∈ N0. Actually, we can choose N to be a rescaled copy of Sp (if W

is isometric to Wπ/2 or Wπ) or a union of three rescaled copies of Sp (if W is

isometric to W3π/2). Note that (7.2) and (7.3) imply that pnW = W for all

n ∈ Z.

Lemma 7.1. Let p ≥ 3 be odd, z0 ∈ Dp, and W be the weak tangent of Sp
at z0. Then W is a carpet of measure zero. If W is equipped with the spherical

metric, then the peripheral circles of W form a family of uniform quasicircles

that are uniformly relatively separated.

Proof. We know that up to rotation around 0, the set W is equal to one

of the weak tangents Wπ/2, Wπ, W3π/2. So it is enough to show the statement

for these weak tangents. We will do this for Wπ/2. The proofs for Wπ and

W3π/2 are the same with minor modifications.

First note that Wπ/2 is a carpet, since it can be represented as in (1.1).

Moreover, this set has measure zero, because by (7.2) it can be written as a

countable union of sets of measure zero.

Let

Ω = {z ∈ C : Re(z) > 0 and Im(z) > 0}

be the open quarter-plane whose closure (in “C) contains Wπ/2. Then ∂Ω is

a peripheral circle of Wπ/2. Since ∂Ω can be mapped to the unit circle by a

bi-Lipschitz map, this peripheral circle is a quasicircle.

All other peripheral circles of Wπ/2 are squares; actually, they are precisely

the squares of the form C ′ = pnC, where p ∈ N0 and C is a peripheral circle

of Sp different from the outer square O. As all of these peripheral circles are

similar to O, and O is bi-Lipschitz equivalent to the unit circle, the peripheral

circles C ′ 6= ∂Ω of Wπ/2 are uniform quasicircles in the Euclidean metric.

This is equivalent to a uniform lower bound for certain (metric) cross-ratios
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of points on these peripheral circles (see [Bon11, Prop. 4.4(iv)]). Since cross-

ratios for points in C are the same in the Euclidean and in the chordal metric

(the restriction of the Euclidean metric on R3 to S2 ∼= “C), it follows that the

peripheral circles C 6= ∂Ω of W form a family of uniform quasicircles in the

chordal metric. Since chordal and spherical metric on “C are comparable, we

also get a family of uniform quasicircles in the spherical metric. If we add the

quasi-circle ∂Ω to this collection, we still have a family of uniform quasicircles

in the spherical metric.

The uniform relative separation property of the peripheral circles of Wπ/2

can be established similarly by passing from the Euclidean to the chordal and

the spherical metrics. Namely, first note that if C and C ′ are peripheral circles

of Wπ/2 and C 6= C ′, then for their Euclidean distance, we have

dist(C,C ′) ≥ p− 1

2
min{`(C), `(C ′)},

where `(C) and `(C ′) denote the Euclidean side lengths of C and C ′, respec-

tively, with the convention `(∂Ω) = ∞. This follows from the fact that if

`(C) ≤ `(C ′) say, then there exists a rescaled copy S of Sp in Wπ/2 with C ⊆ S
such that C corresponds to the middle square of Sp, and C ′ meets S at most

in points of the peripheral circle o of S that corresponds to O.

The relative uniform separation of the family of all peripheral circles of

Wπ/2 with respect to the Euclidean metric follows. Again this is equivalent

to a uniform lower bound for certain metric cross-ratios. (This follows from

[Bon11, Lemma 4.6]; to include ∂Ω, we need a slightly extended form of this

lemma where one of the sets is allowed to have infinite diameter, but the

statement and the proof of the lemma can easily be adjusted.) Since cross-

ratios are unchanged if we pass to the chordal metric, it follows that the family

of peripheral circles of Wπ/2 is uniformly relatively separated with respect to

the chordal metric, and hence also with respect to the spherical metric. �

We are interested in quasisymmetric maps g : W → W ′ between weak

tangents W of Sp and weak tangents W ′ of Sq. Note that 0,∞ ∈ W,W ′. We

call g normalized if g(0) = 0 and g(∞) =∞.

Lemma 7.2. Let p, q ≥ 3 be odd, z0 ∈ Dp, w0 ∈ Dq , and let f : Sp → Sq
be a quasisymmetric map with f(z0) = w0. Then f induces a normalized

quasisymmetric map g between the weak tangent W of Sp at z0 and the weak

tangent W ′ of Sq at w0.

Proof. By Proposition 4.1, we can extend f to a quasiconformal homeo-

morphism F : “C → “C. By our discussion earlier in this section, there exists a

relative neighborhood N of z0 in Sp and a relative neighborhood N ′ of w0 in

Sq such that W \{∞} =
⋃
n∈N0

pn(N−z0) and W ′ \{∞} =
⋃
n∈N0

qn(N ′−w0).
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Moreover, by (7.3) we may assume p−n(N − z0) ⊆ N − z0 and q−n(N ′−w0) ⊆
N ′ − w0 for all n ∈ N0.

Pick a point u0 ∈ N − z0, u0 6= 0. Then for each n ∈ N0, we have

z0 + p−nu0 ∈ N \ {z0} ⊆ Sp,
and so F (z0+p−nu0) 6= w0,∞. Hence we can choose a unique number k(n) ∈ Z
as follows. If we define the map Fn : “C→ “C by

Fn(u) = qk(n)
Ä
F (z0 + p−nu)− w0

ä
for u ∈ “C, then

1 ≤ |Fn(u0)| < q.

Note that k(n) → ∞ as n → ∞. Since F (∞) 6∈ Sq, and so F (∞) 6= w0, this

implies that Fn(∞) → ∞ as n → ∞. We also have Fn(0) = 0. So the images

of 0, ∞, and u0 6= 0,∞ under Fn have mutual spherical distance uniformly

bounded from below independent of n. Moreover, each map Fn is obtained

from F by pre- and post-composing by Möbius transformations. Hence the

sequence (Fn) is uniformly quasiconformal, and it follows that we can find

a subsequence of (Fn) that converges uniformly on “C to a quasiconformal

map F∞ [LV73, Th. 5.1(3), p. 73]. By passing to yet another subsequence if

necessary, we can also assume that we have uniform convergence of the inverse

maps in the subsequence to F−1
∞ .

In this way, we can find sequences (kn) and (ln) of natural numbers with

kn →∞ and ln →∞ as n→∞ such that if we define‹Fn(u) = qkn
Ä
F (z0 + p−lnu)− w0

ä
for u ∈ “C, then ‹Fn → F∞ and ‹F−1

n → F−1
∞ uniformly on “C as n → ∞. Then

F∞(0) = 0 and F∞(∞) =∞. Moreover, since F∞ is quasiconformal, this map

is a quasisymmetry on “C [HK98, Th. 4.9].

So to prove the statement of the lemma, it suffices to show that F∞(W ) =

W ′, because then g := F∞|W is an induced normalized quasisymmetric map

between W and W ′ as desired.

Let u ∈ W be arbitrary. If u = ∞, then F∞(u) = ∞ ∈ W ′. If u ∈
W \ {∞}, then u ∈ pm(N − z0) for some m ∈ N0, and so

z0 + p−lnu ∈ z0 + (N − z0) = N ⊆ Sp

for large n. Since z0 + p−lnu→ z0 as n→∞, it follows that

F (z0 + p−lnu) ⊆ N ′

for large n, and so ‹Fn(u) ∈W ′. Since W ′ is closed, we have

F∞(u) = lim
n→∞

‹Fn(u) ∈W ′.

Hence F∞(W ) ⊆W ′.
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Note that ‹F−1
n (w) = pln

Ä
F−1(w0 + q−knw)− z0

ä
for w ∈ “C. So we can apply the same argument to the inverse maps and

conclude that F−1
∞ (W ′) ⊆W . It follows that F∞(W ) = W ′ as desired. �

The previous lemma is an instance of the more general fact that a qua-

sisymmetric map between two standard carpets induces a normalized qua-

sisymmetric map between weak tangents. It is likely that such a map only

exists if the weak tangents are isometric. If this were the case, then this would

put strong restrictions on the original quasisymmetric map. Unfortunately, we

are only able to prove one result in this direction.

Proposition 7.3. Let p ≥ 3 be odd. Then there is no normalized qua-

sisymmetric map from Wπ/2(p) onto W3π/2(p).

The proof will occupy the rest of this section. It strongly relies on the

fact that W3π/2(p) consists of three isometric copies of Wπ/2(p) (which is used

in combination with some monotonicity properties of carpet modulus with

respect to a group). Because of this, the argument does not generalize to other

pairs of weak tangents of Sp and we cannot prove that there is no normalized

quasisymmetric map between Wπ/2(p) and Wπ(p) or between W3π/2(p) and

Wπ(p). If this were true, the proofs of Theorems 1.1 and 1.3 would admit

some simplifications.

We fix an odd number p ≥ 3 in the following. Weak tangents refer to Sp,

and we write Wπ/2 = Wπ/2(p), etc.

Let G and ‹G denote the groups of normalized orientation-preserving qua-

sisymmetric self-maps of Wπ/2 and W3π/2, respectively. Then G and ‹G both

contain the map z 7→ µ(z) := pz induced by multiplication by p, and so it

follows from Lemma 7.1 and Corollary 4.5 that G and ‹G are infinite cyclic.

Let φ be a generator of G. It is actually very likely that G is generated by

µ and that we can take φ = µ, but there seems to be no easy proof for this

statement. So the subsequent argument cannot rely on this, which causes some

complications. In any case, we have µ = φs for some s ∈ Z \ {0}. By replacing

φ by φ−1 if necessary, we may assume that s > 0.

By Lemma 7.1 and Proposition 4.1 there exists a quasiconformal map

Φ: “C → “C whose restriction to Wπ/2 is equal to φ. Then Φ(0) = 0 and

Φ(∞) =∞. Let

Ω := {z ∈ C : Re(z) > 0 and Im(z) > 0}.

Then C0 := ∂Ω is a peripheral circle of Wπ/2 and we have Φ(∂Ω) = φ(∂Ω) =

∂Ω. Since φ, and hence also Φ, is orientation-preserving, these maps fix the pos-

itive real axis and the positive imaginary axis setwise. It follows that Φ(Ω) = Ω.
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Let Γ be the family of all open paths in the region Ω that connect the

positive real and positive imaginary axes. By what we have just seen, the path

family Γ is Φ-invariant. The peripheral circles of Wπ/2 that meet some path

in Γ are precisely the peripheral circles C 6= C0 = ∂Ω. (This is why we chose

Γ to consist of open paths.) It follows from Corollary 4.7 that φn(C) 6= C for

all n ∈ Z \ {0} and all peripheral circles C of Wπ/2 that meet some path in Γ.

So we can apply Lemma 3.3 and conclude that

(7.4) modWπ/2/〈µ〉(Γ) = modWπ/2/〈φs〉(Γ) = smodWπ/2/G(Γ).

Lemma 7.4. We have 0 < modWπ/2/G(Γ) <∞.

Proof. By (7.4) it is enough to show that

0 < modWπ/2/〈µ〉(Γ) <∞.

To establish the inequality modWπ/2/〈µ〉(Γ) < ∞, it suffices to exhibit an

admissible mass distribution of finite mass.

If C 6= C0 = ∂Ω is a peripheral circle of Wπ/2, we denote by θ(C) the angle

under which C is seen from the origin; i.e., θ(C) is the length of the circular

arc obtained as the image of C under the radial projection map z ∈ C \ {0} 7→
pr(z) := z/|z| to the unit circle. We set ρ(C0) := 0, and ρ(C) := 2

πθ(C) for all

peripheral circles C 6= C0. We claim that ρ is admissible for modWπ/2/〈µ〉(Γ).

To see this, first note that ρ is constant on orbits of peripheral circles

under the action of the group 〈µ〉. Let Γ0 denote the family of all paths γ in Γ

that are not locally rectifiable or for which γ ∩Wπ/2 has positive length. Since

Wπ/2 is a set of measure zero, we have mod(Γ0) = 0.

If γ ∈ Γ, then pr(γ) = α := {eit : 0 < t < π/2} and the projection map

pr is a Lipschitz map on γ. So if γ ∈ Γ \ Γ0, then up to a set of measure zero,

pr(γ) = α is covered by the projections pr(C) of the peripheral circles that

meet γ. It follows that ∑
γ∩C 6=∅

ρ(C) =
2

π

∑
γ∩C 6=∅

θ(C) ≥ 1

for all γ ∈ Γ \ Γ0. So ρ is indeed admissible.

To find a mass bound for ρ, note that every 〈µ〉-orbit of a peripheral circle

C 6= C0 has a unique element contained in the set F := µ(Q0) \Q0. (Recall

that Q0 = [0, 1] × [0, 1] ⊆ R2 ∼= C denotes the unit square.) Moreover, there

exists a constant K > 0 such that

θ(C) ≤ K`(C)

for all peripheral circles C of Wπ/2 with C ⊆ F . It follows that

massWπ/2/〈µ〉(ρ) =
4

π2

∑
C⊆F

θ(C)2 .
∑
C⊆F

`(C)2 = Area(F ) = p2 − 1,
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where Area(F ) denotes the Euclidean area of F . Hence ρ is an admissible

density for modWπ/2/〈µ〉(Γ) with finite mass as desired.

To show that modWπ/2/〈µ〉(Γ) > 0, we argue by contradiction and assume

that modWπ/2/〈µ〉(Γ) = 0. For k ∈ N, let Ck denote the set of all peripheral

circles C of Wπ/2 with C ⊆ Fk := µk(Q0) \ µ−k(Q0). Then every orbit O of

a peripheral circle C 6= C0 under the action of 〈µ〉 has exactly 2k elements in

common with Ck. Hence #(O ∩ Ck) ≤ Nk := 2k. Moreover, since every path

γ ∈ Γ lies in Fk for sufficiently large k, we have Γ =
⋃
k Γk, where Γk denotes

the family of all paths in Γ that only meet peripheral circles in Ck. This and

the previous considerations imply that the hypotheses of Proposition 3.2 are

satisfied. Hence there exists an extremal mass distribution for modWπ/2/〈µ〉(Γ).

By our assumption, modWπ/2/〈µ〉(Γ)=0. This is only possible if every path

in Γ belongs to the exceptional family for modWπ/2/〈µ〉(Γ). We conclude that

mod(Γ)=0; but obviously mod(Γ)=∞, and we obtain a contradiction. �

Let H be the group of homeomorphisms of “C generated by the reflections

in the real and in the imaginary axes. Then H consists of precisely four

elements.

We may assume that the quasiconformal map Φ whose restriction to Wπ/2

is equal to the generator φ of G has the property that it is equivariant under

H in the sense that Φ ◦ α = α ◦ Φ for all α ∈ H.

Indeed, if the original map Φ does not have this property, then we restrict

it to the first quadrant and extend this restriction by successive reflections in

real and imaginary axes to the whole sphere. The new map Φ obtained in

this way is clearly an orientation-preserving homeomorphism with the desired

equivariance property. It is also quasiconformal away from the real and positive

imaginary axes. Since sets of finite 1-dimensional Hausdorff measures form

removable singularities for quasiconformal maps [LV73, Th. 3.2, p. 202], Φ will

actually be a quasiconformal map on “C. As before, Φ|Wπ/2 = φ.

Let ‹Ω := {z ∈ C : Re(z) < 0 or Im(z) < 0}.

Then ‹Ω is a three-quarter plane whose closure contains W3π/2, and C0 =

∂Ω = ∂‹Ω is a peripheral circle of W3π/2. The set W3π/2 consists of three

copies of Wπ/2 that can be obtained by successive reflections in the real and

positive imaginary axes. By its equivariance property, the map Φ restricts to

a normalized orientation-preserving quasisymmetric self-map ψ := Φ|W3π/2 of

W3π/2.

Recall that ‹G denotes the infinite cyclic group consisting of all normalized

orientation-preserving quasisymmetric self-maps of W3π/2. Then we have ψ ∈‹G, and 〈ψ〉 is an infinite cyclic subgroup of ‹G.
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Let Γ̃ be the family of all open paths in ‹Ω that join the positive real and

the positive imaginary axes.

Lemma 7.5. We have modW3π/2/〈ψ〉(Γ̃) ≤ 1
3 modWπ/2/G(Γ).

Proof. Essentially, this follows from an application of a suitable “serial

law” to modulus with respect to a group.

More precisely, suppose that ρ is an arbitrary admissible invariant mass

distribution for modWπ/2/G(Γ) with exceptional family Γ0. We want to use ρ to

define a suitable admissible mass distribution ρ̃ for modW3π/2/〈ψ〉(Γ̃). For the

special peripheral circle C0 of W3π/2, we set ρ̃(C0) = 0. If ‹C is any peripheral

circle of W3π/2 with ‹C 6= C0, then there exists a unique element α ∈ H such

that α(‹C) is a peripheral circle of Wπ/2. We set ρ̃(‹C) := 1
3ρ(α(‹C)).

By the equivariance property of Φ and the fact that ρ is constant on orbits

of G = 〈φ〉, it follows that ρ̃ is constant on orbits of 〈ψ〉.
Let Γ̃0 be the family of all paths in Γ̃ that have a subpath that can be

mapped to a path in Γ0 by an element α ∈ H. Since mod(Γ0) = 0, we have

mod(Γ̃0) = 0.

Let γ ∈ Γ̃ be arbitrary. Then γ has three disjoint open subpaths (one for

each quarter-plane of ‹Ω) that are mapped to a path in Γ by a suitable element

in H. Let γi, i = 1, 2, 3, denote these image paths in Γ. In addition, if γ 6∈ Γ̃0,

then γi 6∈ Γ0 for i = 1, 2, 3; so

∑
γ∩C̃ 6=∅

ρ̃(‹C) ≥ 1

3

3∑
i=1

∑
γi∩C 6=∅

ρ(C) ≥ 1

for all γ ∈ Γ̃\ Γ̃0. Hence ρ̃ is admissible for modW3π/2/〈ψ〉(Γ̃) and it follows that

modW3π/2/〈ψ〉(Γ̃) ≤ massW3π/2/〈ψ〉(ρ̃) ≤ 1
3 massWπ/2/G(ρ).

Since ρ was an arbitrary admissible mass distribution for modWπ/2/G(Γ), the

statement follows. �

Proof of Proposition 7.3. We use the notation introduced above and de-

note by G and ‹G infinite cyclic groups of all normalized orientation-preserving

quasisymmetric self-maps of Wπ/2 and W3π/2, respectively. As before, let Γ

and Γ̃ be the family of all paths in Ω and ‹Ω, respectively, that join the positive

real and the positive imaginary axes.

To reach a contradiction, we assume that there is a normalized quasisym-

metric map f from Wπ/2 onto W3π/2. Precomposing f by the reflection in

the line L = {z ∈ C : Re(z) = Im(z)} if necessary, we may assume that f

is orientation-preserving. Then ‹G = f ◦ G ◦ f−1, and φ̃ := f ◦ φ ◦ f−1 is a

generator for ‹G. By Lemma 7.1 and Proposition 4.1, the map f extends to a
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quasiconformal map F on “C. Then Γ̃ = F (Γ), and so Lemma 3.1 gives

mod
W3π/2/G̃

(Γ̃) = modWπ/2/G(Γ).

Let ψ = Φ|W3π/2 ∈ ‹G be the map considered above. Then ψ = φ̃m for

some m ∈ Z \ {0}, and it follows from Corollary 4.7 and Lemma 3.3 (see the

argument that we used to establish (7.4)) that

modW3π/2/〈ψ〉(Γ̃) = |m|mod
W3π/2/G̃

(Γ̃).

Hence by Lemma 7.5, we have

modWπ/2/G(Γ) = mod
W3π/2/G̃

(Γ̃)

= 1
|m|modW3π/2/〈ψ〉(Γ̃)

≤ 1
3|m|modWπ/2/G(Γ).

This is only possible if modWπ/2/G(Γ) = 0 or modWπ/2/G(Γ) =∞; this contra-

dicts Lemma 7.4, and the statement follows. �

8. Proof of Theorems 1.1–1.3

We fix an odd integer p ≥ 3. As before, we assume that the standard

Sierpiński carpet Sp is obtained by subdividing the unit square Q0 = [0, 1] ×
[0, 1] in the first quadrant of C ∼= R2. In this section it is convenient to

mostly use real notation; so (x0, y0) is the point in R2 with x-coordinate x0

and y-coordinate y0. As before, we use 0 to denote the origin in R2.

We equip Sp with the restriction of the Euclidean metric. The carpet Sp
has four lines of symmetries; one of them is the diagonal D := {(x, y) ∈ R2 :

x = y} and another the vertical line V := {(x, y) ∈ R2 : x = 1/2}. We denote

the reflections in D and V by RD and RV , respectively. The maps RD and

RV generate the group of Euclidean isometries of Sp, which consists of eight

elements.

If f is a quasisymmetric self-map of Sp, then by Corollary 5.2 the outer

squareO and the middle squareM ofSp are preserved as a pair; so {f(O),f(M)}
= {O,M}. We will now show that f(O) = M is actually impossible.

Lemma 8.1. Let f be a quasisymmetric self-map of Sp, p ≥ 3 odd. Then

f(O) = O and f(M) = M .

Proof. Let f ∈ QS(Sp) be arbitrary. We know that f(O) ∈ {O,M}. It

is enough to show f(O) = O, because then necessarily f(M) = M . We argue

by contradiction and assume that f(O) = M . Then f(M) = O, and so f

interchanges O and M .

By Corollary 5.3, the group QS(Sp) of all quasisymmetric self-maps of Sp
is finite. Let G be the subgroup of QS(Sp) consisting of all quasisymmetric
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self-maps g of Sp with g(O) = O and g(M) = M . Then G is also finite and

contains the isometry group of Sp. Moreover, if G0 is the set of all maps in G

that are orientation-preserving, then G0 is a subgroup in G of index 2; indeed,

G can be written as the disjoint union

(8.1) G = G0 ∪G0RD

of two right cosets of G0.

If z ∈ Sp is arbitrary, we denote by

O(z) = {g(z) : g ∈ G}

the orbit of z under the action of G. Let

c = ((p− 1)/(2p), (p− 1)/(2p))

be the left lower corner of the square M , and let w0 = f(0) ∈ M . In the

following we will consider the orbits O(c) and O(w0). Both are subsets of M .

Since G contains the isometry group of Sp, the orbits O(w0) and O(c) have

the same symmetries as Sp.

It follows from Corollary 4.7 that if g ∈ G0 has a fixed point in Sp, then

g is the identity on Sp. So if z ∈ Sp is arbitrary, then the map g ∈ G0 7→ g(z)

is injective. Since RD(0) = 0, it follows from (8.1) that #O(0) = #G0.

We also have RD(c) = c, and so #O(c) = #G0. Moreover, the map

g ∈ G 7→ f ◦ g ◦ f−1 ∈ G is an automorphism of G. This implies that

O(w0) = {(f ◦ g ◦ f−1)(w0) : g ∈ G} = {(f ◦ g)(0) : g ∈ G} = f(O(0)).

Hence

#O(w0) = #O(0) = #G0 = #O(c),

and so the orbits O(w0) and O(c) have the same number of elements.

We will now show that this is impossible. First note that c 6∈ O(w0), and so

O(c)∩O(w0) = ∅. Indeed, suppose on the contrary that c ∈ O(w0). Then there

exists g ∈ G with c = g(w0) = (g ◦ f)(0). Then h := g ◦ f is a quasisymmetric

self-map of Sp with h(0) = c. By Lemma 7.2, the map h induces a normalized

quasisymmetric map from Wπ/2, the weak tangent of Sp at 0, onto W3π/2, the

weak tangent of Sp at c. This is impossible by Proposition 7.3.

By symmetry, O(c) contains all corners of M , while O(w0) contains none

of the corners of M by what we have just seen.

Let

m′ = (1/2, (p− 1)/(2p))

be the midpoint of the bottom side of M . We want to show that m′ belongs

to neither O(w0) nor O(c). Indeed, suppose that m′ ∈ O(w0). Similarly as

above, we can then find a quasisymmetric self-map h of Sp with h(0) = m′.
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By precomposing h by RD if necessary, we may assume that h is orientation-

preserving. Since the weak tangent of Sp at m′ is isometric to Wπ, we get an

induced normalized quasisymmetric map h1 : Wπ/2 →Wπ.

We necessarily have h(O) = M and h(M) = O. Consider the map RV ◦
h ◦ RD. Then h and RV ◦ h ◦ RD are orientation-preserving quasisymmetric

self-maps of Sp that act in the same way on the origin and on the peripheral

circles O and M . By Corollary 4.7 it follows that h = RV ◦h◦RD. This shows

that h maps the set Sp∩D onto Sp∩V . Since we know that h(c) ∈ h(M) = O,

this only leaves two possibilities for the point h(c), namely (1/2, 0) and (1/2, 1).

Since at both points the weak tangents of Sp are isometric to Wπ, we get an

induced normalized quasisymmetric map h2 : W3π/2 →Wπ. Then h−1
2 ◦h1 is a

normalized quasisymmetric map fromWπ/2 ontoW3π/2. We get a contradiction

to Proposition 7.3, showing that m′ 6∈ O(w0).

The proof that m′ 6∈ O(c) runs along similar lines. Again we argue by con-

tradiction and assume m′ ∈ O(c). Then we can find an orientation-preserving

quasisymmetric self-map h of Sp with h(c) = m′. This gives a normalized qua-

sisymmetric map h1 : W3π/2 →Wπ. We must have h(M) = M and h(O) = O.

Then h and RH ◦ h ◦RD are orientation-preserving quasisymmetric self-maps

of Sp that act in the same way on c and on the peripheral circles O and M .

Therefore, h = RV ◦ h ◦ RD, and so h maps the set Sp ∩ D onto Sp ∩ V .

This only leaves the possibilities (1/2, 0) or (1/2, 1) for the point h(0). In

any case, we get an induced normalized quasisymmetric map h2 : Wπ/2 →Wπ,

and by considering h−1
1 ◦ h2, again a contradiction to Proposition 7.3. Hence

m′ 6∈ O(c).

To summarize, we know that the sets O(c) and O(w0) are disjoint subsets

of M with the same symmetries as Sp, and none of these sets contains m′. This

implies that each side of M contains an even number of points in O(c) and

O(w0), since we have reflection symmetry about the midpoint of each side.

Since no corner of M is in O(w0) and each side of M contains the same

even number of points in O(w0), it follows that

#O(w0) = 8k

for some k ∈ N0. So #O(w0) is divisible by 8. On the other hand, O(c)

contains the corners of M . Since each corner belongs to two sides, we have

#O(c) = 8l − 4

for some l ∈ N, and so #O(c) is not divisible by 8. Since we know that

#O(w0) = #O(c), this is a contradiction. So f(O) = M is impossible, and we

must have f(O) = O. �

One can make the logic of the previous proof a little more transparent

if one follows a slightly different (albeit longer) route. Namely, if a map
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f ∈ QS(Sp) with f(O) = M exists, then, by using a counting argument as

above, one can find such a map f that sends the origin to one of the natural

candidates adapted to the symmetries of Sp, namely to a corner of M or to

the midpoint of one of the sides of M . Arguing as in the previous proof based

on Proposition 7.3, one can rule out these possibilities, and one again reaches

a contradiction.

As before, let O be the outer and M the middle square of Sp. We denote

the orbit of a point z ∈ Sp by the group QS(Sp) of quasisymmetric self-maps

of Sp by O(z). Now that we know that every map f ∈ QS(Sp) preserves O

and M setwise, the group G introduced in the previous proof is actually equal

to QS(Sp). Define m = (1/2, 0). Then m is the midpoint of the bottom side

of O.

Lemma 8.2. Let z ∈ O be arbitrary. If O(z) 6= O(0),O(m), then #O(z)

is divisible by 8. Moreover, #O(0) and #O(m) are divisible by 4, but not by 8,

and O(0) ∩ O(m) = ∅.

Proof. If z ∈ O, then the orbit O(z) ⊆ O has the same symmetries as

Sp; so each side of O contains the same number of points in O(z), and #O(z)

must be divisible by 4. If O(z) 6= O(0),O(m), then O(z) does not contain any

corners of O, nor any midpoint of a side of O. Hence each side of O contains

an even number 2k, k ∈ N, of points in O(z) and #O(z) = 8k. In this case,

#O(z) is divisible by 8.

We want to show that O(0) ∩ O(m) = ∅. We argue by contradiction and

assume that O(0) ∩ O(m) 6= ∅. Then we can find a map f ∈ QS(Sp) with

f(0) = m, and pre-composing f with RD if necessary, we may assume that f

is orientation-preserving. Similarly as in the proof of Lemma 8.1, this leads

to a contradiction; namely, we first get an induced normalized quasisymmetry

f1 : Wπ/2 →Wπ. Moreover, from Corollary 4.7 we conclude that f = RV ◦ f ◦
RD, and so f maps Sp ∩ D onto Sp ∩ V ; hence the lower left corner c of M

must be mapped to the intersection M ∩V , which consists of two points where

the weak tangents are isometric to Wπ. This gives an induced normalized

quasisymmetry f2 : W3π/2 →Wπ. Considering f−1
2 ◦ f1, we get a contradiction

from Proposition 7.3.

It follows that O(0) contains the corners of O but not any midpoint of

a side. So the number of points in O(0) on each side is an even number 2r,

r ∈ N, and we conclude #O(0) = 8r − 4.

Finally, the number of points in O(m) on each side is an odd number

2l − 1, l ∈ N, since O(m) contains the midpoint of the side. Since none of the

corners of O belongs to O(m), we have #O(0) = 8l− 4. Hence neither #O(0)

nor #O(m) is divisible by 8. �
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Exactly the same statement with essentially the same proof is true for

orbits of points in M , if in Lemma 8.2 we replace 0 by a corner of M and m

by a midpoint of a side of M .

Proof of Theorem 1.1. Let f be a quasisymmetric self-map of S3. We

want to show that f is a Euclidean isometry of S3. To see this, we may assume

f is orientation-preserving, for otherwise we can compose this map with the

reflection RV that lies in the isometry group of S3. By Lemma 8.1 we know

that if O is the outer and M the middle square of S3, then f(O) = O and

f(M) = M .

There are eight peripheral circles of S3 that are squares of sidelength 1/9.

We call them second generation squares as they are the boundaries of the solid

squares that were removed in the second step of the construction. (In the first

step, the square bounded by M was removed from Q0.) Four second generation

squares, the corner squares, have distance 1/9 to precisely two sides of the unit

square Q0; the four other ones, the side squares, have distance 1/9 to exactly

one side of Q0.

Before continuing, we give a general outline of the ensuing argument. We

will show that f must map some second generation square to another one.

This will lead to various combinatorial possibilities. We will analyze them in

detail. In some cases we can invoke the Three-Circle Theorem, Corollary 4.4, to

identify f with an isometry as desired. In the other cases, a map with the given

mapping behavior on a second generation square will not exist. The strategy

for ruling out the existence of such “ghost maps” is this: Using symmetries and

again the Three-Circle Theorem, we will be able to restrict the possibilities for

the image of the origin under f . The map f will induce a quasisymmetry of

the weak tangent Wπ/2 of S3 at 0 to a weak tangent of S3 at p = f(0). As

we will see, this always leads to a normalized quasisymmetry from Wπ/2 onto

W3π/2. Invoking Proposition 7.3, we will then get a contradiction ruling out

the existence of the map.

We now proceed to presenting the details.

Claim. The map f sends some second generation square to another second

generation square.

Among the eight second generation squares, let C0 be one for which

modS3(Γ(C0, O;S3))

is largest, and define C1 = f(C0). Then C1 is a peripheral circle of S3 and

hence a square. As in the proof of Corollary 5.2, Lemma 2.1 implies that

modS3(Γ(C0, O;S3)) = modS3(Γ(C1, O;S3)).
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For establishing the claim, it suffices to show that C1 has sidelength 1/9 and

is hence a second generation square. Since f(O) = O and f(M) = M , we

have C1 = f(C0) 6∈ {O,M}, and so the sidelength of C1 is at most 1/9. The

monotonicity of carpet modulus and the self-similarity of S3 imply that this

side length cannot be strictly smaller than 1/9. Indeed, suppose that this is

the case. Then there exists a unique carpet S ⊆ S3 that can be mapped to S3

by a Euclidean similarity so that C1 corresponds to a second generation square

of S3. Let o denote the outer peripheral circle of S corresponding to O. By

our assumption that C1 is not a second generation square, we have S 6= S3,

and so S is a proper subset of S3.

By definition of C0 and scale invariance of carpet modulus, we have

modS(Γ(C1, o;S)) ≤ modS3(Γ(C0, O;S3)).

On the other hand, an argument as in the proof of Lemma 5.1 gives

modS3(Γ(C1, O;S3)) < modS(Γ(C1, o;S)).

The previous three modulus relations combined lead to a contradiction, and

the claim follows.

Having established that the image C1 = f(C0) of some second generation

square C0 is also a second generation square, we now distinguish several cases

depending on the type of the squares C0 and C1, i.e., whether they are corner

or sides squares. These cases will exhaust all possibilities.

Case 1: C0 and C1 are corner squares.

Then there exists an isometry T of S3 given by a rotation that maps C0

to C1. Then f and T act in the same way on three peripheral circles O, M , C0

of S3. Since f and T are orientation-preserving, it follows from Corollary 4.4

that f = T . Hence f is an isometry of S3.

Case 2. C0 is a corner square, and C1 is a side square.

By pre- and post-composing f by suitable rotations, we may assume that

C0 is the corner square that has distance 1/9 to both the x- and y-axes and

that C1 is the side square that has distance 1/9 to the x-axis.

Then f and RV ◦ f ◦ RD are orientation-preserving quasisymmetric self-

maps of S3 that act in the same way on O, M , C0. Again Corollary 4.4 allows

us to conclude that f = RV ◦ f ◦ RD, and so f(D ∩ S3) = V ∩ S3. This only

leaves two possibilities for the image of the origin under f , namely the points

(1
2 , 0) or (1

2 , 1); since the weak tangents of S3 at these points are isometric to

Wπ, we get an induced normalized quasisymmetric map f1 : Wπ/2 →Wπ.

Moreover, the lower left corner c = (1
3 ,

1
3) of M is mapped by f to either

(1
2 ,

1
3) or (1

2 ,
2
3). The weak tangent of S3 at (1

3 ,
1
3) is equal to W3π/2, and the

weak tangents at both points (1
2 ,

1
3) or (1

2 ,
2
3) are isometric to Wπ. As above,

the map f induces a normalized quasisymmetric map f2 : W3π/2 →Wπ. Then
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the map f−1
2 ◦ f1 is a normalized quasisymmetric map from Wπ/2 onto W3π/2.

This contradicts Proposition 7.3, and a map f as in this case does not exist.

Case 3. C0 is a side square, and C1 is a corner square.

Then we consider f−1 and reduce to Case 2. This shows that a map f as

in this case does not exist.

Case 4. C0 and C1 are side squares.

Then there exists a rotation T of S3 that maps O, M , C0 in the same way

as f , and as in Case 1, we conclude that f = T . Hence f is an isometry of S3.

Cases 1–4 exhaust all possibilities, and we have shown that in each case

the map f is an isometry or does not exist. Theorem 1.1 follows. �

Remark 8.3. For larger p, the number of second generation squares of Sp
increases and the above case analysis seems to meet insurmountable obstacles.

In a previous version of this paper it was incorrectly stated that one can still

carry the argument through for S5, but our intended case analysis contained

a gap. This was pointed out to us by Guy David.

A more natural approach is to first prove rigidity statements for weak

tangents of Sp. In view of Theorem 1.4 or Theorem 1.5, one may speculate

whether a normalized quasisymmetry between two weak tangents of a carpet

Sp only exists if the weak tangents are similar; i.e., one is the image of the other

by a Euclidean similarity. If this is the case, then by considering Wπ/2, one can

conclude that under any quasisymmetry f of Sp, the origin must be mapped

to a corner of the unit square, and it would easily follow from Corollary 4.7

that f is an isometry of Sp.

Unfortunately, we cannot even rule out the existence of a normalized qua-

sisymmetric map between the weak tangents Wπ/2 and Wπ of Sp. This caused

some complications in the previous proof that we were able to overcome by

ad hoc arguments.

Proof of Theorem 1.2. Let G = QS(Sp) be the group of all quasisymmet-

ric self-maps of Sp, and let G0 be the subgroup of all orientation-preserving

maps in G. Then G0 is a subgroup in G of index 2 and G0 is finite cyclic as

follows from Lemma 8.1 and Corollary 4.6.

Consider the orbit O(0) of the origin under G. Since RD(0) = 0, this

set is equal to the orbit of 0 under G0. Since each element in G preserves

the outer square O, we know that O(0) consists of points on O. Moreover,

O(0) is symmetric with respect to all symmetries of Sp. We equip O with

positive orientation, so that Sp lies on the left if we run through O with this

orientation. Let z0 = 0, z1, . . . , zn−1, zn = z0, where n ∈ N, be the points in

O(0) in cyclic order on the oriented curve O, and let αi for i = 0, . . . , n− 1 be

the corresponding subarcs of O with end points zi and zi+1.
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There exists an element r ∈ G0 with r(z0) = z1. Then r(α0) is a subarc of

O that has the initial point z1, is positively oriented on O, since r is orientation-

preserving, and has its end point in O(0). Moreover, r(α0) does not contain

any point from O(0) in its interior, because this is true for α0. Hence the

end point of r(α0) must be z2, and so r(α0) = α1. Repeating this argument

successively for the arcs α1, . . . , αn−1, we conclude that r(αi) = αi+1 for all

i = 0, . . . , n− 1, where αn = α0. In particular, r(zi) = zi+1, and so zi = ri(0)

for i = 0, . . . , n.

This implies that r generates G0; indeed, if g ∈ G0 is arbitrary, then by

what we have just seen, there exists i ∈ {0, . . . , n − 1} such that g(0) = zi =

ri(0). Then g−1 ◦ ri is an orientation-preserving element in G that fixes the

origin and the peripheral circles O and M . Hence g−1 ◦ ri = e, where e = idSp ,

and so g = ri. Since rn(0) = rn(z0) = zn = z0 = 0, the same argument shows

that rn = e. Moreover, since the points zi = ri(0) for i = 0, . . . , n − 1 are all

distinct, n is the order of g.

Let s = RD be the reflection in D. Then s ∈ G is orientation-reserving

and, since G0 has index 2 in G, it follows that s and r generate G. Since the

orbit O(0) is invariant under s, the arc s(α0) has its end points in O(0). There

are no points from the orbit in its interior, one of the end points is z0 = 0, and

s(α0) is traversed in negative orientation if we traverse α0 positively. Hence

s(α0) = αn−1, and so s(z1) = zn−1. It follows that (s ◦ r)2 ∈ G is orientation-

preserving and

(s ◦ r)2(0) = (s ◦ r ◦ s)(r(0)) = (s ◦ r ◦ s)(z1)

= (s ◦ r)(zn−1) = s(z0) = s(0) = 0.

Similarly as before, we conclude that (s ◦ r)2 = e. So we have the relations

s2 = rn = (s ◦ r)2 = e for the generators s and r of G. Moreover, the element

r has order n. The elements s and s ◦ r are orientation-reversing, and so they

have order 2. This implies that G is a finite dihedral group. �

Remark 8.4. Let G0 be the group of orientation-preserving maps in G =

QS(Sp). As we have seen in the preceding proof, G0 is a cyclic subgroup of G

with index 2. Moreover, the order n of G0 is equal to the cardinality of the

orbit of O(0) of 0 under G. So by Lemma 8.1, the order n of G0 is divisible by

4, but not by 8. Of course, if our conjecture is true that every element in G is

an isometry, then G0 consists of four rotations and n = 4.

Proof of Theorem 1.3. Let p, q ≥ 3 be odd integers, and suppose that

there exists a quasisymmetric map f : Sp → Sq. We want to show that p = q.

In the following we use the subscript p in our notation if we refer to objects

related to Sp and q if we refer to Sq. So Mp denotes the middle square of Sp,

etc.
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Let Gp and Gq be the groups of quasisymmetric self-maps of Sp and Sq,

respectively. Note that by Corollary 5.3 the groups Gp and Gq are finite, and, f

being quasisymmetric, conjugates Gp and Gq. This implies that if Op denotes

the orbit of 0 under Gp, then Oq := f(Op) is the orbit of f(0) under Gq.

It follows from Lemmas 2.1 and 5.1 that f maps the pair {Op,Mp} con-

sisting of the outer square and middle square of Sq to the corresponding pair

{Oq,Mq}. Hence f(Op) = Oq or f(Op) = Mq and, in particular, f(0) ∈ Oq or

f(0) ∈Mq.

By Lemma 8.2, the number #Op is not divisible by 8. Since Oq has the

same cardinality as Op, the number #Oq is not divisible by 8 either. Applying

Lemma 8.2 and the remark after this lemma, we conclude that the orbit Oq of

f(0) ∈Mq ∪Oq under Gq must be equal to the orbit of a corner of Oq or Mq,

or the orbit of a midpoint of a side of Oq or Mq.

Let

cq = ((q − 1)/(2q), (q − 1)/(2q))

be the lower left corner of Mq, and let m = (1/2, 0) and

m′q = (1/2, (q − 1)/(2q))

be the midpoint of the bottom side of Oq and Mq, respectively. By what we

have seen, f(0) must belong to an orbit of one of the four points 0, cq,m,m
′
q

under Gq. By composing f with a suitable element in Gq, we may actually

assume that f(0) ∈ {0, cq,m,m′q}. By pre-composing f with RD if necessary,

we may in addition assume that f is orientation-preserving.

We are led to four cases that we now analyze.

Case 1. f(0) = 0.

Then f(Op) = Oq and f(Mp) = Mq. The map f−1 ◦ RD ◦ f ◦ RD is

an orientation-preserving quasisymmetry in Gp, fixes the point 0, and the

peripheral circles Op and Mp setwise. Hence this map is equal to the identity

on Sp, which implies f ◦RD = RD ◦ f . From this, we conclude in turn that f

fixes the point (1, 1).

Let D′ be the line {(x, y) ∈ R2 : x + y = 1}, and denote the reflection

in D′ by RD′ . Then the map f−1 ◦ RD′ ◦ f ◦ RD′ is an orientation-preserving

quasisymmetry in Gp, fixes the point 0, and the peripheral circles Op and Mp

setwise. Hence this map is the identity on Sp, and so f ◦ RD′ = RD′ ◦ f . It

follows that f fixes the points (0, 1) and (1, 0) or interchanges them. Since f

is orientation-preserving, and fixes 0 and (1, 1), this map must fix (0, 1) and

(1, 0). So f fixes all corners of the unit square.

By Theorem 1.4 the map f must be the identity and the carpets Sp and

Sq are the same. Hence p = q.

Case 2. f(0) = m.
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Then we get an induced normalized quasisymmetry f1 : Wπ/2(p)→Wπ(q).

Moreover, by an argument as in Case 1, we have f ◦RD = RV ◦f . This implies

that f(Sp ∩ D) = Sq ∩ V . Since we also have f(Mp) = Mq, the lower left

corner cp of Mp must be mapped to the midpoint of the bottom or the top

side of Mq. At these points, Sq has a unique weak tangent isometric to Wπ(q).

Hence we get an induced normalized quasisymmetry f2 : W3π/2(p) → Wπ(q).

Considering f−1
2 ◦ f1 we get a contradiction to Proposition 7.3. So this case is

impossible.

Case 3. f(0) = m′q.

This is very similar to Case 2. We get an induced normalized quasisym-

metry f1 : Wπ/2(p)→Wπ(q), and we have f ◦RD = RV ◦f . Since f(Mp) = Oq,

this limits the possible image points of cp under f to the midpoints of the top

or bottom side of Oq. Again we get an induced normalized quasisymmetry

f2 : W3π/2(p)→Wπ(q) and a contradiction by Proposition 7.3.

Case 4. f(0) = cq.

We get an induced normalized quasisymmetry f1 : Wπ/2(p) → W3π/2(q).

We also have f ◦RD = RD ◦ f , and so f(Sp ∩D) = Sq ∩D. Pick a peripheral

circle C 6= Op,Mp of Sp that is symmetric with respect to D, and let v ∈ D∩C.

Then v is a corner of the square C, and so Sp has a weak tangent at v that is

isometric to W3π/2(p). Moreover, C ′ = f(C) is a peripheral circle of Sq distinct

from Oq = f(Mp). It contains the point v′ = f(v) that lies on D. Hence v′ is a

corner of C ′, and so Sq has a weak tangent at v′ isometric to W3π/2(q). We get

an induced normalized quasisymmetry f2 : W3π/2(p)→W3π/2(q). Considering

f−1
2 ◦ f1, we again get a contradiction to Proposition 7.3.

In sum, only Case 1 is actually possible, and we have p = q as desired. �
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